KS2 Maths Information for Parents/Carers

- Key Aims of the National Curriculum
- Multiplication in Years 5 and 6
- Division in Years 5 and 6
- Fractions in Years 5 and 6
- Times tables
- How you can help at home

Maths Curriculum

Children should:

- Become fluent in their recall of mental maths facts e.g. times tables, number bonds
- Be able to reason mathematically. Children need to be able to explain the mathematical concepts with number sense; they must explain how they got the answer and why they are correct
- Problem solve - apply their skills to real-life contexts.

Boxgrove
Primary
School

Concrete, Pictorial and Abstract

$\begin{aligned} & \frac{6}{6} \\ & \frac{1}{6} \\ & \frac{0}{\gamma} \end{aligned}$		Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method.

Boxgrove
Primary
School'

Resources

Use the resources on your table to represent
32×4

Multiplication - concepts

18						
3	3	3	3	3	3	
6		6		6		

$$
\begin{aligned}
& 18=3+3+3+3+3+3 \\
& 18=3 \times 6 \\
& 18=6+6+6 \\
& 18=6 \times 3
\end{aligned}
$$

Multiplication - concepts

18						
3	3	3	3	3	3	
6		6		6		

180						
30	30	30	30	30	30	
60		60		60		

1800					
300	300	300	300	300	300
600		600		600	

Multiplication - concepts

The grid method is taught
from Year 3, and is a stepping stone to the formal method of long multiplication

$120+8=128$
[By
38×63

$$
\begin{array}{r}
38 x \\
63 \\
\hline 114 \\
2280 \\
\hline 2394 \\
\hline
\end{array}
$$

$$
38 \times 63
$$

$$
\begin{array}{r}
38 x \\
63 \\
\hline 24 \\
90 \\
480 \\
1800 \\
\hline 2394 \\
\hline 1
\end{array}
$$

Expanded method (for children who need that extra step)

x 30 8 60 1800 480 3 90 24

38

Some of the skills children need to have mastered before they can tackle long multiplication:

- Partitioning
- Multiplying by $10,100,1000$ e.g. 60×8
- Times tables
- Column addition with exchanging.

Your turn : calculate 45×57 using all three methods

1. Grid method

38 63

	3	0	4	6
\times			7	3

$$
\begin{array}{r}
1.12 \\
\times \quad 3 \\
\hline 3.36
\end{array}
$$

Multiples
Factors
Common factors
Prime numbers
Square numbers
Cube numbers

Write the two missing digits to make this long multiplication correct.

Alfie says,
'When you multiply two numbers together, the answer is always greater than either of the numbers you started with.'

Is Alfie correct?
Circle Yes or No.

Yes / No

Explain how you know.

A shop sells sheets of sticky labels.
On each sheet there are $\mathbf{3 6}$ rows and $\mathbf{1 8}$ columns of labels.

How many labels are there altogether on $\mathbf{4 5}$ sheets?

Division - concepts

18						
3	3	3	3	3	3	
6		6		6		

$$
\begin{aligned}
& 18=3 \times 6 \\
& 18=6 \times 3 \\
& 18 \div 6=3 \\
& 18 \div 3=6
\end{aligned}
$$

Division - grouping using multiplication knowledge:

This method uses children's understanding of times tables and links to their mental calculations.

$$
\begin{aligned}
& \text { e.g. } 43 \div 7= \\
& \qquad \begin{array}{l}
\text { I know } 6 \times 7=42 \text { so } \ldots \\
43 \div 7=6 \text { remainder } 1
\end{array}
\end{aligned}
$$

Division - grouping using jottings

This enables the introduction of remainders

> 28 children into groups of 5 How many children left without a group?

$$
28 \div 5=5 \text { r } 3
$$

Division : short division
Up to ThHTU \div U:
$2 9 1 \div 3 = 3 \longdiv { 2 9 7 }$

Division : long division
Up to ThHTU \div TU:

Dangerous

Divide
Monkeys
Multiply
Snatch
Subtract

Bananas

Bring Down

Long Division
Dangerous
Divide
Monkeys
Multiply
Snatch
Subtract

Bananas

Bring Down

Repeat

Your turn

Calculate $2205 \div 15$ using long division

14 7

Eggs are put in trays of 12

The trays are packed in boxes.

Each box contains 180 eggs.
How many trays are in each box?

Write the missing digits to make the calculation correct.

Fractions

Simplifying fractions	Adding fractions with same denominators	Adding fractions with different denominators	Subtracting fractions with same denominators
Subtracting fractions with different denominators	Multiplying fractions by fractions	Dividing fractions by fractions	Converting improper fractions into mixed numbers
			Converting mixed numbers into improper fractions

Compare and order fractions whose denominators are all multiples of the same number.

Compare and order fractions, including fractions >1.

Add and subtract fractions with the same denominator, and denominators that are multiples of the same number.

Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.

Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.

Multiply simple pairs of proper fractions, writing the answer in its simplest form.

Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number.

Use common factors to simplify fractions; use common multiples to express fractions in the same denomination.

Divide proper fractions by whole numbers.

Times Tables

Times tables

- They underpin all of the areas we have discussed today, and most other areas of maths
- National Curriculum: "by the end of Year 4, children should know all their multiplication facts up to $12 \times 12^{\prime \prime}$
- Time is not built into the main Year 5/6 curriculum to learn times tables
- Practice of multiplication tables is one of the key areas that you as parents can help with at home.

A few ideas for learning times tables:

- Rote learning!
- Rhymes and songs
- Games : board / paper / online
- Looking for patterns

- Work from the tables you know :
- use $2 x$ table to progress to $4 x$ and $8 x$
- use $3 x$ table to progress to $6 x$
- Tips and tricks :
- 9x table trick on your fingers
- $8 \times 8=64$ (Eight ate and was sick on the floor)

