Cambridge IGCSE Biology

Classified Past Papers Paper 6

click here to get answers and explanations

1 A student investigated the effect of glucose concentration on the rate of anaerobic respiration in yeast.

Anaerobic respiration in yeast breaks down glucose to form ethanol and carbon dioxide.

Anaerobic respiration in yeast causes the blue dye, methylene blue, to become colourless. The time taken for the blue colour to disappear can be used as a measure of the rate of anaerobic respiration in yeast.

The student used this method:

- Step 1 Label one test-tube **0.0%**, one test-tube **0.5%** and one test-tube **1.0%**.
- Step 2 Put 5.0 cm³ of water into the test-tube labelled **0.0%**.
- Step 3 Put 2.5 cm³ of 1.0% glucose solution and 2.5 cm³ of water into the test-tube labelled **0.5%**.

EXPLANATION

- Step 4 Put 5.0 cm³ of 1.0% glucose solution into the test-tube labelled **1.0%**.
- Step 5 Stir the contents of the beaker containing the yeast suspension with the glass rod.
- Step 6 Add 5.0 cm³ of the yeast suspension to each of the test-tubes labelled **0.0%**, **0.5%** and **1.0%**.
- Step 7 Put all three test-tubes into a water-bath at 40 °C.
- Step 8 Start the stop-clock and wait for three minutes.
- Step 9 After three minutes, remove the test-tubes from the water-bath and place them in a test-tube rack.
- Step 10 Use a pipette to add **one** drop of methylene blue dye to each of the test-tubes. Carefully mix the contents of each test-tube with the glass rod.
- Step 11 Use a second pipette to slowly add a layer of oil to each of the test-tubes.

The layer of oil will float on top of the yeast suspension and methylene blue mixture, as shown in Fig. 1.1.

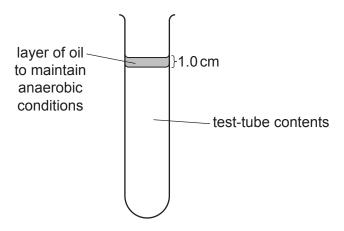
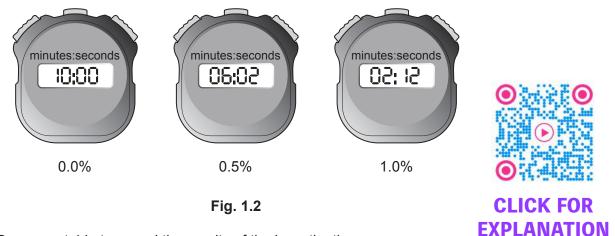


Fig. 1.1


Step 12 Put the test-tubes back into the water-bath and restart the stop-clock.

Step 13 Measure the time taken for the blue colour in each of the test-tubes to disappear.

Record the time taken in seconds for each test-tube.

The student stopped timing if the blue colour had not disappeared after 10 minutes. They recorded this result as >600 in their table.

The stop-clocks from step 13 are shown in Fig. 1.2.

(a) (i) Prepare a table to record the results of the investigation.

Convert the times on the stop-clocks shown in Fig. 1.2 to seconds and record these times in your table.

percentage concentration of glucose / %	time taken for blue colour to disappear / s
o	600
0.5	362
1	132

	(11)	State a conclusion for the results of this investigation.	
		The higher the concentration of glucose	
		the faster the rate of respiration	
			[1]
	(iii)	State the independent variable in this investigation.	
		concentration of glucose	[1]
	(iv)	State one variable that was kept constant in this investigation.	
@*::X#@		total volume of solutions/equilibration time / temperature	[1]
	(v)	Explain why it was important to stir the yeast suspension in step 5.	
		to distribute the yeast evenly /	
		to ensure that the yeast concentration is the same all over	
CLICK FO		the suspension	
(b)		e way to improve this investigation would be to use an increased number of differncentrations of glucose.	rent
	(i)	Suggest two other ways to improve this investigation.	
		1 repeat the investigation at each concentration 5x	
		2 use a colorimeter to find the end point more accurately	
			 [2]
	(ii)	Describe how you would make 5.0 cm ³ of 0.25% glucose solution using a 0.50% glucose solution and distilled water.	ose
		Dissolve 2.5 cm3 of the 0.5%	
		in 2.5 cm3 of distilled water	
			[2]

	(iii)	Describe the	method you wo	uld use to test a	solution for the	presence of glo	ucose.
		Add Bened	ict's solution				
• 74.44 •			n a water bo	ath at 80 oC			
					ed / orange		
CLICK FOI							
XPLANATIO	ON						[2]
(c)					on the rate of re		
		•	t, the student me or a total of 30 m		me of carbon did	oxide produced	by the yeast
	(i)		table apparatus le produced. s syringe	that could be u	ised to collect a		
		student did t		ts at each temp	erature. They u		[1]
					ents at 35°C is s	hown in Table	1.1.
				Table 1.1			
		time	volume o	of carbon dioxide	e produced at 35	5°C/cm ³	
		/minutes	experiment 1	experiment 2	experiment 3	mean	
		15	1.8	3.2	2.0	1.9	
	(ii)	anomalous. State what is	meant by an an	nomalous result.	of the experimen		

(iii)	Describe	how	the	student	calculated	the	mean	volume	of	carbon	dioxide	produced
	shown in	Table	1 1									

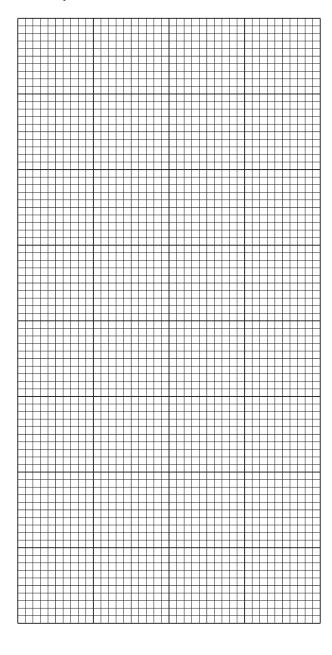
			ous result ii	
calculati	ion			
		 		 [1]

The results of the whole investigation about the effect of temperature on the rate of respiration in yeast at 25 °C and 35 °C are shown in Table 1.2.

Table 1.2

time /minutes	mean volume of carbon dioxide produced at 25°C/cm ³	mean volume of carbon dioxide produced at 35°C/cm ³
5	0.0	0.1
10	0.0	0.8
15	0.1	1.9
20	0.2	2.7
25	0.5	3.2
30	1.1	3.2

(iv) Using the data in Table 1.2, compare the mean volumes of carbon dioxide produced at 25°C and 35°C.


The volume of carbon dioxide is always higher at 35 oC
The volume becomes constant at 35 oC but continues
to increase at 25 oC
[2]

(v) Plot a line graph on the grid of mean volume of carbon dioxide produced against time, using all of the data in Table 1.2.

You will need to plot the data for each temperature as separate lines on your graph.

Include a suitable key.

[5]

(vi) Estimate the time taken to produce $3.0\,\mathrm{cm^3}$ of carbon dioxide at $35\,^\circ\mathrm{C}$.

Show on the graph how you obtained your estimate.

22-23 minutes

[2]

(d) Carbon dioxide gas was bubbled through hydrogencarbonate indicator solution.

The indicator was red before the gas was bubbled through.

State the colour change that would occur.

turns from red to yellow

[Total: 27]

2 (a) Fig. 2.1 shows epidermal cells from a red onion.

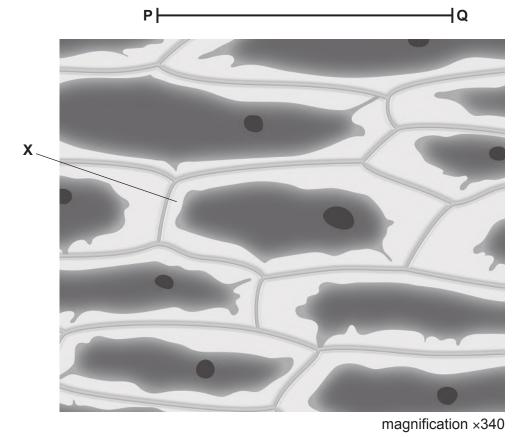
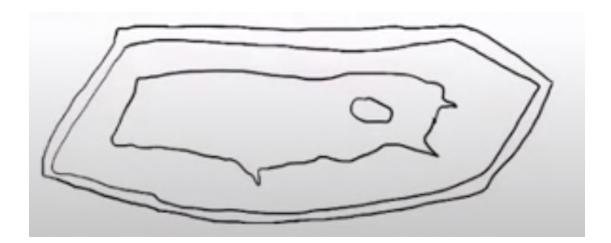



Fig. 2.1

(i) Draw a large diagram of the cell labelled **X** in Fig. 2.1.

[4]

(ii) Line PQ on Fig. 2.1 represents the length of cell X.

Measure the length of line **PQ** on Fig. 2.1.

length of PQmm

Calculate the actual length of cell **X** using the formula and your measurement.

magnification =
$$\frac{\text{length of line } \mathbf{PQ} \text{ in Fig. 2.1}}{\text{actual length of cell } \mathbf{X}}$$

Give your answer to three significant figures.

Space for working.

$$70 \div 340 = 0.206$$

0.206 mm **(b)** Water moves into and out of cells by osmosis.

on osmosis in plant tissue. Prepare five different solutions of sodium chloride, all of
the same volume.
Cut cylinders of the same size from the same onion.
Measure the initial mass of these cylinders.
Soak the cylinders in each solution for 48 hours.
Then, calculate percentage change in mass
Repeat at each concentration and find the average
Wear gloves for safety.
[6]

[Total: 13] **CLICK FOR EXPLANATION**

The Complete Course for IGCSE Biology

Videos that cover the entire syllabus

Exam-expert solved past papers

Test your knowledge on each topic.

Also Available:

CHEM-BIO.INFO

