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This paper investigates the Hamiltonian structure and Poisson bracket formulation
of a higher-order, geometrically-exact Cosserat type beam with a deforming
cross-section in terms of canonically conjugate variables.
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1. Introduction

In our recent works, we investigated and refined the kinematics of Cosserat beams [1], and then we
developed the variational and numerical formulation for a geometrically-exact beam with those improved
kinematics [2]. This development incorporated fully-coupled Poisson’s and warping effects, along with
the classical deformation effects like bending, torsion, shear, and axial deformation for the case of finite
isplacement and strain; this allowed us to capture a three dimensional, multi-axial strain fields using single-
anifold kinematics. Under the adapted kinematic model, a beam/rod is modeled by a framed spatial curve

nd a family of deformable cross-sections that can undergo both in-plane and out-of-plane deformation.
This paper deals with the Poisson bracket formulation associated with the beam kinematics discussed

n [1]. The Poisson bracket formulation constitutes a part of the variational analysis of a mechanical system.
n that regard, this paper is a theoretical extension to the variational formulation of the beam discussed
n [2] that detailed the governing equation of motion, the associated weak form, and the numerical solution
f the equation of motion. Therefore, we borrow the results abundantly from [2]. We define the Hamiltonian
tructure of the geometrically-exact beam with enhanced kinematics and deformable cross-section in terms

∗ Corresponding author.
E-mail addresses: machadha@eng.ucsd.edu (M. Chadha), mdtodd@eng.ucsd.edu (M.D. Todd).
ttps://doi.org/10.1016/j.aml.2020.106842
893-9659/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aml.2020.106842
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2020.106842&domain=pdf
mailto:machadha@eng.ucsd.edu
mailto:mdtodd@eng.ucsd.edu
https://doi.org/10.1016/j.aml.2020.106842


M. Chadha and M.D. Todd Applied Mathematics Letters 113 (2021) 106842

b

S

(
a
a

of the canonical conjugate variables (as is indicated in Marsden and Hughes [3]). The paper by Simo et al. [4]
discusses the Poisson bracket formulation for geometrically-exact beams with rigid cross-sections. The task
of investigating the Hamiltonian structure of the generalized beam is substantially more challenging than
the formulation described in [4], because the deformation map discussed in [1] is a function of higher-
order derivatives of the mid-curve axial strain and the curvature tensor. Therefore, the canonical quantities
associated with not only the quantities belonging to the tangent space of the beam but also their higher-order
spatial derivatives have to be found, making this problem unique.

Section 2 briefly covers the description of beam configuration and its kinematics. Section 3 presents
the governing equations of motion that are useful in the investigation of the Hamiltonian structure of the
beam. Section 4 presents the Poisson bracket formulation. We discuss the cotangent space, phase space, and
cotangent bundle associated with the beam configuration. We also define the Poisson bracket associated with
the cotangent bundle or phase space of the system. Poisson brackets essentially help one to study flows on
phase space and the generators associated with such flows, and they facilitate the development of canonical
transformations. Canonically transformed phase space coordinates preserve the Poisson geometry associated
with the system or equivalently they preserve the Hamiltonian structure of the system. We obtain the
Hamiltonian via a Legendre transformation of the Lagrangian. Finally, the Hamiltonian form of equilibrium
equations is obtained. Section 5 concludes the paper.

2. Comprehensive kinematics and mathematical tools

We first present some preliminary definitions and notations. The dot product, ordinary vector product,
and tensor product of two Euclidean vectors v1 and v2 are defined as v1 · v2 = vT

1 v2, v1 × v2, and v1 ⊗ v2

respectively. The nth order partial derivative with respect to a scalar, e.g., ξ1, is given by the operator ∂n
ξ1

,
with ∂1

ξ1
≡ ∂ξ1 . The action of a tensor A onto the vector v is represented by Av ≡ A.v. The contraction

etween two tensors A and B is given by A : B = AijBij = trace(BT .A). We note that the centered dot
“·” is meant for dot product between two vectors, whereas the action of a tensor onto the vector, the matrix
multiplication or product of a scalar to a matrix (or a vector) is denoted by a lower dot “.”.

2.1. Deformation map and configuration of the beam

Let an open set Ω0 ⊂ R3 and Ω ⊂ R3 with at least piecewise smooth boundaries S0 and S represent
the undeformed and deformed configuration of the beam, respectively. The beam configuration is described
by the mid-curve and a family of cross-sections. To lay the kinematic description of a beam, we assume the
undeformed configuration Ω0 to be straight.

Let the fixed orthonormal reference basis be represented by {Ei} with origin at (0, 0, 0). The regular
curve φ0 : [0, L] −→ R3 represents the mid-curve associated with Ω0. It is parameterized by the arc-
length ξ1 ∈ [0, L]. We assume that the undeformed configuration is made up of a continuously varying
plane family of cross-sections B0(ξ1), such that φ0 = ξ1E1 is the locus of geometric centroid of the
family of cross-sections B0(ξ1). The cross-section B0(ξ1) is spanned by the vectors E2 − E3 originating
at φ0(ξ1) such that (ξ2, ξ3) ∈ B0(ξ1). Let Γ0(ξ1) represent the peripheral boundary of B0(ξ1), such that

0 = B0(0) ∪ B0(L) ∪∀ξ1 Γ0(ξ1). Any material point in the beam is defined by its material coordinate
ξ1, ξ2, ξ3) with a position vector R0 = ξiEi. The final deformed state Ω defined by the mid-curve φ and
family of cross-section B(ξ1) =

{(
W (ξ1, ξ2, ξ3), ξ̂2, ξ̂3

)
∈ R3

ξ1

}
. It incorporates a fully coupled Poisson’s

nd warping effect. The deformation map for Ω is given by ϕ : R0 ∈ Ω0 ↦−→ R ∈ Ω , such that

ϕ(R0) = R = φ(ξ1) + r;
ˆ ˆ (1)
r = ξ2d2(ξ1) + ξ3d3(ξ1) + Wd1(ξ1).
2
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Here, the vector r gives the position vector of a material point (ξ2, ξ3) in the deformed cross-section
(ξ1) with respect to the point φ(ξ1). Let Γ (ξ1) represent the boundary of cross-section B(ξ1), such that
= B(0) ∪ B(L) ∪∀ξ1 Γ (ξ1). The warping function W is defined as

W (ξ1, ξ2, ξ3) = p(ξ1)Ψ1(ξ2, ξ3) + ∂ξ1κ2.Ψ2(ξ2, ξ3) + ∂ξ1κ3.Ψ3(ξ2, ξ3) = p(ξ1)Ψ1(ξ2, ξ3) + ∂ξ1κ · Ψ23. (2)

n the equation above, Ψ23 = Ψ2(ξ2, ξ3)E2 + Ψ3(ξ2, ξ3)E3 and ∂ξ1κ = ∂ξ1κi.Ei (defined in next section).
he warping function W mentioned above is a modified version of the warping used in Simo and Vu-
uoc [5], where p(ξ1) gives the warping amplitude. The coefficients ∂ξ1κj (j = 2, 3) incorporated bending

nduced non-uniform shear deformation. For the sake of computation, the cross-section dependent functions
1(ξ2, ξ3), Ψ2(ξ2, ξ3) and Ψ3(ξ2, ξ3) are assumed to be known.
We define the planar cross-section B3 =

{
(ξ̂2, ξ̂3) ∈ R2

ξ1

}
subjected to only in-plane Poisson’s deforma-

ion. The coordinates (ξ̂2, ξ̂3) are obtained by Poisson’s transformation Pξ1 : B1(ξ1) −→ B3(ξ1), such that
refer to Eq. (34) of Chadha and Todd [1]),

Pξ1 : (ξ2, ξ3) ↦−→ (ξ̂2, ξ̂3);
ξ̂i =

(
1 − ν

(
ε · E1 + κ · (ξ3E2 − ξ2E3) + ∂ξ1p.Ψ1 + ∂2

ξ1κ · Ψ23
))

ξi for i = 2, 3.
(3)

n the equation above, ν represents Poisson’s ratio and is assumed to be a constant (homogeneous material).
he mid-curve axial strain is defined as ε = ∂ξ1φ − d1 = εidi. For more details on the kinematics, readers
re referred to Section 2.1 of Chadha and Todd [2]. In next section we define the spatial curvatures κ, and
heir material counterparts ε and κ.

.2. Rotation and finite strain parameters

.2.1. Finite rotation and curvature
Finite rotations are represented by an element of a proper orthogonal rotation group SO(3). The SO(3)

anifold is a non-linear compact Lie group that has a linear skew-symmetric matrix as its Lie algebra,
o(3). The director triad {di} is related to the fixed reference triad {Ei} by means of an orthogonal tensor

∈ SO(3), such that di = Q.Ei and Q = di ⊗ Ei. Curvature defines the local change of the triad such
hat

∂ξ1di = ∂ξ1Q.Ei = ∂ξ1Q.QT .di = κ̂ · di. (4)

Here, κ̂ = ∂ξ1Q.QT represents the curvature tensor. It is an anti-symmetric matrix with the corresponding
axial vector κ = κidi, known as curvature vector. We define TQSO(3) as the tangent plane of non-linear

O(3) manifold, such that ∂ξ1Q = κ̂.Q ∈ TQSO(3). We note that so(3) = TI3SO(3).

.2.2. Material and spatial curvature
We define the quantity κ̂ = QT .κ̂.Q = QT .∂ξ1Q ∈ so(3) obtained by parallel transport of κ̂.Q from

QSO(3) −→ so(3). We call the quantities κ̂ and κ as material representation; and κ̂ and κ as spatial
representation of the curvature tensor and the curvature vector respectively. Like with the curvature tensor,
we may express a material form of other quantities like the deformation gradient tensor, angular velocity,
etc. For instance, the material form of the axial strain vector and cross-section position vectors r is given
by the following

ε = εiEi = QT .ε; (5a)
r = QT .r = ξ̂2E2 + ξ̂3E3 + WE1. (5b)
3
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From here on, we recognize any material quantity with a bar (̄.) over it. Consider a spatial and material
ector v = vidi and v = viEi, respectively, such that v = Q.v. The derivative of these vectors is obtained
s

∂ξ1v = ∂ξ1vi.di + vi.∂ξ1di = ∂̃ξ1v + κ × v;
∂ξ1v = ∂ξ1vi.Ei = QT .∂̃ξ1v.

(6)

In the equation above, ∂̃ξ1v defines co-rotational derivative of spatial vector v. Readers are referred to [6] for
obtaining expressions for the higher-order and co-rotational derivatives of the curvature and rotation tensor.

2.3. Configuration and the state space

Adapting the kinematics discussed above, we find that there are three primary quantities required to
define the configuration Ω : φ ∈ R3, Q ∈ SO(3) and p ∈ R. For the static case, the configuration space,
tangent space, and tangent bundle of the beam Ω are defined as

C :=
{
Φ = (φ, Q, p) : [0, L] −→ R3 × SO(3) × R

}
;

TΦC :=
{
Φ̃ = (∂ξ1φ, ∂ξ1Q, ∂ξ1p) : [0, L] −→ R3 × TQSO(3) × R

}
;

TC :=
{

(Φ, Φ̃)|Φ ∈ C, Φ̃ ∈ TΦC
}

.

(7)

3. Weak and strong form of governing differential equation

In [2], we obtained both weak and strong form of the balance laws for higher-order, geometrically-exact
beams. We briefly review the results here. For the current analysis, we ignore the external forces such that
the virtual work principle becomes

G(Φ, δΦ) = δUstrain + δWinertial = 0. (8)

We reproduce the desirable (for this paper) expression of virtual strain energy δUstrain, and the virtual
inertial work δWinertial as obtained in Eq. (23) and Eq, (25b) of the supplementary material in Appendix B
of Chadha and Todd [2]

δUstrain =

∫ L

0

∂ξ1

(
−N ε + ∂̃ξ1 N ∂ξ1 ε

)
· δφ dξ1 +

∫ L

0

(
Np − ∂ξ1 N∂ξ1 p + ∂2

ξ1
N∂2

ξ1
p

)
.δp dξ1

+

∫ L

0

(
∂ξ1

(
−N κ + ∂̃ξ1 N ∂ξ1 κ − ∂̃2

ξ1
N ∂2

ξ1
κ + ∂̃3

ξ1
N ∂3

ξ1
κ

)
− ∂ξ1 φ̂.

(
N ε − ∂̃ξ1 N ∂ξ1 ε

))
· δα dξ1 + δU∗

strain.

(9a)

δWinertial =

∫ L

0

(
δφ ·

(
F φ − ∂ξ1 F ε

)
+ δp.

(
Fp − ∂ξ1 F∂ξ1 p

)
+

δα ·
(

F α − ∂ξ1 φ̂.F ε − ∂ξ1 (F κ − ∂̃ξ1 F ∂ξ1 κ + ∂̃2
ξ1

F ∂2
ξ1

κ)
) )

dξ1 + δW∗
inertial.

(9b)

Here δα represent the virtual rotation vector in the current state, such that δQ = δα̂.Q, where δα̂ represents
the anti-symmetric matrix associated with the virtual vector δα. From Theorem 1 of Section 2.3.2 of the
supplementary material in Appendix B of Chadha and Todd [2],

δU∗
strain + δW∗

inertial = 0. (10)

Here, the terms N (.), and F (.) represents the reduced internal and inertial force vectors, respectively. They
are defined in Eq. (57) and (132) of [2].

The strong form essentially represents the local balance laws governing the deformation of the beam.
Integration by part of the weak form yields,

G(Φ, δΦ) =
∫ L

δΦT [EEE φ;EEE α; Ep] dξ1 =
∫ L

δφ · EEE φ + δα · EEE α + δp.Ep dξ1 = 0, (11)

0 0

4
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In accordance with the fundamental Lemma of variational calculus, the strong form can be obtained from
Eq. (11) as:

EEE φ = ∂ξ1n − F φ = 0; (12a)
EEE α = ∂ξ1m + ∂ξ1φ̂.n − F α = 0; (12b)
Ep = ∂ξ1MΨ − Np − Fp = 0. (12c)

Here we define the reduced cross-section force, moment vector, and the bi-moment as

n =
((

N ε − ∂̃ξ1N ∂ξ1 ε

)
+
(
F ε − Nε

))
; (13a)

m =
(

N κ − ∂̃ξ1N ∂ξ1 κ + ∂̃2
ξ1

N ∂2
ξ1

κ − ∂̃3
ξ1

N ∂3
ξ1

κ

)
+
(

F κ − ∂̃ξ1F ∂ξ1 κ + ∂̃2
ξ1

F ∂2
ξ1

κ

)
−
(

Nκ − ∂̃ξ1N∂ξ1 κ + ∂̃2
ξ1N∂2

ξ1
κ

)
;

(13b)

MΨ =
((

N∂ξ1 p − ∂ξ1N∂2
ξ1

p

)
+
(
F∂ξ1 p − N∂ξ1 p

))
. (13c)

These can be further simplified (as shown in Section 2.3.3 of the supplementary material in Appendix B of
Chadha and Todd [2]) into

n =
∫

B0

P 1 dB0; m =
∫

B0

r × P 1 dB0; MΨ =
∫

B0

Ψ1d1 · P 1 dB0. (14)

In the equation above P 1 represents the longitudinal stress vector corresponding the first PK stress tensor.
The terms n, m, and MΨ represent the reduced section force, couple, and bi-moment, respectively.

4. The Poisson bracket formulation

4.1. The cotangent space, phase space, and cotangent bundle

To define phase space associated with the configuration space of the beam, we need to describe the
cotangent space T ∗

ΦC (identified with the product space (R3)∗ × T ∗
QSO(3) × R∗) dual to the tangent space

TΦC.
Consider v∗ = viE

∗
i ∈ (R3)∗ and u = uiEi ∈ R3. Here, E∗

i is the one-form (or covector) associated with
the vector Ei such that E∗

i (Ej) = Ei · Ej = δij . We define the duality ⟨., .⟩R3 : (R3)∗ ×R3 −→ R by means
of the dot product, such that

⟨v∗, u⟩R3 = v∗(u) = v · u. (15)

Here, v = viEi is dual to v∗. From here on, any quantity with ∗ as a superscript represents the covector.
Essentially the duality defined above is an identity metric on the tangent space of R3. Therefore, we may
identify (R3)∗ ≡ R3 via the Euclidean dot product. Similarly, we realize that R∗ ≡ R. However, to avoid
confusion, we maintain our nomenclature of using ∗ as a superscript representing an element of dual space.
Therefore, if v∗ ∈ R∗ (with v∗ = v) and u ∈ R, the duality ⟨., .⟩R : R∗ × R −→ R is expressed by means of a
product as

⟨v∗, u⟩R = v∗(u) = vu. (16)

e define so(3)∗ ≡ T ∗
I3

SO(3) as the cotangent space to so(3) such that for Â
∗

= ÂijE∗
i ⊗ E∗

j ∈ so(3)∗ and
ˆ = B̂ijEi ⊗ Ej ∈ so(3), we define the duality ⟨., .⟩so(3) : so(3)∗ × so(3) −→ R as follows

⟨Â
∗
, B̂⟩so(3) = Â

∗
(B̂) = 1

Â : B̂ = 1
ÂijB̂ij = A · B. (17)
2 2

5
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Here, A = AijEi ⊗Ej ∈ TQSO(3) is the tangent vector dual to A∗. Since Â and B̂ are skew-symmetric, let
and B represent the associated axial vectors. Let AQ = Q.Â ∈ TQSO(3) and BQ = Q.B̂ ∈ TQSO(3)

e obtained by left translating the quantities Â and B̂. We note that the quantities AQ and BQ are not
kew-symmetric. For the cotangent vector A∗

Q ∈ T ∗
QSO(3), dual to the tangent vector AQ, we define the

uality ⟨., .⟩TQSO(3) : T ∗
QSO(3) × TQSO(3) −→ R as

⟨A∗
Q, BQ⟩TQSO(3) = A∗

Q(BQ) = 1
2AQ : BQ. (18)

e also observe the left-invariant nature of the metric (or duality) discussed in Eq. (17) and (18) such that

⟨A∗
Q, BQ⟩TQSO(3) = ⟨Â

∗
, B̂⟩so(3). (19)

imilarly, the duality associated with T ∗
ΦC and TΦC is given by

⟨., .⟩TΦC = ⟨., .⟩R3 + ⟨., .⟩TQSO(3) + ⟨., .⟩R. (20)

e note that the dualities discussed above are commutative in the sense that

⟨A∗
Q, BQ⟩TQSO(3) = ⟨B∗

Q, AQ⟩TQSO(3) and ⟨v∗, u⟩R3 = ⟨u∗, v⟩R3 . (21)

his brings us to the definition of the cotangent bundle T ∗C dual to TC associated with the configuration
. For Φ̃

∗ ∈ T ∗
ΦC and Φ ∈ C, we have

T ∗C :=
{

(Φ, Φ̃
∗)|Φ ∈ C, Φ̃

∗ ∈ T ∗
ΦC
}

. (22)

ike the tangent bundle TC, the cotangent bundle T ∗C is not a product space. Secondly, the TC gives the
tate space and T ∗C gives the phase space. For simplicity, we assume displacement prescribed boundary
onditions and no external force for the analysis in the forthcoming sections.

.2. The Lagrangian and Hamiltonian

Usually, the Lagrangian L takes an argument from the tangent bundle, such that L : TC −→ R. The
amiltonian H : T ∗C −→ R is obtained by means of Legendre transformation of Lagrangian via the

hange of variables (Φ, Φ̃) ↦→ (Φ, Φ̃
∗). However, the kinematics of the beam at hand not only depends

n the configuration space but also on the spatial (with respect to ξ1) derivatives of (φ, Q, p). Therefore,
e take a more general approach to obtain the Hamiltonian from the Lagrangian. We start with defining

he Lagrangian in terms of passive and active coordinates. The coordinates that take part in Legendre
ransformation are called as active coordinates (refer to chapter 6 of Lanczos [7]).

efinition 1. Let the set q and a define the field of passive and active variables respectively with q and a

eing their respective material forms. These sets are given by

q = {φ, Q, p, ε, κ, Q.∂ξ1ε, Q.∂ξ1κ, Q.∂2
ξ1κ, Q.∂3

ξ1κ, ∂ξ1p, ∂2
ξ1p};

q = {QT .φ, I3, p, ε, κ, ∂ξ1ε, ∂ξ1κ, ∂2
ξ1κ, ∂3

ξ1κ, ∂ξ1p, ∂2
ξ1p};

a = {∂tφ, ω, ∂tp, ∂̃tε, ∂̃tκ, Q.∂t(∂ξ1κ), Q.∂t(∂2
ξ1κ), ∂t(∂ξ1p)};

a = {QT .∂tφ, ω, ∂tp, ∂tε, ∂tκ, ∂t(∂ξ1κ), ∂t(∂2
ξ1κ), ∂t(∂ξ1p)},

(23)

here t represents time. We note that (q1, q2, q3) ∈ C and (a1, a2Q, a3) ∈ TΦC, where a2Q = â2.Q. Finally,
e define â2 = QT .â2.Q.
6
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Definition 2. The Lagrangian L : (q; a) ↦→ R associated with the beam is defined as

L = T(a) − Ustrain(q). (24)

ere, T and Ustrain give the kinetic energy and strain energy stored in the system, respectively. T can be
btained using the result (1) as

T =
∫
Ω0

ρ0∂tR · ∂tR dΩ0 = 1
2

∫ L

0

8∑
i=1

ai · (Iiai) dξ1 = 1
2

∫ L

0

8∑
i=1

ai · (Iiai) dξ1. (25)

ere,
I1 =

∫
B0

ρ0 dB0;

I2 =
∫

B0

ρ0r̂T .r̂ dB0;

I3 =
∫

B0

ρ0Lλ1
∂ξ1 p.Lλ1

∂ξ1 p dB0;

I4 =
∫

B0

ρ0(Lλ1
∂ξ1 ε)T .Lλ1

∂ξ1 ε dB0.

I5 =
∫

B0

ρ0(Lλ1
∂ξ1 κ)T .Lλ1

∂ξ1 κ dB0;

I6 =
∫

B0

ρ0(Lλ1
∂2

ξ1
κ

)T .Lλ1
∂2

ξ1
κ

dB0;

I7 =
∫

B0

ρ0(Lλ1
∂3

ξ1
κ

)T .Lλ1
∂3

ξ1
κ

dB0;

I8 =
∫

B0

ρ0Lλ1
∂2

ξ1
p
.Lλ1

∂2
ξ1

p
dB0.

(26)

Refer to Section 1.1 of the supplementary material in Appendix B of Chadha and Todd [2] for the
efinition of Lλ1

(.) . The material form is then defined as Ii = QT .Ii.Q. For i ∈ {1, 3, 8}, we have Ii = Ii.
e observe that I2 is dependent on (p, ε1, κ, ∂ξ1κ, ∂2

ξ1
κ).

The strong form of equations defined in (12) can also be obtained by making the action stationary,
provided δu(t1) = δu(t2) = 0, such that (refer section 6 of [8]),

δ

∫ t2

t1

L dt = 0. (27)

o obtain canonical coordinates using the Legendre transformation, we assume each ai as independent
uantities and we note the following result that can be easily proved using the chain rule.

roposition 1. For a function of form g(ai) = g(Q.ai) for i ∈ {1, 2, 4, 5, 6, 7} and a function of form
(a2Q) = f(â2), the following are true

∂g

∂ai
= Q.

∂g

∂ai
; ∂f

∂a2Q
= Q.

∂f

∂â2
. (28)

efinition 3. Define the set p of canonical momentum coordinates corresponding to the active variable set
obtained by Legendre transformation F as

FL(ai) = pi = ∂ξ1
∂L

. (29)

∂ai

7
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Using the symmetry of Ii and the result in Proposition 1, we obtain pi = Iiai (Einstein summation is
uppressed). Let p represent the material form of canonical momentum coordinates. We note that the kinetic

energy depends on the first component of ∂tε and on the second and third components of ∂tκ, ∂t(∂ξ1κ)
nd, ∂t(∂2

ξ1
κ). We assume that the canonical momentum coordinate for all the zero active coordinates (for

example, ∂tκ1 = 0) is zero, for example p4 = (I411∂tε1, 0, 0)T and p4 = Q.(I411∂tε1, 0, 0)T . As such, the
on-zero active coordinates can then be uniquely defined as a function of their corresponding canonical
oordinate and vice-versa. This is equivalent to the fact that if the active coordinate consists of non-zero
erms only, then the determinant of the Hessian of the Lagrangian with respect to the active coordinate is
on-zero. Using the result (28), we get the following

∂f

∂a2
= (I2ω) =⇒ ∂f

∂â2
= (̂I2ω);

p2Q = ∂L
∂a2Q

= Q.(̂I2ω).
(30)

efinition 4. The Hamiltonian H : (q, p∗) ↦→ R is defined in terms of canonical coordinates as

H =
∫ L

0

8∑
i=1

pi · ai dξ1 − L =
∫ L

0
H dξ1 = T(p) + Ustrain(q) = total energy. (31)

ere, H(q, p) is the energy density, or the energy per unit arc-length of the beam.

efinition 5. Define the inverse Legendre transformation F−1 as

F−1H(pi) = ai = ∂ξ1
∂H
∂pi

= ∂H

∂pi
. (32)

.3. Canonical bracket

Poisson brackets are defined on phase space. The definition of Poisson’s bracket consists of a mix of partial
erivatives of the functional of form f(q; p) (example of such a function is the Hamiltonian) with respect
o parameters defining configuration space (φ, Q, p) ≡ (q1, q2, q3) and parameters defining cotangent space
p1, p2Q, p3). Therefore, in order to state Poisson bracket on T ∗C, we first define partial functional derivatives
f such functional (we consider Hamiltonian as the functional of interest). Refer to appendix A of Engel
t al. [9] for detailed discussion on functional derivatives.

efinition 6. The varied passive and canonical variables are defined as qiε = qi + ϵδqi and piε = pi + ϵδpi.
We have qϵ = {qiε} and pϵ = {piε} such that p2Qε = Q.p̂2ϵ = Q. ˆ(QT .p2ϵ).

efinition 7. For a pure displacement-specified boundary, the following are the partial functional derivative
δH
δpi

of Hamiltonian (density) H(q; p) with respect to parameters defining cotangent space (p1, p2Q, p3):

d
dϵ

H(q; (p1ϵ, pi))
⏐⏐⏐⏐
ϵ=0

=
∫ L

0

⟨
δH

δp1

∗
, δp1

⟩
R3

dξ1 =
∫ L

0

δH

δp1
· δp1 dξ1 (33a)

d
dϵ

H(q; (p2Qϵ, pi))
⏐⏐⏐⏐
ϵ=0

=
∫ L

0

⟨
δH

δp2Q

∗
, δp2Q

⟩
TQSO(3)

dξ1 = 1
2

∫ L

0

δH

δp2Q
: δp2Q dξ1 (33b)

d
dϵ

H(q; (p3ϵ, pi))
⏐⏐⏐⏐
ϵ=0

=
∫ L

0

⟨
δH

δp3

∗
, δp3

⟩
R

dξ1 =
∫ L

0

δH

δp3
.δp3 dξ1 (33c)
8
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Like the result in Eq. (28), we have
δH

δp2Q
= Q.

∂H

∂p̂2
(34)

emark 1. This result holds because pi for i ̸= 2 does not have any functional dependence on p2. However,
he elements of q and p do have dependence on the spatial and time derivatives of (q1, q2, q3). To define
artial functional derivatives of H with respect to (q1, q2, q3), we treat the pairs (q1, p1), (q2, p2Q) and
q3, p3) as independent quantities. This is crucial as it allows us to operate on cotangent bundle. As a result,
ven though, for example, ∂tφ is functionally dependent on φ, the corresponding canonical quantity p1 is
onsidered to be independent of φ. On the other hand, the direct dependence of p2 on q3 is considered while
valuating δH

δp . We also note that since (q1, q2, q3) defines the configuration space, we do not consider pi for
> 3 to be functionally independent on the configuration space. As was pointed in section 3 of Simo et al. [4],
efining the functional derivative of H(q; p) with respect to parameters on configuration space requires some
aution. This is because the cotangent bundle is not a simple product space. Accordingly, Definition 5 can
e written as

F−1H(pi) = ai = δH

δpi
. (35)

efinition 8. For a change qi ↦→ qiϵ = qi + ϵδqi (with i ∈ 1, 2, 3), let p(qiϵ) = {pj(qiϵ)} and qj(qiϵ) (for
j ̸= 1, 2, 3) define the associated canonical and passive quantities, respectively.

Definition 9. For a pure displacement-specified boundary, the partial functional derivatives δH
δqi

of
amiltonian density H(q; p) with respect to parameters defining cotangent space (q1, q2, q3) are given as:

d
dϵ

H((q1ϵ, qi(q1ϵ)); p(q1ϵ))
⏐⏐⏐⏐
ϵ=0

=
∫ L

0

⟨
δH

δq1

∗
, δq1

⟩
R3

dξ1 =
∫ L

0

δH

δφ
· δφ dξ1; (36a)

d
dϵ

H((q2ϵ, qi(q2ϵ)); p(q2ϵ))
⏐⏐⏐⏐
ϵ=0

=
∫ L

0

⟨
δH

δq2

∗
, δq2

⟩
TQSO(3)

dξ1 = 1
2

∫ L

0

δH

δQ
: δQ dξ1; (36b)

d
dϵ

H((q3ϵ, qi(q3ϵ)); p(q2ϵ))
⏐⏐⏐⏐
ϵ=0

=
∫ L

0

⟨
δH

δq3

∗
, δq3

⟩
R

dξ1 =
∫ L

0

δH

δp
.δp dξ1. (36c)

Proposition 2. The following holds:

dp1

dt = F φ; (37a)
dp2

dt = F α; (37b)

dp3

dt = d2p

dt2 .

∫
B0

ρ0Ψ
2
1 dB0 = I3

d2p

dt2 = Fp. (37c)

roof. Proof of Proposition 2 follows from a straightforward calculation and application of chain rule. We
leave proving (37a) and (37c) to the readers. Realizing ∂̃tI2 = 03 and ∂̃tω = dω

dt −ω ×ω = dω
dt , we can prove

he result (37b) as

dp2

dt = dI2.ω

dt = ∂̃t(I2.ω) + ω × I2.ω = I2.
dω

dt + ω × I2.ω = F α. (38)

his completes the proof. □
9
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Proposition 3. With the definition of Hamiltonian and its partial functional derivatives in equation set (31)
nd (36), respectively, the following holds

δH

δq1
= −(EEE φ + F φ); (39a)

δH

δq2Q
= −Q.(ÊEE α + F̂ α), where ÊEE α = Q̂T .EEE α and F̂ α = Q̂T .F α; (39b)

δH

δq3
= −(Ep + Fp); (39c)

δH

δq2
= −(EEE α + F α). (39d)

roof. Recall remark 1, which stated the need to consider (qi, pi) as independent quantities while
onsidering partial functional derivative of H with respect to q1, q2Q, q3. With that in mind, for the curve

ϵ : Φ ↦→ Φ + ϵδΦ (keeping the respective canonical coordinates fixed), the variation of Hamiltonian in the
direction of δΦ is given as

δH|({p1,p2Q,p3}=fixed) =
∫ L

0

⟨
δH

δq1

∗
, δq1

⟩
R3

+
⟨

δH

δq2

∗
, δq2

⟩
TQSO(3)

+
⟨

δH

δq3

∗
, δq3

⟩
R

dξ1 (40)

ince strain energy does not have any dependence on the canonical quantities p, we have

δUstrain|({p1,p2Q,p3}=fixed) = δUstrain. (41)

ubstituting for the expression of R defined in (1) into Eq. (25) and carrying out integration by parts yields:

δT = δWinertial. (42)

owever, the terms −
∫ L

0 δφ · F φ + δα · F α + δp.Fp dξ1 in the expression of δWinertial are obtained by
onsidering the terms ∂tφ = a1 = I−1

1 p1, ω = a2 = I−1
2 p2 and ∂tp = a3 = I−1

3 p3 to be functionally dependent
n the configuration space. Therefore, we can obtain δT|({p1,p2Q,p3}=fixed) by ignoring these terms, yielding

δT|({p1,p2Q,p3}=fixed) =
∫ L

0
δφ ·

(
−∂ξ1F ε

)
+ δp.

(
−∂ξ1F∂ξ1 p

)
+

δα ·
(
−∂ξ1φ̂ · F ε − ∂ξ1(F κ − ∂̃ξ1F ∂ξ1 κ + ∂̃2

ξ1F ∂2
ξ1

κ)
)

dξ1 + δW∗
inertial.

(43)

rom the definition of the Hamiltonian in Eq. (31), we have

δH|({p1,p2Q,p3}=fixed) = δT|({p1,p2Q,p3}=fixed) + δUstrain|({p1,p2Q,p3}=fixed). (44)

We use the expression of δUstrain Eq. (9a) and the results in Eq. set (12) and (13) to obtain

δH|({p1,p2Q,p3}=fixed) = −
∫ L

0
(EEE φ + F φ) · δα + (EEE α + F α) · δα + (Ep + Fp).δp dξ1. (45)

Eq. (40) and (44) prove the results (39a) and (39c). To prove (39b), we consider

(EEE α + F α) · δα = (EEE α + F α) · δα = (ÊEE α + F̂ α).δα̂ =
⟨

Q.(ÊEE α + F̂ α), δQ
⟩

TQSO(3)
. (46)

his proves the result (39b). Using chain rule, like Eq. (34), we have

δH = Q.
δH

ˆ ; and δH = Q.
δH

. (47)

δp2Q δp2 δp2 δp2

10
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Since p̂2 ∈ so(3), we realize that δH

δp̂2
=
(̂

δH
δp2

)
. Using the result obtained above and in (39b), we have

δH

δp̂2
= (ÊEE α + F̂ α) =⇒ δH

δp2
= −(EEE α + F α) =⇒ δH

δp2
= −(EEE α + F α). (48)

his completes the proof. □

Note that a more direct approach towards obtaining partial functional derivatives of the Hamiltonian
with respect to the configuration space is by considering a general function H =

∫ L

0 H(q, p) dξ1 and
btaining δH|({p1,p2Q,p3}=fixed) by carrying integration by parts of all functionally dependent quantities
keeping (p1, p2Q, p3) fixed) to obtain result of form (40). Such proof would require defining strain energy
n an integral form using, for example, a free-energy function characterizing hyperelastic response. Readers
re recommended to refer section 5 of Simo et al. [4] that deploys this approach for a beam with rigid
ross-section.

orollary 1. Propositions 2 and 3 along with the strong form of equilibrium equation stated in equation set
12) yields

dpi

dt
= −δH

δqi
for i = 1, 2, 3. (49)

he equation set (49) along with the inverse Legendre transformation (35) gives the Hamiltonian equation of
otion. Note that there are 7 equations constituting the strong form (3 for linear momentum conservation,
for angular momentum conservation, and 1 for the balance of bi-moment and bi-shear), whereas there are

4 equations constituting the Hamiltonian form. This brings us to the definition of the Poisson bracket. □

efinition 10. Consider (Φ, Φ̃) ∈ T ∗C such that Φ = {q1, q2, q3} ∈ C and Φ̃
∗ = {p∗

1, p∗
2Q, p∗

3} ∈ T ∗
ΦC.

or the functions of form F, G : T ∗C −→ R or F, G ∈ f(T ∗C), such that F (Φ, Φ̃) =
∫ L

0 f(Φ, Φ̃) dξ1 and
(Φ, Φ̃) =

∫ L

0 g(Φ, Φ̃) dξ1, the Poisson bracket {., .} : f(T ∗C) × f(T ∗C) −→ R is defined as

{F, G} =
∫ L

0

⟨
δf

δΦ

∗
,

δg

δΦ̃

⟩
TΦC

−
⟨

δg

δΦ

∗
,

δf

δΦ̃

⟩
TΦC

dξ1

{F, G} =
∫ L

0

(⟨
δf

δq1

∗
,

δg

δp1

⟩
R3

−
⟨

δf

δq1

∗
,

δg

δp1

⟩
R3

)
+
(⟨

δf

δq2

∗
,

δg

δp2Q

⟩
TQSO(3)

−
⟨

δg

δq2

∗
,

δf

δp2Q

⟩
TQSO(3)

)

+
(⟨

δf

δp3

∗
,

δg

δq3

⟩
R

−
⟨

δf

δp3

∗
,

δg

δq3

⟩
R

)
dξ1

{F, G} =
∫ L

0

δf

δφ
.

δg

δp1
− δg

δφ
.

δf

δp1
dξ1 + 1

2

∫ L

0

δf

δQ
: δg

δp2Q
− δg

δQ
: δf

δp2Q
dξ1 +

∫ L

0

δf

δp
.

δg

δp3
− δg

δp
.

δf

δp3
dξ1

(50)

heorem 1. The following are equivalent

1. The strong form of equilibrium equations (EEE φ = 01,EEE α = 01, Ep = 0);
2. Hamilton’s principle of stationary action defined by Eq. (27);
3. The Hamiltonian equation of motion given by equation set (35) and (49);
4. Hamiltonian equation in their Poisson bracket formulation given by dF

dt = {F,H} for all F =
∫ L

0 f dξ1 ∈
f(T ∗C).

roof. We used the strong form (statement 1) to establish the Hamiltonian equation (statement 3) in
orollary 1. We can obtain the strong form using Eq. (27) by substituting for the expression of virtual
11
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kinetic energy and virtual strain energy in (42) and (9a) respectively. We leave the proof to readers (refer,
section 6 of Chadha and Todd [8]). We prove statement 4. By the chain rule, we have

dF

dt
=
∫ L

0

(
δf

δq1
· a1 + 1

2
δf

δq2
: (Qâ2Q) + δf

δq3
.a3

)
+
(

δf

δp1
· dp1

dt
+ δf

δp2
.
dp2

dt
+ δf

δp3
.
dp3

dt

)
dξ1 (51)

sing Hamiltonian Eqs. (35) and (49), the equation above simplifies to dF
dt = {F,H}, completing the

roof. □

emark 2. The Poisson bracket defined in (50) satisfies the properties of anti-commutativity, bilinearity,
eibniz’s rule, and the Jacobi identity (refer to the chapter on canonical transformation in Goldstein
t al. [10]). Using the anti-commutative property, we arrive at an energy conservation law as dH

dt = {H,H} =
=⇒ dH

dt = 0. This is true because the energy density H (or the total energy H and the Lagrangian
L) does not have explicit time dependence, thereby implying time-invariant symmetry. Thus, the equations
derived in the last section are for scleronomic system. However, if we consider time-dependent external
forces (for example, non-conservative forces like follower loads) and damping, it would imply the presence of
unaccounted sources of energy, such that ∂H

∂t ̸= 0. Therefore, the general Poisson bracket form of equilibrium
quation is dF

dt = {F,H} + ∂F
∂t . Lastly, we note that for infinitesimal motion considered on phase space and

sing the Hamiltonian form of equations, we have

Φ(t) = Φ(t = 0) + t
dΦ
dt

⏐⏐⏐
t=0

= Φ(t = 0) + t
δH

δΦ̃

⏐⏐⏐
t=0

Φ̃(t) = Φ̃(t = 0) + t
dΦ̃
dt

⏐⏐⏐
t=0

= Φ̃(t = 0) − t
δH

δΦ

⏐⏐⏐
t=0

.

(52)

hus,
(

δH
δΦ̃

, − δH
δΦ

)
can be thought as two components of the tangent vector to the curve representing the

time evolution of the system in phase space at t = 0. Therefore, we can consider time evolution as a canonical
transformation on coordinates (Φ(t = 0), Φ̃(t = 0)) −→ (Φ(t), Φ̃(t)) generated by the Hamiltonian.

. Summary and conclusion

This paper considers the Hamiltonian structure of geometrically-exact beams with enhanced kinematics.
he phase space and the associated duality (or metric) are defined. The Hamiltonian is obtained from

he Lagrangian via change of coordinates from state space to phase space carried out using a Legendre
ransformation. The Hamiltonian form of the equations is obtained, the Poisson bracket formulation is
escribed, and the equivalence between various forms of balance laws is stated.
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