
Are state-of-the-art LLMs useful 
for auditing or formal verification?

Kirill Balakhonov
Product @ Nethermind



Introduction

Can LLMs find security issues in solidity smart contracts?

Potential concerns:
- Solidity is a niche language
- Vulnerabilities are complicated
- Findings are often arguable



State of the Field - 6 Months Ago

What was presented on the market regarding AI Smart Contract Auditing:

- Landing pages with AI Auditor that doesn’t exist
- SaaS platforms with not implemented functionality to collect leads
- SaaS platforms which only run Slither (static analyzer)
- SaaS platforms which run ChatGPT and false positive findings
- Some research papers with conclusion we are not yet there.



Initial Experiments - Fine-tuning vs Closed Sourced
Our fine-tuned LLM on HuggingFace

Smart Bugs Curated Dataset Example



Initial Experiments - Results
Vanilla GPT-4 drastically outperformed all fine-tuned 
LLMs (Mistral/LLaMa) on single-class detection task.

What is extremely important:
- The size of model (GPT-4 >> 13b..70b models)
- The annotation style (ask for line number)
- The detailed relevant context (context is key)

The prompt we used

GPT-4o with some context
GPT-4o with relevant and 
comprehensive context



Pivot to Agent-Based Approach

Before

After



The first positive response to the question 
"Are LLMs useful for auditing smart contracts?"
The finding by AI-agentic scanner:

Potential for unbounded loops in Registry contract
Contract(s) Affected: Registry

The removeContract function in the Registry contract uses a loop to find and remove a target 
contract. If the number of target contracts grows large, this could lead to high gas costs or even 
out-of-gas errors.

Recommendation: Implement a more gas-efficient data structure or mechanism for removing 
target contracts.

Developer feedback: “Wait, this is important, actually I’ve never thought about it.”



Technical Evolution - OpenAI o1



Current State and Success Factors

In early October, this algorithm was able to find a major bug 
in an already audited contract, marking a new era in the 
use of LLM for auditing smart contracts. 

The success of this approach comes down to four key 
factors:

1. Using LLMs with advanced reasoning capabilities 
(OpenAI o1-preview, o1-mini)

2. Implementing an agent approach with planned audit 
steps

3. Carefully selecting context for analysis runs, 
comprehensive prompts with examples of good and 
bad findings

4. Adding a quality critic & aggregation step





Future Vision - SWE Agent Approach 

The role of LLMs is not just to scan code, but also in managing the tools that 
were previously available only to humans.



What LLMs are useful for:
✅ Code auditing: Already finding bugs missed by human auditors

✅ Static analyzer use: Reducing false positives 

🔄 Fuzz testing: In development

💡 PoC writing: Showing promise but needs human oversight

💡 Formal Verification: Showing promise but needs human interaction

💡 Other Auditor Tools: Expecting this will be possible in the near future.

Current Utility Matrix



Questions?

Thank you for your attention.

I will be happy to answer any questions.

Twitter: @balakhonoff

Telegram: @kirill_balakhonov

LinkedIn: /in/kirill-balakhonov

AuditAgent: AuditAgent.Nethermind.io
All links and a promo 
code for free access 
will be available in 
this group

AuditAgent.Nethermind.io


