Are state-of-the-art LLMs useful
for auditing or formal verification”

Kirill Balakhonov
Product @ Nethermind



Introduction

vitalik.eth &
@VitalikButerin
One application of Al that | am excited about is Al-assisted formal

verification of code and bug finding.

Right now ethereum's biggest technical risk probably is bugs in code,
and anything that could significantly change the game on that would be
amazing.

Can LLMs find security issues in solidity smart contracts?

Potential concerns:
- Solidity is a niche language
- Vulnerabilities are complicated
- Findings are often arguable



State of the Field - 6 Months Ago

What was presented on the market regarding Al Smart Contract Auditing:

- Landing pages with Al Auditor that doesn’t exist

- SaasS platforms with not implemented functionality to collect leads
- SaaS platforms which only run Slither (static analyzer)

- SaasS platforms which run ChatGPT and false positive findings

- Some research papers with conclusion we are not yet there.



Initial Experiments - Fine-tuning vs Closed Sourced

SB Curated: A Curated Dataset of Vulnerable Solidity OU r f| ne_tu ned LL M on H u gg | ng Face

Smart Contracts

SB Curated is a dataset for research in automated reasoning and testing of smart contracts written in Solidity, the Models 1 ( solidity ] Full-text search T Sort: Recently created
primary language used in Ethereum. It was developed as part of the execution framework SmartBugs, which allows
the possibility to integrate tools easily, so that they can be automatically compared (and their results reproduced).
To the best of our knowledge, SmartBugs Curated is the largest dataset of its kind. ® PrunaAI/AlfredPros-Codellama-7b-Instruct-Solidity-bnb-4bit-smashed

Vulnerabilities
@ andrijdavid/Solidity-Llama3-8b
SmartBugs Curated provides a collection of vulnerable Solidity smart contracts organized according to the DASP |

taxonomy:

Vulnerability Description Level # hinny-coder/hinny-coder-6.7b-solidity-awq

Reentrant function calls make a contract to behave in an

Reentranc Solidit;
s unexpected way Y

# hinny-coder/hinny-coder-6.7b-solidity-refine-awq
Access Control Failure to use function modifiers or use of tx.origin Solidity

Arithmetic Integer over/underflows Solidity

# hinny-coder/hinny-coder-6.7b-solidity-final-awq

Smart Bugs Curated Dataset Example € iy <ot iany-codes .- sty sefio

7 pragma solidity ~0.4.22;

8 # hinny-coder/hinny-coder-6.7b-solidity-final
9 contract FindThisHash { :

10 bytes32 constant public hash = @xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f . . .

11 #! hinny-coder/hinny-coder-6.7b-solidity

12 constructor() public payable {} // load with ether

13 % balakhonoff/solidity_security_model_merged_v2
14 function solve(string solution) public {

15 // If you can find the pre image of the hash, receive 1000 ether

16 // <yes> <report> FRONT_RUNNING

17 require(hash == sha3(solution));

18 msg.sender.transfer(1000 ether);

19 }

20 }



e label

Initial Experiments - Results

Vanilla GPT-4 drastically outperformed all fine-tuned
LLMs (Mistral/LLaMa) on single-class detection task.

What is extremely important:
- The size of model (GPT-4 >> 13b..70b models)
- The annotation style (ask for line number)
- The detailed relevant context (context is key)

Confusion Matrix (Percentage)

.
ron - o o randomness - o o o 013 0067 il
i

03
o o 02
04 2
mmmmmmm - o o026 o o014 o078 — o o foet o . b

03

tme manipulation = 0 o . oo on2 o052 0 e maniiaton - o o oz 016 o
[ pp——

nchecked Jow level cals - 016 o013 o2 on o026 inchecked Jow jeve calls - 0 o o o 0
. 0 o . " a .

scces control
rr—

access_control -
aithmens

tme_manipulaton -

[eopm—

i
H
H H
H

nchecked low jevel calls

predicted abel

GPT-40 with relevant and
GPT-40 with some context comprehensive context

Predicted label

The prompt we used

You are given a piece of Solidity code. Your task is to analyze this
code for vulnerabilities of a specified type.

The type of vulnerability you need to look for is provided at the
beginning of this prompt.

You must scan through the provided Solidity code and identify any
instance(s) of this vulnerability.

Respond with the line number(s) at which each identified vulnerability
instances. If multiple instances are found, separate the line numbers
with a comma (e.g., "10,20,30"). Do not include whitespace between
numbers.

If no instances of the specified vulnerability are found, respond with
"None".

Vulnerability Type to Search For: ARITHMETIC which refers to issues
arising from the way arithmetic operations (like addition, subtraction,
multiplication, and division) are handled, potentially leading to
overflow or underflow. This occurs when an operation results in a
number exceeding the maximum or minimum size that can be stored within
a variable's data type, altering the intended logic or value in a
contract.

### Solidity code:

1: pragma solidity "~0.4.0;
2%
3: contract IntegerOverflowAdd {
4: mapping (address => uint256) public balanceQf;
53
6:
Fis function transfer (address _to, uint256 _value) public{
8:
92 require (balanceOf [msg.sender] >= _value);
10 balanceOf [msg.sender] -= _value;
3 5 IS balanceOf[ to] += value;
SRAAARAAA H— =
12: )
13:
1.4 Y

### Vulnerable lines:
11,



Pivot to Agent-Based Approach

N detectors

[ Check Reentrancy

/ [ Check Arithmetic \]}\
BefO re The Code \ 7 Aggregate
[ Check Front Runningj

N runs

After The Code _>

—

Critique



The first positive response to the question
"Are LLMs useful for auditing smart contracts?"

The finding by Al-agentic scanner:

Potential for unbounded loops in Registry contract
Contract(s) Affected: Registry

The removeContract function in the Registry contract uses a loop to find and remove a target
contract. If the number of target contracts grows large, this could lead to high gas costs or even

out-of-gas errors.

Recommendation: Implement a more gas-efficient data structure or mechanism for removing
target contracts.

Developer feedback: “Wait, this is important, actually I’'ve never thought about it.”



Technical Evolution - OpenAl o1

& Mudit Gupta ]
» @Mudit_Gupta

Has anyone tested the new OpenAl model for solidity audits?

It's surprisingly good from my initial testing. Good enough to become a
mandatory step in all my audits.

Definitely not at the level of a manual auditor but better than any static
analyzer and automated audit tool.



Current State and Success Factors

In early October, this algorithm was able to find a major bug
in an already audited contract, marking a new era in the
use of LLM for auditing smart contracts.

The success of this approach comes down to four key
factors:

1.

2,

Using LLMs with advanced reasoning capabilities
(OpenAl o1-preview, o1-mini)

Implementing an agent approach with planned audit
steps

Carefully selecting context for analysis runs,
comprehensive prompts with examples of good and
bad findings

Adding a quality critic & aggregation step

Kirill Balakhonov | Nethermind (%

1
| Hey. I've just went through the reports. The reports have less fi...
Thank you for the feedback! Yes, we're working on the low false
positive scanario, so you noticed that it's not too many findings. But
at the same time yes, it is not substituting a real auditor, seriving
rather as a pre-audit tool. Do you think it makes sense to run it over
the entire code base like once a month as a reviewer?

Yeah, as a sophisticated code analyzer

L@

|.r.m[

Thanks @kirill_balakhonov for sending
over the reports.

Here are my feedbacks:

- the description of the Code Summary
is pretty accurate and | quite like how it
worded it!

- Interesting finding for the
Isp-smart-contracts

For us | think the findings are good enough in this case & it's a good
use for audit-during-development

| ’ ¥

fix extra-audit findings




g -

A Kirill Balakhonov | Net £ @balakl - 6 Hos6. HauaTb npoaBuXeHue

v B Exciting milestone to share: We've just completed an intensive 2-week
security sprint with @NethermindEth & @NethermindSec AuditAgent, our
Al-powered smart contract auditing tool. Here's what we achieved (in the
thread below):

£ 3 NETHERMIND

20+ contests

Results

82 000+ nSLOC
280+ contracts analysed
85+ vulnerabilities detected

10+ submitted

Q3 71 92 Q 59 il 6 Thic. [

=



Future Vision - SWE Agent Approach

The role of LLMs is not just to scan code, but also in managing the tools that
were previously available only to humans.

N tools

Static ‘ . ot

Formal
Verification
Sym‘aohc
Execution



Current Utility Matrix

What LLMs are useful for:

' Code auditing: Already finding bugs missed by human auditors

\'4 Static analyzer use: Reducing false positives

Fuzz testing: In development

PoC writing: Showing promise but needs human oversight

=

=

Formal Verification: Showing promise but needs human interaction

[

Other Auditor Tools: Expecting this will be possible in the near future.



Questions?

Thank you for your attention.

| will be happy to answer any questions.

Twitter: @balakhonoff

Telegram: @kirill_balakhonov
LinkedIn: /in/kirill-balakhonov
AuditAgent: AuditAgent.Nethermind.io

All links and a promo
code for free access
will be available in
this group



