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1 Introduction

Imagine that an earth-based satellite dish transmits a signal to a spacecraft
over some short interval dt1 at t1, that the spacecraft receives that signal
over some interval dt2 at t2, and immediately transmits it back to the same
ground station, which receives it over duration dt3 at t3. The two observables
in which we are interested are

1. the round-trip time-of-flight, which gives us an approximate range to
the spacecraft; and

2. the ratio of signal transmission and reception intervals1 (the Doppler
shift) between transmission and eventual reception, which provides in-
formation about the rate at which the range is changing (the range-
rate).

While Moyer [1971] has derived models for one-way, two-way, and three-
way observables, we are interested only in the two-way solutions, which avoids
many of the clock problems which befall our measurements in one-way and
three-way methods.

1This can also be written as the ratio of frequencies at reception and transmission.
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2 Range-rate observable

The most basic form of the range-rate observable is

F =
N

Tc
− fbias (1)

where fbias is C4 = 106 (for S-band), N is the number of cycles, and Tc is the
time over which those cycles were received. Since

N =

∫
Tc

f dt , (2)

where f is the frequency, we can write

F =
1

Tc

∫ t3+Tc/2

t3−Tc/2
(f − fbias)dt3 . (3)

Moyer’s Equation 285 gives an expression for the value in the integral:

f − fbias = C3fq

(
1− fR

fT

)
(4)

where fR is the frequency received, fT is the transmitted frequency, fq is
the clock frequency (which we treat as being the same at t1 and t3), and
C3 = 96(240/221).

According to Moyer, the integral gives a Taylor series:

F = C3fq

(
1− fR

fT

)∗
(5)(

1− fR
fT

)∗
=

(
1− fR

fT

)
+

(
T 2
c

24

)
d2

dt23

[
1− fR

fT

]
(6)

The full expansion is quite complicated. Luckily, it can also be expressed
more simply as a difference in times-of-flight. The full derivation is not
included here, but the result is Equation 480 in Moyer,

F = C3fq
τ2e − τ2s

Tc
, (7)

where τ2e is the round-trip time for the end of the signal, and τ2s is the same
for the start of the signal.2

2Moyer uses ρ instead of τ , but I find this confusing, since ρ usually indicates a range.
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Typically, Tc is the signal duration at receipt (which for our purposes is
just over a second). We can write

∆τ2 = τ2e − τ2s (8)

and each time-of-flight is defined in terms of the ranges traversed by the
signal,

τ2 =
r12 + r23

c
(9)

where we define

r12 = ‖r2 − r1‖ (10)

r23 = ‖r3 − r2‖ . (11)

If we think of the quantity ∆τ2
Tc

as twice the change in position over the
receive time interval, divided by c, we can see that it resembles a velocity.
We rewrite our observable in terms of the range-rate:

F = C3fq
dτ2

dt3
(12)

dτ2

dt3
=

d

dt3

‖r2 − r1‖+ ‖r3 − r2‖
c

=

d
dt3

[(
(r2 − r1)> (r2 − r1)

)1/2

+
(

(r3 − r2)> (r3 − r2)
)1/2

]
c

. (13)

To compute the derivative in the expression above, we need to refresh a
few identities.3 Firstly, suppose that vectors a and b are both functions of t.
Then

d

dt
‖a− b‖ =

d

dt

(
(a− b)> (a− b)

)1/2

=
1

2

(
(a− b)> (a− b)

)−1/2 (
2 (a− b)> (ȧ− ḃ)

)
=

(a− b)> (ȧ− ḃ)

‖a− b‖
, (14)

and we call this expression G(a, b).

3If these don’t make sense, a good reference is https://en.wikipedia.org/wiki/

Matrix_calculus#Identities.

3

https://en.wikipedia.org/wiki/Matrix_calculus#Identities
https://en.wikipedia.org/wiki/Matrix_calculus#Identities


Next, we need to find the differentials of G with respect to each of a, b,
ȧ, and ḃ.

∂G

∂a
= −1

2

(
(a− b)> (a− b)

)−3/2

(a− b)> (ȧ− ḃ)
(
2(a− b)>

)
+
(

(a− b)> (a− b)
)−1/2

(ȧ− ḃ)>

= −(a− b)> (ȧ− ḃ)

‖a− b‖3
(a− b)> +

1

‖a− b‖
(ȧ− ḃ)> (15)

and

∂G

∂b
=

(a− b)> (ȧ− ḃ)

‖a− b‖3
(a− b)> − 1

‖a− b‖
(ȧ− ḃ)> (16)

∂G

∂ȧ
=

1

‖a− b‖
(a− b)> (17)

∂G

∂ḃ
= − 1

‖a− b‖
(a− b)> (18)

We need only define the Kalman filter state:

x =
[
r2 v2

]>
, (19)

where v = ṙ2.

2.1 Range-rate measurement partial

We now have all the tools we need to compute the measurement partial

H =
∂F

∂x
=

[
∂F
∂r2

∂F
∂v2

]

4



with

∂F

∂r2

=
C3fq
c

(
∂G(r2, r1)

∂r2

+
∂G(r3, r2)

∂r2

)
=
C3fq
c

(
−(r2 − r1)> (v2 − v1)

r3
12

(r2 − r1)> +
1

r12

(v2 − v1)>

+
(r3 − r2)> (v3 − v2)

r3
23

(r3 − r2)> − 1

r23

(v3 − v2)>

) (20)

∂F

∂v2

=
C3fq
c

(
∂G(r2, r1)

∂v2

+
∂G(r3, r2)

∂v2

)
=
C3fq
c

(
1

r12

(r2 − r1)> − 1

r23

(r3 − r2)>
)

(21)

2.2 Measurement covariance

The measurement covariance for the Doppler observable ought to be constant
regardless of range. A single measurement ought to have a σρ̇ = 1 mm/s.
However, the measurements are expressed as a frequency, so we need to
convert:

Rdoppler =

(
Cefq
c

σρ̇

)2

. (22)

3 Range observable

The observable for two-way range is approximately Eq. 9.4 Preliminary anal-
ysis (not shown) suggests two-way range information does not improve the
state covariance in the context of Doppler measurements, so we don’t perform
a detailed derivation. The measurement partial is

H =
1

c

(
(r2 − r1)>

r12

− (r3 − r2)>

r23

)
, (23)

which is basically identical to the range-rate observable with respect to the
changing velocity.

4The full expression is Equation 379 by Moyer.
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Since the observable is a round-trip time, we must divide our expected
σρ = 2 m by the speed of light to get our measurement covariance:

Rrange =
(σρ
c

)2

. (24)
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