Insect Netting Effectiveness

An evaluation conducted in conjunction with the University of Almeria, Spain

UNIVERSIDAD DE ALMERÍA

Our Guide to Selecting the Best Insect Netting Through Form, Fit & Function

Insect Netting: A Critical Part of an Integrated Pest Management (IPM) Program

Program success is achieved by:

Having

- Light (Measured by PAR)
- Air Flow between and around each
 plant

Preventing

- Disease
- Mold
- Pests

Insect Netting supports your IPM program by providing:

- Physical barrier to pests in air or on the ground
- Enough circulation to prevent mold and diseases
- Adequate light transmission
- Multiple season solution in various configurations

Evaluating Form and Fit

Construction:

- # yarns warp direction (Mesh count)
- # yarns weft direction
- Reinforcement, in center and around edges

Pore Size:

• Size of openings

Material:

• Woven HDPE: virgin, additive UV

Colors:

• Opaque, Green or Black

Shade:

• 15% to 35%

Functional Testing: How Structural and Environmental Requirements are Met

Tensile / Elongation Test

ATSM D5035: Ibs or newtons that cause a tear at x% fabric stretch

Weathering Resistance UV protection

ASTM G-154: Accelerated weathering

Common questions these tests help answer:

If I pull net around trees or bushes, will that pull it out of shape?

How do I know my netting will hold up multiple seasons?

If my netting is on rollers for use when greenhouse walls are up, will it break?

Function: Air Flow Requirements Dictate Pore Size

Not sure which pore/ mesh size to buy? The answer is based on local wind conditions and air flow needs of your crops. Small Pore Size Can Impact Crop Production Due to Low Air Flow. *(area above dotted line in chart)*

> "lower porosity of fine mesh nets, leads to a high static pressure drop..." https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600595/

Impact of wind on air flow to crops under netting by pore size

Function: Construction Reduces Pressure Change, Air Flow

• A gentle breeze (1.3 m/s or 5 km/h) can impact net covered greenhouse vent systems, creating a pressure change which thereby strains the motors.

Static Pressure impact on motors <u>https://rucore.libraries.rutgers.edu/rutgers-lib/47188/PDF/1/</u>

Worried about pests being smaller than the opening on the netting?

Pore sizes bigger than the width of insect abdomen can be more effective in keeping out insects https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883381/

Net sizes 6 x 9 and bigger support air flow needed to keep CO² available and excess moisture away, regardless of wind speed

	Yarns / 1 in sq	51 x 25	40 x 25	15 x 23	15 x 15	15 x 13
Construction	Yarns / 1 cm sq	20 x 10	16 x 10	6 x 9	6 x 6	6 x 5
	Mesh	50	40	15	15	15
Pore Size	mm	0.27 x 0.77	0.39 x 0.77	0.83 x 1.38	1.38 x 1.38	1.38 x 1.7
Weight	gsm	137	125	106 85		79
		/ / / /		\setminus / \setminus / \setminus /	$\langle / \rangle / \rangle / \rangle$	$\langle \cdot \rangle$

Function: High Mesh Count and Insect Blocking

Wind speeds above 5km/hr can push pests through 40 / 50 mesh sized nets

Function: Provide Light and Shade Requirements of Crops

Shade factor is the % of visible light blocked by the insect netting material

Shade is an average of any light, not type of light

Function: Provide Light and Shade Requirements of Crops

Fine tuning transmittance can All insect netting blocks some light deliver different results in growth. Transmittance = % Light that passes The amount and type of PAR through any material (Photosynthetically Active Radiation) Measured by transmission % 95 (See Knowledge Bank) Green netting has a different PAR % than black or clear because it blocks green light to support 95.4 95 specific growth 92 90.3 85 89.8 "1% [too little] radiation results in 1% [drop in] production PAR 16x10 6 x 9 6 x6 ■ 6 x5 20x10

> ACADIAN INDUSTRIAL TEXTILES

Designed and tested to meet the needs of growers and their crops

Construction	Metric (reinforcement)	20 x10	16x10	6 x 9	6 x6	6 x5	
150 /211-2	Imperial	50 x 25	41 x 25	15 x 23	15 x 15	15 x 13	
Mesh	# Warp Threads	50	40	15	15	15	
Pore size	mm	0.27 x 0.77	0.39 x 0.77	0.83 x 1.38	1.38 x 1.38	1.38 x 1.7	
Weight ISO 3801-2	gsm	137	118.67	106	85	79	
Tensile Strength (N) ISO 13934-1	Warp	1100	900	560	540	540	
	Reinforcement	External 1800	External 1200	Central 1200	Central 1100	Central 1100	
	Weft	570	600	740	550	440	
Elongation (%) ISO 13934-1	Warp	28	25	27	22	22	
	Reinforcement	External 30	External 30	Central 27	Central 27	Central 27	
	Weft	-21	12	21	18	18	
Air Permiability / Porosity ASTM D737		42	49		68	5 71	
~ Pressure Drop at 8 mph	Pa drop	42	35	8	8 5		
Shade AATCC TM 148	%	35	33	25	18	16	
Light Transmission PAR	%	89.9	90.3	92	95	95.4	
	% PAR light that goes through net material						

Selecting the Right Insect Netting for Crop Needs

	Construction	Metric	20 x10	16x10	6 x 9	6 x6	6 x5
	ISO 7211-2	Imperial	50 x 25	41 x 25	15 x 23	15 x 15	15 x 13
	Mesh	Warp Threads	50	40	15	15	15
	Pore size	mm	0.27 x 0.77	0.39 x 0.77	0.83 x 1.38	1.38 x 1.38	1.38 x 1.7
Air Flow	Air Permiability / Porosity ASTM D737	%	42	49	61	68	71
Shade	[~] Pressure Drop at 8 mph	Pa	42	35	8	5	4
	Shade AATCC TM 148	%	35	33	25	18	16
PAR Light	Light Transmission PAR	2 2 2 2 2	89.9	90.3	92	95	95.4
		%	% PAR light that goes through net material				

Our team of experts are here to help you navigate the world of textile options and possibilities. We handle all your freight and shipping needs. From shade fabric to truck tarp to privacy/site barrier, we have a large supply of fabrics on hand, so you get the exact type and length you need in days, not weeks.

Need a custom material? We work with mills to develop your perfect solution.

Contact us today to discuss how we can help you.

919-232-0470

info@acadiantextiles.com

acadiantextiles.com

Reference Documents

Related Testing Specs

- Air Permeability / % Porosity: ASTM D737
- Construction: ISO 7211 or ASTM D1059
- Light Transmissions ASTM D1494-12
- Shade Factor: AATCC TM 148
- Tensile Strength and Elongation: ISO 13934 (Strip test), ASTM D5035
- Weathering Resistance: ASTM G-154

Example Components of Integrated Pest Management Plan

- ID pest threats
 - State based tools: <u>NY State List of Invasive Species</u>
- Monitor and measure (set traps seasonally)
 - Tips and suggestions at state level : <u>UNC Identify pests and possible</u> <u>actions to take</u>
- Remove fallen, possibly rotting fruit, made simpler with ground cover
- Introduce competitive insects
- Use of contact sprays "Greenhouse thrips is readily controlled with thorough application of contact sprays such as horticultural oil, natural pyrethrins (plus piperonyl butoxide), or insecticidal soaps to the underside of infested leaves. Repeat applications may be necessary",
- <u>Thrip Management</u> Use textiles :
 - Ground Cover: Easy removal of fallen, rotting fruit from around crop;
 - Weed Management
 - ^o Bird Netting or PP Rain Cover: Birds are safe and kept away from fruit
 - [°] Insect Netting

Additional resource USDA IPM Resource Page

Reference Sources

- 1. What I PAR: <u>https://www.fondriest.com/news/</u> photosyntheticradiation.htm#:[~]:text=Photosynthetically%20Active%20Radiation%20is%20needed,At %20night%2C%20PAR%20is%20zero.
- 2. FDA alert on Thrips <u>https://www.fdacs.gov/content/download/93435/file/PESTALERT-</u> <u>Thripsparvispinus%28Karny%29.pdf</u>
- 3. Ground cover in fighting SWD: <u>https://gardenerspath.com/how-to/disease-and-pests/spotted-wing-</u> drosophila-control/#Mulch-with-Plastic
- 4. Impact of pore size on green house air flow and temperature: (Slide 6, <u>https://www.ncbi.nlm.nih.gov/</u> pmc/articles/PMC4883381/
- 5. Wheeler, E.F. & Both, A.J. (2002) Evaluating Greenhouse Mechanical System Performance Part 3 of 3, Rutgers Cooperative Extension, <u>www.rucorelibraries.rutgers.edu</u>
- 6. "The lower porosity of fine mesh nets, leads to a high static pressure drop [14,15], resulting in inadequate air exchange and reduced ventilation [16], hence exposing crops to abiotic stress that affects crop growth and production, while representing a barrier for pollinators "<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600595/</u>

