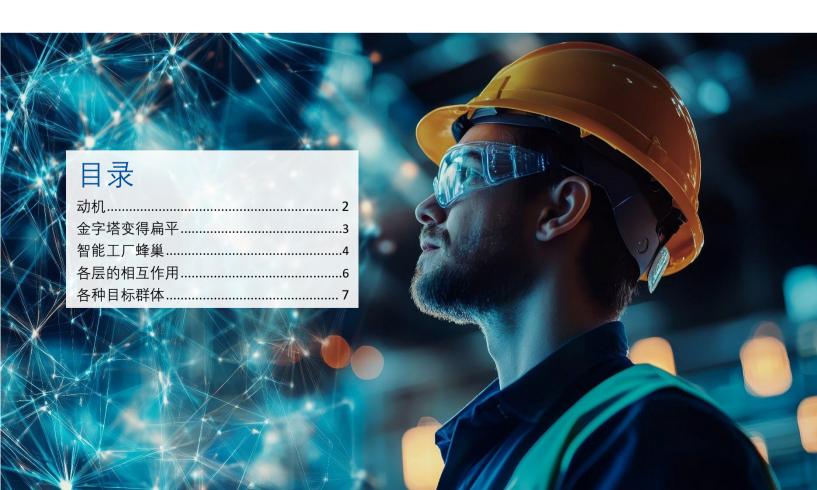


经典自动化金字塔的创新继承者

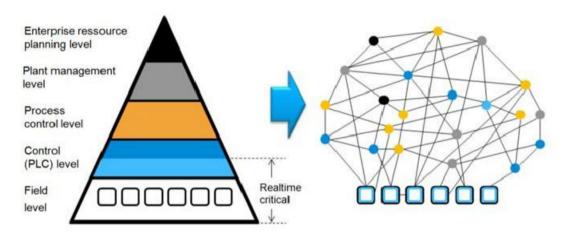
智能工厂蜂巢

现代制造信息技术体系结构


动机.

长期以来,经典的自动化金字塔一直是生产环境的基准。但要将新的 IT 架构映射到金字塔中却变得越来越困难。因此,现在是采用新视角的时候了。作为智能工厂的先驱和潮流引领者,MPDV 的专家们已经开发出了一种能够实现这一愿景的方法。MPDV 将这种新模式称为"智能工厂蜂巢"。本文将介绍这一名称的由来以及与蜂巢的关系。

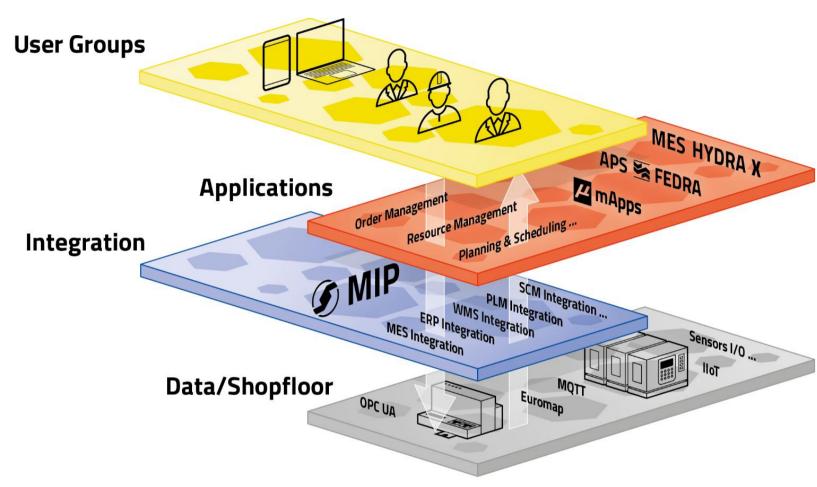
第一个问题是,为什么需要一种新的模式。多年来,自动化金字塔已经证明了自己的价值。MPDV 创新经理彼得-霍夫曼(Peter Hofmann)可以告诉我们更多:金字塔结构的一个显著缺点是,只有直接相邻的层之间才能相互通信,这通常是通过专有协议实现的。如今,网络化程度已大大提高,因此这种传播原则已不再有效。即使在行业媒体上,"自动化金字塔的时代已经过去"或"金字塔的终结"等标题在过去几年中也越来越频繁地出现。


"智能工厂蜂巢"将制造业 IT 推向了一个全新的时代。新的可视化为供应商和用户提供了一个全新的、面向未来的智能工厂 IT 视角。这标志着我们打开了一扇通向未来的窗户。未来的制造业 IT不再只是一个概念,它已经到来,并为更高的效率、更好的连接性和持续的创新打开了大门。"

Nathalie Kletti - MPDV首席执行官

金字塔变得扁平

因此,专家建议,金字塔之后应该是网络,让每个人都能相互交流。这样就能实现无等级交流的目标。然而,新的挑战出现了:接口的数量呈指数级增长。如果每个系统和设备都与其他每个系统和设备连接,那么所需的连接数量将是巨大的,且随着每台新设备的增加而增加。更糟糕的是,无所不在的标准协议仍然是一厢情愿的梦幻想法。这意味着,连接越多,其多样性和复杂性就越大。

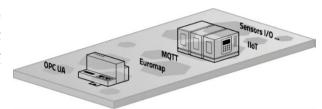

从金字塔到网络(来源: VDI, 论文和应用领域: 信息物理系统)

所有这些都表明,仅仅将所有系统和设备彼此直接连接是不够的。如果没有一个所有系统和所有设备都可以连接的中央平台,它将无法工作。集成平台是绝对必要的。多年来,MPDV一直在通过制造集成平台(MIP)追求这条道路。Peter Hofmann解释说:"原理简单而巧妙:所有系统和设备都与MIP通信。因此,只有一个接口,并且是标准化的。"如果要连接另一个系统或设备,只需另外设置一个接口。这有助于降低复杂性。

为什么采用蜂巢式结构?

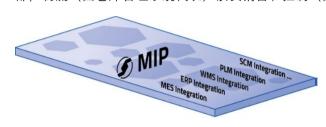
作为网络的替代方案,MPDV 的专家们选择了一种蜂巢结构。我们从自然界中的蜂巢结构获得灵感。紧凑的设计有助于减少 IT 制造过程中的接口数量。为了既能应对当今 IT 架构的复杂性,也能保持清晰度,MPDV 决定采用多层蜂巢模型。

智能工厂蜂巢


智能工厂蜂巢由四层组成:

- 数据层/车间层: 这是所有数据供应商所在的位置。例如, 基于工业物联网 (IIoT) 的系统。
- 集成:对数据进行处理、分发或分析。集成平台可确保每个人都能获得所需的数据,并对其拥有适当的权限。
- 应用程序:每种类型的制造业IT应用程序都在这一层。如果需要数据或提供结果,则由集成层处理。
- 用户组:公司中的每个用户组被分配到顶层。每个用户都可以访问他们的应用程序以及分配给他们的数据。

所述四层中的每一层均由柔性蜂窝结构组成,所述柔性蜂窝结构包含该层的各个组件。不同类型的组件根据图层组合在一起。


数据/车间

您可以在这里找到机器、控制器(PLC)、机器人和工具等物理设备,以及OPC UA、MTConnect或MQTT等通信协议。不同制造商的自动化平台和作为数据聚合系统的IIoT平台也与该层的其他组件进行通信。

集成

集成层的核心是集成平台,如MPDV的MIP。这是数据/车间层所有数据汇聚的地方。有了集成平台,可以避免前面提到的界面混乱,因为它是车间与在其上运行的应用程序之间的唯一接触点。除了集成平台之外,该层还包含用于其他系统的各种集成模块。除了ERP系统之外,还包括产品设计(由PLM系统代表)、供应链管理(SCM)、(内部)物流(由仓库管理系统代表)以及销售和控制(由CRM

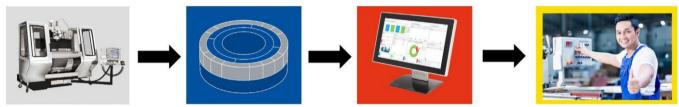
系统或商业智能系统表示)。集成模块作为集成平台的扩展,确保标准化通信。不用说,典型的MES应用程序也通过集成平台连接到上面的层。

应用程序

制造业IT应用程序包括所有类型的应用程序、程序和IT解决方案,用于处理来自车间的数据,并根据应用程序为用户可视化数据。蜂巢模型最初根据VDI指南5600融合了经典的MES任务,但在这些任务上扩展了新的应用领域,如装配管理或使用人工智能进行分析。这一层特别适合非常详细的呈现。随着应用程序种类在不断增加,各个应用程序之间划分的功能粒度也会提高,应用层的呈现就越详细。

用户组

制造IT的用户组就像应用范围一样多种多样。其中包括制造公司中的传统角色,如操作员、主管、计划员或生产经理,以及负责业务流程运行的部门及其员工,包括



控制,采购,管理,还有开发部门或流程经理。尽管这些数据需要以不同的方式处理。最终,所有用户组都会从车间数据和业务管理数据的组合中受益。

各层的相互作用

下面的示例将说明智能工厂蜂巢中的各层工作逻辑:

已登录的订单正在冲床上运行。每个冲程产生五个相同的零件,这些零件落入托盘中。机器控制系统(数据/车间)记录每一个冲程。通过OPC UA信息建模框架执行与PLC的通信。DEC(集成)边缘组件记录周期信号,并通过网络服务将其传输到MIP集成平台。制造应用程序(mAPP)机器监控(应用程序)可视化车间终端上的循环计数器和结果数量。操作员(用户组)可以查看订单进度。订单进度通过集成模块转发到ERP和CRM系统(集成),以便将任何订单延迟传达给客户。

从机器(数据/车间-灰色)通过MIP(集成-蓝色)到应用程序(应用程序-红色)-以便工人可以做出有根据的决策 (来源:MPDV)

同时,机器控制系统(数据/车间)通过DEC(集成)将冲床的能耗数据提供给集成平台。能量数据经由集成模块被立即转发到设施管理系统。此外,mAPP维护和服务管理(应用程序)将记录的能耗与目标数据进行比较。如果能量消耗过高,则自动安排冲压机的维护。维护存储在集成平台中。与其连接的智能手表mAPP可视化维护技术人员(用户组)即将进行的维护。

每种类型的订单、事件都有类似的数据收集链和由此产生的活动。流程始终相同:收集到的数据可在集成平台上用于各种应用。智能工厂蜂巢图描述了数据从车间到用户的路径。因此,目前几乎不可见的单个应用程序的层级结构变得透明,用户可以更轻松地找到自己的位置。

针对不同目标群体的智能工厂蜂巢

下面详细描述新模型对制造公司中的各种目标群体的好处:

高层管理-使用汇总数据

最高管理层始终牢牢把握大局:

公司必须运营并创造收入。要做到这一点,生产是制造公司中最重要的因素。但是,管理层对每台机器的读数不感兴趣。相反,更高级别的关键数字、报告和评估让管理层了解生产运行效率。最好的方法是一个仪表板,上面有一些有意义的关键数字和图表,显示过去几天的进展情况。

为此,管理层(用户组)采用的应用程序是制造执行系统 (MES) (如Hydra X)的一部分。总经理不需要知道数据是如

何进入应用程序的,也不需要知道哪台机器是通过哪个协议连接的,因为他们只关心数据是否可靠。作为这个用户组的成员,他们只需要访问为其责任区显示数据的应用程序。他们不可能关心质量检查的每个测量值。更高级别的关键数据,如整体设备效率(OEE)或当前病假才是业务经理感兴趣的。

因此,管理团队的成员将主要看到智能工厂蜂巢中的两个顶层:用户组和应用程序。

生产计划员—完美分配订单

生产计划员的目标是以最好的方式在可用的机器之间分配所有即将到来的订单。与此同时,它们应尽可能最佳利用现有机器。然而,如今仅有机器是不够的——还需要合适的工具材料、能源,当然还有合格的人员。像FEDRA这样的高级计划和排产系统(APS)是理想的工具。但再好的计划工具也离不开数据。因此,计划员必须知道订单是刚刚从ERP系统转移过来还是已经登录到机器上。换句话说,计划员对他们处理的数据来源更感兴趣。由于计划员位于"用户组"层,因此他们需要访问允许他们计划资源订单的应用程序,以及有关当前生产状态的信息。像MIP这样的集成平台确保来自车间的实时数据和来自ERP系统的订单可以在计划应用程序(应用程序)中进行处理。计划员对如何将数据从机器(车间/数据)传输到集成平台并不感兴趣。此时重点是数据的可靠性。

智能工厂蜂巢中的三个顶层与生产计划员最相关、它们是用户组、应用程序和集成。

操作工—强调随时随地

机器操作员必须全神贯注地做好每一件事,因为每一个错误的动作都可能导致废品,甚至是危险的。机器操作员需要数据来帮助他们高效、完美地执行任务。车间员工使用的应用程序与办公室所用的应用程序完全不同。车间员工往往戴着手套,机器周围的区域也比较粗糙。这就是为什么在这种条件下使用的IT设备必须易于操作,并且能够承受恶劣的环境条件。因此,大按钮和包含重要信息的清晰用户界面是当务之急重中之重。然而,操作员(用户组)使用的是制造执行系统应用软件(应用程序)。对于他们来说,查看每台机器的状态和进行特定测量的确切位置(数据/车间)非常重要,但操作员对如何通过集成平台(集成)提供这些数据并不感兴趣。

如果操作员对像智能工厂蜂巢这样的抽象模型感兴趣, 那就与应用程序和数据/车间层相关。

质量经理-遵守规范并尽量减少废料

在许多公司,质量管理是一项跨部门的职能。该领域的专家确保立法者和客户的复杂要求得到满足,并提供具体的质量保证。质量控制可分为三个部分:检查计划、检查执行和记录测量数据的评估。根据制造公司的组织结构,部分任务由操作员承担,即自身检查。因此,质量保证人员还需确定哪些应用程序应由哪些用户(用户组)使用。他们还需要知道在哪里测量(数据/车间)结果来自何处。最后,检查计划还需要来自相邻系统(如ERP或PLM)的信息,这些系统通过集成平台(Integration)连接。质量保证人员应熟悉智能工厂蜂巢的所有层次。

工业电工-轻松连接机器

工业电工的任务之一是以数字方式连接机器。他们可以通过 OPC UA或MQTT等标准化协议,或者通过安装自己的传感器 将数据输入系统来实现。工业电工通常对后来收集的数据发生 了什么不感兴趣。电工的评分标准是他们连接新机器的速度和 记录数据的可靠性。连接机器的工具多种多样。对于现代机器, 通常插上网线并设置IP地址就足够了。旧机器或自建系统通常 没有专用的数据访问点,甚至不收集数据。

传感器(数据/车间)可以进行改造,以向车间或控制柜中的数据采集模块提供数据。然后,这种边缘设备(数据/车间)作为数据源(集成)依次连接到集成平台。

电工的重点是智能工厂蜂巢的底层:数据/车间。根据任务的分布,第二层也可能是相关:集成。

IT经理—确保互操作性

IT部门的员工,甚至是IT经理,都将智能工厂蜂巢视为振兴互操作性主题的绝佳机会。毕竟,IT经理负责确保所有应用程序和

系统正常可靠地运行。更少的接口和标准化的访问方法使他们的生活更轻松。这就是为什么我们认为集成平台对于IT部门来说是一片富饶的土地。新设备或系统只需连接到集成平台,所有应用程序都可以访问数据。即使更改其中一个系统也不会影响其他系统,因为只有集成平台的接口会受到影响。虽然IT员工并不关心应用程序的技术内容或在车间收集的数据(数据/车间)的含义,但所有应用程序的互操作性是关键。

这就是为什么IT部门专注于智能工厂蜂巢中最重要的层:集成。不用说,两个上层对于应用程序管理也是至关重要的:用户组/应用程序。根据与现场电工的安排,底层也可能是感兴趣的:数据/车间。

如果您想了解更多关于智能工厂蜂巢的信息,请联系我们:电话021-56321032 或<u>info.cn@mpdv.com</u>

MPDV白皮书

知识就是力量!

我们的白皮书为您提供有关制造业IT和工业4.0的有趣事实。除了有趣的技术文章、趋势报告和产品信息外,白皮书还包含激动人心的专家访谈和日常使用的实用清单。下面是我们精选的白皮书:

智能工厂开发套件

智能工厂要素

功能网络化工厂

自治工厂

反应工厂

智能工厂的四个阶段

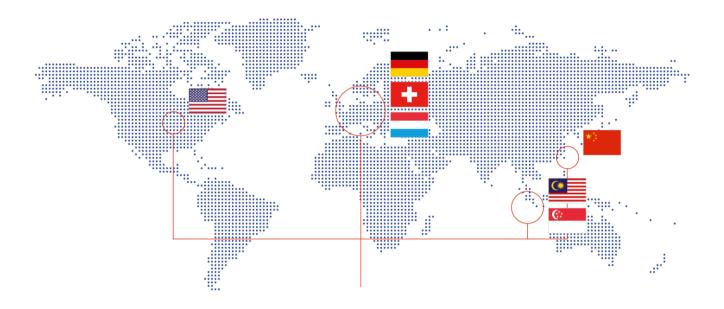
通过KPI平台和生态系统控制生产

从4级模型到控制回路

立即索取更多白皮书!

whitepaper-en.mpdv.com

关于我们



MPDV Mikrolab有限公司

总部位于德国莫斯巴赫,是制造业IT解决方案的市场领导者。凭借在制造业近50年的项目经验,MPDV拥有广泛的专业知识,并支持各种规模的公司实现智能工厂。

制造执行系统(MES)HYDRA、高级计划和排产系统(APS)FEDRA或制造集成平台(MIP)等MPDV产品使制造公司能够简化其生产流程,并在竞争中领先一步。这些系统可用于实时收集和评估整个价值链中与生产相关的数据。如果生产过程出现延迟,员工会立即发现并采取针对性措施。

MPDV解决方案的用户包括各行各业的知名公司。MPDV成立于1977年,活跃于德国、中国、美国、马来西亚、新加坡、卢森堡和瑞士等世界各地。

Chicago · Hamburg · Hamm · Heidelberg · Kuala Lumpur · Luxemburg Mosbach · München · Shanghai · Singapur · Stuttgart · Winterthur

MPDV Mikrolab GmbH·Römerring 1·74821莫斯巴赫·德国 +49 6261 9209-0 · info@mpdv.com · www.mpdv.com