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ABSTRACT

Streamflow prediction of rivers is crucial for making decisions in watershed and inland waterways management. The US Army Corps of Engin-

eers (USACE) uses a river routing model called RAPID to predict water discharges for thousands of rivers in the network for watershed and

inland waterways management. However, the calibration of hydrological streamflow parameters in RAPID is time-consuming and requires

streamflow measurement data which may not be available for some ungauged locations. In this study, we aim to address the calibration

aspect of the RAPID model by exploring machine learning (ML)-based methods to facilitate efficient calibration of hydrological model

parameters without the need for streamflow measurements. Various ML models are constructed and compared to learn a relationship

between hydrological model parameters and various river parameters, such as length, slope, catchment size, percentage of vegetation,

and elevation contours. The studied ML models include Gaussian process regression, Gaussian mixture copula, Random Forest, and XGBoost.

This study has shown that ML models that are carefully constructed by considering causal and sensitive input features offer a potential

approach that not only obtains calibrated hydrological model parameters with reasonable accuracy but also bypasses the current calibration

challenges.
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HIGHLIGHTS

• Calibration of hydrology model using machine learning.

• Learning unknown relationship between model parameters and river features.

• Rapid calibration of hydrological model parameters.

• Comparative study of different machine learning techniques.

1. INTRODUCTION

Watershed and inland waterways management generate a broad range of crucial and often expensive engineering decision-
making problems such as dredging (Yeates et al. 2020), analysis of a dam’s remaining useful life (England 2018), flood pre-
diction (Maidment 2017), understanding climate change (Lucas-Picher et al. 2003), and sediment and contamination analysis
(Palermo et al. 2008). The key constituent of these decision-making analyses is the streamflow discharge prediction of rivers

that form a river network. The flow of water in a river network is modeled through river routing that simulates the changes in
the shape of a hydrograph as water moves through the rivers. The US Army Corps of Engineers (USACE) uses a compu-
tational river routing model, RAPID (David et al. 2011a) (http://rapid-hub.org/), which offers a numerical solution to

river routing modeled by a physics-based hydrological model called the Muskingum method to simultaneously predict
water discharges in all the rivers in the network using parallelization (David et al. 2011a; Rouholahnejad et al. 2012).

The application of the Muskingum model in any form involves both a calibration step and a prediction step. The calibration

step includes estimating calibrated streamflow parameters k and x (which will be discussed later) for each river by using his-
torical inflow–outflow discharge measurements at certain gauge stations spread across a given geographic region (USACE
uses discharge measurements from gauges spread across the United States for calibration). Since the Muskingum method
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was first introduced by McCarthy in 1938 (McCarthy 1938; Cunge 1969), numerous research articles have targeted the cali-

bration problem to improve the prediction accuracy of streamflow forecasts by incorporating nonlinearities in river routing
problems, making the calibration more computationally efficient via curve-fitting, and employing parallel computing, Baye-
sian methods, optimization techniques, and other statistical methods (see, for example, Gill 1978; Yoon & Padmanabhan

1993; Mohan 1997; Das 2004; Chu & Chang 2009; Rouholahnejad et al. 2012; Xu et al. 2012). In terms of effective compu-
tational implementation of river routing, a breakthrough was achieved by David et al. (David et al. 2011a, 2011b, 2013;
Tavakoly et al. 2017) that developed the RAPID model which is a matrix form of the Muskingum model through which
the streamflow could be predicted for a large set of rivers that comprise a large network. The most attractive feature of

RAPID is its ability to use efficient parallel computing. However, despite RAPID being a state-of-the-art computational
tool that is equipped with parallel computing, calibration of these streamflow parameters is a computationally extensive
and time-consuming process (especially when done at a continental or global scale) and requires historic streamflowmeasure-

ment data which may not be available for certain ungauged locations. This may potentially hinder an accurate prediction of
streamflow forecasting in an ungauged region where there is no measurement data available. To address this challenge, our
goal is to use machine learning (ML) to establish a causal connection between hydrological parameters and a wide range of

hydrological and topological features extracted through satellite imagery. This data-driven approach will enable us to predict
these parameters even in ungauged locations without relying on the currently used river routing model-based calibration
process.

In recent years, there has been a significant increase in the hydrologic community’s interest in machine learning. This surge
can be attributed to the rapid expansion of hydrologic data repositories and the successful implementation of ML in diverse
academic and commercial applications. This newfound enthusiasm is largely facilitated by the increasing accessibility to sup-
portive hardware and software. Studies have demonstrated the accuracy of data-driven models in predicting extreme events

and capturing valuable information from hydrological datasets, outperforming physics-based models in several aspects. Over
a decade ago, Todini (2007) highlighted the divergence of opinions between physical process-oriented and system engineer-
ing-oriented modelers regarding data-driven models in hydrology. While physical process-oriented modelers expressed

skepticism due to the heavy reliance on training sets, system engineering-oriented modelers argued that data-driven
models outperformed complex physics-based models in forecasting. With advancements in ML and computational power,
hydrology has seen active adoption of data-driven models. Frame et al. (2022) demonstrated the accuracy of deep learn-

ing-based data-driven models in predicting extreme rainfall–runoff events compared to physics-based models. Similarly,
Kratzert et al. (2019) and Nearing et al. (2021) noted the ability of data-driven models to capture significant information
from hydrological datasets and outperform physics-based models, including future predictions in ungauged basins and knowl-
edge transfer between basins using modified LSTM networks. Kan et al. (2020) used an ANN with the K-nearest neighbor-

based clustering method to propose a hybrid ML hydrological model capable of forecasting floods. Guse et al. (2017) noted
the importance of model parameters in hydrological models and focused on establishing and investigating the connection
between the model parameters and different performance criteria that evaluate the robustness of the hydrological model.

Fernandez-Palomino et al. (2021) highlighted that model calibration purely using discharge data is problematic since it
does not guarantee the correct representation of hydrological processes. Instead, Fernandez-Palomino et al. (2021) opted
for a multi-objective calibration that includes additional information captured by vegetation data and hydrological signatures.

Zhang et al. (2018) exploited the regression tree ensemble approach and compared it with three other widely used
approaches (multiple linear regression, multiple log-transformed linear regression, and hydrological modeling) to assess
the prediction accuracy of 13 runoff characteristics or signatures in Australia. Frame et al. (2021) utilized up to 26 parameters,

ranging from watershed attributes to meteorological data, to build streamflow prediction models and perform model diagnos-
tics. A recent study by Liu et al. (2023) compares the flood simulation capabilities of a hydrological model and ML-based
model. Readers are recommended to refer to Xu & Liang (2021) and the references therein for a comprehensive and non-
technical review of the application of ML-based methods in hydrology.

The objective of this paper is to establish a relationship between the hydrological parameters and the attributes reported by
global satellite monitoring systems, thereby enhancing physics-derived modeling on a large scale. Although ML models can
directly be used to develop a hybrid river routing model that improves the discharge predictions by incorporating additional

hydrological and topological information in tandem with the standard physics-based model to predict discharge, it is still
worthwhile to obtain data-informed hydrological parameters that serve as input to the river routing model. Three primary
reasons motivate our current investigation:
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1. There are specific applications where physics-based models remain desirable. Despite its simplicity, the Muskingum model

continues to be employed in many of the largest-scale hydrological applications (see Tavakoly et al. 2017; Grogan et al.
2022). It is these users who can benefit from improved methodologies for parameter selection and calibration. This inves-
tigative approach aims to explore the implications of using ML to learn hydrological model parameters that feed into river

routing models.
2. Some of these hydrological parameters are macro variables that have physical meaning. For example, the k parameter that

is the primary focus of our current investigation is linked to the flow travel time within the river reach. The significance of
these parameters extends beyond its utilization within the routing model. It proves valuable in other hydrological domains,

such as sediment forecasting, reservoir management, river flow estimation and flood control, dam break analysis, and
groundwater studies among others (for example, see Marcus 1989; Meyer et al. 2018). Consequently, the implications
of this research reach far beyond supporting the routing model alone. Moreover, due to the intricate dynamics of rivers

and the dependence of their flow on both watershed and its own geometric characteristics, the process is likely influenced
by multiple interrelated parameters. This complexity makes ML an appealing approach for obtaining macro hydrological
quantities, including the k parameter, by leveraging geography-dependent features. The traditional k parameter is obtained

by forcing the RAPID predictions to closely match the measured discharge. As pointed out in Fernandez-Palomino
et al. (2021), judging the hydrological model reliability purely based on discharge-based calibration is problematic, as it
does not guarantee the correct representation of internal hydrological processes. In this paper, our goal is to leverage

ML to obtain the k parameter even in ungauged locations by utilizing geographical features that can be obtained from sat-
ellite data.

3. River dynamics and their dependency on the proximal surroundings and environmental conditions in the given region are
very complex. It is practically impossible to obtain a closed-form physics-based model that accurately models the flow.

Defining the prediction bounds is also challenging since quantifying the uncertainties in the causal parameters is difficult.
In that regard, our aim was to leverage the power of advanced ML methods to calibrate a hydrological quantity, k, which
possibly has dependencies on numerous variables or embedded features. Theoretically, the k parameter obtained using the

ML model is more reliable and meaningful, as it is obtained as a functional dependency of factors that influence k. This
contrasts with the traditional approach, where the k parameter is obtained by forcing the RAPID predictions to be as close
as possible to the measured discharge.

In summary, by obtaining a more informed and improved value of these parameters, we aim to enhance the predictive capa-
bilities of the hydrological model (even if the improvement is marginal) and improve our understanding of the flow dynamics
within the river system.

To do so, we start by reasonably assuming that the Muskingum parameters bear a functional relationship with topography
and the hydrodynamic characteristics of the system. This paper focuses on calibrating the streamflow parameter k since the
Muskingum model is more sensitive to k; the same methodology may be also applied to calibrate x. The objective is to care-

fully consider various features that could potentially have a causal relationship with the calibrated k (or x), investigate the
sensitivity of these features, select the most sensitive features, and finally learn the unknown functional relationship between
these features and the calibrated Muskingum parameters. We consider topographical and hydrodynamic features extracted

from the rivers and their watershed. These include properties like river length, river slope, vegetation data, catchment
area, and elevation data and its gradient. The features related to the vegetation data and the elevation data are extracted
using the MODIS Vegetation Continuous Field (VCF) (https://lpdaac.usgs.gov/products/mod44bv006/) and Digital

Elevation Model (DEM) satellite images (http://hydro.iis.u-tokyo.ac.jp/ yamadai/MERIT_Hydro/), respectively. We extract
two sets of features from the VCF and DEM images. The first set of features comprises the statistical moments of the veg-
etation and elevation data that capture their spatial distribution, whereas the second set of features is extracted using a
Convolution Neural Network (CNN)-based autoencoder that takes these images as input and extracts the useful features.

Rivers and watersheds can be grouped into various classes/clusters based on their shared properties (like length and slope
of rivers, and mean vegetation percentage of the watershed). We use a Gaussian Mixture Model (GMM)-based clustering tech-
nique to group the rivers into different clusters. For each cluster consisting of numerous rivers, these features are used as

input, and the calibrated k (obtained from the calibration procedure of RAPID) is used as an output to train the ML
models. The studied ML models include Gaussian process regression (GPR), Gaussian mixture copula (GMC), Random
Forest, and XGBoost.

Journal of Hydroinformatics Vol 25 No 5, 1801

Downloaded from http://iwaponline.com/jh/article-pdf/25/5/1799/1302612/jh0251799.pdf
by guest
on 11 April 2025

https://lpdaac.usgs.gov/products/mod44bv006/
http://hydro.iis.u-tokyo.ac.jp/


The rest of the paper is arranged as follows. Section 2 lays a brief background of the Muskingum model and the calibration

procedure of RAPID. Section 3 describes the solution flow of the ML-based calibration of k and investigates various ML
models. Section 4 delineates and compares the numerical results of using different ML models and also considers the
impact of different feature extraction techniques. Finally, Section 5 concludes the paper and lists ongoing research directions.

2. BACKGROUND OF RIVER ROUTING MODEL

2.1. The linear Muskingum model and RAPID

The simplest form of the linear Muskingum equations consists of two hydrological parameters corresponding to each river
in the river network, k and x. The parameter k is the storage time constant for the river reach that has a value reasonably

close to the flow travel time within the river reach, and the parameter x [ [0, 0:5] is a dimensionless weighting factor that
quantifies the relative influence of the inflow and the outflow on the volume of the channel or river reach. Consider a channel
with S(t) denoting the absolute channel storage at time t; as per the linear Muskingum model, we have (see Tung 1985)

S(t) ¼ k(xQin(t)þ (1� x)Qout(t)) (1)

where Qin(t) and Qout(t) are the rates of inflow and outflow at time t, respectively. Therefore, by definition, the flow continuity

equation can be written as

dS(t)
dt

¼ Qin(t)�Qout(t) (2)

Considering the time instances t and tþ Dt, the Equations (1) and (2) may be solved numerically to obtain the following (see
Tung 1985)

Qout(tþ Dt) ¼ C1Qin(tþ Dt)þ C2Qin(t)þ C3Qout(t) (3)

where C1, C2, and C3 are functions of the Muskingum parameters and the time interval, and they satisfy C1 þ C2 þ C3 ¼ 1

such that

C1 ¼ 0:5Dt� kx
k(1� x)þ 0:5Dt

; C2 ¼ 0:5Dtþ kx
k(1� x)þ 0:5Dt

; C3 ¼ k(1� x)� 0:5Dt
k(1� x)þ 0:5Dt

(4)

This straightforward model for flow in a single channel may be easily extended to a river network by making a simple obser-
vation that the inflow in a downstream river reach is fed by the outflow of one or many upstream rivers reaches that converge
to the downstream river reach of interest. David et al. (2011a) build on this single channel Muskingum model to develop a

river routing model for the entire river network, yielding the following matrix form of the Muskingum model

(I � C1 �N ) �Q(t þ Dt) ¼C1 �Qe(t)þC2 � (N �Q(t)þQe(t))þC3 �Q(t) (5)

Here, I is the identity matrix, N is the river network matrix, C1, C2, and C3 are the diagonal matrices with elements C1j, C2j,
and C3j, respectively, that are functions of the time interval Dt and the streamflow parameters kj and xj with 1 � j � m for a

river network with m river reaches as defined by Equation (4); Q is a vector of outflow from each reach; and Qe is a vector of
lateral inflow for each reach (collected in the watershed of the river). To better understand the matrix form of the Muskingum
model defined by (5), the readers are referred to a pedagogical example of a river network consisting of five-reach, two-node,
and two-gauge locations provided in David et al. (2011a).

2.2. Calibration of the streamflow parameters in RAPID

To briefly summarize the calibration process used in RAPID, we are going to borrow results and discussions presented by
David et al. (2011a) and Tavakoly et al. (2017). The calibration procedure of RAPID involves obtaining the multiplication
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factor lkj
and lxj such that

kj ¼ lkjkinij , xj ¼ 0:1 � lxj (6)

Here, kinij is an initial value of the k-parameter for the jth river reach that depends on wave celerity and river topology.
Tavakoly et al. (2017) proposes three experiments/options for kini

k1
inij ¼

Lj

C0
(7a)

k2
inij ¼ hj

Ljffiffiffiffi
Sj

p (7b)

k3
inij ¼ hj

Ljffiffiffiffi
Sj

p ;
Liffiffiffiffi
Sj

p [ P[0:05, 0:95] (7c)

Here, Lj and Sj stand for the length and slope of the jth river in the network, respectively, with 1 � j � m for a river network
with m river reaches. Their values can be obtained from the NHDPlus dataset. C0 is the reference water wave celerity, and hj

is the inverse of average velocity based on the first experiment for the jth river in the network, such that (see Tavakoly et al.
(2017)

hj ¼
�k
1
ini

Lj=
ffiffiffiffi
Sj

p , where , �k
1
ini ¼

1
m

Xm
j¼1

k1
inij ¼

�L
C0

(8)

where �L is the mean length of the rivers in the network.
As mentioned in Tavakoly et al. (2017), for the first experiment (Equation (7a)), the wave celerity is assumed to be inde-

pendent of topography and is constant for all river reaches. Although a simple assumption, this choice of initial

k-parameter makes it devoid of reality since it implies that the travel time of a flow wave is independent of the topography.
The second and the third experiments (Equation (7b) and (7c)) tackle the topographical dependence of the initial k-parameter
by defining it in terms of the length and slope, which are topographical features. For the third experiment, to avoid the influ-

ence of extreme values on celerity, the values of Lj=
ffiffiffiffi
Sj

p
are restricted between the 5 and 95% thresholds based on the

cumulative probability function. Tavakoly et al. (2017) concluded that the predictions of RAPID improved when topological
features were explicitly considered by using k2

inij
, and k3

inij
as a choice for initial k-parameter. This is our primary motivation to

assume that the Muskingum parameters bear a functional relationship with topography and the hydrodynamic characteristics
of the system.

RAPID obtains the set of calibration factors l�kj
and l�xj by minimizing a cost function f(k, x) that quantifies the deviation

between RAPID’s prediction of discharge and the observed discharge at multiple gauges located throughout the river basin.

Let k ¼ [kj] ¼ [lkjkinij ] and x ¼ [xj] ¼ [0:1 � lxj ] denote the vectors of the k and x parameters of all the rivers in the network. For
n gauge locations, and for optimization time-window ranging from the first day t0 and the last day tf , the cost function is
defined as

f(k, x) ¼
Xtf
t¼t0

Xn
i¼1

�Qi �Qobs
i (t)

�Q
obs
i

" #2
(9)

Here, �Qi is the daily average of the RAPID’s computed flow, Qobs
i (t) is the daily observed discharge, and �Q

obs
i is the daily

average of the observed flow. Let k� ¼ [k�
j ] ¼ [l�kj

kinij ] and x� ¼ [x�j ] ¼ [0:1 � l�xj ] denote the vectors of the calibrated k and x
parameters of all the rivers in the network. The calibrated parameters are obtained as

(k�, x�) ¼ argmin
(k,x)

f(k, x) (10)

Figure 1 illustrates the calibration and the prediction procedure of RAPID currently used.
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The calibration process described in this section (which is currently being used in the RAPID model run by USACE),
although state-of-the-art, is time-consuming and depends on the availability of observation data from gauges across the

United States. Therefore, we can only expect good predictions in the geographical regions where gauge measurements are
available. This limits the streamflow prediction capability in geographic regions where good measurement data are unavail-
able or inaccessible. As pointed out in Fernandez-Palomino et al. (2021), judging the hydrological model reliability purely

based on discharge-based calibration is problematic, as it does not guarantee the correct representation of internal hydrolo-
gical processes. In the next section, we propose a data-driven ML-enabled calibration of the streamflow parameters that
tackles the aforementioned challenges in the traditional calibration approach.

3. THE PROPOSED ML-ENABLED CALIBRATION OF THE STREAMFLOW PARAMETERS

3.1. Overview

To establish a data-driven calibration model, we aim to obtain statistical features that have a causal relationship with the cali-
brated streamflow parameters. We hypothesize that these features are dependent on the topography and the hydrodynamic
characteristics of the region of interest. We recall that this paper focuses on calibrating the streamflow parameter k since the

Muskingum model is more sensitive to k, and the same methodology can be applied to calibrate x. We extract the features
from the raw datasets of various topographic quantities (discussed in Section 3.2) by using two feature extraction techniques:
(1) statistical moment analysis (see Section 3.3.1), and (2) CNN-based autoencoder (see Section 3.3.2). We then use the var-

iance-based global sensitivity analysis (GSA) to select sensitive features. In theory, all the rivers and their respective
watersheds could be classified into countable numbers of groups/clusters based on their shared topographical and hydrodyn-
amic properties. The sensitive features selected using variance-based global sensitivity analysis can be used to classify a river
(and its respective watershed) based on its topographical and hydrodynamic properties. We use a GMM-based clustering

technique to obtain these clusters (see Section 3.5). The optimal number of clusters are determined based on Bayesian infor-
mation criterion (BIC) (see Chen & Gopalakrishnan 1998). For each cluster, we then train ML models (discussed in Section
3.3) using the selected features (selected using the variance-based global sensitivity analysis) as input data and calibrated

streamflow parameter k� as the output. We focus our attention on these four ML techniques: (1) GPR (see Section 3.6.1),
(2) GMC (see Section 3.6.2), (3) Random Forest (see Section 3.6.3), and (4) XGBoost (see Section 3.6.4). The following sec-
tions discuss these steps comprehensively.

Figure 1 | Schematic diagram of currently used calibration and prediction procedure of RAPID.
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3.2. Capturing and extracting the raw data

The United States of America is divided into seven catchment zones. Each watershed is identified with a river ID and each
river ID has a shape file (in .shp format) depicting the geographic shape of the watershed. We consider the following raw
input data sources: length of river, slope of river (data obtained from NHDPlus), catchment area, vegetation data extracted
using the MODIS VCF (https://lpdaac.usgs.gov/products/mod44bv006/), and elevation data obtained using the DEM satel-
lite images (http://hydro.iis.u-tokyo.ac.jp/ yamadai/MERIT_Hydro/). The elevation, and the percentage of vegetation data
are available for various land segments in DEM (with extension .dem), and Hierarchical Data Format (with the extension

.hdf), respectively. These images for various land segments are glued together using the open-source Geospatial Data Abstrac-
tion Library (GDAL) (https://gdal.org/) to obtain the global vegetation, and elevation map in .tiff format for the United States
consisting of seven catchment zones. Once the global vegetation and elevation maps are obtained, the local vegetation and

elevation clips corresponding to each river ID (identifying a watershed) of interest are obtained by clipping the global map
using GDAL. Once the elevation clips are obtained, we also obtain the clips of the magnitude of the elevation’s gradient since
it is reasonable to assume that the elevation’s gradient has a direct impact on the river’s streamflow. Figure 2 shows a sche-

matic flowchart demonstrating the vegetation data extraction; a similar approach is undertaken to obtain the local elevation
clips.

As an expected output for the ML model, we obtain the calibrated k� values using RAPID’s calibration procedure as
described in Figure 1 for all the river reaches with gauges. At this point, each river ID of interest has a corresponding

river length, river slope, and local vegetation clip in .tiff format, local elevation clip in .tiff format as the input data, and
the calibrated k� as the output data to build the ML model. The raw data in tabulated form looks as shown in the figure below.

Remark 1: The proposed framework is designed to be flexible and can accommodate additional information or features as

inputs to obtain hydrological parameters. In this paper, we intentionally focused on showcasing the framework’s capabilities
by using limited information related to watershed characteristics, specifically river slope, river length, watershed area, veg-
etation patterns and elevation data. This choice was made for practical reasons, aiming to enable the development of a

ML algorithm that can be expanded later to include more features. Moreover, this approach streamlined data collection
and pre-processing, saving time that could be dedicated to building the ML algorithm and maintaining a more focused
investigation.

Figure 2 | Data extraction for percentage of vegetation.
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3.3. Feature extraction

Utilizing the raw data (in the form of Figure 3), we obtain the features corresponding to the local vegetation and elevation
clips by exploiting two approaches described below.

3.3.1. Features extracted via statistical moment analysis

In the first approach, for each river ID, we obtain the statistical moments of the vegetation data, elevation data, and the mag-

nitude of the elevation gradient extracted using the distribution of these quantities in their respective local clips. We extracted
the first four statistical moments and decided to use the first two (i.e., the mean and the standard deviation) after GSA (dis-
cussed in detail in the upcoming Sections 3.4 and 4.1). The catchment size is obtained as the number of pixels in the local

vegetation clip. This feature extraction technique gives us 10 features: river length, river slope, catchment size (defined as the
number of non-zero pixels in the vegetation clip), catchment geographic area, and the remaining six features corresponding to
the mean and standard deviation of the vegetation data, elevation data, and magnitude of the elevation gradient.

3.3.2. Features extracted via a convolution autoencoder

A convolution autoencoder integrates an autoencoder and a CNN. The autoencoder comprises the encoder, the decoder, and

a latent space known as a bottleneck. The encoder takes an image and extracts the latent features, thereby transforming a
high-dimensional image into a lower-dimensional feature space (called the bottleneck). The decoder, on the other hand,
uses the features extracted by the encoder to recover the image. In a convolution autoencoder, the encoder and the decoder

use a CNN structure to achieve their respective targets of data transformation. The convolution autoencoder, therefore, first
compresses the input data from a high-dimensional form to a lower-dimensional latent space using a convolution encoder,
and the decoder uses the convolution transpose to convert the lower-dimensional latent features into a reconstruction of
the original higher-dimensional input (Chen et al. 2017). The difference between the attempted reconstructed data and the

original input data is called the reconstruction error. Therefore, the convolution autoencoder is trained using a large
amount of input data (numerous vegetation clips in our case) so as to minimize the reconstruction error. The network
learns to exploit natural structure in the input data to find an efficient lower-dimensional representation of the input data.

Among various neural networks, the convolution autoencoder is the most suitable architecture to extract features from a
high-dimensional image because of two primary benefits:

Figure 3 | Raw data in tabulated form.
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1. The CNN-based architecture can better retain the connected information between the pixels of an image (Guo et al. 2017).
2. Slicing and stacking the data in other neural network leads to a large loss of information. The convolution autoencoder,

rather than stack the data, preserves the spatial information of the input image and extracts information gently through the
convolution layer.

We use the convolution autoencoder to extract latent features for the local vegetation clips. Since training the convolu-
tional autoencoder is a computationally extensive and time-consuming process, we limit the use of the convolutional

autoencoder to extract features for the vegetation clips and use statistical features for the elevation clips. This feature extrac-
tion technique gives us 14 features: river length, river slope, catchment size (defined as the number of non-zero pixels in the
vegetation clip), catchment geographic area, and six CNN-based features of the vegetation data; the mean and standard devi-
ation of elevation data, and the mean and standard deviation of elevation gradient’s magnitude.

To train the model, we use all the raw local vegetation clips (column 5 of Figure 3). We start by first reshaping all the input
images into 80� 50 size that are then uploaded into the DataLoader class of the PyTorch package which is then used to train
the convolution autoencoder model.

The encoder and decoder: The convolution encoder’s structure used for this research consisted of 2D convolution
layers followed by a pooling layer for each of them, a flattening layer, and a leaky rectified linear unit (ReLU). The
first convolution layer deploys a kernel size of 9 (a 3� 3 scanner) and has one input channel (the reshaped image)

and 16 output channels. In order to assist the kernel with processing the image, padding is added to the frame of the
image to allow for more space for the kernel to cover the image. For the first convolution layer, we use the padding
of 4 pixels with zero value and the stride of 1 (stride is the number of pixels the kernel shifts over the input matrix).
The first convolution layer is followed by the application of the ReLU that rectifies any negative value in the output chan-

nels of the first convolution layer. Following this, two-dimensional max-pooling with a size of 2� 2 is imposed to
decrease the dimensions of the first convolution layer’s output, yielding the output of size 16� 40� 25. The output of
the first convolution layer acts as the input to the second convolution layer. Therefore, the second convolution layer

has 16 input channels and yields six output channels. For the second layer, we use the same kernel size, padding
size, stride, and max-pooling size as the first layer. The output of the second convolution layer after max-pooling is
the data of size 6� 20� 12. These 1,440 numbers are flattened and the latent features are extracted using a Fully Con-

nected Network (FCN), yielding six features. Along similar lines, the decoder uses the 6� 1 latent space to reconstruct
the original input image using two transpose convolution layers. The convolution autoencoder is trained to minimize the
reconstruction loss quantified by the mean-square error between the reconstructed original input dataset. Figure 4 illus-

trates the convolution autoencoder architecture adopted in this paper.

3.4. Feature selection using the variance-based GSA

GSA quantifies the contributions of variability in the inputs to the variability of an output quantity of interest QoI (generically
denoted by Y, which for this paper is the calibrated k�). Various approaches have been developed for GSA in the past dec-
ades, such as the Fourier amplitude sensitivity test (McRae et al. 1982), correlation ratio, Kullback-Leibler divergence

(Greegar & Manohar 2015), and Sobol’s indices (Sudret 2008). Among these various methods, variance decomposition-
based GSA is one of the most widely used methods (Sudret 2008). In this method, the variance of a QoI (i.e., Var(Y)) can
be decomposed into contributions of individual variables, denoted by Vi, and the interactions between different variables,
denoted by (Vij, � � � , V12���Nd ), such that

Var(Y) ¼
XNd

i¼1

Vi þ
XNd

1�i,j

Vij þ � � � þ V12���Nd (11)

where Nd is the number of uncertain input variables.

Based on the variance decomposition, two types of Sobol’s sensitivity indices, namely the main effect index and total effect
index, are widely used to analyze the contributions of uncertainty sources (see Sudret 2008). The main effect index, which is
also called the first-order index, is given by

Si ¼ Vi

Var(Y)
¼ VarXi (EX�i (Y jXi))

Var(Y)
, 8i ¼ 1, � � � , Nd, (12)
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where Si is the first-order index of the ith input variable, X�i represents all the input variables excluding Xi, and E(�) is an
expectation operator.

GSA usually requires a double-loop Monte Carlo simulation (MCS) as indicated in the above equation. The double-loop

MCS needs to evaluate the simulation model thousands of times. This is inapplicable to the studied problem since there is
no model available to represent the relationship between the driving factors and the calibrated streamflow parameter k�.
To overcome this challenge, a data-driven probability model-based GSA method is employed. A data-driven GSA method

only requires a data matrix to compute the first-order Sobol’s indices (see Hu & Mahadevan 2019). It consists of three
main steps, which are briefly explained as follows:

• Step 1: Extract the data of input variable Xi and that of QoI from the original data matrix.

• Step 2: Build a probability model using a GMM.

• Step 3: Compute the Sobol’s indices using the constructed GMM.

It has been shown that this method can achieve a similar accuracy level for GSA compared to the double-loop MCS
method. We direct interested readers to Hu & Mahadevan (2019) for a detailed description of the probability model-based

GSA method.

3.5. Watershed classification via clustering by a GMM

All the sample data are first clustered using the GMM. The sample data are clustered based on the important features ident-
ified through the GSA. Let X denote a random vector corresponding to the features with a realization vector x consisting of
the selected features as its elements. A GMM model (see Reynolds 2009) is trained as

fX(x; m, S) ¼
XQ
i¼1

vif(xi; mi, Si) (13)

Here, Q is the number of Gaussian components in the GMM model, f(�) is the probability density function (PDF) of a
multi-variate Gaussian distribution, vj is the weight of the jth Gaussian component, and mj and Sj are respectively the
mean vector and covariance of the jth Gaussian component, such that m ¼ [m1, � � � , mQ], and S ¼ [S1, � � � , SQ].

Figure 4 | Convolutional autoencoder architecture to extract vegetation features.
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Once the GMM model is trained, for a new prediction sample xe, we first predict the probability PX i (xe) of the sample input

xe falling into the ith cluster, where X i denotes the random vector of an input sample that belongs to the ith cluster. Once the
probability PX i (xe) is obtained for all the clusters, we identify the cluster i� in which the input sample xe most likely belongs,
such that

i� ¼ argmax
i

PX i (xe) (14)

3.6. ML models for prediction of calibrated streamflow parameter

We have conducted an investigation into the performance of four ML models with varying complexity and characteristics in

order to obtain a calibrated k parameter. GPR and GMC generate probabilistic predictions, whereas XGBoost and Random
Forest produce single-point predictions. Figure 5 provides an overview of the proposed ML-based calibration framework.

In the following sections, we provide a comprehensive description of all four methods, along with thorough testing and the

presentation of their results. This will enable future readers to make informed decisions when applying similar approaches in
their own work.

3.6.1. Gaussian process regression

The goal is to find the mapping between the input vector x (consisting of various features) and the output y (the calibrated k in
this paper). As described in Williams & Rasmussen (2006), a GPR probabilistically models the output y as a realization g(x) of
the Gaussian Process (GP), such that

y ¼ g(x)þ 1;
g(x) ¼ m(x)þ h(x)

(15)

Here, m(x) is the mean of the GP, and h(x) is assumed to be a GP with zero mean and covariance function k(x, x0), and 1 is

the noise in the output, such that

g(x) � GP(m(x), k(x, x0));
h(x) � GP(0, k(x, x0));
1 � N (0, s2

1)
(16)

Figure 5 | ML-based calibration framework.
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where

k(x, x0) ¼ s2
hR(x � x0, u) (17)

Here, s2
h is the constant variance of the GP, R( � , � ) is the correlation function, and u is the unknown parameter vector of

the covariance function. There are a variety of correlation functions available. The most commonly used one is the Gaussian

correlation function given by (see Hu & Mahadevan 2016)

R(x � x0, u) ¼ exp �
Xnd

k¼1

ukjxk � x0kj
 !

(18)

where nd is the dimension of the input variables and xk is the kth element of x.
The GP conditioned on the training data (X , Y ), where X is also a GP with the mean function � m(x) and the covariance

function � k(x, x0)

g(x)j(X , Y) � GP( � m(x), � k(x, x0)): (19)

Here,

� m(x) ¼ m(x)þ K (x, X)� (K (X , X)� s2
1In)

�1 � (Y �m);

� k(x, x0) ¼ k(x, x0)� K (x, X)� (K (X , X)� s2
1I n)

�1 � K (X , x0)
(20)

where

K (X , X) ¼
k(x(1), x(1)) � � � k(x(1), x(n))

..

. . .
. ..

.

k(x(n), x(1)) � � � k(x(n), x(n))

0
BB@

1
CCA [ Rn�n

K (x, X) ¼ (k(x, x(1)), � � � , k(x, x(n))) [ R1�n

K (X , x) ¼ K (x, X)T [ Rn�1

m ¼ (m(x(1)), � � � , m(x(n)))T [ Rn�1:

(21)

The hyperparameters u, sh, and s1 are estimated using the training data through Bayesian parameter estimation or maxi-

mum likelihood estimation (see Hu & Mahadevan 2016; Ramancha et al. 2022).
From Equations (15) and (19), the predictive distribution of the output y for the input realization x conditioned on the train-

ing data (X , Y ) is given by

yjx, (X , Y) � GP( � m(x), � k(x, x)þ s2
1) (22)

3.6.2. Gaussian mixture copula

Let Xi, i ¼ 1 � � �Nd denote the random variable representing the ith component of input random vector X , and let Y denote
the random variable corresponding to the output. A GMC constructs a probabilistic model to represent the joint PDF of the
inputs and outputs, such that (see Hu & Mahadevan 2019):

fXY (x, y) ¼ CGMM(ux1 , ux1 , � � � , uxNd
, uy; u)fXi (xi) � � � fXN (xN)fY (y) (23)

where, fXi (xi) is the marginal PDF of Xi, fY (y) is the marginal PDF of the output Y, uxi is the marginal cumulative density
function (CDF) of Xi, and cGMM(�; u) is a new copula function approximated by a GMM with parameter vector u that is to
be estimated from the data. The copula function cGMM(�; u) is approximated using GMM (see Hu & Mahadevan 2019) as:

cGMM(�; u) � 1

f(F�1(ux1 ))
� � � 1

f(F�1(uxNd
))

1

f(F�1(uy))

XQ
j¼1

ljf(z, mj, Sj) (24)
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Here, z ¼ [f(F�1(ux1 )), f(F
�1(ux2 )), � � � , f(F�1(uxNd

)), f(F�1(uy))], Q is the number of Gaussian components in the GMM

model, f(�) is the PDF of a standard normal random variable, F�1(�) is the inverse CDF of a standard normal random variable,
lj is the weight of the jth Gaussian component, and mj and Sj are respectively the mean vector and covariance of the jth Gaus-
sian component.

After the modeling of the joint PDF using GMC, for a new given realization of the input data x, the conditional PDF of y is
obtained as:

fY jX (yjx) ¼ fXY (x, y)
fX (x)

� cGMM(ux1 , ux1 , � � � , uxNd
, uy; u)fY (y)

cGMM(ux1 , ux1 , � � � , uxNd
, uy; ux)

(25)

The maximum likelihood estimate of y can then be obtained by y� ¼ argmaxy( fY jX (yjx)). The corresponding mean estimate
is estimated by �y ¼ Ð yfY jX (yjx) dy. More details about the GMC model can be found in Hu & Mahadevan (2019). The advan-

tage of the GMC model is that it provides a probabilistic prediction instead of a point estimate. This allows us to quantify the
uncertainty in the prediction. Moreover, the probabilistic prediction is not limited to a Gaussian distribution, which is another
advantage over the GPR model.

3.6.3. Random forest

Random forest is an ensemble supervised learning algorithm that is constructed from a set of decision trees. It was proposed
by Breiman in 2001 (see Breiman 2001; Qi 2012). The goal of this ensemble learning method is to improve the prediction
accuracy of decision trees by combining multiple trees using the bagging ensemble algorithm. Compared with decision
trees, the random forest has an advantage in dealing with overfitting problems and can efficiently handle a large number

of input variables.
As the basis of a random forest, a decision tree consists of three components, namely the root node, decision node, and leaf

node. The root node segregates the training dataset into different branches. The decision node then decides on attributes used

to predict the output. Each decision node ends up with leaf nodes that represent class labels. Decision trees are sensitive to
the training dataset; even small changes in the dataset can lead to significant differences among tree predictions (see Biau &
Scornet 2016). The difference between decision trees and the random forest is that decision trees allow each tree to randomly

choose data from the training dataset while random forest randomly selects features from several subsets of the input features.
The random forest chooses the best split among all available input features. As a result, different trees in a random forest have
different input features and thus less correlation and increased diversity. The final prediction of a random forest is obtained by

averaging the results of individual decision trees of the forest. Since a large number of trees can be generated, overfitting
issues can be minimized.

The random forest can deal with both regression and classification problems. In this paper, it is used for regression. For the
random regression forest model used in this paper, the number of trees is 170 which is optimized through cross-validation.

This means that the final prediction result is an average of 170 decision trees.

3.6.4. XGBoost

XGBoost is an extreme gradient boost tree algorithm proposed by Chen & Guestrin (2016). It is an improved ensemble
learning method based on a gradient boosting decision tree. The objective of XGBoost is to combine several weak

models to create a collectively robust model. This algorithm is similar to the random forest described above and comprises
a parallel set of decision trees. XGBoost can also deal with regression, classification, and ranking problems. In this paper,
XGBoost is used to solve a regression problem. The difference between random forest and XGBoost is that the gradient
boosting decision tree uses the tree iteratively, which combines residuals of the previous tree with prediction errors of

new trees to perform the final prediction. The term ‘gradient boosting’ means the gradient descent algorithm is employed
to minimize the objective function. The gradient boost first generates an initial model and gets the initial residuals for each
input in the training dataset. After that, the gradient boost ensembles the previous models’ residuals into the next new

model. XGBoost repeats these two steps in a sequential manner to get the final prediction. XGBoost has an advantage
over the gradient boosting trees because it uses L1 & L2 regulations to improve the computational speed and prediction
accuracy during the training.
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3.7. ML-based streamflow parameter calibration and discharge prediction framework

We now have all the components required to build a streamflow parameter calibration framework as illustrated in flowchart
5. The proposed calibration framework can be coupled with the RAPID-based discharge prediction. Figure 6 illustrates the

calibration using the ML-based framework followed by the prediction based on the RAPID model.

4. RESULTS AND DISCUSSIONS

In this section, we discuss the predictions of the calibrated k� obtained using four different ML models, i.e., GPR, GMC,
Random Forest, and XGBoost, considering the features obtained using the statistical moment analysis and the convolution
autoencoder. For the purpose of building the ML models, we consider the most carefully observed and well-documented

catchment 6 region of the United States, which has the Mississippi and Ohio rivers passing through it. Figure 7 shows all

Figure 6 | Schematic diagram of the proposed ML-based calibration framework followed by the RAPID-based discharge prediction.

Figure 7 | Different catchments and discharge gauge locations (highlighted for the catchment 6) (a) Different catchments in the USA (b)
Discharge gauge locations.
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seven catchment regions and illustrates the discharge gauge locations. The data from the discharge gauges in catchment 6 are

used to obtain calibrated k�. As per USACE engineering practice, k� usually is below 104, and a significantly large value of k�

is erroneous. Therefore, to make sure the quality of data used to train the ML models is not meaningless, we reasonably con-
sider the data points with k� greater than but not equal to 0, and less than 2:5� 104, that is k� [ (0, 2:5� 104]. With this

constraint, we have a total of 4,569 data points. The 4,569 data points are grouped into six clusters and the results are dis-
cussed in the following Section 4.2. The optimal number of clusters are determined based on BIC, which is also a
commonly used method to select the number of clusters in Gaussian mixture modeling (see Chen & Gopalakrishnan 1998).

4.1. GSA results

In this section, we present the GSA results focusing on catchment 6 and considering the statistical moment analysis-based
features. Figure 8 illustrates the first-order sensitivity index Si for the ith feature and is calculated using Equation (12) obtained
by considering all 4,569 data points belonging to the catchment 6. The numerical value of the first-order sensitivity index can

be interpreted as the relative sensitivity of the respective feature. That is, a higher value of the index Si is indicative of a larger
causal contribution and higher sensitivity of the input feature to the output quantity (Sudret 2008). We use this fact to select
the most sensitive features.

Based on the first-order Sobol’s indices illustrated in Figure 8, obtained through the GSA, we make the following

observations:

1. Length and slope are the most sensitive features since they have the top two highest values of the first-order Sobol’s index.

This observation is consistent with previous engineering knowledge. For example, as shown in Equation (7), the initial
calibrated k1,2,3

ini are functions of the river’s length and/or the slope.
2. Statistical moments of elevation gradient direction (denoted by GDx in Figure 8) have much lower contributions than the

other factors. Elevation gradient direction is therefore not included in the analysis.
3. Statistical moments of the percentage of vegetation (denoted by Vx in Figure 8) are more dominant than the contributions

of the percentage of vegetation gradient’s magnitude (denoted by GVx in Figure 8). Therefore, we only consider the per-

centage of vegetation and ignore its gradient.
4. For a given feature, contributions of the higher-order statistical moments are lower than those of the lower-order statistical

moments. To maintain the number of variables at a manageable level, higher-order statistical moments are not included in

the analysis.

Figure 8 | First-order Sobol’s indices for different features considering all the data points belonging to the catchment 6.
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5. Based on GSA, we consider the following features for building the ML model: river length, river slope, the area of the

watershed, the number of pixels in the vegetation clip, the first two moments (mean and the standard deviation) of the
percentage of vegetation, elevation contour, and the magnitude of the elevation gradient.

4.2. Clustering results

We cluster the 4,569 watersheds of interest in catchment 6 into six clusters by using the GMM-based clustering technique
discussed in Section 3.5. We consider the statistical relationship between the important features identified from GSA. For

the sake of illustration, only the three most important features (the river’s length, the river’s slope, and the mean of vegetation)
are plotted in the section. Figure 9 illustrates the clusters obtained using these three input features. For each cluster, we use a
70:30 training/testing split, as listed in Table 1.

Table 2 reports the statistics (mean m, standard deviation s, and coefficient of variation r) of the input parameters used for
clustering (i.e., the river’s slope, the river’s length, and the mean of the vegetation percentage) for all the six clusters.

Based on the statistics reported in Table 2, we make the following observations:

1. The coefficient of variation for the distribution of length does not change appreciably for different clusters. That is, each
cluster has similar variability in the lengths of the river.

2. The coefficient of variation for slope and the vegetation mean is relatively low for clusters 1 and 3.
3. The coefficient of variation for slope and the vegetation mean is relatively high for clusters 2, 4, 5, and 6.

Figure 9 | Visualizing clusters by plotting the three input variables in different orientations. (a) Orientation 1 (b) Orientation 2.

Table 1 | Number of data points in each cluster

Cluster Number of data points % of the dataset Number of training data points Number of testing data points

1 577 12.63% 402 175

2 524 11.47% 366 158

3 681 14.91% 476 205

4 542 11.86% 379 163

5 1,676 36.68% 1,163 513

6 569 12.45% 402 167
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Table 2 | Statistics (mean m, standard deviation s, and coefficient of variation r) for various clusters

Clusters

Slope Length Mean of vegetation %

m s r (%) m s r (%) m s r (%)

1 0.0059 0.0035 58.9 2,789.7 2,029.8 72.8 10.9955 0.5689 5.2

2 0.0040 0.0032 80.1 1,535.1 949.5 61.8 14.4486 2.8188 19.5

3 0.0025 0.0017 67.5 4,246.3 3,126.7 73.6 15.6748 1.2285 7.8

4 0.0096 0.0085 88.1 2,953.9 2,048.7 69.4 16.1485 3.9934 24.7

5 0.0143 0.0232 161.8 3,662.2 3,006.1 82.1 14.6886 5.5317 37.7

6 0.0030 0.0031 100.8 3,363.4 2,539.4 75.5 14.9984 4.9923 33.3

Figure 10 | Predicted vs. true calibrated k� obtained using GPR considering the statistical features. (a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d)
Cluster 4 (e) Cluster 5 (f) Cluster 6.
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4.3. Comparison of different ML models

In this section, we present the prediction results obtained through four ML techniques that use two types of feature extraction
techniques: statistical features and features obtained using a CNN-based autoencoder. For illustration purposes, we illustrate

plots for predicted vs. true calibrated k� plotted for the test data for various clusters obtained using statistical features and by
deploying four different ML methods: GPR (see Figure 10), GMC (see Figure 11), Random Forest (see Figure 12), and
XGBoost (see Figure 13). Tables 3 and 4 report the coefficient of determination R2 for both the methods of feature extraction.

Based on the presented results, we make the following observations:

1. The predictions for clusters 1 and 3 are better than for clusters 2, 4, 5, and 6 consistently across all ML techniques. This is

because, as noted at the end of Section 4.2, clusters 1 and 3 have a relatively low coefficient of variation for slope and
vegetation mean whereas clusters 2, 4, 5, and 6 have a relatively high coefficient of variation for slope and vegetation
mean. Large variability in the input parameter for the clusters results in a lower coefficient of determination of the
prediction.

Figure 11 | Predicted vs. true calibrated k� obtained using GMC considering the statistical features. (a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d)
Cluster 4 (e) Cluster 5 (f) Cluster 6.
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2. The performance of most of the ML techniques is consistent. Judging from the R2 values, XGBoost offers the best perform-

ance for most of the clusters followed by Random Forest and GPR, and finally, GMC is relatively the worst performer. As
can be observed in Figure 11 and reflected in Tables 3 and 4, the R2 for clusters 3 and 6 corresponding to the GMC is
notably worse because of countable but large outliers.

3. Among the four ML techniques, the GPR and GMC provide probabilistic predictions, whereas the Random Forest (see
Figure 12) and the XGBoost (see Figure 13) yield single-point predictions. The Figures 10 and 11 corresponding to the
GPR and GMC, respectively, plot the mean value of the predicted calibrated k�.

4. The ML predictions obtained by considering statistical features are better than the predictions obtained by considering the

convolution autoencoder-based features. This is because the statistical moments of the vegetation and the elevation clips
are more suitable to capture the distribution of these quantities, and the convolution autoencoder-based features inherently
may have noise/bias as a consequence of numerous transformations performed on the higher-dimensional raw data (veg-

etation clips) to obtain low-dimensional features, as well as model structural bias.

Figure 12 | Predicted vs. true calibrated k� obtained using Random Forest considering the statistical features. (a) Cluster 1 (b) Cluster 2 (c)
Cluster 3 (d) Cluster 4 (e) Cluster 5 (f) Cluster 6.
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Figure 13 | Predicted vs. true calibrated k� obtained using XGBoost considering the statistical features. (a) Cluster 1 (b) Cluster 2 (c) Cluster 3
(d) Cluster 4 (e) Cluster 5 (f) Cluster 6.

Table 3 | Coefficient of determination R2 for various ML predictions on test data considering input features obtained through statistical
moment analysis

Clusters GPR GMC Random Forest XGBoost

1 0.8895 0.9758 0.9627 0.9688

2 0.8315 0.4322 0.8343 0.7855

3 0.9136 0.7600 0.9146 0.9147

4 0.4334 �0.4849 0.7130 0.6574

5 0.7594 0.6851 0.7580 0.7580

6 0.5909 0.1620 0.5388 0.5469
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5. SUMMARY AND CONCLUSIONS

This paper focuses on comparing ML techniques to enable computationally-expeditious calibration of hydrological model
parameters without requiring streamflow discharge measurements. There are two potential benefits of this study: (1) a trained,
validated, evaluated, and deployable ML model can be used to obtain the calibrated hydrological parameters in the regions
where there are no discharge measurement gauges; (2) the entire framework is built on an assumption that the hydrological

parameters bear a functional relationship with topography and the hydrodynamic characteristics of the river system. Thus, the
ML models can take into account numerous features that are sensitive to and correlated with the calibrated hydrological
parameters.

The four compared ML architectures included GPR, GMC, Random Forest, and XGBoost. The GPR and GMC are capable
of performing probabilistic predictions, and therefore can quantify the uncertainty in the predicted calibrated parameters.
Random Forest and XGBoost yield a single-point prediction. The primary input information in the raw form includes the

length of the river, the slope of the river, the percentage of vegetation, the elevation profile, and the catchment area. In
order to build ML models to predict the calibrated streamflow parameters, we extract numeric features from the vegetation
and elevation profiles, which are in .tiff image format in the raw form. To do so, we deploy two feature extraction techniques,
statistical moment analysis and a convolution autoencoder.

This study has shown encouraging prediction results for this exceedingly complex problem with a better-than-expected
coefficient of determination for most clusters. Judging on the coefficient of determination, all four ML techniques have per-
formed reasonably well, with XGBoost being the best, followed by GPR and Random Forest, and GMC being the lowest in the

performance rank. Our primary conclusion is that ML models that are carefully constructed by considering causal and sen-
sitive input features (that are related to the rivers and the geographic conditions of the watersheds) do offer a potential
approach that can not only obtain calibrated hydrological model parameters with reasonable accuracy but also side-step

the current calibration challenges.
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