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a b s t r a c t 

This paper serves as an introduction to the variational formulation of Cosserat beams. It provides a de- 

tailed derivation and treatment of reduced balance laws of Cosserat beams from the Lagrangian differ- 

ential equation of motion and Hamilton’s principle. Emphasis is given to the details of the derivation, 

maintaining Bernoulli’s assumption of the rigid cross-section. Both the strong form and the weak form 

of the equilibrium equation for Cosserat beams are derived independently from the infinitesimal stress 

equilibrium equation. The weak form is then validated by obtaining it from the strong form of the re- 

duced law in a purely mathematical sense. Finally, the strong form is obtained using Hamilton’s princi- 

ple. Once the equations are obtained considering an initially straight reference beam configuration, the 

balance equation for the beam with initial curved (but unstrained) reference configuration is obtained. 

The D’Alembert forces are interpreted from the non-inertial director frame of reference and conclusions 

drawn. The energy conservation law and the conditions associated with it are obtained, establishing the 

relation between the Lagrangian and Hamiltonian functional for Cosserat beams. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The mechanics of Cosserat continuum has been a topic of in-

erest since its discovery by Cosserat and Cosserat (1909) . Cosserat

eam theory is a single manifold problem. The position vector of

he midcurve and the directors are the physical parameters that

re used to define the state of the beam. This description of the

od falls under the idea of Duhem (1893) , where any point in the

ody is not only described by the position vector, but also by an

ttached set of vector triad called directors. Cosserat and Cosserat

1909) harnessed this idea to develop the finite strain theory of

ods and shells assuming a fixed rectangular Cartesian system. The

ork by Ericksen and Truesdell (1958) was a mathematical gener-

lization of the work of Cosserat brothers to develop a nonlinear

heory of rods and shells. They first considered general differential

eometry tools that deal with the transformation from one space

o other and then used them to obtain a general description of the

ndeformed and deformed configuration of the rods. They limited

he space to a three-dimensional Euclidean space, thereby devel-

ping a complete differential description of the finite strain of the

od. Their work ( Ericksen and Truesdell, 1958 ) also serves as a con-

ise introduction to the history of theory of beams and rods. The

ork on the finite displacement theory of the rods attributed to
∗ Corresponding author. 
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irchhoff was improvised by Hay (1942) , which is in fact a special

ase of the formulation in Ericksen and Truesdell (1958) obtained

y choosing special coordinates. Cohen (1966) developed a com-

rehensive nonlinear theory of elastic curves for the static case.

his work was extended to the dynamic case by Whitman and De-

ilva (1969) . Reissner (1972, 1973, 1981) developed the static finite

train beam theory for the plane case by incorporating the shear

eformation using a classical approach. He arrived at non-linear

train displacement relations consistent with equilibrium equations

or the static case. Simo (1985) extended the work of Reissner for

hree-dimensional dynamic case using a director type of approach.

urther work by Simo and Vu-Quoc (1991) incorporated the effect

f Warping for initially straight beam, maintaining the single man-

fold nature of the problem. Simo (1985) discussed the balance law

onsidering the uniform straight initial beam configuration, and

ura and Atluri (1989) obtained the governing equations for the

nitially curved beam configuration using the principle of virtual

ork. The work by Green and Naghdi is among the first exposi-

ion to the theory of elastic rods, developing the mechanics using

 classical three-dimensional equations ( Green et al., 1974a ) and

lso using Cosserat curves ( Green et al., 1974b ). Naghdi and Rubin

1982) presented various constraint theories of rods where various

lasses of deformations were restraints. A relatively recent publica-

ion by Brand and Rubin (2007a) dealt with one of such constraint

heories of a Cosserat point for numerical solutions of non-linear

lastic rods. Significant research on the finite element formula-

ion of the Cosserat beam element is done by Cao et al. (2006) ,
atise on reduced balance laws of Cosserat beams, International 
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Liu et al. (2007) , Brand and Rubin (2007b) and Rubin (1985a,

1985b, 20 0 0, 20 02) . The ability of Cosserat beam theory to cap-

ture all kinds of deformations including torsion and shear has been

exploited by Todd et al. (2013) and Chadha and Todd (2017) to de-

velop a theory of global shape reconstruction using finite surface

strain measurements. 

Interested readers are also recommended to refer to the de-

tailed work and references therein by Love (1944) , Antman (1972,

1995) , Svetlitsky (20 0 0, 20 04) , Maugin (2017) and Vetyukov (2013) .

The Cosserat rod is a special case of problems that fall in the do-

main of micropolar continua, which in turn is a special restraint

case of micromorphic continua. An excellent compilation of ex-

planation on micropolar continua (by Altenbach and Eremeyev),

micromorphic continua (by Samuel Forest), Electromagnetism and

generalized Continua (by Maugin) is found in Altenbach and Ere-

meyev (2013) . 

It is evident that the problem of Cosserat rods has been well

treated in the past. While the aforementioned references are sem-

inal contributions to this field of mechanics, they do not tend

to elaborate the details of the inherent physical relationships or

the connections particularly appreciative to the engineers. We fo-

cus on illustrating various ideas by means of rigorous mathemat-

ical derivations and illustrative schematic diagrams wherever pos-

sible, attempting to deliver the matter in a simplified yet com-

plete manner. The detail with which the derivations are performed

and the results explained in the defined domain of the discus-

sion sets this work apart from the references mentioned above.

We believe that the primary novelty of our work is that the math-

ematical details and interpretations it encompasses would help

the reader get acquainted with a method of rational reasoning

of the description of finite strains and the governing differen-

tial equation of three dimensional, geometrically exact Cosserat

beams. 

Unlike the general work of Ericksen and Truesdell (1958) , we

limit our discussion to the classical Cosserat beam formulation

with orthonormal director triad and fixed Cartesian reference sys-

tem. We outline the tensor algebra and variational principles re-

quired to derive the strong and weak form. We discuss about

a method to uniquely define the shear angles and obtain the

curvature terms as a function of pitch and yaw angles. A care-

ful interpretation of the finite strain vector obtained as a result

of superimposition of strain due to curvature, elongation, shear,

and torsion is presented. We also present a detailed discussion

on the variation of the director triad and parametrization of the

orthogonal rotation tensor using Rodrigues method with an ex-

planatory example. The pioneering work of Ibrahimbegovic et al.

(1995) on vector like parametrization of three-dimensional finite

rotations details the kind of parametrization described in this pa-

per. Another approach on parametrization of rotation tensor is the

quaternion method, which is explained in the work of Argyris

(1982) . We carefully develop the deformation gradient tensor of

the beam assuming the undeformed state of the rod to be nat-

urally curved. We culminate the section on the deformation gra-

dient tensor by presenting a clear exposition of the finite strain

vector of the rod referenced to the curved reference configuration

( Section 3.1.3 ). 

Since the balance laws in both weak and strong forms are at the

heart of finite element analysis, we firmly believe that it is ben-

eficial to obtain these equations in more elucidated and detailed

fashion, using both an infinitesimal equilibrium equation and the

Hamilton–Lagrange principle. The results obtained here will be di-

rectly used to generalize the theory of shape reconstruction devel-

oped by the authors and to investigate the conservation laws of

Cosserat beams. In this paper, we do not specifically assume that

the midcurve passes either through the geometric centroid or the

mass centroid of the beam but rather leave its location general.
Please cite this article as: M. Chadha, M.D. Todd, An introductory tre
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e obtain the equations for the initially straight configuration and

nally achieve the same for an initially curved (but strain-free) ref-

rence configuration. To clearly demonstrate the importance of the

erms involved in the equation of motion, we interpret the motion

s viewed from the director frame of reference. We also obtain the

nergy conservation law from Hamilton’s principle, thereby estab-

ishing a transformational link between the total energy and La-

rangian functional for Cosserat beams. This sets a foundation for

ur further work on conservation laws of Cosserat rods as a prob-

em of symmetries in the Noether Theorem sense. 

The remainder of the paper is arranged as follows: Section 2 de-

ails the geometric formulation, defines the deformation param-

ters ( Section 2.1 ), and finally outlines the required mathemati-

al tools ( Section 2.2 ). Section 3 derives the deformation gradient

ensor ( Section 3.1 ) and the variation of deformation parameters

 Section 3.3 ), defines the stresses, and presents the reduced force

nd moment in the classical sense ( Section 3.4 ). Section 4 presents

he derivation of the Strong form of the reduced balance law.

ection 5 deals with the derivation and interpretation of the

eak form of equation from the infinitesimal Lagrangian equa-

ion ( Section 5.1 ) and validating the weak form by obtaining it

rom the strong form ( Section 5.2 ). Section 6 comprehends the

erivation of strong form from the Hamilton’s equation of motion.

ection 7 presents a linear constitutive law relating the reduced

orces with the reduced strain parameters. Section 8 deals with the

nergy conservation for the Cosserat beam. Finally, Section 9 draws

ome conclusions and describes the scope of future research in the

eld. 

. Kinematic model and mathematical tools 

.1. Geometry and deformation parameters 

The beam configuration is defined by a midcurve and the

amily of cross-sections. The beam can possess different cross-

ections varying smoothly. The cross-sections are assumed to be

igid, and as such, the Poisson and warping effects are ignored (re-

er Appendix A.5 for more details on this assumption). The initial

hape of the structure may be curved or straight and is assumed

o be unstrained. We begin by assuming that the initially curved

eference beam �c deforms to some current configuration �. Con-

ider a fixed orthogonal Cartesian triad { E i }. Any configuration of

he structure is described by the locus of the geometric centroids

f the family of cross-sections called the mid-curve, defined by the

osition vector ϕ( ξ 1 ) parametrized by the undeformed arc-length

1 ∈ [0, L 0 ], where L 0 is the total length of the mid-curve in the

ndeformed configuration, or 

 ( ξ1 ) = ϕ i E i . (1)

The parameter �( ξ 1 ) represents the cross-section of the beam

t an arc length ξ 1 and is independent of deformation because

ross-sections are assumed rigid. The orientation of any cross-

ection in the deformed configuration is quantified by the set of

rthogonal Cosserat triad called directors { d i ( ξ 1 )} such that 

 i = d ij E j . (2)

Any point on the beam is defined by the material coordinates

 ξ 1 , ξ 2 , ξ 3 ) that are independent of the configuration of the beam.

he position vector ϕ( ξ 1 ) is sufficient to define the mid-curve but

ot the orientation of the cross-section that is affected by shear

nd torsion. The directors take care of this. The director d 1 ( ξ 1 )

s perpendicular to the cross-section and the directors d 2 ( ξ 1 ) and

 3 ( ξ 1 ) span the cross-section �( ξ 1 ). Any point P on the cross-

ection is defined with respect to the point G on the midcurve at

( ξ ) by the position vector r = ξ d (ξ ) + ξ d (ξ ) , as shown
1 PG 2 2 1 3 3 1 
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Fig. 1. Deformed and undeformed configurations of Cosserat rod, material adapted frames and deformation gradient tensors. 
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n Fig. 1 . Therefore, any point P in the structure is given by the po-

ition vector 

 ( ξ1 , ξ2 , ξ3 ) = ϕ ( ξ1 ) + ξ2 d 2 ( ξ1 ) + ξ3 d 3 ( ξ1 ) = ϕ ( ξ1 ) + r PG ( ξ2 , ξ3 )

(3)

The initially curved reference beam configuration is defined by

 

c 
i 
(ξ1 ) = d c 

ij 
(ξ1 ) E j , ϕ 

c (ξ1 ) = ϕ 

c 
i 
(ξ1 ) E i and any point on the cross-

ection is given by the vector R 

c (ξ1 , ξ2 , ξ3 ) = ϕ 

c (ξ1 ) + ξ2 d 
c 
2 (ξ1 ) +

3 d 
c 
3 (ξ1 ) . It is convenient to mathematically define a straight beam

onfiguration �s such that the directors are defined by { E i }, the

osition vector of the midcurve is given by ϕ 

s (ξ1 ) = ξ1 E 1 and

ny point in the beam is defined by R 

s (ξ1 , ξ2 , ξ3 ) = ϕ 

s (ξ1 ) +
2 E 2 (ξ1 ) + ξ3 E 3 (ξ1 ) . The triads { E i }, { d c 

i 
} and { d i } are related to

ach other by means of orthogonal directional cosine tensors as

hown in Fig. 1 , such that 

 i = QE i ; d 

c 
i = Q 

c E i ; d i = Q 

r d 

c 
i . (4) 

herefore, any general vector g ( ξ 1 ) can be expressed in the fixed

rame { E i } or the local frame { d i } such that g = g i E i = g i d i . It can

e established from Eq. (4) that 

 = Q 

r Q 

c , (5) 

 = d i � E i ; Q 

r = d i � d 

c 
i ; Q 

c = d 

c 
i � E i . (6) 

In general, a Cosserat beam can capture the effect of elonga-

ion, shear, and multiple curvatures. Defining the deformed arc

ength as s , axial strain as e ( ξ 1 ) the three shear angles as γ 11 ( ξ 1 ),
π
2 − γ12 (ξ1 ) and 

π
2 − γ13 (ξ1 ) subtended by the directors d 1 , d 2 and

 3 with the tangent vector 
∂ϕ 
∂s 

as in Chadha and Todd (2017) , the

ollowing relations may be established: 

dξ1 

ds 
= 

1 

1 + e 
; (7) 

∂ϕ 

∂s 
. d 1 = cos γ11 ; ∂ϕ 

∂s 
. d 2 = sin γ12 ; ∂ϕ 

∂s 
. d 3 = sin γ13 . (8) 

herefore, 

 ,ξ1 
= ( 1 + e ) { cos γ11 d 1 + sin γ12 d 2 + sin γ13 d 3 } (9) 

he above equation is not enough to uniquely define the shear an-

les. Section 3.2 addresses a way to uniquely define them. 
Please cite this article as: M. Chadha, M.D. Todd, An introductory tre
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.2. Mathematical tools 

.2.1. Derivative of the moving frame 

The derivative of the director d i with respect to a general pa-

ameter x is obtained using Eq. (4) as 

 i,x = Q ,x E i = Q ,x Q 

T d i = q x × d i . (10) 

t may be proven that Q , x Q 

T is antisymmetric from the fact that

 is orthogonal. Therefore, there exists a corresponding axial vec-

or q x such that Eq. (10) holds. For a deforming beam, the director

rame { d i ( t, ξ 1 )} is function of time t and arc-length ξ 1 . The axial

ector corresponding to the time derivative d i,t and the derivative

ith respect to arc length d i,ξ1 
is given by the angular velocity vec-

or ω = ω i E i = ω i d i and the Darboux vector κ = κi E i = κ i d i respec-

ively, as shown in Eqs. (11) and (12) . The component of the Dar-

oux vector gives the curvature about the corresponding director.

he first component κ1 represents torsional deformation, whereas

2 and κ3 represent bending curvature about d 2 and d 3 , respec-

ively. 

 i,t = Q ,t Q 

T d i = W d i = ω × d i , (11) 

 i,ξ1 
= Q ,ξ1 

Q 

T d i = Kd i = κ × d i . (12) 

onsider the orthogonal rotation tensor, for example Q ( ξ 1 ). It

epresents the family of orthogonal tensors that belong to the

O (3) rotational group. Therefore, they satisfy Q (ξ1 ) Q 

T (ξ1 ) = I 3 
nd det [ Q ] = 1 . The rotation tensor Q ( ξ 1 ), being a curve in the

anifold SO (3), Q ,ξ1 
represents the tangent vector to this curve in

O (3). Therefore, Q ,ξ1 
Q 

T = K(ξ1 ) is the linear space of skew sym-

etric matrices that has κ( ξ 1 ) as the corresponding axial vector. 

.2.2. Parametrization of the rotation tensor 

Argyris (1982) describes various methods to describe large vec-

or rotations. We choose Rodrigues formula to describe the rotation

f director frame. 

Consider a general vector g a that is rotated to g b by an orthog-

nal tensor R such that, g b = R g a . The orthogonal tensor has 3

ndependent entries because of the restriction R 

T R = I 3 . There-

ore, R can be parametrized by three parameters. The rotation
atise on reduced balance laws of Cosserat beams, International 

tr.2017.07.028 
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Fig. 2. Geometric interpretation of solution to Eq. (15) for a 2D plane beam with curvature about director d 3 . 
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˜ g ,x = Q g ,x (19) 
described by R can be thought of as the rotation of the vector

g a about the unit vector n θ by an angle θ . Therefore the vector

θ = θn θ completely describes the rotation. If � represent anti-

symmetric tensor for the axial vector θ, then by Rodrigues for-

mula 

g b = [ g a + n θ × n θ × g a ] + [ n θ × g a ] sin θ

− [ n θ × n θ × g a ] cos θ = R (θ) g a , (13)

where 

R (θ) = I 3 + 

sin θ

θ
� + 

(1 − cos θ ) 

θ2 
�2 = e �. (14)

From Eq. (4) , the orthogonal tensor Q ( ξ 1 ) can be parametrized by

the rotation vector θ( ξ 1 ) such that the vector triad { E i } is rotated

to the director triad { d i } by an angle θ about the unit vector n θ . 

Solution of the director triad { d i } for a beam with a fixed left

end serves as a good example to appreciate above discussion. Eq.

(12) represents set of three differential equations that can be writ-

ten in the matrix form as [ 

d 1 ,ξ1 

d 2 ,ξ1 

d 3 ,ξ1 

] 

= 

[ 

0 κ3 −κ2 

−κ3 0 κ1 

κ2 −κ1 0 

] 

︸ ︷︷ ︸ 
K T 

[ 

d 1 

d 2 

d 3 

] 

. (15)

Assume that the left end of the beam is fixed, implying d i (0) =
E i and θ(0) = 0 . These also serve as the three vector boundary con-

ditions to solve Eq. (15) . The Darboux vector, κ = κ i d i , may be in-

terpreted as the rotation of the director frame per unit arc length

at ξ 1 by an angle ‖ κ‖ = 

√ 

κ2 
1 + κ2 

2 + κ2 
3 . Since the left end of the

beam is fixed, the director frame { d i ( ξ 1 )} can be obtained by ro-

tating the vectors E i by an angle θ (ξ1 ) = 

∫ ξ1 
0 

‖ κ(ξ1 ) ‖ dξ1 about the

unit vector n θ (ξ1 ) = 

κ(ξ1 ) ‖ κ(ξ1 ) ‖ . 
Fig. 2 geometrically explains the concept described above using

a simplified 2D beam fixed at left end. The director d 3 (ξ1 ) = E 3 re-

mains same throughout the midcurve for the problem being planar

in nature. Since the torsion is assumed to be zero, κ(ξ1 ) = κ3 d 3 .

This scenario simplifies the unit vector about which rotation oc-

curs at any arc-length as n θ (ξ1 ) = d 3 (ξ1 ) = E 3 and the angle of
Please cite this article as: M. Chadha, M.D. Todd, An introductory tre
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otation of directors d 1 ( ξ 1 ) and d 2 ( ξ 1 ) with respect to the direc-

ors (in a straight configuration) E 1 and E 2 respectively as, θ (ξ1 ) =
 ξ1 
0 

κ3 (ξ1 ) dξ1 . Note that this is a special case where the vector

 θ (ξ1 ) = E 3 is constant for all ξ 1 . Therefore, a general rotation ten-

or Q , such that d i (ξ1 ) = Q (ξ1 ) E i , for a beam fixed at left end, is

hen expressed in terms of the curvatures as 

(ξ1 ) = e 

{∫ ξ1 

0 ‖ κ(ξ1 ) ‖ dξ1 

‖ κ(ξ1 ) ‖ 

}
K(ξ1 ) 

, (16)

here, K ( ξ 1 ) is the anti-symmetric tensor corresponding to Dar-

oux vector κ( ξ 1 ). From the above discussion, the result of Eqs.

13) and (14) is not surprising because the solution of the first or-

er differential equation is an exponential. 

.2.3. The material form and co-rotated derivatives of the vector 

Consider a general vector g = g i d i . The material form of the vec-

or g is defined using Eq. (4) as, 

 = g i d i = g i ( QE i ) = Q g , g = Q 

T g = g i E i . (17)

e obtain the material vector g by expressing the components of

he vector g in the director frame { d i }, in the fixed frame { E i }. The

otal derivative of the vector g , using Eq. (4) , comprises of two

omponents– first being change in the magnitude and second rep-

esenting the change due to the rotation of the frame of reference

i.e., rotation of the director frame) 

 ,x = g i,x d i + g i d i,x = g i,x d i + Q ,x Q 

T ( g i d i ) = ̃

 g ,x + q x × g. (18)

he co-rotational derivative ˜ g ,x = g i,x d i gives the contribution due

o the change in the magnitude of the vector g due to change dx

n the parameter x . It may also be interpreted as the derivative of

he vector g as observed in the director frame. Physically the co-

otated derivatives can be obtained by taking the total derivative

f the vector g (by the observer in the fixed frame { E i }) followed

y subtracting the rotational component q x × g . From Eqs. (17) and

18) 
atise on reduced balance laws of Cosserat beams, International 
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.2.4. The material form and co-rotated derivatives of a tensor 

Consider any two deformed state of the beam �a and �b . Con-

ider two vectors g a ( ξ 1 ) and g b ( ξ 1 ) (in states �a and �b , re-

pectively) spanned by the director triads { d a 
i 
} and { d b 

i 
} respec-

ively, such that d a 
i 
(ξ1 ) = Q 

a (ξ1 ) E i and d b 
i 
(ξ1 ) = Q 

b (ξ1 ) E i . There-

ore, g a = g a i d 
a 
i 

and g b = g b i d 
b 
i 

. Now assume that these vectors are

elated by the tensor G such that g b = Gg a . The material form of

ensor G is defined such that g 
b = G g 

a 
. The relation between G and

 can be arrived using Eq. (17) as, 

 

b = G g 
a ⇒ Q 

b T g b = G Q 

a T g a ⇒ g b = 

[ 
Q 

b G Q 

a T 
] 

g a . 

ence, 

 = Q 

b G Q 

a T , 

 = Q 

b T GQ 

a . 

(20) 

herefore, the derivative of the tensor G can be obtained from Eq.

20) as 

 ,ξ1 
= 

[
Q 

b G Q 

a T 
]

,ξ1 

= 

Contribution due to change 
in the orientation of frame ︷ ︸︸ ︷ 
Q 

b 
,ξ1 

G Q 

a T + Q 

b G Q 

a T 
,ξ1 

+ 

Change in the 
magnitude of components ︷ ︸︸ ︷ 

Q 

b G ,ξ1 
Q 

a T 

 ,ξ1 
= (Q 

b 
,ξ1 

Q 

b T ) G − G(Q 

a 
,ξ1 

Q 

a T ) + 

˜ G ,ξ1 
= K 

b G − GK 

a + 

˜ G ,ξ1 

(21) 

ence, 

˜ 
 ,ξ1 

= G ,ξ1 
− K 

b G + GK 

a = Q 

b G ,ξ1 
Q 

a T (22) 

. Kinematic and kinetic relations 

We approach along the lines of Simo (1985) and Li (20 0 0) , in

n exhaustive way, to define the kinematics of the beam such that

he results can be used readily to obtain both the weak and strong

orms in detail. 

.1. Deformation gradient tensor and strain vector 

The initially curved configuration �c is assumed to be un-

trained. This is because the stresses in the current configuration �

re defined with reference to �c . The straight beam configuration
s is defined for mathematical convenience. If the beam in consid-

ration is initially straight, then �c ≡�s . The deformation gradient

ensor of current state ( F ) and the curved reference state ( F c ) is

btained referenced to �s . The deformation gradient tensors F and

 

c are then used to define the deformation gradient tensor F r of

he current configuration referred to �c . 

.1.1. Deformation gradient tensor and strain vector referenced to 

nitially straight configuration 

Consider an infinitesimal vector d R 

s = d ξi E i in �s , that deforms

o d R in configuration �. The deformation gradient tensor F maps

he vector d R 

s from the straight configuration �s to d R in the cur-

ent configuration � such that 

 R = F d R 

s ⇒ 

d R 

d ξi 

= F E i , F = 

d R 

d R 

s 
= R ,ξi 

� E i . (23) 

sing Eq. (3) , R ,ξi 
= ϕ ,ξi 

+ ξ2 d 2 ,ξi 
+ ξ3 d 3 ,ξi 

. Substituting for R ,ξi 
in

q. (23) yields 

 = 

strain vector ε︷ ︸︸ ︷ ( axial strain ε ︷ ︸︸ ︷ 
(ϕ ,ξi 

− d 1 ) + ξ2 d 2 ,ξi 
+ ξ3 d 3 ,ξi 

)
� E 1 + 

Q ︷ ︸︸ ︷ 
d i � E i = ε � E 1 + Q . 

(24) 
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he material form of deformation gradient tensor can be arrived

sing Eqs. (20) and (24) as 

 = ε � E 1 + I 3 = Q 

T F I 3 . (25) 

It is worth noting that the deformation gradient tensor F that

escribes the motion bears two parts. The motion consists of pure

otation Q and a component associated with strain ε�E 1 . It’s clear

hat the first component of the vector d R 

s strains whereas the

ther two components just experience rigid body rotation. This is

ecause, the cross-section is assumed rigid. The vector ε represents

he strain vector referenced to the configuration �s that includes

he axial strain ε = ϕ ,ξ1 
− d 1 , and strain due to shear and curva-

ures. The strain vector can also be evaluated by finding the deriva-

ive of the position vector of any point subtracted by the direc-

or d 1 as in Chadha and Todd (2017) . We subtract the director d 1 
o eliminate the contribution of pure rotation on the deformation.

herefore, using Eq. (12) 

= ε i d i = 

∂R 

∂ξ1 

− d 1 = ε + ξ2 d 2 ,ξ1 
+ ξ3 d 3 ,ξ1 

= ε + κ × ( ξ2 d 2 + ξ3 d 3 ) . 
(26) 

ubstituting for the Darboux vector κ = κ i d i and using Eq. (9) in Eq.

26) , the complete expression for the strain is obtained as 

= { ( ( 1 + e ) cos γ11 − 1 ) − ξ2 κ3 + ξ3 κ2 } d 1 

+ { ( 1 + e ) sin γ12 − κ2 ξ3 } d 2 + { ( 1 + e ) sin γ13 + κ1 ξ2 } d 3 . (27) 

he material form of strain vector comes in handy to evaluate in-

ernal strain energy of the reduced beam. It is obtained using Eqs.

17) and (26) as 

= ε i E i = Q 

T [(ϕ ,ξ1 
− d 1 ) + K(ξ2 d 2 + ξ3 d 3 )] 

= (Q 

T ϕ ,ξ1 
− E 1 ) ︸ ︷︷ ︸ 

ε 

+ Q 

T KQ ︸ ︷︷ ︸ 
K 

(ξ2 E 2 + ξ3 E 3 ) 

= ε + K (ξ2 E 2 + ξ3 E 3 ) = ε + κ × (ξ2 E 2 + ξ3 E 3 ) . (28) 

t is clear from the discussion above that only the first compo-

ent (along E 1 ) of an infinitesimal vector d R 

s is strained, with the

ross-section being rigid. Therefore, it is insightful to observe the

eformation of the vector E 1 . The flowchart ( Fig. 3 ) demonstrates

he straining of the unit vector E 1 (not necessarily along the mid-

urve) with each deformation effect taken care separately followed

y superimposition. 

.1.2. Deformation gradient tensor and strain vector of curved 

eference configuration referenced to initially straight configuration 

Consider that the configuration �c is obtained by straining the

nitially straight configuration �s such that the total length of the

idcurve remains the same and the cross-sections are perpendic-

lar to the tangent vector at the midcurve. This deformation is

apped by the deformation gradient tensor F c such that 

 

c = 

dR 

c 

dR 

s 
= 

(
ξ2 d 

c 
2 ,ξ1 

+ ξ3 d 

c 
3 ,ξ1 

)
� E 1 + d 

c 
i � E i = εc 

� E 1 + Q 

c . 

(29) 

ike Eq. (25) , the material form of F c is 

 

c = εc 
� E 1 + I 3 = Q 

cT F c I 3 (30) 

he strain vector εc comprises of strain due to curvatures only be-

ause there is no shear γ1 i = 0 and elongation e (ξ1 ) = 0 in the

urved reference configuration �c . This ensures the director d c 
1 

to

e the tangent vector of the midcurve such that ϕ ,ξ1 
= d c 1 . There-

ore, the axial strain vector ε c = ϕ ,ξ1 
− d c 

1 
= 0 . From Eqs. (29) and

30) , it is observed that 

 

c E i = 

{
εc + d 1 = εc 

i d i + d 1 , for i = 1 

d i , for i = 2 , 3 

}
;
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Fig. 3. Flowchart showing deformation of the unit vector E 1 in the configuration �s . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

F
 

T

 

 

 

 

 

 

 

 

 

 

3

d

 

o  

t

T

 

T  

t

ϕ

 

 

a  

o  

d i 1 1 1  
F 
c 
E i = 

{
εc + E 1 = εc 

i E i + E 1 , for i = 1 

E i , for i = 2 , 3 

}
. (31)

From the above equation, the determinant of F c is obtained as 

| F c | = | Q 

c T ‖ F c ‖ I 3 | = | F c | = 1 + εc 
1 . (32)

Using Eq. (31) , the first component of the vector d R 

s in the straight

configuration d ξ 1 E 1 gets strained to F 
c 
(dξ1 E 1 ) = (1 + εc 

1 ) dξ1 d 
c 
1 
.

This means that a fiber of unit length parallel to E 1 in the con-

figuration �s has length of | F c | in the configuration �c along the

director d c 
1 
. In terms of classical continuum mechanics, | F c | is as-

sociated with volumetric strain 

| F c | = 

d�c 

d�s 
= 

ρs 

ρc 
, (33)

where ρs and ρc represents the density field in the configuration

�s and �c , respectively. 

3.1.3. Deformation gradient tensor and strain vector of current 

configuration referenced to curved reference configuration 

The deformation gradient tensor F r is defined such that dR =
F r dR 

c . Therefore, from Eqs. (23) and (29) , F r = F F c 
−1 

and from Eq.

(30) , F c 
−1 = F 

c −1 

Q 

c T . The tensor F 
c −1 

can be found by using the the-

orem for inverse of sum of matrices (refer Miller, 1981 ) as 

F 
c −1 

= 

[
εc 

� E 1 + I 3 
]−1 = I 3 

−1 −
I 3 

−1 
(
εc 

� E 1 

)
I 3 

−1 

1 + trace 
[
εc 

�E 1 

] = I 3 −
(
εc 

� E 1 

)
1 + εc 

1 

= − 1 

| F c | 
(
εc 

� E 1 

)
+ I 3 . (34)

Therefore, the tensor F c 
−1 

can be found as 

F c 
−1 = 

[
− 1 

| F c | 
(
εc 

� E 1 

)
+ I 3 

]
Q 

c T 

= 

[
− 1 

| F c | 
((

Q 

c T εc 
)

�

(
Q 

c T d 1 
c 
))

+ I 3 

]
Q 

c T 

= Q 

c T 

[
I 3 − 1 

| F c | 
(
εc 

� d 1 
c 
)]

. (35)

This brings us to the point of evaluating the deformation gradient

tensor F r as follows 

F r = [ ε � E 1 + Q ] Q 

c T 

[
I 3 − 1 

| F c | 
(
εc 

� d 1 
c 
)]

= Q 

r − 1 

| F c | 
(
( Q 

r εc ) � d 1 
c 
)

+ 

{
1 − εc . d 

c 
1 

| F c | 
}(

ε � d 1 
c 
)
. (36)
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oting that εc . d c 
1 

= εc 
1 

= | F c | − 1 , Eq. (36) can be simplified as 

 

r = 

1 

| F c | 
( εr ︷ ︸︸ ︷ 
(ε − Q 

r εc ) � d 

c 
1 

)
+ Q 

r = 

1 

| F c | 
(
εr 

� d 

c 
1 

)
+ Q 

r . 
(37)

here are three important points to infer from Eq. (37) : 

1. The strain εr represents the relative strain in the current con-

figuration � with respect to the strained curved reference con-

figuration �c (strained with respect to mathematically straight

configuration �s ). 

2. The strain εr is obtained as (ε − Q 

r εc ) and not as (ε − εc )

because the strain εc is represented in the �c configuration,

whereas the strain ε is represented in � configuration. The ro-

tation tensor Q 

r transforms the strain εc in the current config-

uration space. 

3. The curved configuration is strained referenced to the mathe-

matically straight configuration. To obtain the strain vector in

the current state � with respect to the unstrained curved con-

figuration, the strain εr must be normalized by | F c |. 

.2. Closed-form expression for the orthogonal rotational tensor and 

efining a unique set of shear angles 

The position vector of the midcurve may be defined in terms

f the pitch angle φp ( ξ 1 ) and the yaw angle φy ( ξ i ). We define the

angent vector using Eq. (7) as 

 ( ξ1 ) = 

∂ϕ 

∂s 
= 

1 

1 + e 

∂ϕ 

∂ξi 

= cos φp ( ξ1 ) cos φy ( ξ1 ) E 1 

+ sin φp ( ξ1 ) E 2 + cos φp ( ξ1 ) sin φy ( ξ1 ) E 3 . (38)

herefore, using the above equation, the position vector can be ob-

ained as 

 ( ξ1 ) = 

(∫ ξ1 

0 

cos φp cos φy ( 1 + e ) dξ1 

)
E 1 

+ 

(∫ ξ1 

0 

sin φp ( 1 + e ) dξ1 

)
E 2 

+ 

(∫ ξ1 

0 

cos φp sin φy ( 1 + e ) dξ1 

)
E 3 . 

(39)

To define the three shear angles uniquely in Eq. (8) , we define

nother local orthonormal vector triad { T ( ξ 1 ), V ( ξ 1 ), H ( ξ 1 )} that

riginate at the midcurve as shown in Fig. 4 (same origin as the

irector triad { d ( ξ )}). The vector T ( ξ ) and V ( ξ ) spans the pitch
atise on reduced balance laws of Cosserat beams, International 
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Fig. 4. Pitch angle plane and the body centered vector triad { T ( ξ 1 ), V ( ξ 1 ), H ( ξ 1 )}. 
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Fig. 5. Variation of the director d i . 
ngle plane. Therefore, H(ξ1 ) = T (ξ1 ) × V (ξ1 ) . Hence, 

 

T 
V 

H 

] 

= 

[ 

cos φp cos φy sin φp cos φp sin φy 

− sin φp cos φy cos φp − sin φp sin φy 

− sin φy 0 cos φy 

] [ 

E 1 

E 2 

E 3 

] 

. (40) 

We define three angles α1 ( ξ 1 ), α2 ( ξ 1 ) and α3 ( ξ 1 ) subtended

y the directors { d 1 , d 2 , d 3 } with the vector V ( ξ 1 ). This definition

erves for two purposes: firstly, it helps us to define a relationship

etween the triad { T , V , H } and { d i ( ξ 1 )}, secondly, it uniquely de-

nes the shear angles. Hence, 

 

T 
V 

H 

] 

= 

[ 

cos γ11 sin γ12 

cos α1 cos α2 

cos α3 sin γ12 − cos α2 sin γ13 cos α3 cos γ11 − cos α1 si

Consider an orthogonal rotation matrix 
 that relates the direc-

or triad { d i } to the fixed orthogonal Cartesian triad { E i }, such that

 d 1 , d 2 , d 3 } = 
. { E 1 , E 2 , E 3 } . The matrix 
 is related to the compo-

ents of the orthogonal rotation tensor Q such that 
T = [ Q ] d i �E i 
.

hese components can be obtained using Eqs. (40) and (41) . The

omponents of the rotation matrix are shown in Appendix A.1 .

ote that the matrix 
 is orthogonal if the following constraints

n { α1 , α2 , α3 , γ 11 , γ 12 , γ 13 } in the above equation hold: 

 T | = | V | = | H| = 1 ; | T | ,ξ1 
= | V | ,ξ1 

= | H| ,ξ1 
= 0 . (42)

The components of the Darboux vector κ = κ i d i as in Eq.

15) using Eqs. (40) and (41) can be obtained and are shown in

ppendix A.2 . This is a useful result in shape reconstruction as pre-

ented in Chadha and Todd (2017) and will be used in further

xtension and generalization of the work in Todd et al. (2013) ,

hadha and Todd (2017) , and experimental validation of the the-

ry of shape reconstruction. Appendix A.3 presents an example of

 deformed shape of a Cosserat rod using the description given in

his section. 

.3. Variation of kinematic parameters and rotation tensor 

.3.1. Variation of the rotation tensor and directors 

We need to impart an admissible variational displacement field

u to obtain the weak form of reduced equilibrium equation ( Prin-

iple of Virtual Work ). The variational displacement field δu = δ(R −
 

s ) = δR comprises of variational translation of the midcurve and
Please cite this article as: M. Chadha, M.D. Todd, An introductory tre
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sin γ13 

cos α3 

 

cos α2 sin γ11 − cos α1 sin γ12 

] [ 

d 1 

d 2 

d 3 

] 

. (41) 

otation of the director frame. It is necessary to arrive at the vari-

tion of the rotation tensor to proceed further. 

To obtain the variation in rotation tensor, assume that the ten-

or Q = R (θ) rotates the vector E i to d i by an angle θ . As a result

f the virtual displacement field δu , the vector d i transforms to d i 
∗.

he variational rotation is parametrized by the vector δα = (δα) n α

uch that d ∗
i 
= R (δα) d i . The vector d i 

∗ can be obtained by direct

otation of E i parametrized by the rotation vector θ + δθ as shown

n Fig. 5 . Therefore, for the variational rotation of ε δα ( ε is a small

umber), the following relations hold 

d 

∗
i 

= R (θ + εδθ) E i = Q (θ + εδθ) E i 

 

∗
i 

= R (εδα) R (θ) E i = e εδA Q (θ) E i . 
(43) 

Note that δA represents the skew-symmetric tensor corre-

ponding to axial vector δα. Variation of the rotation tensor Q can

hen be obtained by the usual process as, 

Q (θ) = 

[ 
∂Q (θ + εδθ) 

∂ε 

] 
ε=0 

= 

[ 
e εδA Q (θ) 

∂ε 

] 
ε=0 

= δA . Q (θ) . (44)

he admissible variation in the directors can be obtained from

bove as 

d = δ[ QE ] = δQ . E = δA . Q . E = δA d , (45)
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H  
implying 

δA = δQ . Q 

T . 

The variation of the displacement field can now be obtained using

Eqs. (3) and (45) as, 

δu = δϕ + δα × r PG . (46)

3.3.2. Variation and co-rotated variation of any general vector and 

tensor 

The variation of any general vector g = g i d i consists of two

parts, the first being the variation in the magnitude of components

and second being the contribution due to the variation in the di-

rector frame as shown below 

δg = 

˜ δg ︷ ︸︸ ︷ 
δg i d i + g i δd i = 

˜ δg + δA . g = 

˜ δg + δα × g 
(47)

The relationship between variation of material vector δg and the

co-rotated variation 

˜ δg can be obtained from Eqs. (4) , (17) and

(47) as 

˜ δg = δg i d i = Q ( δg i E i ) = Qδg . (48)

Using the description of the tensor G in Section (2.2.4) , the co-

rotated variation of the tensor can be written as 

˜ δG = Q 

b δG Q 

a T . (49)

3.3.3. Variation of the strain vector and deformation gradient tensor 

The variation in the strain vector ε can be readily obtained if

the variation in axial strain vector ε and curvature tensor K are

known. From Eqs. (24) , (28) and (45) , 

δε = δϕ ,ξ1 
− δd 1 = δϕ ,ξ1 

− δA .d 1 . (50)

Similarly, recalling the relation δA = δQ . Q 

T the variation of the

curvature tensor is obtained as 

δK = δ[ Q ,ξ1 
Q 

T ] = (δQ ) ,ξ1 
Q 

T + Q ,ξ1 
δQ 

T = δA ,ξ1 
+ δA . K − K.δA . 

(51)

Recognizing that K and δA are skew symmetric with κ and δα as

the respective axial vectors, it may be readily obtained that 

δκ = δα,ξ1 
+ δα × κ. (52)

Using the result (47) on Eqs. (50) –(52) , the co-rotated variation 

˜ δε
and 

˜ δκ are obtained as 

˜ δε = δε − δA ε = δϕ ,ξ1 
− δα × ϕ ,ξ1 

, 

˜ δκ = δκ − δA κ = δα,ξ1 
. 

(53)

Similarly, using the result (48) on (53) , the variation of the material

form δε and δκ may be found as 

δε = Q 

T ˜ δε = Q 

T δα,ξ1 
, 

δκ = Q 

T ˜ δκ = Q 

T (δϕ ,ξ1 
− δα × ϕ ,ξ1 

) . 
(54)

From Eqs. (25) , (45) and (49) , the variation of deformation gradient

tensor is 

δF = δ(Q F I T 3 ) = δA . F + 

˜ δF , 
˜ δF = QδF I T 3 = Q 

[
δ( ε � E 1 ) 

]
I T 3 = 

˜ δε � E 1 , 
(55)

where 

δε = Q 

T δε + Q 

T δKQ [ ξ2 E 2 + ξ3 E 3 ] = δε + δK [ ξ2 E 2 + ξ3 E 3 ] , 

˜ δε = Qδε = 

˜ δε + 

˜ δK [ ξ2 d 2 + ξ3 d 3 ] . 
(56) r
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.4. Stress tensor, the reduced force and moment 

Consider the Cauchy stress tensor σ referenced to the current

onfiguration � and the first Piola Kirchhoff stress tensor S c and S s 

eferenced to the configuration �c and �s , respectively, such that

he associated stress vectors are given by 

i = σd i = σ ji d i ;
 i = S c d i 

c = S s E i = S ji d i . 
(57)

herefore, the stress tensor can be written in the index form as 

= σi � d j = σ ji d i � d j , 

 

c = S i � d 

c 
j = S ji d i � d 

c 
j , 

 

s = S i � E i = S ji d i � E j . 

(58)

t is expedient to define the reduced force and moment at the mid-

urve of the current configuration in the classical sense as 

( ξ1 ) = 

∫ 
�( ξ1 ) 

σ1 dξ2 dξ3 = 

∫ 
�( ξ1 ) 

S 1 dξ2 dξ3 = ηi d i , (59)

 ( ξ1 ) = 

∫ 
�( ξ1 ) 

r PG × σ1 dξ2 dξ3 = 

∫ 
�( ξ1 ) 

r PG × S 1 dξ2 dξ3 = m i d i . 

he first component of the force vector η1 represents the axial

orce along d 1 , whereas the components η2 and η3 represent the

hear forces along the directors d 2 and d 3 , respectively. Similarly,

he component m 1 of the moment vector represents the torque

bout the vector d 1 whereas the components m 2 and m 3 repre-

ents the moments about the directors d 2 and d 3 . Fig. 6 gives a

eometric interpretation of the reduced force and couple. 

. Strong form of the reduced balance law of Cosserat beam 

sing Lagrangian differential equation of motion 

We derive the reduced governing differential equations ( strong

orm ) by considering initially straight configuration �s , finally ob-

aining the equations for initially curved (but unstrained) reference

onfiguration �c using the relations defined in the previous sec-

ions. The infinitesimal equilibrium equation for a general contin-

um problem referenced to the configuration �s is given as in Lai

t al. (2010) by 

 �s . S s + ρs b = ρs R̈ (61)

or the material point defined by the position vector R ( ξ 1 , ξ 2 , ξ 3 ).

he operator ∇ �s represents the gradient operator with respect to

he configuration �s . Therefore, (∇ �s . S s ) represents the divergence

f the tensor S s referenced to �s . The quantity b ( ξ 1 , ξ 2 , ξ 3 ) is the

ody force per unit mass of the body and is independent of the

eference configuration. Integrating above equation over the entire

ndeformed domain �s followed by the application of greens the-

rem to get the boundary terms gives the balance of linear mo-

entum equation. Similarly, taking the cross product of the lever

rm (R − v ) with all the terms in Eq. (61) , followed by the integra-

ion over the entire domain gives the angular momentum balance

quation with respect to any fixed point p defined by the fixed

ector v ( Fig. 7 ), such that 
 

�s 

S s N 

s d �s + 

∫ 
�s 

ρs bd �s = 

∫ 
�s 

ρs R̈ d �s , (62)

 

�s 

( R − v ) × ( S s N 

s ) d �s + 

∫ 
�s 

ρs ( R − v ) × bd �s 

= 

∫ 
�s 

ρs ( R − v ) × R̈ d�s . (63)

ere, �s and N 

s represents the boundary and the normal vector

espectively in the configuration �s . 
atise on reduced balance laws of Cosserat beams, International 

tr.2017.07.028 

http://dx.doi.org/10.1016/j.ijsolstr.2017.07.028


M. Chadha, M.D. Todd / International Journal of Solids and Structures 0 0 0 (2017) 1–20 9 

ARTICLE IN PRESS 

JID: SAS [m5G; August 14, 2017;19:28 ] 

Fig. 6. Reduced force η and moment m . 

Fig. 7. Reduced element of unit arc-length of initially straight beam and incremental moment about an arbitrary fixed point- p . 
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︷∫
Fig. 7 gives physical interpretation of terms in Eqs. (62) and

63) . It also shows reduced element with dξ1 = 1 in �s configu-

ation, from which, the stress vectors at the cross-sectional bound-

ries �1 = �(ξ1 ) and �2 = �(ξ1 + dξ1 ) are 

 

S s N 

s ] �1 
= S s N 

s ( ξ1 ) = −S s E 1 = −S 1 , 

 

S s N 

s ] �2 
= S s N 

s ( ξ1 + dξ1 ) = S s E 1 = S 1 . 
(64) 

.1. Strong form referenced to initially straight configuration 

To obtain the reduced governing differential equation that holds

t every point ξ 1 on the midcurve, we exploit the fact that the

onservation equations (62) and (63) obtained for the entire beam

re also valid for the reduced element of the beam ( Fig. 7 ), since
Please cite this article as: M. Chadha, M.D. Todd, An introductory tre
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quilibrium of the structure as a whole implies the equilibrium of

 reduced element in �s . 

.1.1. Conservation of linear momentum of the reduced beam 

Like Eq. (62) , the linear momentum conservation equation for

he reduced unit arc-length element ( Fig. 7 ) is obtained as 

Term F1: 
The reduced internal force at the cross-sectional boundary 
�1 and �2 referred to unit arc-length reduced element. 

 ︸︸ ︷ 
 

�1 

S s N 

s (ξ1 ) dξ2 dξ3 + 

∫ 
�2 

S s N 

s (ξ1 + dξ1 ) dξ2 dξ3 

+ 

Term F2: 
The reduced external force due to 

body force and surface traction. ︷ ︸︸ ︷ ∫ 
�s 

S s N 

s d �s + 

∫ 
�s 

ρs bd �s = 

Term F3: 
Inertial force term. ︷ ︸︸ ︷ ∫ 

�s 

ρs R̈ d�s . (65) 

3 
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For the domain of unit arc-length reduced element, the volume in-

tegral of any function �( ξ 1 , ξ 2 , ξ 3 ) would become integral over

the cross section �( ξ 1 ) as 

lim 

dξ1 → 1 

∫ 
�s 

�(ξ1 , ξ2 , ξ3 ) d�s = 

∫ 
�(ξ1 ) 

�(ξ1 , ξ2 , ξ3 ) dξ2 dξ3 . (66)

Term F1 may be simplified using Eqs. (57) , (59) and (64) and Term

F2 may be simplified using Eq. (66) as 

Term F1 = lim 

dξ1 → 1 

[
η(ξ + dξ1 ) − η(ξ1 ) 

]
= η,ξ1 

; (67)

Term F2 = 

∫ 
�s 

3 

S s N 

s d �s + 

∫ 
�

ρs b d ξ2 d ξ3 = ℵ ( ξ1 ) . (68)

Term F3 involves total time derivative R̈ = 

D 2 R 
Dt 2 

that may be ob-

tained using Eqs. (3) and (11) as 

˙ R (ξ1 , ξ2 , ξ3 ) = ˙ u = 

D R 

Dt 
= ˙ ϕ (ξ1 ) + ω(ξ1 ) × r PG , 

R̈ (ξ1 , ξ2 , ξ3 ) = 

D 

2 R 

Dt 2 
= ϕ̈ (ξ1 ) + ˙ ω (ξ1 ) 

× r PG + ω(ξ1 ) × ω(ξ1 ) × r PG . (69)

Here the vector ω( ξ 1 ) represent the axial vector corresponding to

the anti symmetric tensor W ( ξ 1 ) that deals with change of direc-

tor with time ( Eq. (11) ). In other words, ω( ξ 1 ) and ˙ ω (ξ1 ) rep-

resents the rotational velocity and rotational acceleration of the

beam cross-section respectively. Therefore, Term F3 can be ob-

tained using the result (66) and (69) as, 

Term F3 = μs ϕ̈ + 

˙ ω × Y 

s + ω × ω × Y 

s , (70)

where 

μs (ξ1 ) = 

∫ 
�

ρs d ξ2 d ξ3 , (71)

ϒs (ξ1 ) = 

∫ 
�

ρs r PG d ξ2 d ξ3 

= 

[∫ 
�

ρs ξ2 dξ2 dξ3 

]
d 2 ︸ ︷︷ ︸ 

ϒ s 
3 

+ 

[∫ 
�

ρs ξ3 dξ2 dξ3 

]
d 3 ︸ ︷︷ ︸ 

ϒ s 
2 

. (72)

It is clear that the first term (μs ϕ̈ ) of Eq. (70) represents the in-

ertial force acting at the midcurve point G ( Fig. 1 ) on �( ξ 1 ). The

term μs represents the mass density per unit arc length in the ini-

tially straight configuration �s . The occurrence of second term is

because of the fact that, in general the midcurve may not coincide

with the mass centroid. The terms ϒ s 
2 

and ϒ s 
3 

represent the first

mass moment of inertia per unit arc length of the straight beam

configuration �s about the director%% d 2 (or E 2 ) and d 3 (or E 3 ),

respectively. These terms would vanish for the untwisted straight

beam �s of homogeneous material if the beam midcurve is cho-

sen as the loci of mass centroids, which in this case would coin-

cide with the geometric centroids. If the initial configuration of the

beam were curved �c , these terms would vanish only if the mass

centroid were chosen as the midcurve, as in this case the loci of

geometric centroids may not coincide with the mass centroids. 

Combining Eqs. (65) –(72) gives the reduced linear momentum

conservation equation of the moving beam at section �( ξ 1 ) re-

ferred to the initially straight configuration �s as 

η,ξ1 
+ ℵ (ξ1 ) = F 

s (ξ1 ) ; (73)

where 

F 

s (ξ1 ) = μs ϕ̈ + ω × (ω × ϒs ) + ˙ ω × ϒs 

represents reduced inertial force per unit arc length referenced to

the straight configuration �s . 
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.1.2. Conservation of angular momentum of the reduced beam 

Like Eq. (63) , the angular momentum conservation for the unit

rc-length reduced element ( Fig. 7 ) can be written as 

Term M1: 
The reduced internal moment at the cross-sectional boundary �1 and �2 

referred to unit arc-length reduced element about a fixed arbitrary point p. 
 ︸︸ ︷ 
 

�1 

(R − v ) ×
(
S s N 

s 
)
d ξ2 d ξ3 + 

∫ 
�2 

(R − v ) ×
(
S s N 

s 
)
d ξ2 d ξ3 

+ 

∫ 
�s 

3 

(R − v ) ×
(
S s N 

s 
)
d�s + 

∫ 
�s 

ρs (R − v ) × bd�s ︸ ︷︷ ︸ 
Term M2: 

The reduced external moment about a fixed arbitrary 
point p due to the body force and surface traction . 

= 

∫ 
�s 

ρs (R − v ) × R̈ d�s ︸ ︷︷ ︸ 
Term M3: 

Inertial term corresponding to 
moment about point p. 

. (74)

t is sensible to define the moment about the midcurve such that

he lever arm is r PG = (R − ϕ) , for an arbitrary fixed point p in

pace. Therefore, from the definition of reduced force and moment

s in Eqs. (59) and (60) , and using the result in Eq. (64) , Term M1

ay be simplified as 

erm M1 = 

2 ∑ 

k =1 

[∫ 
�k 

( R − ϕ ) × ( S s N 

s ) d ξ2 d ξ3 

+ 

∫ 
�k 

( ϕ − v ) × ( S s N 

s ) d ξ2 d ξ3 

]
= lim 

dξ1 → 1 
[ m ( ξ1 + dξ1 ) − m ( ξ1 ) ] 

+ lim 

dξ1 → 1 

[∫ 
�2 

( ϕ − v ) × S 1 dξ2 dξ3 

−
∫ 

�1 

( ϕ − v ) × S 1 dξ2 dξ3 

]
= m ,ξ1 

+ ϕ ,ξ1 
× η + ( ϕ − v ) × η,ξ1 

. (75)

or a unit arc-length reduced element, Term M2 and Term M3 may

e simplified using Eq. (66) as 

erm M2 = 

∫ 
�s 

3 

(R − v ) × (S s N 

s ) d�s + 

∫ 
�

ρs (R − v ) × bd ξ2 d ξ3 

= M (ξ1 ) + 

∫ 
�s 

3 

(ϕ − v ) × (S s N 

s ) d�s 

+ 

∫ 
�

ρs (ϕ − v ) × bd ξ2 d ξ3 , (76)

here 

 (ξ1 ) = 

∫ 
�s 

3 

(R − ϕ) × (S s N 

s ) d�s + 

∫ 
�

ρs (R − ϕ) × bd ξ2 d ξ3 

epresents the reduced moment due to surface traction on periph-

ral boundary �s 
3 

and body force about the midcurve point G on

( ξ 1 ). Similarly, 

Term M3 = 

Term M3a ︷ ︸︸ ︷ ∫ 
�

ρs (R − ϕ) × R̈ d ξ2 d ξ3 + 

∫ 
�

ρs (ϕ − v ) × R̈ d ξ2 d ξ3 . 

(77)

erm M3a represents the reduced moment due to the inertial force

bout point G on �( ξ 1 ). To simplify Term M3, consider that the

ector r PG to be the axial vector corresponding to the anti sym-

etric tensor ˜ R PG , such that for any vector g = g i d i , 
˜ R PG g = r PG × g.

oting the expression for R̈ and Y 

s as in Eqs. (69) and (72) , Term
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δ  

e  

d

F

3a becomes 

erm M3a = 

∫ 
�

ρs 
(
r PG × R̈ 

)
d ξ2 d ξ3 

= Y 

s × ϕ̈ −
∫ 

�
ρs r PG × ( r PG × ˙ ω ) d ξ2 d ξ3 

+ 

∫ 
�

ρs r PG × ω × ( ω × r PG ) d ξ2 d ξ3 

= Y 

s × ϕ̈ −
∫ 

�
ρs ˜ R PG ̃

 R PG ˙ ω d ξ2 d ξ3 

−
∫ 

�
ρs ω ×

(˜ R PG ̃
 R PG ω 

)
d ξ2 d ξ3 

= Y 

s × ϕ̈ + 

{ ∫ 
�

ρs ˜ R 

T 
PG ̃

 R PG d ξ2 d ξ3 

} 
˙ ω 

+ ω ×
{ ∫ 

�
ρs ˜ R 

T 
PG ̃

 R PG d ξ2 d ξ3 

} 
ω 

= Y 

s × ϕ̈ + I s M 

˙ ω + ω × I s M 

ω, (78) 

here 

 

s 
M 

( ξ1 ) = 

∫ 
�

ρs 
(˜ R 

T 
PG ̃

 R PG 

)
d ξ2 d ξ3 

= 

∫ 
�

ρs 

⎡ ⎢ ⎣ 

ξ 2 
2 + ξ 2 

3 0 0 

0 ξ 2 
3 −ξ2 ξ3 

0 −ξ2 ξ3 ξ 2 
2 

⎤ ⎥ ⎦ 

d ξ2 d ξ3 ; (79) 

˜ 

 PG = 

⎡ ⎣ 

0 −ξ3 ξ2 

ξ3 0 0 

−ξ2 0 0 

⎤ ⎦ . (80) 

he quantity I s 
M 

is the second mass moment of inertia tensor per

nit arc length of the straight configuration �s ; it is associated

ith the distribution of mass across the cross section. The vec-

or (ϕ − v ) is independent of the parameters ξ 2 and ξ 3 . Therefore,

ombining Eqs. (74) –(80) we get 

Equation M1 
 ︸︸ ︷ 
 ,ξ1 

+ ϕ ,ξ1 
× η + M − (ϒs × ϕ̈ + I s M 

˙ ω + ω × I s M 

ω) 

+ (ϕ − v ) ×
[
η,ξ1 

+ 

∫ 
�s 

3 

S s N 

s d �s + 

∫ 
�

ρs bd ξ2 d ξ3 −
∫ 

�
ρs R̈ d ξ2 d ξ3 

]
︸ ︷︷ ︸

Equation M2 

= 0 . (81

t is clear that term Equation M2 contains terms consisting of

 − v , which must vanish in order to obtain angular momentum

alance law with respect to moment taken about the point G on

( ξ 1 ). It is clear from the linear momentum conservation equation

73) that the term Equation M2 vanishes. Therefore, the reduced

trong form of angular momentum conservation of the Cosserat

eam, referenced to �s is given as 

 ,ξ1 
+ ϕ ,ξ1 

× η + M = λs , (82)

here 

s ( ξ1 ) = Y 

s × ϕ̈ + I s M 

˙ ω + ω × I s M 

ω 

epresents reduced moment about point G on cross-section �( ξ 1 )

ue to inertial force per unit arc length referenced to the straight

onfiguration �s . 

.2. Conservation laws of the reduced beam referenced to initially 

urved configuration 

To derive the balance law referenced to �c we need to trans-

orm the limits of the integrals in the strong form obtained in pre-

ious section to the configuration �c . Consider that the unit arc-

ength reduced curved beam element is defined by the boundary

δ

Please cite this article as: M. Chadha, M.D. Todd, An introductory tre
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c 
3 

∪ �1 ∪ �2 in �c configuration similar to the element defined in

ig. 7 . To proceed further, it is required to establish a relation be-

ween the stress tensors S s and S c . The relationship between σ , S s 

nd S c as referred from any standard continuum mechanics text

ike, Lai et al. (2010) leads to 

= 

1 

| F r | S 
c F r 

T = 

1 

| F | S 
s F s 

T 
, (83) 

 

s = | F c | S c F c −T 
. (84) 

he area vector on the surface boundary N 

s d �s and N 

c d �c in the

onfigurations �s and �c , respectively, is related by Nanson’s rela-

ion as 

 

s d �s = 

1 

| F c | F 
c T N 

c d �c . (85) 

sing Eqs. (84) and (85) and the result in Eq. (33) , the reduced

inear momentum conservation equation referenced to the curved

onfiguration �c are obtained as, 

,ξ1 
+ ℵ (ξ1 ) = F 

c (ξ1 ) , (86) 

here, 

 = 

∫ 
�c 

3 

S c N 

c d �c + 

∫ 
�

| F c | ρc bd ξ2 d ξ3 ; (87) 

 

c (ξ1 ) = μc ϕ̈ + ω × (ω × ϒc ) + ˙ ω × ϒc ; (88) 

c = 

∫ 
�

| F c | ρc d ξ2 d ξ3 ; (89) 

 

c = 

{ ∫ 
�

| F c | ρc ξ2 dξ2 dξ3 

} 
d 2 + 

{ ∫ 
�

| F c | ρc ξ3 dξ2 dξ3 

} 
d 3 . (90) 

imilarly, the reduced angular momentum conservation equation

eferenced to �c has similar form as Eq. (82) , such that, 

 ,ξ1 
+ ϕ ,ξ1 

× η + M = λc (ξ1 ) , (91)

here, 

 = 

∫ 
�c 

3 

r PG × (S c N 

c ) d�c + 

∫ 
�

| F c | ρc (r PG × b) d ξ2 d ξ3 ; (92) 

c (ξ1 ) = ϒc × ϕ̈ + I c M 

˙ ω + ω × (I c M 

ω) ; (93) 

 

c 
M 

= 

∫ 
�

ρc 
(˜ R 

T 
PG ̃

 R PG 

)
d ξ2 d ξ3 . (94) 

he parameter Y 

c defines the first mass moment vector and I c 
M 

de-

nes the second mass moment of inertia tensor per unit arc length

f the curved reference configuration �c . 

. Weak form of reduced balance law for Cosserat beam 

.1. Weak form from Lagrangian differential equation of motion 

To obtain the weak form of equilibrium equation, we imparted

he object in the current state � with an admissible but arbitrary

irtual displacement field δu given by Eq. (46) . It is clear that δu

omprises of the virtual displacement of the midcurve (translation)

ϕ and a component due to virtual rotation of the frame of ref-

rence, parametrized by δα as explained in Section 3.3 . From the

efinition of F and u following results hold, 

 = I 3 + ∇ �s u ;
F = ∇ �s δu . 

(95) 
atise on reduced balance laws of Cosserat beams, International 

tr.2017.07.028 

http://dx.doi.org/10.1016/j.ijsolstr.2017.07.028


12 M. Chadha, M.D. Todd / International Journal of Solids and Structures 0 0 0 (2017) 1–20 

ARTICLE IN PRESS 

JID: SAS [m5G; August 14, 2017;19:28 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

I  

c  

s  

o  

v  

a  

f  

t  

r

5

t

 

t  

b  

�  

t  

b  

E

T

 

T  

A  

g  

t  

b  

E

T

 

The point-wise equilibrium equation Eq. (61) can be written in an

integral (weak or scalar or residual) form as ∫ 
�s 

δu . 
(∇ �s . S s + ρs b − ρs R̈ 

)
d�s = 0 . (96)

Using divergence theorem on the equation above, followed by sub-

stitution of Eq. (95) yields, 

−

Term A ︷ ︸︸ ︷ ∫ 
�s 

δF : S s d�s + 

Term B ︷ ︸︸ ︷ ∫ 
�s 

δu . (S s N 

s ) d�s + 

Term C ︷ ︸︸ ︷ ∫ 
�s 

δu . bd�s 

−

Term D ︷ ︸︸ ︷ ∫ 
�s 

ρs δu . ̈R d�s = 0 ; (97)

Note that unlike the strong form, the weak form considers the

equilibrium of the structure as a whole (in integral sense). There-

fore, for any function �( ξ 1 , ξ 2 , ξ 3 ) the volume integrals can be

written as, ∫ 
�s 

�(ξ1 , ξ2 , ξ3 ) d �
s = 

∫ L 

0 

[∫ 
�

�d ξ2 d ξ3 

]
d ξ1 . (98)

5.1.1. Term A: virtual strain energy 

Term A represents the virtual strain energy stored in the beam.

The result of the virtual strain energy in Eq. (97) is not surprising

as the stress conjugate to the first PK stress tensor is the deforma-

tion gradient tensor. Using the expression for δF and 

˜ δF obtained

in Eq. (55) , Term A can be simplified as, 

Term A = 

∫ 
�s 

δF : S s d�s 

= 

Term A1 ︷ ︸︸ ︷ ∫ 
�s 

(δA . F ) : S s d�s + 

Term A2 ︷ ︸︸ ︷ ∫ 
�s 

( ̃  δε � E 1 ) : S 
s d�s . (99)

Note that Term A1 , represents the virtual strain energy stored due

to variation in the director frame, which is purely due to virtual

rigid body rotation (not strain!). Hence, using Eqs. (83) and (84) ,

and noting that the scalar product between symmetric and anti-

symmetric tensor is zero (σ : δA = 0) , it can be shown that Term

A1 vanishes as, 

Term A1 = 

∫ 
�s 

(δA . F ) : S s d�s = 

∫ 
�s 

trace [ S s (δA . F ) T ] d�s 

= 

∫ 
�s 

trace [ | F | σF −T (δA . F ) T ] d�s 

= | F | 
∫ 
�s 

trace [ σF −T F .δA ] d�s 

= | F | 
∫ 
�s 

σ : δA d�s = 0 . (100)

Therefore, the virtual strain energy of the beam reduces to Term

A2 . It can be simplified using the definition of ˜ δε as in Eq. (56) and

the result in Eq. (98) as, 

Term A2 = 

∫ 
�s 

(
˜ δε � E 1 

)
ij 
S s ij d�s = 

∫ 
�s 

˜ δεi S 
s 
ij E 1 j d�s 

= 

∫ 
�s 

˜ δε. S s 1 d�s 

= 

∫ L 

0 

[ ∫ 
�

S 1 . ̃  δε dξ2 dξ3 

] 
dξ1 

+ 

∫ L 

0 

[ ∫ 
�

S 1 . 
[

˜ δκ × r PG 

]
dξ2 dξ3 

] 
dξ1 . (101)

Noticing that ˜ δε and 

˜ δκ are independent of ξ 2 and ξ 3 and using

the property in Eq. (48) , Term A2 simplifies as, 
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erm A2 = 

∫ L 

0 

(η. ̃  δε + m . ̃  δκ) dξ1 

= 

∫ L 

0 

(η. (Qδε ) + m . (Qδκ)) dξ1 

= 

∫ L 

0 

(
η.δε + m .δκ

)
dξ1 . (102)

t is noteworthy that the strain energy density (δF : S s = S 1 . ̃  δε) , is
ontributed solely by the stress vector S 1 . This is because the cross-

ections are assumed to be rigid. Secondly, the strain conjugate

f reduced force vector η and reduced couple m is the co-rotated

ariance of the virtual midcurve strain 

˜ δε and the co-rotated vari-

nce of the virtual rotation of the director frame ˜ δκ. Thus, we in-

er that the virtual strain energy is only contributed because of

he variation in the components of the strain vector (related to co-

otated virtual quantities). 

.1.2. Term B and Term C: virtual external work due to surface 

ractions and body forces 

Term B represents the total external virtual work due to trac-

ion on the boundary of the beam. The boundary of the entire

eam in �s consists of two cross-sectional boundaries �(0) and

( L ) and the lateral surface of the beam. External virtual work due

o traction in the reduced element of unit arc length in Fig. 7 can

e summed over the entire length to give Term B . Referring

q. (64) , 

erm B = 

Term B1 ︷ ︸︸ ︷ ∫ L 

0 

[∫ 
�2 

δu . S s 1 dξ2 dξ3 −
∫ 

�1 

δu . S s 1 dξ2 dξ3 

]
dξ1 

+ 

Term B2 ︷ ︸︸ ︷ ∫ L 

0 

[∫ 
�s 

3 

δu . (S s N 

s ) d ξ2 d ξ3 

]
d ξ1 (103)

erm B1 represents the virtual work at the end boundary of beams.

ll the reduced element of unit arc length ( d ξ 1 → 1) club to-

ether to give the entire beam, such that the external work due

o traction at the cross-sectional boundary is only because of end

oundaries ( �(0) and �( L )) of the beam. Substituting for δu as in

q. (46) into Term B1 , we get 

erm B1 = 

∫ L 

0 

[
δϕ ( ξ1 + dξ1 ) ·

∫ 
�2 

S s 1 dξ2 dξ3 

− δϕ ( ξ1 ) ·
∫ 

�1 

S s 1 dξ2 dξ3 

]
dξ1 

+ 

∫ L 

0 

[
δα( ξ1 + dξ1 ) ×

∫ 
�2 

r PG × S s 1 dξ2 dξ3 

− δα( ξ1 ) ·
∫ 

�1 

r PG × S s 1 dξ2 dξ3 

]
dξ1 

= 

∫ L 

0 
[ δϕ ( ξ1 + dξ1 ) · η( ξ1 + dξ1 ) 

− δϕ ( ξ1 + dξ1 ) · η( ξ1 + dξ1 ) ] dξ1 

+ 

∫ L 

0 
[ δα( ξ1 + dξ1 ) · m ( ξ1 + dξ1 ) 

− δα( ξ1 + dξ1 ) · m ( ξ1 + dξ1 ) ] dξ1 

= 

∫ L 

0 
( δϕ · η + δα · m ) ,ξ1 

dξ1 

= [ δϕ · η] 
ξ1 = L 
ξ1 =0 

+ [ δα · m ] 
ξ1 = L 
ξ1 =0 

. (104)
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erm B2 represents the virtual work due to traction on the lateral

urface of the beam. This is simplified as, 

erm B2 = 

∫ L 

0 

∫ 
�s 

3 

( δϕ + δα × r PG ) · ( S s N 

s ) d �s 
3 d ξ1 

= 

∫ L 

0 

{
δϕ ·

∫ 
�s 

3 

S s N 

s d�s 
3 

}
dξ1 

+ 

∫ L 

0 

{
δα ·

∫ 
�s 

3 

( r PG × S s N 

s ) d�s 
3 

}
dξ1 . (105) 

he total external virtual work due to body force can be simplified

s, 

erm C = 

∫ L 

0 

∫ 
�

ρs ( δu . b ) d ξ2 d ξ3 d ξ1 

= 

∫ L 

0 

δϕ ·
[ ∫ 

�
ρs b d ξ2 d ξ3 

] 
dξ1 

+ 

∫ L 

0 

δα ·
[ ∫ 

�
ρs ( r PG × b ) d ξ2 d ξ3 

] 
dξ1 . (106) 

erm B and Term C combined together gives the virtual work due

o the external force (body force and surface traction). Therefore,

sing the definition of ℵ and M as defined in Eqs. (68) and (76) ,

erm B and Term C can be clubbed as, 

erm B + Term C = 

[
δϕ. η

]ξ1 = L 
ξ1 =0 

+ 

[
δα. m 

]ξ1 = L 
ξ1 =0 

+ 

∫ L 

0 

(δϕ · ℵ + δα · M ) dξ1 . (107) 

.1.3. Term D: inertial work due to virtual displacement 

Term D gives the virtual work done due to the inertial forces.

his can be simplified by making substitution for R̈ and δu as in

qs. (69) and (46) and realizing the fact that δϕ, δα, ϕ̈ , ω and ˙ ω
re functions of ξ 1 only. Thus, 

erm D = 

∫ L 

0 

δϕ. 

[∫ 
�

ρs 
(
ϕ̈ + ˙ ω × r PG + ω × (ω × r PG ) 

)
d ξ2 d ξ3 

]
d ξ

+ 

∫ L 

0 

δα. 

[∫ 
�

ρs r PG ×
(
ϕ̈ + ˙ ω × r PG + ω × (ω × r PG ) 

)
d ξ

= 

∫ L 

0 

δϕ. 

F 

s ︷ ︸︸ [ μs ︷ ︸︸ ︷ (∫ 
�

ρs d�
)

ϕ̈ + ˙ ω ×

ϒs ︷ ︸︸ ︷ (∫ 
�

ρs r PG d�
)

+ ω × ω ×

+ 

∫ L 

0 

δα. 

λs ︷ ︸︸ [ ϒs ︷ ︸︸ ︷ (∫ 
�

ρs r PG d�
)

×ϕ̈ + 

I s M ︷ ︸︸ ︷ (∫ 
�

ρs ˜ R 

T 
PG ̃

 R PG d�
)

+ ω ×

= 

∫ L 

0 

(δϕ. F 

s + δα. λs ) dξ1 

.1.4. Virtual work principle for Cosserat beam 

The final virtual work equation for the reduced Cosserat beam

eferenced to the initially straight beam configuration �s can be

btained by combining Eqs. (97) –(108) as, 

δU 

s 
strain + δW 

s 
inertial = δW external ; (109) 

here, 

U 

s 
strain = 

∫ L (
η. ̃  δε + m . ̃  δκ

)
dξ1 = 

∫ L (
η.δε + m .δκ

)
dξ1 , (110) 
0 0 (  
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]
d ξ1 

︷ 
ϒs ︸︸ ︷ 

ρs r PG d�
)]

dξ1 

︷ 
I s M ︸︸ ︷ 

ρs ˜ R 

T 
PG ̃

 R PG d�
)

ω 

]
dξ1 

(108) 

W 

s 
inertial = 

∫ L 

0 

(δϕ. F 

s + δα. λs ) dξ1 , (111) 

W external = 

[
δϕ. η

]ξ1 = L 
ξ1 =0 

+ 

[
δα. m 

]ξ1 = L 
ξ1 =0 

+ 

∫ L 

0 

(δϕ. ℵ + δα. M ) dξ1 . 

(112) 

q. (109) bears a recognizable form of virtual work principle which

tates that if the body in dynamic equilibrium is subjected to a

irtual displacement at a given instant of time, the virtual work

one due to the real external forces δW external (Traction and body

orce) is stored as virtual strain energy δU 

s 
strain 

and virtual work

ue to the inertial forces on the body δW 

s 
inertial 

. The virtual work

rinciple, when the deformation of the beam is referenced to the

urved configuration would then become, 

δU 

c 
strain + δW 

c 
inertial = δW external ; (113) 

here, 

U 

c 
strain = 

∫ L 

0 

(
η · ˜ δε 

r + m · ˜ δκr 
)
dξ1 = 

∫ L 

0 

(
η · δε 

r + m · δκr 
)
dξ1 , 

(114) 

W 

c 
inertial = 

∫ L 

0 

(δϕ. F 

c + δα. λc ) dξ1 . (115) 

he terms above have usual meaning as defined in previous sec-

ions. It’s worth noting that the virtual external work δW external re-

ains the same for both the reference configuration �s and �c .

he expression for the strain energy and the inertial work changes

ecause the strain and the inertial effect depends on the initial

onfiguration of the beam considered. 

.2. Equivalence of weak and strong form of equilibrium equation 

The linear and angular momentum conservation principle for

he reduced beam is obtained in Eqs. (73) and (82) of Section 4 .

he weak form of equation as derived in Section 5.1 can be ob-

ained in pure mathematical sense from the strong form. This

hows the equivalence of strong and weak form and also validate

he results obtained in Section 5.1 . We take the similar approach

s delineated in Hughes (1987) . The linear momentum equation

73) is associated with the midcurve deformation. Therefore, the
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d

 ω×I s M︸︸ 
× r̈ PG

δ  
weight function used to obtain residual form of reduced equilib-

rium equation is the virtual displacement of the midcurve δϕ. Sim-

ilarly, the angular momentum equation (82) is associated with the

curvatures of the cross-section, thus making virtual rotation δα as

the natural choice for the weight function. Note that δϕ and δα are

admissible and are related to δu as shown in Eq. (46) . The residual

form of equilibrium equation referenced to the straight configura-

tion �s can be written as, ∫ L 

0 

[ δϕ · (η,ξ1 
+ ℵ − F 

s ) + δα · (m ,ξ1 
+ ϕ ,ξ1 

× η + M − λs )] dξ1 

= 0 . (116)

Using Green’s theorem and the property of the triple product of

vectors, following results hold, ∫ L 

0 

(δϕ · η,ξ1 
) dξ1 = [ δϕ · η] 

ξ1 = L 
ξ1 =0 

−
∫ L 

0 

(δϕ ,ξ1 
· η) dξ1 , ∫ L 

0 

(δϕ · m ,ξ1 
) dξ1 = 

[
δα · m 

]ξ1 = L 
ξ1 =0 

−
∫ L 

0 

(δα,ξ1 
· m ) dξ1 , ∫ L 

0 

δκ · (ϕ ,ξ1 
× η) dξ1 = 

∫ L 

0 

η · (δα × ϕ ,ξ1 
) dξ1 . (117)

Therefore, using the results in Eq. (117) with Eq. (116) , the residual

form of equilibrium equation simplifies as, ∫ L 

0 

[(δϕ ,ξ1 
− δα × ϕ ,ξ1 

) · η + δα,ξ1 
· m ] dξ1 

+ 

∫ L 

0 

(δϕ · F 

s + δα · λs ) dξ1 

= [ δϕ · η] 
ξ1 = L 
ξ1 =0 

+ [ δα · m ] 
ξ1 = L 
ξ1 =0 

+ 

∫ L 

0 

(δϕ · ℵ + δα · M ) dξ1 . (118)

Noticing the expression for ˜ δε and 

˜ δκ in Eq. (53) , the above equa-

tion becomes, ∫ L 

0 

[ ̃  δε · η + 

˜ δκ · m ] dξ1 + 

∫ L 

0 

(δϕ · F 

s + δα · λs ) dξ1 

= [ δϕ · η] 
ξ1 = L 
ξ1 =0 

+ [ δα · m ] 
ξ1 = L 
ξ1 =0 

+ 

∫ L 

0 

(δϕ · ℵ + δα · M ) dξ1 . (119)

which is exactly same as the weak form ( Eq. (109) ) derived from

the infinitesimal Lagrangian equation of motion thereby validating

the former approach. 

6. Strong form of equations derived from Hamilton’s equation 

Hamilton’s Principle (refer Rao, 2007 ) can be used to evalu-

ate the dynamic equation of motion. The principle assumes that

the configuration of the deformed beam is exactly known at time

t 1 and t 2 . Therefore, the variational field δu (t 1 , ξ1 , ξ2 , ξ3 ) = 0 and

δu (t 2 , ξ1 , ξ2 , ξ3 ) = 0 . There are infinitesimal configurations that the

beam can have at any time t ( t 	 = t 1 and t 2 ), each configuration devi-

ating from the correct one by an arbitrary but admissible displace-

ment field δu (t, ξ , ξ , ξ ) = δϕ(t, ξ ) + δα(t, ξ ) × r (ξ , ξ , ξ ) ,

δ

∫ t 2 

t 1 

T dt = −
∫ t 2 

t 1 

∫ L 

0 

δϕ. 

F 

s ︷ ︸︸ [
ϕ̈ . 

μs ︷ ︸︸ ︷ { ∫ 
�

ρs d ξ2 d ξ3 

} 
+ 

˙ ω ×ϒs + ω ×ω ×ϒs ︷ ︸︸ { ∫ 
�

ρs r̈ PG d ξ2 d ξ3

−
∫ t 2 

t 1 

∫ L 

0 

δα. 

λs ︷ ︸︸ [ ϒs ︷ ︸︸ ︷ { ∫ 
�

ρs r PG d ξ2 d ξ3 

} 
×ϕ̈ + 

I s M ̇
 ω +︷ { ∫ 

�
ρs (r PG 
1 2 3 1 1 PG 1 2 3 
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here δϕ defines the admissible variation in the midcurve and the

ector δα parametrizes the variation in the director frame. The ex-

ct deformed configuration at any time t 1 < t < t 2 is determined by

aking the action A stationary, defined as, 

 = 

∫ t 2 

t 1 

L dt = 

∫ t 2 

t 1 

(T − U 

s 
strain + W external ) dt. (120)

here, the functional L is called the Lagrangian of the problem.

he Principle states that, ∫ t 2 

t 1 

(T − U strain + W external ) dt 

= 

Term 1 ︷ ︸︸ ︷ ∫ t 2 

t 1 

δT dt −

Term 2 ︷ ︸︸ ︷ ∫ t 2 

t 1 

δU strain dt + 

Term 3 ︷ ︸︸ ︷ ∫ t 2 

t 1 

δW external dt = 0 . (121)

.1. Term 1: simplification of kinetic energy term 

The total kinetic energy of the beam referenced to �s can be

ritten using Eq. (69) as, 

 = 

1 

2 

∫ 
�s 

ρs ˙ u . ̇ u d �s = 

1 

2 

∫ 
�s 

ρs ˙ R . ˙ R d �s 

= 

1 

2 

∫ 
�s 

ρs ( ˙ ϕ + 

˙ r PG ) . ( ˙ ϕ + 

˙ r PG ) d�s . (122)

herefore, ∫ t 2 

t 1 

T dt 

= 

∫ t 2 

t 1 

∫ 
�s 

ρs [ δ ˙ ϕ . ˙ ϕ + δ ˙ ϕ . ̇ r PG + 

˙ ϕ .δ ˙ r PG + δ ˙ r PG . ̇ r PG ] d�s dt . 

e subject Eq. (123) to integration by parts with respect to

ime and note that δϕ(t 1 ) = δϕ(t 2 ) = δα(t 1 ) = δα(t 2 ) = 0 , there-

ore δr PG (t 1 ) = δα(t 1 ) × r PG = 0 and δr PG (t 2 ) = 0 . This leads to, ∫ t 2 

t 1 

T dt = −
∫ t 2 

t 1 

∫ 
�s 

[ δϕ · ϕ̈ + δϕ · r̈ PG + ϕ̈ · δr PG 

+ δr PG · r̈ PG ·] d �s d t. (124)

e notice the following relations, 

¨
 .δr PG = ϕ̈ . [ δα × r PG ] = δα. [ r PG × ϕ̈ ] ; (125)

r PG . ̈r PG = δα. [ r PG × r̈ PG ] . (126)

ubstituting (125) and (126) in Eq. (124) , and realizing that δϕ, δα,

, δω and δ ˙ ω are function of ( ξ 1 , t ) only, we obtain, 

 ξ1 d t 

︷ 
 

ω ︷ 
 

) d ξ2 d ξ3 

} ]
d ξ1 d t. 

Therefore, ∫ t 2 

t 1 

T dt = −
∫ t 2 

t 1 

∫ L 

0 

[ 
δϕ. F 

s + δα. λs 
] 

dξ1 dt. (127)
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.2. Term 2: simplification of potential energy term 

The virtual strain energy term in Hamilton’s equation can be

btained from Eq. (102) and using the results from Eqs. (53) and

56) as, 

 t 2 

t 1 

δU strain dt = 

∫ t 2 

t 1 

∫ L 

0 

[(δϕ ,ξ1 
− δα × ϕ ,ξ1 

) · η + δα,ξ1 
· m ] d ξ1 d t.

(128) 

earranging the terms and carrying out integration by parts with

espect to ξ 1 , we obtain, 

 t 2 

t 1 

δU strain dt = −
∫ t 2 

t 1 

∫ L 

0 

δϕ · η,ξ1 
+ δα · (ϕ ,ξ1 

× η + m ,ξ1 
) d ξ1 d t 

+ 

[∫ t 2 

t 1 

[ δϕ · η + δα · m ] dt 

]ξ1 = L 

ξ1 =0 

(129) 

.3. Term 3: simplification of external work term 

The body force field b and the surface traction are the external

orces in the body. The external force term in Hamilton’s equation

an be written as, 

 t 2 

t 1 

δW external dt = 

Term 3.1 ︷ ︸︸ ︷ ∫ t 2 

t 1 

∫ 
�s 

ρs (δu . b) d �s d t 

+ 

Term 3.2 ︷ ︸︸ ︷ ∫ t 2 

t 1 

∫ L 

0 

∫ 
�s 

3 

(
δu . (S s N 

s ) 
)
d �s 

3 d ξ1 d t (130) 

here �s 
3 

represents the surface boundary for an element of unit

rc length in �s configuration (refer Fig. 7 ). Term 3.1 and Term 3.2

an be simplified using the expression for δu Eq. (46) as, 

 t 2 

t 1 

∫ 
�s 

ρs (δu · b) d ξ1 d t = 

∫ t 2 

t 1 

∫ L 

0 

δϕ ·
[ ∫ 

�
ρs bd ξ2 d ξ3 

] 
+ δα ·

[ ∫ 
�

ρs (r PG × b) d ξ2 d ξ3 

] 
d ξ1 d t

(131

 t 2 

t 1 

∫ L 

0 

∫ 
�s 

3 

( δu . ( S s N 

s ) ) d �s 
3 d ξ1 dt 

= 

∫ t 2 

t 1 

∫ L 

0 

δϕ ·
[∫ 

�s 
3 

S s N 

s d�s 
3 

]
+ δα. 

[∫ 
�s 

3 

r PG × ( S s N 

s ) d�s 
3 

]
dξ1 dt . (132) 

ombing Eqs. (130) –(132) and noting the definition of reduced ex-

ernal force ℵ and moment M in Eqs. (68) and (76) , respectively,

e get, 

 t 2 

t 1 

δW external dt = 

∫ t 2 

t 1 

∫ L 

0 

[
δϕ. ℵ + δα. M 

]
dξ1 dt. (133)

.4. Governing equations of motion and boundary terms 

The Hamilton’s equation for the Cosserat beam can be realized

y combining Eqs. (121) , (127), (129) and (133) as, 

 t 2 

t 1 

∫ L 

0 

[ δϕ · { η,ξ1 
+ ℵ −F 

s } + δα · { m ,ξ1 
+ ϕ ,ξ1 

×η + M −λs } ] d ξ1 d

+ 

[∫ t 2 

t 1 

[ δϕ · η + δα · m ] dt 

]ξ1 = L 

ξ1 =0 

= 0 . (134
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ealizing that δϕ and δα are arbitrary virtual quantities at time t ,

or Eq. (134) to hold good for all δϕ and δα, following must be

rue, 

,ξ1 
+ ℵ − F 

s = 0 , (135) 

 ,ξ1 
+ ϕ ,ξ1 

× η + M − λs = 0 , (136) 

δϕ. η
]ξ1 = L 
ξ1 =0 

= 0 , (137) 

δα. m 

]ξ1 = L 
ξ1 =0 

= 0 . (138) 

qs. (135) and (136) represent linear momentum conservation and

ngular momentum conservation law referenced to straight config-

ration �s respectively. It is not surprising that the result is same

s obtained from infinitesimal equilibrium equation in Section 4 as

n Eqs. (73) and (82) . Secondly, Eqs. (137) and (138) represent the

eneral boundary condition at ξ1 = 0 and ξ1 = L . For instance, if

he left boundary is fixed and the right boundary is free, ϕ(0) =
(0) = 0 and η(L ) = m (L ) = 0 . Note that δα parametrizes the vari-

tional rotation of director frame that has rotation of Q( θ) in

quilibrium state. Therefore, for the fixed end, δα(0) = 0 implies

(0) = 0 at all time t . 

.5. Interpretation of equation of motion from D’Alembert’s 

rinciple-motion viewed from the director frame 

To interpret motion from the non-inertial frame in general, we

efine the impressed forces as the forces that are imposed on the

ystem due to external effects and due to the configuration of

he system. In the case of Cosserat beam, the body force, trac-

ion (external forces), and the internal stresses (due to deformed

onfiguration) are the sources of the impressed forces . We define

he forces of inertia referenced to a frame in consideration as the re-

isting forces by the structure, as observed from the frame con-

idered. Lastly the Einstein forces or the apparent forces are de-

ned as the forces experienced by the object due to non-inertial

ature of the frame of reference. The object satisfies the state of

quilibrium if the effect of impressed forces, Einstein forces , and the

orces of inertia referenced to a frame in consideration are consid-

red simultaneously. This law is referred to as the D’Alembert’s

rinciple. 

Owing to the single manifold nature of the problem, the motion

f the Cosserat beam is simplified to motion of the midcurve. Each

oint of the midcurve has a rigid section attached to it. Therefore,

he equation of motions developed in Section 4.1 can be thought

f as the equilibrium equation of a unit arc length element with

he mass μs idealized as a rigid section �( ξ 1 ), with the mass μs 

istributed homogeneously throughout the section. 

We have assumed that the midcurve may not necessarily be

he locus of the center of mass. For the section �( ξ 1 ), the point G

epresents the intersection of the midcurve at the section and the

oint M represents the mass centroid. The director frame { d i ( ξ1 ) }

s attached to the section �( ξ 1 ) with origin at G . The point M is

ocated by the vector r MG = 

ϒs 

μs . Fig. 8 describes the details. 

The conservation of linear momentum equation (73) represents

he translational equilibrium of the mass μs . The mass μs is static

ith respect to the frame { d i } because the section is rigid. The

rame { d i } is translating with the translational acceleration of ϕ̈
nd is rotating with the angular acceleration ˙ ω referenced to the

nertial frame of reference E i . The mass μs experiences the follow-

ng forces, 

1. The impressed force = η,ξ1 
+ ℵ (ξ1 ) . 

2. The force of inertia w.r.t the frame { d i } = −μs ˜ r̈ MG = 0 . 

3. The Einstein force due to translation = −μs ϕ̈ . 
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Fig. 8. Reduced element of unit arc-length idealized as a rigid section with mass μs . 
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4. The centrifugal force = −ω × ω × (μs r MG ) = −ω × ω × (Y 

s ) . 

5. The Euler force = − ˙ ω × (μs r MG ) = − ˙ ω × (Y 

s ) . 

6. The Coriolis force = −2 ̇ ω × (μs ˙ r MG ) = 0 . 

The conservation of angular momentum Eq. (82) represents the

moment balance of the section �( ξ 1 ). If the force on the elemental

mass ρs d ξ 2 d ξ 3 located at point P of the section, positioned by the

vector r PG , is d F , then the total reduced moment of the section is∫ 
�(ξ1 ) 

r PG × dF . Therefore, 

1. The reduced moment due to the impressed forces = m ,ξ1 
+

ϕ ,ξ1 
× η + M . 

2. The reduced moment due to force of inertia w.r.t the frame { d i }

= − ∫ �(ξ1 ) 
ρs r PG ×˜ r̈ PG d ξ2 d ξ3 = 0 . Note that the parameter ˜ r̈ PG 

represents the acceleration of the point P w.r.t the frame { d i };

it vanishes since the section is assumed rigid. 

3. The reduced moment due to the translational Einstein force =
− ∫ �(ξ1 ) 

ρs r PG × ϕ̈ d ξ2 d ξ3 = −Y 

s × ϕ̈ . 

4. The reduced moment due to the centrifugal force

= − ∫ �(ξ1 ) 
r PG × (ω × ω × (r PG ρ

s d ξ2 d ξ3 )) 

= −ω × I M 

ω. 

5. The reduced moment due to the Euler force = − ∫ �(ξ1 ) 
r PG ×

( ̇ ω × (r PG ρ
s d ξ2 d ξ3 )) = I M 

˙ ω . 

6. The moment due to the Coriolis force is 0 because ̃  ˙ r PG = 0 . 

It is noteworthy that the Coriolis force and the force of inertia

w.r.t { d i } (and the respective moments) vanishes because we have

ignored the Poisson’s and the warping effect . If the section is not as-

sumed to be rigid, we will have these two forces (and the respec-

tive moments) and an additional force term in the impressed force

on account of addition stresses developed. Secondly, if the mass

centroid was considered as the midcurve, the mass μs would not

experience centrifugal force and Euler force . 

7. Comments on constitutive relations 

The equations of motion derived in the previous sections are

completely general. The internal forces η and the moment m are

related to the finite strain vectors εr and κr through constitu-

tive relations of the modeler’s choice. As a matter of example, we

demonstrate a hyperelastic linear constitutive model (as in Iura
Please cite this article as: M. Chadha, M.D. Todd, An introductory tre

Journal of Solids and Structures (2017), http://dx.doi.org/10.1016/j.ijsols
nd Atluri, 1989 ), considering the �c as initial configuration. As is

bserved in Eqs. (59) and (60) , the reduced force and the moment

epends on the stress vector S 1 . Therefore, we linearly relate the

tress vector S 1 to the strain vector εr as, 

 1 = C 
εr 

| F c | (139)

rom the definition of εr = ε − Q 

r εc = εr 
i d i , we can write 

r = ε 

r + κr × ( ξ2 d 2 + ξ3 d 3 ) 

here, 

 

r = ε − Q 

r ε 

c = ε r i d i ; κr = κ − Q 

r κc = κ r 
i d i . 

Note that the curved reference configuration has same length

s the mathematically straight configuration and zero shear an-

les. Therefore, ε c = 0 . Using all these results and plugging Eq.

139) into Eqs. (59) and (60) , we obtain a constitutive law of the

orm shown below. 

η
m 

]
= C 

[
ε 

r 

κr 

]
. (140)

he coefficients C and C are detailed for the homogeneous and

sotropic case in the Appendix A.4 . 

. Conservation of energy and time invariance 

We know that the Hamilton’s formulation of least action holds

f the impressed forces are monogenic in nature (refer Lanczos,

970 ). Therefore, work functions for the forces can be defined. The

ork function need not necessarily be conservative for the applica-

ility of Hamilton’s principle. Table 1 lists the work function for all

he forces considering the straight beam as the undeformed state. 

In Table 1 , U 

s represents the strain energy density. Secondly, the

ork function for external force used in Eq. (121) can be written

s W external = W b + W t . 

We may arrive at the Energy conservation laws and the con-

itions associated with it by considering the real infinitesimal

isplacement du = ˙ u dt as the variational field in the Hamilton’s

quation (121) . This unique consideration no longer guarantees the
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Table 1 

Forces and their respective work functions. 

Forces Work function 

Body force b W b = 

∫ 
�s ρs (u . b) d�s 

Surface traction W t = 

∫ L 
0 

∫ 
�s 

3 
(u . (S s N s )) d �s 

3 d ξ1 

Internal stress U s 
strain 

= 

∫ 
�s F 

s 
i j 

S s 
i j 

d �s = 

∫ 
�s U 

s d �s 

Inertial force T = 

1 
2 

∫ 
�s ρs ˙ R . ̇ R d�s = 

1 
2 

∫ 
�s ρs ˙ u . ̇ u d�s 

v  

δ

δ  

U  

p

δ

I  

b  

p  

T  

l  

a∫
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c  

b  

m  

g 1  
irtual displacement at time t 1 and t 2 to vanish. Therefore, for

u → d u , the Hamilton’s principle modifies to, ∫ t 2 

t 1 

L d t = 

∫ 
�s 

ρs [ ̇  u δu ] t= t 2 t= t 1 d �
s . (141)

sing Table 1 , the left hand side of the above equation can be sim-

lified for δu → d u as, ∫ t 2 

t 1 

L dt = 

∫ t 2 

t 1 

{∫ 
�s 

(ρs ˙ u · δ ˙ u − δU 

s + ρs δu · b) d�s 

+ 

∫ L 

0 

∫ 
�s 

3 

(δu · (S s N 

s )) d �s 
3 d ξ1 

}
d t 

= 

[∫ t 2 

t 1 

{∫ 
�s 

(ρs ˙ u · ü − dU 

s + ρs ˙ u · b) d�s 

+ 

∫ L 

0 

∫ 
�s 

3 

( ̇  u · (S s N 

s )) d �s 
3 d ξ1 

}
d t 

]
d t 

= 

[∫ t 2 

t 1 

(
dT 

dt 
− dU strain 

dt 
+ 

dW b 

dt 
+ 

dW t 

dt 

)
d t 

]
d t 

= [ T − U strain + W external ] 
t 2 
t 1 

dt. (142) 

t was possible to simplify Eq. (142) by assuming the traction and

ody forces to be constant with time. This was done to obtain a

articular and simplified form of energy as (T − U strain + W external ) .

he second step of (142) shows the general energy conservation

aw. We can evaluate the right hand side of Eq. (141) for δu → d u

s, 
 

�s 

ρs [ ̇ u · δu ] 
t= t 2 
t= t 1 d �

s = 

[ ∫ 
�s 

ρs ˙ u · ˙ u d �s 
] t= t 2 

t= t 1 
dt = [ 2 T ] 

t= t 2 
t= t 1 dt . (143) 

herefore, from Eqs. (141) –(143) , we have 

 

∫ 
�s 

ρs ˙ u · ˙ u d�s − L 

] t= t 2 
t= t 1 

= [ T − W external + U strain ] 
t= t 2 
t= t 1 = 0 . (144)

his implies that the quantity (T − W external + U strain ) is conserved.

his quantity is energy H (or Hamiltonian). It is clear that the ex-

ernal work W external adds energy to the system. This energy is

sed to deform the beam (stored as strain energy U strain ) and to

ring the motion in the beam (stored as kinetic energy T ), imply-

ng W external = U strain + T . Therefore, a relationship between the La-

rangian and the Hamilton can be established for Continuum prob-

em as, ∫ 
�s 

ρs ˙ u . ̇  u d�s − L = H. (145) 

he above equation establishes a relationship between the La-

rangian and Hamiltonian functional. It is well known from the

lassical mechanics of discrete bodies that both the functionals are

elated by Legendre transformation ( Lanczos, 1970 ). The continuum

s an infinite degree of freedom system. If we assume the beam to

e composed of infinite particle each of mass m i = ρs ��s 
i 
, located

y u i , the Lagrangian takes the form, 

L = 

∞ ∑ 

i =1 

1 

2 

m i ˙ u i . ̇  u i − U strain + W external . (146) 
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ote that only the kinetic energy is function of velocity. We define

he generalized momentum of the i th particle as p i = (ρs ��s 
i 
) ̇ u i =

∂L 
∂ ̇ u i 

. The Legendre transformation applied to the Lagrangian is

herefore, written as, 

∞ ∑ 

i =1 

∂L 

∂ ˙ u i 

. ̇  u i − L = 

∞ ∑ 

i =1 

p i . ̇  u i − L = H. (147) 

or the continuum case, 

∞ ∑ 

i =1 

p i . ̇  u i = lim 

n →∞ 

��s 
i 
→ d�s 

i 

n ∑ 

i =1 

ρs ˙ u i . ̇  u i ��s 
i = 

∫ 
�s 

ρs ˙ u . ̇  u d�s . (148) 

herefore, for continuum case, Eq. (147) is same as Eq. (145 ). 

We were able to obtain the Energy conservation law from the

amilton’s Principle by considering the differential displacement

s the virtual displacement. We can choose this special case of

ariation only if the Lagrangian does not have explicit time de-

endence. If the Lagrangian has explicit time dependence, then the

ariation in Lagrangian occurs at a specific time t , whereas the dif-

erential change in Lagrangian occurs in a duration of dt . Therefore,

or the Energy of the system to be conserved, the system must

e scleronomic and the forces must be conservative in addition to

onogenic . If the external forces are time dependent, it would im-

ly the presence of external source of energy which is not taken

nto account, leading to the addition of unaccounted energy in the

ystem. In fact, the Energy conservation law arises from the time

nvariance symmetry of the nature. Therefore, our understanding

re in accordance with Noether’s theorem. 

. Conclusion and summary 

This paper presents the reduced balance laws of a Cosserat

eam in an exhaustive fashion focusing on all relevant details and

he interpretation of results. The Cosserat theory of rods defines

he configuration of the beam by the midcurve and the cross-

ection attached to the midcurve. Therefore, the technical discus-

ion begins with the description of the geometry, deformation pa-

ameters, and mathematical tools. This sets the ground to define

he deformation gradient tensor and strain vector of the Cosserat

eam referenced to initially straight or curved configurations of the

eam. 

The deformation gradient tensor for the curved reference con-

guration and the current configuration is developed from the

athematically straight reference beam. The result is then used to

btain the deformation gradient tensor of the current configura-

ion referenced to the curved referenced configuration. A complete

erivation to obtain the inverse of deformation gradient tensor is

hown. It is observed that, for the cross-section being rigid, only

he first component of any infinitesimal vector is strained whereas,

he second and the third component of the vector merely rotates.

his fact is clearly reflected in the expression for the deformation

radient tensor. We also define the arbitrary but admissible vari-

tional displacement field δu and obtain the expression for the

o-rotated variation of the axial strain and curvature vector that

s used to obtain the weak form of the equilibrium equation (Vir-

ual work principle). The virtual displacement comprises of the vir-

ual translation given by δϕ and the virtual rotation of the di-

ector frame parametrized by the rotation vector δα. A detailed

escription of the parametrization of the rotation tensor Q using

odrigues’ formula is presented drawing physical interpretation of

irtual rotation of director d i . 

The discussion in Sections 2 and 3 provides the reader with a

oncrete platform to obtain the strong and weak forms of reduced

alance laws. The strong form in general incorporates the linear

omentum and angular momentum conservation laws. The sin-

le manifold nature (defined by ξ ) of the problem allows us to
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Fig. A1. Illustration of geometric description of finite deformation of the beam. 
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arrive at the reduced strong form (from the infinitesimal equilib-

rium equation that is valid at every point of the body). The re-

duced strong form of the Cosserat beam is the set of differential

equations that governs the mechanics of the beam. 

We obtained the reduced linear and angular momentum

balance equation using infinitesimal equilibrium equation and

Lagrangian–Hamilton’s equation independently. It may be inferred

that the inertial term in the strong form of equations has the terms

associated with both, the first moment of inertia and the second

moment of inertia. This is because we did not assume that the

midcurve passes through the mass centroid of the beam. The inter-

pretation of forces from the director frame points out that the ab-

sence of a Coriolis force (and respective moment) is due to assump-

tion of Bernoulli’s rigid cross-section. Hence, we anticipate the

presence of a Coriolis force, force of inertia referenced to the direc-

tor frame and additional impressed forces due to additional stresses

developed when we consider the Poisson’s and warping effects. 

The integral or weak form of the equation represents the prin-

ciple of virtual work for the Cosserat beam. The integral form of

equilibrium equations is also obtained in two ways. In the first

approach, we obtain the weak form using the infinitesimal equi-

librium equation. Mathematically, strong and the weak form of

the equilibrium equations are equivalent. Therefore, the second ap-

proach involves obtaining the weak form from the strong form in

a complete mathematical sense. 

It is also observed that the conservation of energy principle

holds if the forces are monogenic and conservative and the La-

grangian functional is scleronomic as expected. The Lagrangian and

Hamilton functionals are linked by Legendre transformation, in an

integral sense. 

Each of the derivations is performed rigorously to fully describe

the mechanics of the beam. The understanding presented in this

paper sets the framework to develop/understand finite element

formulation of the Cosserat beam. An interesting study on the ap-

plication of the Noether’s Theorem for the Cosserat beam, and an

extension to the formulation including Poisson’s and warping ef-

fects (by developing deformation adaptive optimized warping func-

tions) is something Authors are looking forward to. 

Appendix A 

A1. The component of rotation matrix 

�11 = cos φy 

(
cos γ11 cos φp − cos α1 sin φp 

)
+ sin φy 

(
cos α2 sin γ13 − cos α3 sin γ12 

)
�12 = cos α1 cos φp + cos γ11 sin φp 

�13 = cos φy 

(
sin γ12 cos α3 − cos α2 sin γ13 

)
+ sin φy 

(
cos γ11 cos φp − cos α1 sin φy 

)
�21 = cos φy 

(
sin γ12 cos φp − cos α2 sin φp 

)
+ sin φy 

(
cos α3 cos γ11 − cos α1 sin γ13 

)
�22 = cos α2 cos φp + sin γ12 sin φp 

�23 = cos φy 

(
sin γ13 cos α1 − cos α3 cos γ11 

)
+ sin φy 

(
cos φp sin γ12 − cos α2 sin φp 

)
�31 = cos φy 

(
sin γ13 cos φp − cos α3 sin φp 

)
+ sin φy 

(
cos α1 sin φp − cos α2 sin γ11 

)
�32 = cos α3 cos φp + sin γ13 sin φp 

�33 = cos φy 

(
cos α2 cos γ11 − cos α1 sin γ12 

)( )

+ sin φy cos φp sin γ13 − cos α3 sin φp T  
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2. The component of Darboux vector-the curvature terms 

1 = −α2 ,ξ1 
cos α3 sin α2 + α3 ,ξ1 

cos α2 sin α3 

+ γ11 ,ξ1 
cos α1 sin γ11 (− cos α3 sin γ12 + cos α2 sin γ13 ) 

− γ12 ,ξ1 
cos α2 

2 cos γ12 sin γ13 − γ13 ,ξ1 
cos γ13 sin γ13 

+ γ13 ,ξ1 
cos α2 

3 cos γ13 sin γ12 

− γ13 ,ξ1 
cos α2 cos α3 cos γ13 sin γ13 

+ φy,ξ1 
( cos α2 sin γ12 − cos α2 sin γ13 ) 

− φy,ξ1 
( cos α1 cos φp + cos γ11 sin φp ) 

2 = 

1 

2 

(2 α1 ,ξ1 
cos α3 sin α1 − 2 α3 ,ξ1 

cos α1 sin α3 

+ γ11 ,ξ1 
(2 + cos 2 α2 + cos 2 α3 ) sin γ13 

+ γ12 ,ξ1 
( cos α1 cos α3 sin 2 γ13 

+ 2 cos α2 cos γ12 (−cos α3 cos γ11 + cos α1 sin γ13 )) 

+ 2 

(
cos γ11 cos γ13 sin α2 

3 + cos α1 cos α3 sin 2 γ13 

)
+ 2 φp,ξ1 

(− cos α3 cos γ11 + cos α1 sin γ13 ) 

− 2 φy,ξ1 
( cos α2 cos φp + sin γ12 sin φp )) 

3 = −α1 ,ξ1 
cos α2 sin α1 + α2 ,ξ1 

cos α1 sin α2 

+ γ12 ,ξ1 
( cos α1 cos α3 cos γ12 sin γ13 − cos α2 

3 cos γ11 cos γ12 
) 

+ γ13 ,ξ1 
( cos α2 cos α3 cos γ11 cos γ13 

− cos α1 cos α3 cos γ13 sin γ12 ) 

+ φp,ξ1 
( cos α2 cos γ11 − cos α1 sin γ12 ) 

+ γ11 ,ξ1 
cos α3 sin γ11 ( cos α2 sin γ13 

− cos α3 sin γ12 ) − φy,ξ1 
( cos α3 cos φp 

+ sin γ13 sin φp ) 

3. Illustration of a deformed shape of the beam 

We present an example of geometric description of the de-

ormed shape of a slender rod obtained by using the methodol-

gy detailed in the Section 3.2 (refer Fig. A1 ). The components of

he directors and the Darboux vector can be obtained using the

esults in Appendices A.1 and A.2 , respectively. The rod has an un-

eformed length L o = 500 m and a circular cross-section with ra-

ius 0.15 m. The initial configuration of the rod is assumed to be

traight along x -axis and the rod is fixed at x = 0 . We ignore the

hear deformation (γ1 i = 0) in this example. The beam is subjected

o elongation and curvatures (including torsion). Therefore, the di-

ector triad { d i } is same as the triad { T , V , H }. The red, blue and

reen vectors represents the directors d 1 , d 2 and d 3 , respectively.

he black curve shows the midcurve of the rod. Note that the
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irectors are scaled up for clear representation. This deformation

ssumes following parameters satisfying the boundary conditions, 

p (ξ1 ) = 

(
π

2 

sin 

πξ1 

L o 

)(
1 − 0 . 5 sin 

3 . 5 πξ1 

L o 

)
;

φy (ξ1 ) = π sin 

πξ1 

L o 
;

e (ξ1 ) = 

5 π

L o 
sin 

πξ1 

2 L o 
; α1 (ξ1 ) = 

π

2 

; α2 (ξ1 ) = 10 π
(
ξ1 

L o 

)
;

α3 (ξ1 ) = 

π

2 

+ α2 (ξ1 ) ;

4. The coefficients of the constitutive law 

C = 

[ 

E 0 0 

0 G 0 

0 0 G 

] 

;

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

EA 1 0 0 0 EA 2 −EA 3 

0 Gk s A 1 0 −GA 2 0 0 

0 0 Gk s A 1 GA 3 0 0 

0 −GA 2 GA 3 Gk t A 4 0 0 

EA 2 0 0 0 EA 5 −EA 7 

−EA 3 0 0 0 −EA 7 EA 6 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

Note that here k s and k t are the standard shape factor for shear

nd torsion and the geometric constants A i are given below. 

A 1 = 

∫ 
�

1 

| F c | d ξ2 d ξ3 

A 2 = 

∫ 
�

1 

| F c | ξ3 dξ2 dξ3 

A 3 = 

∫ 
�

1 

| F c | ξ2 dξ2 dξ3 

A 4 = 

∫ 
�

1 

| F c | (ξ
2 
2 + ξ 2 

3 ) d ξ2 d ξ3 

A 5 = 

∫ 
�

1 

| F c | ξ
2 
3 d ξ2 d ξ3 

A 6 = 

∫ 
�

1 

| F c | ξ
2 
2 d ξ2 d ξ3 

A 7 = 

∫ 
�

1 

| F c | ξ3 ξ2 dξ2 dξ3 

5. Comments on the cross section rigidity assumption and the 

alidity of the theory 

We made an assumption of a rigid cross-section in 2.1 and all

he results obtained incorporated this assumption. The absence of

oriolis forces and the absence of Poisson’s effect in the consti-

utive laws are direct consequences of this assumption, for exam-

le. Therefore, it is beneficial to look into the limitations of the

esults presented. Let us momentarily consider warping and Pois-

on’s effect. If we had these effects, the position vector of any point

n Eq. (3) would take the form 

 

∗ = ϕ(ξ1 ) + (ξ2 − νeξ2 ) d 2 + (ξ3 − νeξ3 ) d 3 + �(ξ2 , ξ3 ) κ1 d 1 . 

ote that here, �( ξ 2 , ξ 3 ) represents the warping function of the

roblem obtained from St. Venant’s theory, and ν is Poisson’s

atio. To ignore warping, we must assume the section is circu-

ar (or “sufficiently” circular that warping is negligible) such that
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( ξ 2 , ξ 3 ) → 0. Now we are left with Poisson’s effect. The expres-

ion for R 

∗ can be rearranged as 

 

∗ = R − νeξ2 d 2 − νeξ3 d 3 . 

sing R 

∗ to develop the kinematics of the Cosserat beam would

hange the strain vector and the deformation gradient tensor. The

train vector would then become 

= 

3 ∑ 

i =1 

(
∂R 

∗

∂ξi 

− d i 

)
. 

or slender structures, the lateral cross-sectional strain vector com-

onents are negligible. Thus, it is acceptable to write ( ∂R ∗
∂ξi 

− d i ) ≈ 0

or i = 2 , 3 . The direct implication of this approximation is that the

train vector reduces to that in Eq. (26) as 

≈ ∂R 

∗

∂ξ1 

− d 1 = 

∂R 

∂ξ1 

− d 1 . 

hus, Bernoulli’s rigid cross-section assumption makes this theory

cceptable for slender structure where the total length of beam is

ufficiently long compared to the lateral dimensions of the beam,

nd for the structure with cross-sectional shapes such that the ef-

ect of warping is negligible. 
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