
edexcel:

AS Chemistry

Unit 1 Classified Past Papers

ALOU ECOUOUA

An example of an equation to illustrate the cracking of an alkane from crude oil is

C₁₅H₃₂ \rightarrow 2C₂H₄ C_3H_6 C₈H₁₈ pentadecane ethene propene octane Molar masses/g mol⁻¹ 28 42 114

(a) What is the atom economy for this reaction in terms of production of alkenes? Use the expression

> Atom economy = $\frac{\text{Total mass of desired product(s)}}{\text{Total mass of desired product(s)}} \times 100\%$ Total mass of all products

> > $(28 \times 2 + 42)/212$

(1)

- **A** 26%
- **B** 33%
- **□ C** 38%
- **X D** 46%
- **5** Phosphoric(V) acid, H₃PO₄, can be made from phosphorus in two stages.

$$P_4 + 5O_2 \rightarrow P_4O_{10}$$

$$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$$

Data

Formula	P ₄	O ₂	P ₄ O ₁₀	H₂O	H ₃ PO ₄
Molar mass/g mol ⁻¹	124	32	284	18	98

The percentage atom economy, by mass, for the production of phosphoric(V) acid from phosphorus is

Reactants:
$$124 + 5x32 + 6x18 = 392$$

■ B 69.0

- **◯ C** 72.4
- **D** 100
- 6 Oxygen can be prepared using several different reactions. Which of those given below has the highest atom economy by mass?
 - \square A NaNO₃ \rightarrow NaNO₂ + $\frac{1}{2}$ O₂
 - $\mathbf{X} \mathbf{B} \quad \mathrm{H_2O_2} \rightarrow \mathrm{H_2O} + \frac{1}{2}\mathrm{O_2}$
 - \square C $Cl_2 + H_2O \rightarrow 2HCl + \frac{1}{2}O_2$
 - \square **D** PbO₂ \rightarrow PbO + $\frac{1}{2}$ O₂

COUNTING PARTICLES

1 What is the total number of **atoms** in 1.8 g of water, H₂O?

DATA

- The molar mass of H₂O is 18 g mol⁻¹
- The Avogadro Constant is 6.0×10^{23} mol⁻¹
- \triangle A 6.0 × 10²²
- **B** 6.0×10^{23}
- \square C 1.8 × 10²³
- \square **D** 1.8 × 10²⁴

- $mol = mass \div Mr$
- Mr water = 18
- $mol = 1.8 \div 18 = 0.1$
- number of atoms per water = 3
- count of atoms = $3 \times 0.1 \times L$

(Total for Question 12 = 1 mark)

2 Calculate the total number of ions in 7.41 g of calcium hydroxide, Ca(OH)₂.

The molar mass of calcium hydroxide is 74.1 g mol⁻¹.

The Avogadro constant is $6.0 \times 10^{23} \, \text{mol}^{-1}$.

- \triangle A 6.0 × 10²²
- **B** 1.2×10^{23}
- C 1.8 × 10²³
- \square **D** 3.0 × 10²³

- mol = mass ÷ Mr
- $mol = 7.41 \div 74.1 = 0.1$
- number of ions per molecule = 3
- count of atoms $= 3 \times 0.1 \times L$

(Total for Question = 1 mark)

- 3 Which of the following statements is true? The Avogadro constant is the number of
 - \square A grams of any element which contains 6.02×10^{23} atoms of that element.
 - **B** atoms contained in one mole of any element.
 - atoms contained in one mole of any monatomic element.
 - **D** particles (atoms, molecules or ions) required to make one gram of a substance.

IDEAL GAS LAW

6 Airbags protect occupants by inflating when a car crashes.

Airbags rely on chemical reactions to produce large volumes of gases quickly. In some airbags, solid sodium azide (NaN₃) decomposes forming nitrogen gas and sodium as the only products.

(a) Write an equation for the decomposition of sodium azide. State symbols are not required.

(1)

$2NaN 3 \rightarrow 2Na + 3N 2$

(b) A passenger airbag requires 120 dm³ of gas to fill it.

Calculate, using the ideal gas equation, the mass of sodium azide required to fill a passenger airbag in this reaction under standard conditions (101 000 Pa, 25°C).

Give your answer to an appropriate number of significant figures.

$$[pV = nRT$$
 $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}]$

(6)

conversion of volume m3

V = 0.12m 3

conversion of temperature to K T = 298 K

calculation of n for N2

n = PV/RT

n =101000X 0.12/ 8.31 X 298

n = 4.89

calculation of n for NaN3 (2:3)

n = 4.89X 2/3 = 3.26

Mr(NaN3) = 65

m = 3.26X 65 = 212

PERCENT YIELD

1 Ammonia is manufactured from hydrogen and nitrogen in the Haber process.

$$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$$

If 60 tonnes of hydrogen produces 80 tonnes of ammonia, what is the percentage yield in the reaction?

- \triangle **A** $\frac{80}{170} \times 100\%$
- 80 actual
- \square C $\frac{30}{80}$ × 100%
- □ **D** $\frac{60}{80}$ × 100%

- mol H2 = mass + Mr
- mol H2 = 60 + 2 = 30
- mol NH3 = 30 x 2/3 = 20
- mass NH3= mol x Mr
- Max mass NH3 = 20 x (14+3) = 340
- 2 Phenol, C₆H₅OH, is converted into trichlorophenol (known as TCP), C₆H₂Cl₃OH, according to the equation below.

$$C_6H_5OH + 3CI_2 \rightarrow C_6H_2CI_3OH + 3HCI$$

If 50.0 g of phenol produces 97.6 g of TCP, what is the percentage yield of the TCP?

mol of C6H5OH = mass + Mr

[Molar masses: phenol = 94 g mol^{-1} ; TCP = 197.5 g mol^{-1}]

mol of C6H5OH = $50 \div 94 = 0.53$

- A 47.6%■ B 49.4%
- ☑ C 51.2%
- **□ D** 92.9%

- mol of C6H2Cl3OH = 0.53
- mass = mol x Mr
- mass = 0.53 x 197.5 = 104.675
- If the price of one tonne (1000 kg) of sulfur, S, is £160, what is the cost (to the nearest pound) of the sulfur needed to make one tonne of sulfuric acid, H_2SO_4 ?

S → H2SO4

- B £98
- ☑ C £160
- ☑ D £490

- mol H2SO4 = mass + Mr
- mol H2SO4 = 1000 ÷ (1x2 + 32 + 4x16) = 10.2
- mol of S = mol of H2SO4 = 10.2
- mass S = mol x Mr
- mass S = 10.2 x 32 = 326.4 kg
- 1000 kg cost 160
- 326.2 will cost x
- x = 326.2 x 160 / 1000 = 52

ATOMIC STRUCTURE

		e of the following eleme ation shown when it for	nts undergoes the change in electronic ms the stated ion?
	Atom	1s²2s²2p63s²3p <mark>³</mark>	lon 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
	⋈ A B	to B³+	it gained 3 electrons
	■ B Al	to Al³+	
	⊠ C N	to N³-	
	№ D P	to P³-	
			(Total for Question = 1 mark)
	7 The ch	nemical properties of an	element are determined by its
	MA	electronic structure.	
	⊠ B	number of neutrons.	
	⊠ C	relative atomic mass.	
	⊠ D	number of protons p	lus neutrons.
			(Total for Question = 1 mark)
8	A part 1s ² 2s ²		ve charge and with the electronic configuration
	☑ A	a sodium ion.	
	⊠ B	a fluoride ion.	originally Na is: 1s2 , 2s2 , 2p6 , 3s1 ♠
	⊠ C	an oxide ion.	
	⊠ D	a potassium ion.	lost when forming a catio
9	In whi		tronic configurations are only two of the electrons
	⊠ A	1s ² 2s ²	
	⊠ B	1s ² 2s ² 2p ³	↑↓ ↑↓ ↑↓ ↑ ↑

1s

2s

1s² 2s² 2p⁴

 \square **D** 1s² 2s² 2p⁵

(Total for Question = 1 mark)

2p

IONISATION ENERGY

8 The first five ionization energies of an element, X, are shown in the table.

lonization energy	1st	2nd	3rd	4th	5th	
Value / kJ mol ⁻¹	631	1235	2389	7089	8844	
<u> </u>				—a ga	ap here s	o it is 3+

What is the mostly likely formula of the oxide that forms when **X** burns in oxygen?

- A X,O
- B XO
- ∇ \mathbf{C} $\mathbf{X}_2\mathbf{O}_3$

oxygen's valency is 2

 \square **D** XO_2

9 Which of the following equations represents the **second** ionization energy of chlorine?

- \blacktriangle Cl⁺(g) \rightarrow Cl²⁺(g) + e⁻
- \boxtimes **B** $Cl(g) \rightarrow Cl^{2+}(g) + 2e^{-}$
- \square C Cl(g) \rightarrow Cl²⁻(g) 2e⁻
- \square **D** $Cl^{-}(g) \rightarrow Cl^{2-}(g) e^{-}$

10 The electronic structures of four elements are given below. Which of these elements has the highest first ionization energy?

noble gases have the highest IE in their

period because they have the highest number of protons per period

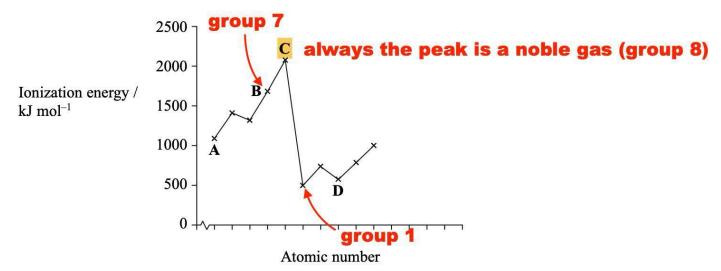


15

25

 $\uparrow\downarrow$

D

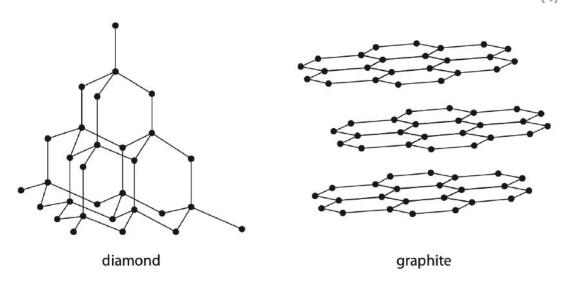


 $\uparrow\downarrow$

IONISATION ENERGY

11 The sketch graph below shows the trend in first ionization energies for some elements in Periods two and three.

Select, from the elements A to D, the one that	
(a) has atoms with five p electrons.	
N A so group 7	(1)
B	
oxdot D	
(b) is a member of Group 3.	
	(1)
□ D	
(c) is likely to be very unreactive.	
noble gas	(1)
⊠ B	
☑ C	
$oxed{oxed}$ D	
(d) normally forms four covalent bonds per atom.	
✓ A	(1)


 \square B

 \square C

COVALENT BONDING

- **3.** Diamond, graphite and graphene are all forms of carbon.
 - (i) Explain **two** ways in which the physical properties of diamond and graphite differ. Refer to their structure and bonding in your answer.

(4)

diamond is hard and graphite is soft

because diamond has covalent bonds in a 3D structure while graphite has weak forces between the layers

graphite conducts electricity and diamond does not because only graphite has delocalised electrons

(ii) State how the structure of graphene is related to the structure of graphite.

(1)

Graphene is made only of a single layer

while graphite is made of many layers

(iii) State a use for graphene, identifying the property that makes it suitable for that use.

(2)

Bullet proof clothing & body armor

Coating of space crafts

Micro-electrodes & electricalwires

Nanotubes

Non-stick coatings in frying pans

Strong and durable

oxidation resistant + reduces friction

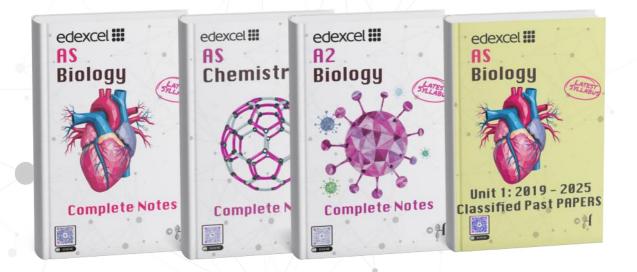
Good electrical conductor

Flexible and durable

reduces friction between surfaces

The Complete Course for IAL AS Chemistry

Videos that cover the entire syllabus



Exam-expert solved past papers

Full explanation of Unit 3 practicals

51375709

