
Budhi Sagar Dubey

Con�dence
Mastering Angular

Rou�ng Guards

A Comprehensive
Guide for Angular

Programmers



Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Table Of Contents

Chapter 1: Introduction to Angular Routing
Guards 3

     Understanding Angular Routing 3

     What are Guards in Angular Routing? 4

Chapter 2: Types of Angular Routing Guards 5

     CanActivate Guard 5

     CanDeactivate Guard 6

     Resolve Guard 6

     CanLoad Guard 7

Chapter 3: Implementing CanActivate Guard 8

     Setting up CanActivate Guard 8

     Handling Authentication in CanActivate
Guard 9

     Redirecting with CanActivate Guard 10

Chapter 4: Implementing CanDeactivate Guard 11

     Setting up CanDeactivate Guard 11

     Con�rming Navigation with CanDeactivate
Guard 12

     Handling Unsaved Changes with
CanDeactivate Guard 13

Chapter 5: Implementing Resolve Guard 14

     Setting up Resolve Guard 14

     Pre-fetching Data with Resolve Guard 15

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

     Error Handling with Resolve Guard 15

Chapter 6: Implementing CanLoad Guard 16

     Setting up CanLoad Guard 16

     Lazy Loading Modules with CanLoad Guard 17

     Preventing Unauthorized Access with
CanLoad Guard 18

Chapter 7: Best Practices for Using Angular
Routing Guards 19

     Using Multiple Guards in Routes 19

     Error Handling in Guards 20

     Testing Angular Routing Guards 21

Chapter 8: Advanced Topics in Angular Routing
Guards 22

     Custom Guards 22

     Nested Routes and Guards 23

     Dynamically Assigning Guards 24

Chapter 9: Conclusion 25

     Recap of Angular Routing Guards 25

     Next Steps for Mastering Angular Routing
Guards 26

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Chapter 1: Introduction to Angular Routing
Guards
Understanding Angular Routing
Angular routing is a crucial aspect of building web applications using Angular. It allows us to navigate between different

components of our application seamlessly and e�ciently. However, in order to control the navigation �ow and access to

certain routes, Angular provides us with the concept of guards. Understanding Angular routing guards is essential for any

Angular programmer looking to build robust and secure applications.

Guards in Angular routing are used to protect routes in our application by implementing speci�c logic before allowing access

to a particular route. There are several types of guards available in Angular, including CanActivate, CanActivateChild,

CanDeactivate, and CanLoad. Each guard serves a different purpose and can be used to control access to routes based on

various conditions.

The CanActivate guard is used to determine whether a user can access a speci�c route. It is commonly used to check if a

user is authenticated before allowing access to a protected route. CanActivateChild, on the other hand, is similar to

CanActivate but applies to child routes of a parent route. CanDeactivate is used to determine if a user can leave a route,

while CanLoad is used to prevent a module from being loaded lazily.

Implementing guards in Angular routing involves creating a guard service that implements the necessary logic for each guard

type. These guard services are then added to the route con�guration using the canActivate, canActivateChild, canDeactivate,

or canLoad properties. By using guards, Angular programmers can control access to routes, protect sensitive information,

and enhance the overall security of their applications.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

In conclusion, understanding Angular routing guards is crucial for building secure and e�cient web applications using

Angular. By leveraging guards such as CanActivate, CanActivateChild, CanDeactivate, and CanLoad, Angular programmers

can control access to routes, protect sensitive information, and enhance the overall security of their applications. With the

knowledge of Angular routing guards, programmers can build robust and secure applications that provide a seamless user

experience.

What are Guards in Angular Routing?
Guards in Angular routing serve as a crucial mechanism for controlling access to certain routes within an Angular

application. They act as �lters that determine whether a user is authorized to navigate to a particular route or not. In

essence, guards help in enforcing security and access control in an Angular application by providing a way to protect certain

routes from unauthorized access.

There are several types of guards in Angular routing, namely CanActivate, CanActivateChild, CanDeactivate, and CanLoad.

Each guard type serves a speci�c purpose and can be used to enforce different types of access control rules within an

application. CanActivate is used to determine whether a user can access a particular route, CanActivateChild is used to

determine access to child routes of a route, CanDeactivate is used to determine whether a user can leave a route, and

CanLoad is used to determine whether a user can load a module lazily.

Guards are implemented as services in Angular and can be attached to routes using the canActivate, canActivateChild,

canDeactivate, and canLoad properties in the route con�guration. When a user attempts to navigate to a route that is

protected by a guard, the guard is invoked and its logic is executed to determine whether the user is authorized to access the

route. If the guard returns true, the user is allowed to navigate to the route. If the guard returns false or a Promise or

Observable that resolves to false, the navigation is canceled, and the user is redirected to a different route.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Guards in Angular routing play a crucial role in ensuring the security and integrity of an application by controlling access to

certain routes based on prede�ned rules and conditions. By using guards effectively, Angular programmers can enforce

access control, prevent unauthorized access to sensitive routes, and provide a secure and seamless user experience within

their applications. In the subsequent chapters of this book, we will delve deeper into each type of guard, discuss best

practices for implementing guards, and explore advanced use cases for guards in Angular routing.

Chapter 2: Types of Angular Routing Guards
CanActivate Guard
In Angular, guards are used to control access to certain routes in your application. One type of guard that can be used is the

CanActivate guard. This guard is used to determine whether a user can access a certain route based on certain conditions.

The CanActivate guard is implemented as a service that implements the CanActivate interface. This interface has a single

method called canActivate, which returns a boolean value indicating whether the route can be activated. If the method

returns true, the route is activated and the user can access it. If the method returns false, the route is not activated and the

user is redirected to another route.

One common use case for the CanActivate guard is to prevent unauthorized users from accessing certain routes in your

application. For example, you can create a guard that checks whether the user is logged in before allowing them to access

the dashboard route. If the user is not logged in, the guard can redirect them to the login page instead.

Another use case for the CanActivate guard is to prevent users from accessing certain routes based on their role or

permissions. For example, you can create a guard that checks whether the user is an admin before allowing them to access

the admin dashboard route. If the user is not an admin, the guard can redirect them to another route or display an error

message.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Overall, the CanActivate guard is a powerful tool that can be used to control access to routes in your Angular application. By

implementing guards like CanActivate, you can ensure that your application is secure and that users can only access the

routes that they are authorized to access.

CanDeactivate Guard
In Angular, guards are used to protect and control access to different parts of an application based on certain conditions.

One such guard is the CanDeactivate guard, which is used to prevent users from navigating away from a particular route

without con�rming their action. This guard is commonly used in forms or other components where unsaved changes could

be lost if the user navigates away without saving.

The CanDeactivate guard works by implementing a CanDeactivate interface in the component that needs protection. This

interface requires the component to have a canDeactivate method that returns a boolean or a Promise. If the method

returns true, the navigation is allowed, but if it returns false, the user is prompted to con�rm their action before leaving the

page.

To implement the CanDeactivate guard in Angular, you �rst need to create a guard service that implements the CanDeactivate

interface. This service will be responsible for checking if the canDeactivate method in the component returns true or false.

If it returns false, the guard service can display a con�rmation dialog to the user asking if they are sure they want to leave the

page.

Once the guard service is implemented, it needs to be added to the route con�guration in the Angular application. This is

done by adding the canDeactivate property to the route object and specifying the guard service as its value. This tells Angular

to use the CanDeactivate guard to protect that particular route.

Overall, the CanDeactivate guard is a useful tool for preventing users from accidentally navigating away from a page without

saving their changes. By implementing this guard in your Angular application, you can provide a better user experience and

prevent data loss.

Resolve Guard

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

In Angular routing, guards are an essential part of managing navigation and controlling access to different routes within an

application. One type of guard that is commonly used is the Resolve Guard. The Resolve Guard allows developers to retrieve

data before a route is activated, ensuring that the necessary data is available for the component to render properly.

The Resolve Guard is particularly useful when working with routes that require data from a server or database before they

can be displayed. By using the Resolve Guard, developers can fetch the required data and ensure that the route is only

activated once the data is available. This helps to prevent errors and ensures a smoother user experience.

To implement a Resolve Guard in Angular, developers need to create a service that implements the Resolve interface. This

service should contain a resolve() method that fetches the necessary data and returns it to the route. The Resolve Guard is

then added to the route con�guration using the resolve property, specifying which data should be resolved before the route

is activated.

One of the key bene�ts of using a Resolve Guard is that it helps to improve the performance of an Angular application. By

fetching data before a route is activated, developers can ensure that the necessary data is available when the component is

rendered, reducing the need for additional network requests and improving the overall speed of the application.

In conclusion, the Resolve Guard is a powerful tool for managing data retrieval in Angular routing. By using the Resolve

Guard, developers can ensure that the necessary data is available before a route is activated, improving performance and

providing a better user experience. By understanding how to implement and use Resolve Guards effectively, Angular

programmers can take their applications to the next level.

CanLoad Guard
In Angular, guards are used to protect routes and prevent unauthorized users from accessing certain parts of your

application. One type of guard that is commonly used is the CanLoad guard. This guard is used to prevent a module from

being loaded lazily if certain conditions are not met.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

The CanLoad guard is implemented as a service that implements the CanLoad interface provided by Angular. This interface

requires the implementation of a single method called canLoad, which returns a boolean value indicating whether or not the

module can be loaded. If the method returns true, the module is loaded; if it returns false, the module is not loaded.

To use the CanLoad guard, you need to de�ne it in the routes array of your Angular application. You can do this by adding a

canActivateChild property to the route con�guration object and passing an array of guards to it. The CanLoad guard should

be the �rst guard in the array, as it will be the �rst one to be checked when a module is about to be loaded.

One common use case for the CanLoad guard is to check if a user is authenticated before allowing them to access a certain

module. You can do this by injecting the AuthenticationService into the CanLoad guard and calling a method to check if the

user is logged in. If the user is not authenticated, you can redirect them to the login page or display an error message.

Overall, the CanLoad guard is a powerful tool that can help you secure your Angular application and control access to

certain parts of your application. By implementing this guard, you can ensure that only authorized users can load certain

modules and protect your application from unauthorized access.

Chapter 3: Implementing CanActivate Guard
Setting up CanActivate Guard
In Angular, guards are used to protect routes and control access to certain parts of an application. One type of guard is the

CanActivate guard, which is used to determine if a user can access a particular route. This guard is often used to check if a

user is logged in or has the necessary permissions to view a certain page.

To set up a CanActivate guard in Angular, you �rst need to create a new guard service using the Angular CLI. You can do this

by running the command ng generate guard name-of-guard. This will create a new guard service in your project with the

necessary boilerplate code.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Once you have created the guard service, you need to implement the canActivate method in the service. This method should

return a boolean value indicating whether or not the user is allowed to access the route. Inside the canActivate method, you

can add logic to check the user's authentication status or permissions.

After implementing the canActivate method, you need to register the guard service in the providers array of your app module.

This tells Angular to use the guard service to protect routes in your application. You can do this by adding the guard service

to the providers array in the app module �le.

Finally, you need to add the guard service to the canActivate property of the route you want to protect. This tells Angular to

run the guard service before allowing the user to access the route. You can do this by adding the guard service to the

canActivate property of the route in the app routing module �le.

Overall, setting up a CanActivate guard in Angular is a straightforward process that allows you to control access to routes in

your application. By following these steps, you can ensure that only authorized users are able to access certain parts of

your application, enhancing the security and user experience of your Angular application.

Handling Authentication in CanActivate Guard
Authentication is a crucial aspect of web applications, especially when it comes to protecting sensitive information or

features from unauthorized users. In Angular, one of the ways to handle authentication is by using guards. Guards are a

feature in Angular routing that allow developers to control access to certain routes based on certain conditions being met.

One type of guard that is commonly used for authentication purposes is the CanActivate guard.

The CanActivate guard is a type of guard that can be used to prevent unauthorized users from accessing certain routes in an

Angular application. This guard works by implementing a canActivate method that returns either a boolean value or an

observable that resolves to a boolean value. If the method returns true, the user is allowed to access the route. If it returns

false, the user is redirected to another route or denied access altogether.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

When it comes to handling authentication in CanActivate guards, there are a few key steps that need to be taken. First,

developers need to implement a service that handles authentication logic, such as checking if a user is logged in or if they

have the necessary permissions to access a certain route. This service can then be injected into the CanActivate guard to

perform the necessary checks.

Next, developers need to implement the canActivate method in the CanActivate guard to call the authentication service and

check if the user is authorized to access the route. If the user is authorized, the method should return true. If not, it should

return false or redirect the user to another route.

Overall, handling authentication in CanActivate guards requires a combination of implementing an authentication service,

injecting it into the guard, and implementing the canActivate method to perform the necessary checks. By following these

steps, Angular programmers can effectively control access to routes in their applications and protect sensitive information

from unauthorized users.

Redirecting with CanActivate Guard
As an Angular programmer, you are likely already familiar with the concept of guards in Angular routing. Guards are used to

protect routes in your application by determining whether or not a user is allowed to access a particular route. There are

several types of guards available in Angular, including CanActivate, CanActivateChild, CanDeactivate, and CanLoad. In this

subchapter, we will focus on the CanActivate guard and how it can be used to redirect users to a different route if they do

not have the necessary permissions to access a particular route.

The CanActivate guard is a type of guard that is used to determine whether or not a user is allowed to access a particular

route. This guard is typically used to protect routes that require authentication, such as a user pro�le page or a dashboard.

When a user tries to access a route that is protected by the CanActivate guard, the guard will run a check to see if the user is

logged in or has the necessary permissions to access the route. If the check fails, the guard can redirect the user to a

different route, such as a login page.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

To use the CanActivate guard in your Angular application, you will need to create a guard class that implements the

CanActivate interface. This class will have a canActivate method that returns a boolean value indicating whether or not the

user is allowed to access the route. If the canActivate method returns true, the user will be allowed to access the route. If it

returns false, the user will be redirected to a different route.

In addition to redirecting users to a different route, the CanActivate guard can also be used to display a message to the user

indicating why they are being redirected. This can help provide a better user experience by giving users feedback on why they

are not allowed to access a particular route. By using the CanActivate guard in your Angular application, you can ensure that

only authorized users are able to access certain routes, helping to improve the security and usability of your application.

In conclusion, the CanActivate guard is a powerful tool that can be used to redirect users to a different route if they do not

have the necessary permissions to access a particular route. By implementing the CanActivate guard in your Angular

application, you can ensure that only authorized users are able to access certain routes, helping to improve the security and

usability of your application.

Chapter 4: Implementing CanDeactivate Guard
Setting up CanDeactivate Guard
In Angular, guards are used to protect routes in your application by controlling access based on certain conditions. One type

of guard that can be particularly useful is the CanDeactivate guard, which allows you to prevent users from navigating away

from a route if certain criteria are not met. Setting up a CanDeactivate guard involves creating a service that implements the

CanDeactivate interface and then attaching this service to the route you want to protect.

To set up a CanDeactivate guard, �rst create a new service in your Angular application that implements the CanDeactivate

interface. This interface requires you to de�ne a canDeactivate method that takes two parameters: the component being

navigated away from and the current route state. Inside this method, you can add logic to determine whether the user should

be allowed to navigate away from the route.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Next, you need to attach the CanDeactivate guard to the route you want to protect. This is done by adding a canDeactivate

property to the route con�guration in your routing module and setting it to the name of the service you created in the

previous step. This tells Angular to run the canDeactivate method in the service before allowing the user to navigate away

from the route.

Once you have set up the CanDeactivate guard, you can use it to control access to certain routes in your application. For

example, you could use it to prevent users from navigating away from a form page if they have unsaved changes, or to

prompt them with a con�rmation dialog before allowing them to leave the page.

Overall, setting up a CanDeactivate guard in your Angular application can help improve the user experience by providing a

layer of protection for certain routes. By implementing this guard, you can ensure that users can only navigate away from a

route if certain conditions are met, helping to prevent accidental data loss or other unwanted behavior.

Con�rming Navigation with CanDeactivate Guard
In Angular, guards are an essential part of the routing functionality, allowing developers to control access to certain routes in

their applications. One common use case for guards is to con�rm navigation before allowing the user to leave a particular

route. This is where the CanDeactivate guard comes into play. The CanDeactivate guard is used to con�rm navigation away

from a route by prompting the user with a con�rmation dialog.

When a user attempts to navigate away from a route that is protected by the CanDeactivate guard, Angular will trigger the

guard's canDeactivate method. This method will return a value indicating whether the navigation should be allowed to

proceed or not. If the method returns true, the user will be allowed to navigate away from the route. If it returns false, the

user will be prompted with a con�rmation dialog asking if they are sure they want to leave the route.

To implement the CanDeactivate guard in your Angular application, you need to create a guard class that implements the

CanDeactivate interface. This interface requires the implementation of a canDeactivate method that takes two parameters:

the component being navigated away from and the current route state. Within the canDeactivate method, you can perform

any necessary checks or logic to determine if the user should be allowed to navigate away from the route.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Once you have implemented the CanDeactivate guard class, you can then add it to the route con�guration for the routes you

want to protect. By adding the CanDeactivate guard to a route, you can ensure that the user is prompted with a con�rmation

dialog before navigating away from that route. This can be useful for preventing users from accidentally leaving a form with

unsaved changes or navigating away from a critical page without con�rmation. By leveraging the CanDeactivate guard, you

can provide a smoother and more intuitive user experience in your Angular application.

Handling Unsaved Changes with CanDeactivate Guard
In Angular, guards are used to control access to certain routes in an application. They can be used to protect routes from

unauthorized access, validate user input, and handle unsaved changes before navigating away from a page. One of the most

common use cases for guards is handling unsaved changes with the CanDeactivate guard.

The CanDeactivate guard is used to prevent a user from navigating away from a page if there are unsaved changes on the

page. This is important because users can accidentally lose their work if they navigate away from a page without saving their

changes. By implementing the CanDeactivate guard, you can prompt the user to con�rm whether they want to leave the page

with unsaved changes.

To implement the CanDeactivate guard, you need to create a guard service that implements the CanDeactivate interface. This

interface has a single method, canDeactivate, which takes two arguments: the component that is being deactivated and the

current route state. In the canDeactivate method, you can check if there are any unsaved changes on the page and return a

boolean value indicating whether the user can navigate away from the page.

Once you have implemented the CanDeactivate guard service, you need to add it to the routing con�guration for the

component you want to protect. You can do this by adding a canDeactivate property to the route de�nition in the routing

module and specifying the guard service as the value. This will ensure that the guard is triggered when the user tries to

navigate away from the page.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

In conclusion, the CanDeactivate guard is a useful tool for handling unsaved changes in an Angular application. By

implementing this guard, you can prevent users from accidentally losing their work and give them the opportunity to save

their changes before navigating away from a page. If you are an Angular programmer looking to improve the user

experience in your application, mastering the CanDeactivate guard is a key skill to have.

Chapter 5: Implementing Resolve Guard
Setting up Resolve Guard
In this subchapter, we will discuss the process of setting up Resolve Guard in Angular routing. Resolve Guard is a type of

guard that can be used to fetch data before a route is activated. This can be particularly useful when you need to ensure that

certain data is available before a component is displayed to the user.

To set up a Resolve Guard, you �rst need to create a new service that implements the Resolve interface. This interface

requires you to implement a resolve method that returns an Observable or Promise of the data that you want to fetch.

Next, you need to add this service to the providers array in your module �le. This will make the service available for injection

into your routing con�guration.

Once you have created your Resolve Guard service, you can then use it in your routing con�guration by adding a resolve

property to the route object. This property should be an object where the keys are the names of the data properties you want

to fetch, and the values are the services that will fetch that data.

For example, if you have a route that displays a user pro�le and you need to fetch the user data before the route is activated,

you can create a UserService that implements the Resolve interface and add it to the resolve property of the route object.

By setting up Resolve Guards in this way, you can ensure that your components have access to the data they need before

they are displayed to the user. This can help improve the user experience and prevent errors that can occur when data is not

available when a component is rendered.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Pre-fetching Data with Resolve Guard
In Angular, guards are a powerful feature that allows developers to control access to different parts of an application based

on certain conditions. One type of guard that is commonly used in Angular routing is the resolve guard. This guard is used to

pre-fetch data before a route is activated, ensuring that the necessary data is available when the component associated with

the route is rendered.

The resolve guard is especially useful when working with routes that require data from an API or external source. By using

the resolve guard, developers can ensure that the data is fetched before the route is activated, preventing any potential

issues with data not being available when the component is rendered. This can help improve the user experience by ensuring

that the page loads quickly and smoothly, without any delays due to data fetching.

To implement a resolve guard, developers need to create a service that will fetch the necessary data. This service is then

injected into the resolve guard, which can then use it to fetch the data before activating the route. By using the resolve guard

in this way, developers can ensure that the data is fetched only when it is needed, reducing unnecessary API calls and

improving overall performance.

One important thing to note when using the resolve guard is that it can be used in conjunction with other guards, such as the

canActivate guard. This allows developers to control access to a route based on both whether the data is available and

whether the user has the necessary permissions to access the route. By combining guards in this way, developers can

create powerful and �exible access control mechanisms for their applications.

Overall, the resolve guard is a valuable tool for Angular programmers who need to pre-fetch data before activating a route.

By using the resolve guard, developers can ensure that the necessary data is available when the route is activated, improving

the user experience and performance of their applications.

Error Handling with Resolve Guard

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

In Angular routing, guards are used to protect routes by implementing logic before allowing a user to navigate to a certain

route. One type of guard that is commonly used for error handling is the Resolve Guard. The Resolve Guard is used to fetch

data before a route is activated, ensuring that the necessary data is available for the component to render correctly. In this

subchapter, we will explore how to handle errors effectively using the Resolve Guard in Angular routing.

When using the Resolve Guard for error handling, it is important to handle errors gracefully to provide a better user

experience. One way to do this is by catching errors in the resolver service and returning a new Observable with a default

value or error message. This way, the resolver service can still return data to the component, even if an error occurs during

data fetching.

Another approach to error handling with Resolve Guard is to redirect the user to an error page when an error occurs. This

can be achieved by returning a new Observable with an error object that contains information about the error, such as an

error code or message. The component can then check for this error object and redirect the user to the error page

accordingly.

It is also important to log errors when using the Resolve Guard for error handling. By logging errors, developers can easily

identify and troubleshoot issues that occur during data fetching. Logging errors can be done using the console.log()

function or a logging service, such as Angular's built-in logging service.

In conclusion, the Resolve Guard is a powerful tool for error handling in Angular routing. By handling errors gracefully,

redirecting users to error pages, and logging errors, developers can ensure a smooth user experience when navigating

through an Angular application. By mastering error handling with Resolve Guard, Angular programmers can build robust and

reliable applications that provide a seamless user experience.

Chapter 6: Implementing CanLoad Guard
Setting up CanLoad Guard

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

One of the most important concepts in Angular routing is the use of guards. Guards are used to determine whether a user

can navigate to a certain route or not based on certain conditions. One type of guard is the CanLoad Guard, which is used to

prevent a module from being loaded until certain conditions are met.

To set up a CanLoad Guard in your Angular application, you �rst need to create a guard class that implements the CanLoad

interface. This interface has a single method called canLoad, which takes in two parameters: route and segments. The route

parameter represents the route that the user is trying to access, while the segments parameter represents the segments of

the URL.

Once you have created your guard class, you need to provide it in the providers array of your module. This tells Angular to

use this guard whenever a CanLoad guard is needed. You can provide the guard at the module level or at the route level,

depending on your speci�c requirements.

Next, you need to add the CanLoad Guard to the routes array in your routing module. You can do this by adding a canActivate

property to the route object and passing in an array of guards that need to be run before the route can be loaded. In this

case, you would pass in your CanLoad Guard.

Finally, you can add any additional logic to your CanLoad Guard's canLoad method to determine whether the route should be

loaded or not. This could involve checking if the user is authenticated, if certain data is available, or any other conditions that

need to be met before the module can be loaded.

In conclusion, setting up a CanLoad Guard in your Angular application is an important step in controlling access to certain

modules based on speci�c conditions. By following the steps outlined in this subchapter, you can ensure that your

application remains secure and only allows access to authorized users.

Lazy Loading Modules with CanLoad Guard

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

In the world of Angular programming, guards play a crucial role in protecting routes and controlling access to certain parts

of an application. One type of guard that is commonly used is the CanLoad guard, which allows lazy loading of modules

based on certain conditions. In this subchapter, we will dive deep into how to utilize the CanLoad guard to lazy load modules

in your Angular application.

Lazy loading modules with the CanLoad guard is a powerful feature that can greatly improve the performance and e�ciency

of your Angular application. By using the CanLoad guard, you can prevent unnecessary loading of modules that are not

immediately required, thereby reducing the initial load time of your application. This can result in a smoother user experience

and faster page loading times.

To implement lazy loading with the CanLoad guard, you �rst need to create a CanLoad guard service that implements the

CanLoad interface. This service will contain the logic to determine whether a module can be loaded or not based on certain

conditions, such as user authentication status or permissions. Once you have created the CanLoad guard service, you can

then apply it to the desired routes in your Angular application using the canActivate property in the route con�guration.

By using the CanLoad guard to lazy load modules in your Angular application, you can improve the overall performance and

e�ciency of your application. This can lead to a better user experience and faster page loading times, especially for larger

applications with multiple modules. Additionally, lazy loading modules with the CanLoad guard can help you manage and

optimize the loading of resources in your application, ultimately making your Angular application more scalable and

maintainable. Mastering the CanLoad guard is an essential skill for any Angular programmer looking to take their routing

guards to the next level.

Preventing Unauthorized Access with CanLoad Guard
In Angular, guards are used to prevent unauthorized access to certain routes within an application. One of the most

commonly used guards is CanLoad Guard, which is speci�cally designed to prevent the loading of lazy-loaded modules if

certain conditions are not met. This guard is essential for ensuring that only authenticated users are able to access certain

parts of an application, such as admin panels or premium content.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

To implement CanLoad Guard in your Angular application, you �rst need to create a guard service that implements the

CanLoad interface. This interface requires you to de�ne a canLoad method that returns a boolean or an Observable

indicating whether or not the user is allowed to load the lazy-loaded module.

Next, you need to add the CanLoad Guard to the routes that you want to protect by adding a canActivate property to the route

con�guration object. This property should be set to an array containing the CanLoad Guard service that you created earlier.

When a user tries to navigate to a route that is protected by the CanLoad Guard, the guard service will be called and the

canLoad method will be executed. If the method returns false or an Observable that emits false, the lazy-loaded module will

not be loaded and the user will be redirected to a different route or shown an error message.

Overall, CanLoad Guard is a powerful tool for preventing unauthorized access to certain parts of an Angular application. By

implementing this guard, you can ensure that only authenticated users are able to access sensitive information or premium

features, helping to keep your application secure and user data protected.

Chapter 7: Best Practices for Using Angular
Routing Guards
Using Multiple Guards in Routes
In Angular routing, guards are used to protect routes by implementing logic before allowing a user to navigate to a certain

route. There are various types of guards in Angular, such as CanActivate, CanActivateChild, CanDeactivate, and CanLoad.

These guards can be used individually or in combination to provide different levels of protection for your routes.

When it comes to using multiple guards in routes, you have the �exibility to chain guards together to create complex logic for

route protection. This can be particularly useful when you need to check for multiple conditions before allowing a user to

access a route. By combining guards, you can create a layered approach to route protection, ensuring that only users who

meet all the speci�ed criteria can access a particular route.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

To use multiple guards in routes, you simply need to add them to the canActivate or canLoad property of your route

con�guration in your routing module. Guards are executed in the order in which they are listed, so it's important to consider

the order in which you want your guards to be executed. This allows you to control the �ow of logic and ensure that each

guard is evaluated in the correct sequence.

One common scenario where you might want to use multiple guards is when you need to check for both authentication and

authorization before allowing a user to access a route. In this case, you can create an authentication guard to check if the

user is logged in and an authorization guard to check if the user has the necessary permissions to access the route. By

chaining these guards together, you can ensure that only authenticated users with the correct permissions can access the

route.

Overall, using multiple guards in routes gives you the �exibility to create complex route protection logic in your Angular

application. By combining guards and chaining them together, you can create a layered approach to route protection that

allows you to control the �ow of logic and ensure that only users who meet all the speci�ed criteria can access a particular

route. This can help you enhance the security and usability of your application while providing a seamless user experience

for your Angular programmers.

Error Handling in Guards
Error handling is an essential aspect of working with guards in Angular routing. Guards are used to protect routes in an

Angular application by checking certain conditions before allowing access to a speci�c route. However, sometimes errors

can occur during the execution of a guard, and it is important to handle these errors appropriately.

One common way to handle errors in guards is by using the catchError operator from RxJS. This operator allows you to

catch errors thrown by an observable and handle them in a speci�c way. For example, you can display an error message to

the user or redirect them to a different route if an error occurs in a guard.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Another approach to error handling in guards is to use the tap operator to log errors to the console for debugging purposes.

This can be particularly useful when trying to troubleshoot issues with guards in an Angular application. By logging errors to

the console, you can quickly identify what went wrong and take appropriate action to �x the problem.

In addition to using RxJS operators for error handling, you can also create custom error handling logic in guards by using

try-catch blocks. This allows you to catch and handle errors in a more granular way, giving you greater control over how

errors are managed in your application. By implementing custom error handling logic in guards, you can ensure that your

application remains stable and resilient in the face of unexpected errors.

Overall, error handling in guards is an important consideration for Angular programmers working with routing in their

applications. By using RxJS operators, logging errors to the console, and creating custom error handling logic, you can

effectively manage errors that occur in guards and provide a better user experience for your application. Remember to

always test your error handling logic thoroughly to ensure that it works as expected in all scenarios.

Testing Angular Routing Guards
In the world of Angular programming, understanding routing guards is crucial for creating secure and e�cient applications.

Routing guards serve as checkpoints that can be used to control access to certain routes in an Angular application. These

guards can be used to protect routes that require authentication, authorization, or any other speci�c conditions to be met

before allowing access.

One common type of routing guard is the CanActivate guard, which is used to prevent a user from navigating to a certain

route if certain conditions are not met. This guard can be used to check if a user is authenticated before allowing access to

a protected route, for example. By implementing the CanActivate guard, Angular programmers can ensure that only

authorized users are able to access certain parts of their application.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Another type of routing guard is the CanActivateChild guard, which is used to protect child routes within a parent route. This

guard can be used to apply certain conditions to child routes, such as requiring authentication or authorization before

allowing access. By using the CanActivateChild guard, Angular programmers can create nested routes that are protected by

speci�c conditions, ensuring that only authorized users can access certain parts of the application.

In addition to the CanActivate and CanActivateChild guards, Angular programmers can also make use of the CanDeactivate

guard, which is used to prevent a user from leaving a route if certain conditions are not met. This guard can be used to

prompt the user with a con�rmation dialog before navigating away from a form, for example. By implementing the

CanDeactivate guard, Angular programmers can create a smoother user experience by preventing accidental navigation

away from certain routes.

Overall, understanding how to use routing guards in Angular is essential for creating secure and e�cient applications. By

implementing guards such as CanActivate, CanActivateChild, and CanDeactivate, Angular programmers can control access

to routes, protect sensitive information, and create a more user-friendly experience for their applications. With a

comprehensive understanding of routing guards, Angular programmers can take their applications to the next level and

ensure the security and e�ciency of their code.

Chapter 8: Advanced Topics in Angular Routing
Guards
Custom Guards
In Angular, guards play a crucial role in controlling access to different parts of an application. They are used to protect

routes from being accessed by unauthorized users. Custom guards, in particular, allow developers to create their own logic

for determining whether a user should be granted access to a speci�c route. This subchapter will explore the concept of

custom guards in Angular routing and how they can be implemented in a project.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Custom guards are classes that implement the CanActivate interface in Angular. This interface requires the implementation

of a canActivate method, which returns a boolean value indicating whether the user should be allowed to access the route.

By creating custom guards, developers can de�ne their own rules for access control, such as checking for user roles,

permissions, or authentication status.

To create a custom guard in Angular, developers can generate a new service using the Angular CLI. This service should

implement the CanActivate interface and de�ne the logic for determining whether the user should be allowed to access the

route. Once the guard is created, it can be added to the routing con�guration by specifying it in the canActivate property of

the route de�nition.

Custom guards can be used in combination with other built-in guards in Angular, such as canActivateChild and canLoad, to

create complex access control logic. By chaining multiple guards together, developers can create a layered approach to

access control, where different guards are applied to different parts of the application based on speci�c requirements.

Overall, custom guards provide developers with a powerful tool for implementing access control in Angular applications. By

creating custom logic for determining access to routes, developers can ensure that only authorized users are able to

access sensitive parts of the application. This subchapter will provide practical examples and best practices for

implementing custom guards in Angular routing to help developers master this important aspect of Angular development.

Nested Routes and Guards
Nested Routes and Guards are essential concepts in Angular routing that every Angular programmer should be familiar with.

In this subchapter, we will explore how nested routes and guards work together to enhance the security and functionality of

your Angular applications.

Nested routes allow you to de�ne child routes within a parent route, creating a hierarchical structure for your application.

This can be useful for organizing and managing complex applications with multiple views and components. By nesting

routes, you can create a more modular and maintainable codebase, as each route can have its own set of guards and

parameters.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Guards in Angular routing are used to protect routes from unauthorized access or to perform certain actions before a route

is activated. There are four types of guards in Angular: CanActivate, CanActivateChild, CanDeactivate, and CanLoad. These

guards can be used to restrict access to certain routes based on user permissions, authentication status, or other

conditions.

When using nested routes, guards can be applied at both the parent and child route levels. This allows you to control access

to speci�c views or components within your application, ensuring that only authorized users can navigate to certain areas of

your site. By combining nested routes and guards, you can create a secure and seamless user experience that meets the

needs of your application.

In this subchapter, we will provide practical examples and code snippets to demonstrate how to implement nested routes

and guards in your Angular applications. We will also discuss best practices for using guards in combination with nested

routes, and provide tips for optimizing the performance and security of your application. By mastering nested routes and

guards, you can take your Angular programming skills to the next level and build robust, secure, and user-friendly

applications.

Dynamically Assigning Guards
In Angular, guards are a powerful feature that allow developers to control access to certain routes based on speci�ed

criteria. These guards can be used to protect routes from unauthorized users, ensure data is loaded before navigating to a

route, or even prompt the user for con�rmation before leaving a page. One of the key bene�ts of using guards is that they

allow for dynamic assignment, meaning you can determine which guard to apply based on runtime conditions.

One common use case for dynamically assigning guards is implementing role-based access control in your Angular

application. By using guards such as CanActivate or CanLoad, you can check the user's role or permissions and only allow

access to certain routes if the user meets the necessary criteria. This can help improve the security of your application by

preventing unauthorized users from accessing sensitive information or functionality.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

To dynamically assign guards in Angular, you can use a variety of techniques such as creating a custom guard factory or

using dependency injection to provide guards based on runtime conditions. For example, you could create a guard factory

that takes in a role as a parameter and returns the appropriate guard based on the user's role. This allows for greater

�exibility and reusability in your guard implementation.

Another way to dynamically assign guards in Angular is by using route data to specify which guards should be applied to a

particular route. By adding a data property to your route con�guration, you can specify an array of guards that should be

applied when navigating to that route. This allows for a more declarative approach to guard assignment and makes it easier

to manage complex guard logic.

Overall, dynamically assigning guards in Angular can help you create more �exible and secure applications by allowing you to

control access to routes based on runtime conditions. By leveraging the power of guards, you can enhance the user

experience, improve the security of your application, and ensure that data is loaded and validated before navigating to a new

route. Mastering the use of guards in Angular routing is essential for any Angular programmer looking to build robust and

secure applications.

Chapter 9: Conclusion
Recap of Angular Routing Guards
As an Angular programmer, it's important to understand the concept of Angular routing guards and how they can be used to

enhance the security and functionality of your Angular applications. In this subchapter, we will provide a recap of Angular

routing guards and how they can be effectively implemented in your projects.

Angular routing guards are used to control access to different parts of your application based on certain conditions. There

are four types of routing guards in Angular: CanActivate, CanActivateChild, CanDeactivate, and CanLoad. CanActivate is

used to determine if a route can be activated, CanActivateChild is used to determine if a child route can be activated,

CanDeactivate is used to determine if a route can be deactivated, and CanLoad is used to determine if a lazy-loaded module

can be loaded.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

To implement routing guards in your Angular application, you need to create a service that implements the necessary guard

interface (e.g., CanActivate). You then need to provide this service as a provider in your module's providers array. Finally, you

need to add the guard to the route con�guration for the route you want to protect by adding a canActivate property to the

route object.

One common use case for routing guards is to restrict access to certain routes based on the user's authentication status.

For example, you can use the CanActivate guard to prevent unauthenticated users from accessing certain routes in your

application. This can help improve the security of your application by ensuring that only authorized users can access

sensitive information or perform certain actions.

Another use case for routing guards is to prevent users from navigating away from a page without saving their changes. You

can use the CanDeactivate guard to prompt users with a con�rmation dialog before they leave a page with unsaved changes.

This can help prevent accidental data loss and improve the user experience of your application.

In conclusion, Angular routing guards are a powerful tool that can help you control access to different parts of your

application and improve the security and functionality of your Angular projects. By understanding how to implement and use

routing guards effectively, you can enhance the user experience of your applications and ensure that they are secure and

reliable.

Next Steps for Mastering Angular Routing Guards
Now that you have a solid understanding of what guards are in Angular routing and how they are used, it's time to take your

skills to the next level. In this subchapter, we will explore some advanced techniques and best practices for mastering

Angular routing guards.

One of the key next steps for mastering Angular routing guards is to familiarize yourself with the different types of guards

available in Angular. There are four main types of guards: CanActivate, CanActivateChild, CanDeactivate, and CanLoad. Each

of these guards serves a speci�c purpose and can be used to control access to different parts of your application.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Mastering Angular Routing Guards: A Comprehensive Guide for Angular
Programmers

Another important aspect of mastering Angular routing guards is understanding how to handle authentication and

authorization in your application. You can use guards to restrict access to certain routes based on the user's authentication

status or role. By implementing guards effectively, you can create a secure and user-friendly experience for your application

users.

In addition to authentication and authorization, you can also use guards to perform other tasks such as data validation, error

handling, and route redirection. By leveraging the full power of Angular routing guards, you can enhance the overall

functionality and user experience of your application.

To further enhance your skills in working with Angular routing guards, consider exploring advanced topics such as

combining multiple guards, creating custom guards, and handling asynchronous operations within guards. By mastering

these advanced techniques, you can take your Angular programming skills to the next level and become a more pro�cient

and versatile developer.

In conclusion, mastering Angular routing guards is essential for creating secure, e�cient, and user-friendly applications. By

understanding the different types of guards, implementing authentication and authorization, and exploring advanced

techniques, you can take your skills to the next level and become a more pro�cient Angular programmer. So, don't hesitate

to dive deeper into the world of Angular routing guards and unlock the full potential of your applications.

https://app.designrr.io/projectHtml/1584229?token=a099df3cb2d9c8847ea87ea6ddaf6fb1&embed_fonts=&pdf=1


Thanks you!

Budhi Sagar Dubey


