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a b s t r a c t

This paper presents a new approach to optimal sensor design for structural health monitor-
ing (SHM) applications using a modified f-divergence objective functional. One of the pri-
mary goals of SHM is to infer the unknown and uncertain damage state parameter(s) from
the acquired data or features derived from the data. In this work, we consider the loss of
boundary contact (a ‘‘gap”) between a navigation lock miter gate and the supporting wall
quoin block at the bottom of the gate to be the damage state parameter of concern. The
design problem requires the optimal sensor placement of strain gages to obtain the best
possible inference of the probability distribution of the gap length using the data from
the multi-dimensional strain-gauge array. Using the notion of f-divergences (measures of
difference between probability distributions), a risk-adjustment is made by using functions
that weigh the importance of acquiring useful information for a given true value of the
state-parameter and using Bayesian optimization. For this case study of miter gate moni-
toring, a computationally expensive high-fidelity finite element model and its digital sur-
rogate is employed to provide efficient, previously-validated data.

� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Structural health monitoring (SHM) is a multi-part paradigm that aims at assessing the state of the structural system and
its ability to perform the desired design functionality by analyzing in-situ sensor measurement data. A well-designed SHM
strategy enables the choice of optimal maintenance implementation, helps the structure achieve maximum performance,
reduces ownership cost, minimizes unscheduled downtime, and potentially helps to avoid structural failures that can cause
material or personal losses. Such an SHM system is desirable only if the benefits obtained from using the acquired informa-
tion over the structure’s life outweigh the cost of installing and maintaining that SHM system [1]. Hence, the value of an SHM
system essentially depends on its design; at the core of any well-designed SHM system is a data acquisition system that
relies on (usually an array of) deployed sensors to initiate the information workflow from which ultimate decisions about
operations, maintenance, and other life cycle actions will be made. Therefore, the optimal design of this sensor network–de-
fined herein as the spatial arrangement of the sensor network–can significantly enhance the performance and life cycle value
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of the SHM system as a whole. Formulating and solving such an optimization problem is the central goal of this paper. Of
course, other design parameters (beyond spatial arrangements such as data acquisition rate or duty cycle) or constraints
(such as power availability) will also play a role in any specific application, but such multi-objective don’t fundamentally
alter the ideas presented in this work.

Due to the many sources of variability and noises in any SHM system’s observations, the SHM process contains inherent
uncertainties that need to be considered. The optimal sensor placement problem, therefore, aims to find a sensor configu-
ration that gathers the information most useful for detecting the target state(s) subject to uncertainty [2,3]. The key element
to this is the optimality criterion or objective function that is used to evaluate design utility. However, there is not a universal
objective for sensor design, as each application has a distinct goal for the use of a particular SHM system. Consequently, dif-
ferent objective functions have been proposed in the past for optimal sensor placement design, starting with mode identi-
fication and correlation in some of the original works in this area, which were not necessarily SHM applications [4–8]. For
example, in Ref. [4,8], the optimal sensor arrangement minimized the condition number of the Fisher information matrix
corresponding to the target modes of dynamical structures. Sun et al. [9] proposed optimal sensor design by maximizing
dynamic information of the structure using a limited number of sensors and proposed an artificial bee colony algorithm
to solve the optimization problem. Austin et al. [10] used objective function formulated to reduce the type I and II errors
and used adaptive mutation-based genetic algorithm for the sensor design. Similarly, Papadimitriou et al. [11] proposed min-
imizing entropy focusing on structural modal updating. In one of the first SHM-focused studies, Udwadia [12] and Basseville
[13] have also used the Fisher information matrix to maximize the performance of SHM for structural modal identification.
For some other application domains such as the aviation sector, decision-makers are more concerned with detecting outlier
states of the structure, since the cost of failure is catastrophic [14]. Such maximization of outlier state detection has led to
objective functions such as the probability of detection (POD), probability of classification [15], and the Mahalanobis distance
measure [16]. There are several other seminal contributions in optimal sensor placement design for a wide class of SHM
applications found in Refs. [17–19].

Given that decision-makers are the typical curators of SHM utility, the objective function may also be defined from the
perspective of decision theory that defines loss as a consequence of decision-making (or the associated risk) by considering
various prior information and uncertainty sources in the decision-making process. The loss/risk is a subjective quantity
and is defined according to the problem. Optimal sensor design therein requires finding the sensor network that minimizes
the losses or risk expressed by an objective function in an average sense; such an objective function is defined as Bayes risk.
This is a more general definition of traditional Bayes risk, and it expands its applicability from a pure monetary-based stand-
point to a more general optimization problem in the sense that risk is no longer confined to the likelihood of losing money,
but rather can be thought of as a regret of making an undesirable decision or predicting undesirable outcomes. One such
Bayes risk objective function for sensor placement design was developed by Flynn and Todd [20,21], in which Bayesian
experimental design [22] is used for optimal sensor placement design by minimizing an appropriate Bayes risk functional.
It was demonstrated in an ultrasonic guided wave sensor design problem that Bayes risk can minimize the total presence of
either type I or type II decision errors in SHM. The use of expected Kullback–Leibler (K-L) divergence or expected utility in
sensor placement design [23–25] can also be classified as a type of Bayes risk. While the idea of minimizing expected risk (or
maximizing the utility of your desired outcome) using Bayes risk is powerful for optimizing sensor placement under uncer-
tainty, its advantageously generic nature and currently unexploited benefits must be carefully considered. First, we note that
the term risk is subjective and is somewhat open-ended to a desirable definition. The risk function or utility function can be
formulated differently and will lead to different sensor placement designs, i.e., no utility function is generic to all problems.
Second, current Bayes risk-type objective functions are incapable of incorporating human psychology or risk-perception of
decision-makers in sensor network design.

Using the monitoring of lock navigation gates as an application case, this paper aims to address the two issues outlined
above by expanding on the idea of Bayes risk-type objective functions to simultaneously evaluate the gain in information
and consider the risk-perception of decision-makers in sensor network design. This is done by proposing a risk-weighted
f-divergence functional for sensor placement design. Firstly, we investigate different types of f-divergence measures to eval-
uate the information gain of a particular sensor network design. Since the f-divergence gives a generic form to evaluate the
distance (depicting gain information or information divergence) between two probability distribution functions, using differ-
ent types of f-divergence helps to investigate and compare the effects of using different distance measures in the sensor
placement optimization process. Secondly, the f-divergence is weighed with a risk-based weight function to incorporate a
decision-maker’s risk perception into sensor placement design. The f-divergence is modified using weight functions that
weigh in the importance of acquiring good information for a given true value of the structural damage state. Thirdly, the
f-divergence is also weighted by prior knowledge of the structural damage state. The proposed objective function in this
paper is, therefore, the integral of the weighted f-divergence of the posterior distribution relative to the prior distribution,
weighted over the prior distribution, and risk-based weight function, integrated over all the physically possible values of
the structural damage states. The goal is to obtain the sensor network that maximizes the objective function (or maximizing
the gain in the additional information or minimizing the risk or regret of inferring meaningless information regarding the
damage states). The paper also proposes two different approaches to incorporate the risk weights into the Bayes risk func-
tional. In the first approach, the risk-weights are included explicitly inside the integrand of the Bayes risk functional, whereas
in the second approach, the risk weights are used to modify the prior damage distribution. Although mathematically equiv-
alent, numerical evaluation of risk-weighted Bayes risk yields slightly different results.
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In addition to the objective function, another long-standing challenge in sensor placement design is how to effectively
and efficiently solve the posed optimization model. A common approach to optimization is iteratively searching for the opti-
mal value guided by the steepest gradient descent. This approach has been used in machine-learning [26] and in developing
an optimal sensor network [27]. For example, Akbarzadeh [2] used a gradient descent algorithm in sensor optimization by
deriving derivatives at each step, which requires less computational effort. However, in many problems, the exact analytical
derivatives are not available. Heuristic algorithms have also been widely used in the literature; for example, Jin [28] used a
genetic algorithm to minimize the communication distance of sensors, while Yi et al. [29] utilized a genetic algorithm to
obtain optimal sensor placement for a high-rise building monitoring system. However, the main drawback of these opti-
mization strategies is that they must evaluate many samples, yielding a computationally expensive path to the solution.
In complex large-scale SHM applications such as the civil infrastructure problems considered in this paper, the sensor design
space itself is potentially prohibitively large, and this is coupled with the fact that obtaining and evaluating Bayes risk even
once may require tens of thousands of runs of expensive simulations (such as if a finite element is used). This paper also
proposes a novel numerical framework that seamlessly synthesizes Gaussian process regression [30], dimension reduction
techniques [31,32], Bayesian optimization [33,34], and sequential Monte Carlo to break this computational challenge. In the
proposed framework, once the desirable sensor measurements are obtained in one iteration of the optimization, the predic-
tive model need not be run in order to evaluate the observed sensor measurements at every optimization iteration. As shown
in the result section, this significantly improves the computational efficiency of the sensor placement design optimization
and allows for a reduction of computational time from years to hours. The review papers [35–37] and the references therein
serve as an excellent source of information on the optimal sensor network design and the computational methods to solve
the optimization problems.

The proposed risk-weighted f-divergence functional and the efficient numerical framework to overcome the computational
burden for sensor placement designwill be demonstrated in a lockmiter gate monitoring application. The United States Army
Corps of Engineers (USACE) spends billions of dollars inmaintaining and operating theUSA’s inlandwaterways navigation cor-
ridor, where the unscheduled shutdown of these assets and dewatering for inspection or repair is very costly [3,38,39]. Within
the navigation corridor, miter gates are one of the most common types of lock gates employed [40]. Many of these structures
have been operational for over 50 years, and without knowledge of their actual structural residual strength capacity, they
could potentially be operatingwith a higher risk of failure. Current practice involves engineering elicitation via inspection, fol-
lowed by lock closures if the inspection so warrants. Since this process is based on the varied experience and interpretation of
field inspectors, it bears high uncertainty and variability [41], and USACE is investigating the use of SHM to potentially reduce
those uncertainties. In general terms, the first step of the SHM system design is to decide what sensors are most suitable (e.g.,
discrete or continuous strain-gauges [42], accelerometers, etc.) to provide measurements that are most correlated to the type
of damage or state to be inferred. The second step is then to obtain a sensor network design (e.g., number of sensors, location/-
placement, duty cycle, etc.) that provides themost valuable information at aminimal cost [43,44], as broadly elucidated above.
To this goal, in this paper, an optimal sensor network will be designed for a miter gate using the proposed framework.

The primary contributions of this paper may therefore be summarized as: (1) it proposes a risk-weighted f-divergence
Bayes risk for sensor placement design and two different approaches to incorporate the risk weights into the Bayes risk func-
tional; (2) it investigates and compares different types of f-divergence measures in the objective functional for sensor place-
ment design; (3) it proposes a novel numerical framework that drastically reduces the required computational effort in sensor
placement design by integrating Bayesian optimization, surrogatemodeling, univariate dimensional reduction, and Sequential
Monte Carlo; and (4) it demonstrates the proposed framework in a complex and practical miter gate monitoring application.

The rest of the paper is arranged as follows. Section 2 details the background of the miter gate SHM application and briefly
discusses the proposed sensor placement design optimization framework. Section 3 details the associated Bayes risk func-
tional, followed by Section 4 that investigates univariate dimensional reduction with Gauss-Hermite quadrature approach to
evaluate the Bayes risk. Section 5 discusses the optimal sensor placement design using Bayesian optimization in detail and
presents the novel algorithm used to overcome the computational burden. After a general discussion on Bayesian optimiza-
tion, the remaining part of Section 5 discusses numerical results. Finally, Section 6 concludes the paper.

2. Problem description

Some preliminary definitions and notations are first necessary. The real number space in d dimension is represented by
Rd, with R1 � R. A random variable X is a real-valued function defined on a discrete or a continuous sample space SX and is
assumed to take values in a measurement space XX 2 Rd, such that X : SX�!XX 2 Rd. Lower case letters x represent realiza-
tions of the random variable X, such that x 2 XX . The probability density function and the cumulative density function are
represented by f X xð Þ and FX xð Þ. The expected value of a function g xð Þ is denoted by EX g xð Þ½ �. Lastly, a random variable X fol-
lowing a Gaussian distribution, with the mean lx and standard deviation rx is denoted by:

f X xð Þ ¼ 1
rx
/ x�lx

rx

� �
;

FX xð Þ ¼ U x�lx
rx

� �
;

X � N lx;r2
x

� �
:

ð1Þ
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No symbolic distinction is made for different dimensions d of the measurement space and the random variable. The vector-
dimensionality of a random variable is contextual and is defined as needed.

Finally, let XE represent the exhaustive sensor design space and e 2 XE represent a design realization. Let E eð Þ : XE�!Rde-
note the Bayes risk functional. The goals of this paper are: (1) to appropriately define the Bayes risk E eð Þ; (2) to devise a
computationally-efficient approach to numerically evaluate the value of Bayes risk for a given design e; (3) to arrive at
the most optimal design e� 2 XE, such that:

e� ¼ argmaxe2XE
E eð Þ: ð2Þ

Evaluating the Bayes risk would require observable strain data under various damage scenarios. The sensor data is obtained
using a validated finite element model. Therefore, the Bayes risk E eð Þ and the design space XE will both depend on a finite
element model capable of estimating observable strains under various damage scenarios.

2.1. Miter gate: finite element model

The Greenup miter gate, which is maintained and managed by USACE on the Ohio River in the USA, is considered for a
case study. Fig. 1 shows the Greenup lock and the miter gate (image adapted from the USACE website and Eick et al.
[45]). Loss of contact in the quoin blocks is the most commonly observed damage mode in such systems [39,41,40]. Loss
of contact leads to a formation of a very thin gap between the gate and the wall quoin blocks at the bottom of the gate, which
induces undesirable load redistribution in the system. The length of the of loss of contact at the bottom of the gate is referred
to as gap length in this paper; therefore, the gap length is considered as the continuous state-parameter h 2 XH (refer to
Fig. 2), such that XH ¼ hlow; hup

� �
. Here, hlow is the lower bound of the gap length defining the existence of ‘‘damage”, and

hup is the upper bound of the gap length defining critical damage of failure. This value is suggested by the USACE engineers
based on their experience, past inspection data, or numerical simulation. In most cases, data related to the failure of the
structure may not be available because decision-makers are risk-averse and prevent the gap length from approaching failure
levels. In such scenarios, a rigorous high-fidelity numerical simulation should be performed to estimate the hup. Based on
feedback from the field-engineers [40], the upper bound of the gap length can be considered as hup ¼ 180 inches for gates
that have similar structural characteristics as the Greenup miter gate. If no value of hlow is specified, it can be taken as
0 inch (indicating pristine state of the gate).

The loss-of-contact part of the gate is always submerged in highly turbid water, and it consequently cannot be easily mea-
sured directly during normal operational conditions. Hence, gap length is an unknown parameter and must be inferred from
indirect measurements. The Greenup miter gate is equipped with a strain gauge network that records the operational strain
measurements in real-time and will be used to infer the gap length. The data acquisition process is simulated using a high-
fidelity finite element model (FEM) of the Greenup miter gate previously validated in the undamaged condition with the
available strain sensor readings [40]. When the miter gate is new and pristine, the gap length could reasonably be presumed
to be zero. As with any such model, its representative predictive value is only as good as its validation with regard to the real
structure that it is modeling. In this case, the FEM was validated in the undamaged condition, but modeling of the damage
itself could not be validated on actual data from the gate in a known damaged condition, so modeling bias in the damage
state could exist. That does not invalidate the demonstration of the proposed approach or its utility but provides caution
on interpreting the specific results for this case beyond the demonstration of the overall optimal sensor placement approach.
With that caveat, the FEM will serve as the fundamental physical model for this study.

To arrive at the optimal sensor placement design, we rely on the validated finite element model to obtain the observable
strain values. A sensor-network can be designed by picking strain gauges from a countable set of strain-locations where we

Fig. 1. Greenup locks and miter gate.
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have observable strain data for different damage scenarios. In our case, it is a set of 64919� 4 strain locations as discussed
later. Although there are infinite possible locations where strain gauges can be placed on a real miter gate, the finite element
model discretely covers the possible sensor locations using a countable number of strain gauges. The finite element modeling
itself is constructed using 3D quadrilateral and triangular shell elements in ABAQUS and consists of a total of 64919 ele-
ments. Every element has a local coordinate system dif g defined in the undeformed state, and a global coordinate system
Eif g. The thickness of the element is in the direction d3, and the top and bottom surface of the element is spanned by the
vectors d1 � d2ð Þ as shown in Fig. 3. The strain gauges are attached to the top and bottom surface of each element, measuring
uniaxial strains along the direction d1 and d2. Each element is identified by its geometric centroid at the origin of the local
coordinate system. Therefore, there are four possible arrangements of strain gauges on each element. These possibilities are
identified using the following abbreviations:

TH : top element; horizontal orientation along d1;

TV : top element; vertical orientation along d2;

BH : bottom element; horizontal orientation along d1;

BV : bottom element; vertical orientation along d2:

ð3Þ

Based on the above abbreviations, for a typical element m; xmTH and xmTV represent the measurement of strain from gauges
attached to the top surface and oriented along d1 and d2, respectively. Similarly, xmBH and xmBV represent the measurements
of strain from gauges attached to the bottom surface and oriented along d1 and d2, respectively. Therefore, any element
m has four candidate strain gauges attached to it, whose readings are represented by a four-dimensional vector
xm ¼ xmTH; x

m
TV; x

m
BH; x

m
BV

� �
. Hence, there is a total of 64919� 4 strain locations to be considered for optimal sensor design.

The gate is subjected to uncertain upstream and downstreamhydrostatic loads quantified by the hydrostatic upstream and
downstream heads; these are denoted by the random variables Hup and Hdown, with realizations hup 2 Xhup and hdown 2 Xhdown

,
respectively, whereXHup andXHdown

represent the space of all possible values of upstream and downstream head, respectively.
The water heads are modeled by a Gaussian distribution with their mean and variance reasonably assumed as

hup � N 552 in;102 in2
� �

; ð4aÞ

hdown � N 168 in;202 in2
� �

: ð4bÞ

Independent zero-mean additive Gaussian noise, denoted by a random variable fi with the realization ei, is assumed for each
strain gauge,

fi � N lei ¼ 0; r2
ei

� �
ð5Þ

Fig. 2. Physics-based model of miter gate and the bearing gap.
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The value ei represents the realization of noise, and Xfi represents the noise space, such that ei 2 Xfi . The standard deviation

of the noise is assigned to be rei ¼ 5� 10�6 in accordance with reasonable commercial strain gauge performance.
The random nature of the water heads and strain gauge noise together make the observable strain values themselves ran-

dom variables. Let XX ¼ XXTH [XXTV [XXBH [XXBV be the set of all the possible 64919� 4 strain gauge locations. Here, XXTH

and XXTV represents the space of all strain gauges attached to the top surface of element measuring strain in the direction
d1, and d2 respectively. Similarly, XXBH and XXBV represents the space of all strain gauges attached to the bottom surface of
element measuring strain in the direction d1, and d2 respectively. Let X denote the random vectors consisting of all strain
measurements corresponding to XX space, such that x 2 XX represent realizations of the random vectors X (see Eq. (9) for
the relationship between the observed strain realization x, the strain output of FEM, and the noise in strain gauge). Finally,
we denote the true values of the gap length, and hydrostatic heads as: htrue 2 Xh;hup�true 2 XHup ;hdown�true 2 XHdown

.

2.2. Miter gate: surrogate model

Solving the optimization problem posed in Eq. (2) requires evaluating the Bayes risk (defined later in Section (3) for var-
ious sensor network designs to arrive at an optimal design. As described below, each evaluation of the Bayes risk involves
numerous FEM predictions to solve a Bayesian inference problem. This is computationally intractable and we seek compu-
tationally efficient approximations to the FEM. For Bayesian calibration, metamodels or surrogate models are preferable, e.g.,
Support Vector Regression (SVR) [46], Gaussian Process Regression (GPR) [46,34], Neural Network [47], and Polynomial
Chaos Expansion (PCE) [48]. Some such approaches like SVR or neural networks yield point estimates/prediction, while
others like GPR also predict the uncertainties associated with an average estimate/prediction. GPR is used to build a surro-
gate model in this work, which turns out to be 50,000 times faster than the FEM model. The output of the surrogate model
still has a very large dimension; this is addressed using principal components analysis, which can be efficiently computed
using the singular value decomposition (SVD) that reduces the high-dimensional, highly-correlated output space to low-
dimensional, uncorrelated features. This is analogous to the ‘‘linear model of coregionalization” in the Gaussian process lit-
erature. Of the possible 64919� 4 strain readings in XX ;64919 strain measurements corresponding to each of the spaces
XXTH ;XXTV ;XXBH and XXBV are considered independently. The 64919-dimensional strain response corresponding to each of
the spaces XXTH ;XXTV ;XXBH and XXBV are transformed to lower 7; 12; 7; 12 feature spaces, respectively. Equivalently, the
64919� 4-dimensional strain response corresponding to the spaces XX are transformed to a lower 38 dimensional feature
space that covers 95% of the total information of the strain data. We realize that the vertically oriented strain measurements
have a larger number of features (12 features for both top and bottom strain gauges) than the horizontally oriented strain
measurements (7 features for both top and bottom strain gauges). One possible reason is that the vertical strain responses
are more sensitive to the dynamic loading considered in this paper (hydrostatic upstream and downstream loading) than

Fig. 3. Orientation and the location of the strain gauge and different type of shell elements used in FEM.
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their counterparts in the horizontal direction, and hence require a larger number of features. Inversely, the larger number of
features required to represent vertical strain gauge measurements also implies that the vertically oriented strain measure-
ments have higher complexity (that by itself is a subjective quantity as described in [49]) than the horizontally oriented
strain measurements. These 38 features can be inverted to obtain the complete strain gauge response. Four surrogate models
for 7; 12; 7; 12 features corresponding to four strain measurement spaces XXTH ;XXTV ;XXBH and XXBV were built using GPR. We
used a squared exponential kernel and we evaluated the hyper-parameters using maximum likelihood estimation. Since the
GP models for each of these features were trained independently, they have different hyper-parameters. One-third of the
1000 data points were randomly used for training the GPR, and the remaining two-thirds were used for validation to verify
the accuracy of the surrogate. Fig. 4 illustrates the discussion carried out so far. Like the FEM, the GPR model yields the
64919� 4 dimensional strain response, but at a much cheaper computational cost.

2.3. Brief introduction to risk-weighted f-divergence based Bayesian optimization workflow for sensor placement design

Given the overall objective of an optimal sensing design, XE represents the design space, such that e 2 XE represents a
particular design realization. The design e consists of Nsg eð Þ number of strain gauge measurement locations. Every design
e yields different measurement data xe 2 XXe . Here, XXe � XX represents the measurement space for the design e, and Xe

denotes the corresponding random variable (see Eq. (10) that depicts how the observable strain realization xe is obtained
from the FEM and the strain gauge noise). Having defined the design space, four prominent steps are summarized below
for the proposed risk-weighted f-divergence based Bayesian optimization framework for sensor network design.

2.3.1. Step 1: Problem description
This paper’s objective could be phrased as attempting to answer the question: ‘‘Given sources of uncertainty (noise in the

sensors and the uncertain external conditions), which set of sensors should be chosen among the possible 64919� 4 strain
gauges measurements that yields the maximum relative gain in the information contained in the posterior distribution of
the target damage (gap length) relative to the information contained in the prior distribution?”.

Consider a sensor network design e 2 XE with the measurement space XXe . Before any new/additional information is
available about the structure through the strain gauge measurements, the uncertainty in the gap length is described by
its prior probability distribution fH hð Þ. When additional information or strain gauge measurements are observed, it informs
the observer (or the engineer) about the current state of the structure. This new information translates into the further
refinement of the understanding of the gap length, now described by its posterior distribution fHjXe

hjxeð Þ. If the strain gauge
readings are representative of the true state of the structure, the posterior distribution fHjXe

hjxeð Þ draws closer to an under-
standing of the true description of the gap length as compared to the prior distribution. Mathematically, then, the goal here is
to obtain the sensor-design e� 2 XE that yields the maximum relative gain in the information contained in the
fHjXe

hjxeð Þrelativetotheinformationcontainedin\color{black}{f}_{\rTheta}\left( \theta \right):

Fig. 4. Flowchart describing strain data generation using FEM, and prediction using GPR surrogate model.
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We very briefly describe the remaining three steps of optimization next. The details are omitted in this brief description
because each of these steps demands a complete section on its own.

2.3.2. Step 2: Definition of the design dependent Bayes risk functional
The next step of the Bayesian optimization is to define the optimality criterion or the objective functional, which is other-

wise known as Bayes risk. The Bayes risk is a function of the design e 2 XE and is denoted by E eð Þ. Bayes risk is a problem-
dependent functional. We aim to define Bayes risk such that:

1. The Bayes risk guides us to obtain a sensor-design that maximizes information gains on the gap length inferred from the
sensor measurements. The gain in the information is quantified by the f-divergence that evaluates the similarity between
two probability measures.

2. The Bayes risk incorporates the desire to obtain better information/description of the gap length when the structure
approaches a higher degree of damage (an increased gap length approaching some critical size). This is accomplished
by using a risk-based weight function.

3. The Bayes risk also takes into account prior knowledge of the gap length.

The Bayes risk for this paper is defined as the integral of the weighted f-divergence of the posterior distribution relative to
the prior distribution, weighted over the prior distribution, and risk-based weight function, integrated over all the physically
possible values of the gap length. Section 3 is dedicated to detailing the Bayes risk functional.

2.3.3. Step 3: Evaluation of the design-dependent Bayes risk functional
Bayes risk is a non-linear functional. For a given design e, evaluating the Bayes risk requires one to obtain the posterior of

the gap length and risk-based weight functions. Section 3.2 delineated a line of reasoning for incorporating risk-based weight
function in the definition of the Bayes risk. Theoretically, the posterior distribution can be evaluated using Bayes’ theorem:

fHjXe
hjxeð Þ ¼ f Xe jH xejhð ÞfH hð Þ

f Xe
xeð Þ : ð6Þ

The quantity fH hð Þ represents the prior probability of the true state, and in absence of any information, it may be assumed to
be a uniform (uninformed) distribution. The likelihood f Xe jH xejhð Þ is obtained using either a physics-based model or a digital
twin. We note that the posterior does not follow a canonical distribution and expectations with respect to the posterior in (6)
cannot be obtained analytically. This is because the relationship between strain measurements xe and the gap length h is
highly nonlinear. We deploy numerical approximation of the posterior distribution by using particle filters, or specifically
a sequential Monte Carlo (SMC) approach.

The integrand in the Bayes risk expression is integrated over the gap length (defined later in Section 3). The second dif-
ficulty in obtaining Bayes risk is to evaluate this integral. To approximate the integral, we first change the variable of the
integral from the measurement space to the uncertain input space. For instance, in our problem, the hydrostatic heads
and the noise in the strain values are the primary random input variables. Since there is a unique one-to-one relationship
between an input realization and an output realization, this allows us to change the variables of integration in the Bayes risk.
The integral can then be numerically approximated using univariate dimensional reduction and Gauss-Hermite quadrature.
Section 4 discusses the approach to evaluate the Bayes risk.

2.3.4. Step 4: Obtaining the optimal sensor design using Bayesian optimization
With the problem well-defined (step 1) and the associated Bayes risk optimality criterion formulated (steps 2–3), the

problem becomes: ‘‘Given XH;XXe ;XE;Xf;Xhup ;Xhdown
, given an assumed uncertainty structure (as in Eq. (4) and (5)), what

is the design e� 2 XE that maximizes the Bayes risk objective functional E eð Þ?” We carefully note that intuitively, ‘‘risk” must
be minimized. However, in this paper, Bayes risk represents relative gain in information, and therefore, must be maximized.
We could have called the objective function ‘‘Bayes utility”, but as noted in the introduction, we take advantage of the fact
that ‘‘risk” is a subjective quantity.

We very briefly detail the sensor optimization algorithm, which will be explained in great depth in Section 5. We start
with an initial design e0 consisting of N0 number of sensors. To obtain the optimal design e1 with N0 þ 1ð Þ sensors, we search

the entire design space for the N0 þ 1ð Þth sensor location. The N0 þ 1ð Þth sensor location that maximizes the acquisition func-
tion constitutes the next additional sensor. In this paper, we use expected improvement [50,51] as the acquisition function.
Similarly, we repeat the optimization process to arrive at the optimal design enas consisting of N0 þ nas sensors (or nas number
of additional sensors relatively to the initially assumed design e0). Finally, we pick e� ¼ argmaxenas

E enasð Þ as the most optimal
design, where E enasð Þ represents the Bayes risk associated with the design enas . Section 5 details the Bayesian optimization
algorithm for optimal sensor placement.
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2.4. Bayesian inference of gap length for a given sensor design

As discussed in the previous section, the state parameter is the gap length h, and for a given sensor-design e, the measure-
ment vector xe 2 XXe is the strain recorded at Nsg eð Þ number of strain gauge locations. Therefore, Xe is also a random vector.
The measurements obtained from the strain gauges are used to infer the gap length h using Eq. (6). In the context of inferring
h, the evidence f Xe

xeð Þ is just a normalizing constant. Therefore, Eq. (6) may be written as:

fHjXe
hjxeð Þ / f Xe jH xejhð ÞfH hð Þ: ð7Þ

The distribution fH hð Þ reflects the prior knowledge about the parameter h before any new information/measurements are
obtained. Assuming only basic geometrical constraints on the gap length, we assume the prior to be a uniform distribution
spanning over XH ¼ hlow; hup

� �
, such that

fH hð Þ ¼ hup � hlow
� ��1

; h 2 XH;

0; otherwise:

(
ð8Þ

Evaluating the posterior using Eq. (7) requires us to obtain the likelihood f Xe jH xejhð Þ. Constructing the likelihood f Xe jH xejhð Þ
requires a model of the measurement process. We note that the design e consists of the selected sensors chosen from a total
of 64919� 4 possibilities, or XXe � XX . For a given gap length and the hydrostatic heads, the FEM or GPR yields strain values
for all of the 64919� 4 sensors. Therefore, to detail the measurement model, we consider the total measurement spaceXX . In
this paper, we use the following measurement model

x ¼ g h;hup;hdown
� �þ e: ð9Þ

In the equation above, x ¼ x1; x2; 	 	 	 ; x64919�4ð Þ 2 XX is a realization of the random vector X consisting of 64919� 4 strain

measurements, where xi represents the strain value corresponding to the ith strain gauge. For a given gap length h, the digital
surrogate g yields g h;hup;hdown

� � ¼ g1 h; hup;hdown
� �

; g2 h;hup; gdown

� �
; 	 	 	 ; g64919�4 h;hup;hdown

� �� �
at 64919� 4 location of the

strain gauges, where gi h;hup;hdown
� �

represents the strain response of the ith strain gauge obtained by the GPR surrogate
model g. In the equation above e 2 Xf is the realization of the random vector f defining the noise in 64919� 4 sensors.

Eq. (9) defines the measurement model considering all the sensor locations in XX . However, a design e consists of only
Nsg eð Þ sensors with the measurement space XXe . Utilizing the fact that XXe � XX , let ge define the true strain response for
the sensors included in design e obtained by the GPR model, such that

ge h;hup;hdown
� � ¼ ge1

h;hup;hdown
� �

; 	 	 	 ; geNsg eð Þ h;hup;hdown
� �� �

. Similarly, let xe ¼ xe1 ; 	 	 	 ; xeNsg eð Þ

� �
2 XXe denotes the observed/

measured strain response. Here, gei
h;hup;hdown
� �

and xei represents the true (obtained by the GPR model) and the observed

strain response of the ith strain gauge in the sensor design e, respectively. The measurement model for the strain gauges
included in the design e is given by

xe ¼ ge h;hup;hdown
� �þ ee: ð10Þ

In the equation above, xe is one of the realizations of the random vector Xe. The vector ee is the realization of the random
vector fe with ee ¼ e1; e2; 	 	 	 ; eNsg eð Þ

� �
. It represents the measurement noise/error vector for the design e, where ei denotes

the error between the measurement output and GPR predicted response (assumed to be the true response) corresponding

to the ith strain gauge in the design e as defined in Eq. (5). We assume that ee follows a zero-mean Gaussian distribution with
independent components, i.e., the noise/error terms of all Nsg eð Þ strain gauges are assumed to be statistically independent. In
addition, we assume that each strain gauge has same standard-deviation rei , such that

f fe ee ¼ e1; 	 	 	 ; eNsg eð Þ
� �� � ¼ YNsg eð Þ

i¼1

f fi eið Þ ¼
YNsg eð Þ

i¼1

1
rei

/
ei
rei

� 	
: ð11Þ

Using the measurement model defined in Eq. (10), and the description of noise in Eq. (11), the likelihood of observing the
strain measurement xe 2 XXe for the gap length h can be written as

f Xe jH xejhð Þ ¼
YNsg eð Þ

i¼1

1
rei

/
xei � gei

h;hup; hdown
� �
rei

 !
: ð12Þ

Having defined the prior and the likelihood in Eq. (8) and (12), we note that the posterior cannot be obtained analytically
using Eq. (6). This is because the relationship between strain measurements xe and the gap length h is highly nonlinear.
One can rely on numerical approximation techniques like Markov chain Monte Carlo (MCMC) methods, particle filter, and
sequential Monte Carlo (SMC) approach in recursive mode to solve the inference problem. As mentioned, because the eval-
uation of the likelihood f Xe jH xejhð Þ at numerous values of h using the full finite element model was too expensive, this was
achieved by running instead the the GPR model ge. Furthermore, we employ the particle filter method (or sequential Monte
Carlo (SMC) in recursive mode) to obtain the posterior.

Y. Yang, M. Chadha, Z. Hu et al. Mechanical Systems and Signal Processing 161 (2021) 107920

9



We also simulate the measurement data numerically. For simulating such data, we obtain the response of the digital sur-
rogate g htrue;hup�true;hdown�true

� �
parameterized by a chosen/fixed value of true gap length htrue subjected to chosen/fixed

input loading hup�true;hdown�true
� �

. This strain gauge response is now corrupted by Gaussian noise of standard deviation rei

to mimic the real-world measurement noise. This corrupted strain response is now used as the measurement/observed data
xe 2 XXe .

Obtaining the posterior numerically using particle filtering requires evaluating the likelihood at numerous values of the
gap length, called the particles. Usually, particle filtering is used for sequential updating of the posterior distribution for a
dynamic system, i.e., the case where new information on the system is available as time evolves. However, in this case,
we just have one set of data, and we aim at obtaining the posterior in a single step. The following summarizes the process
of obtaining the posterior distribution of the gap length:

(a)For the assumed true gap length htrue and the chosen/fixed input loading hup�true;hdown�true
� �

, simulate the observed/
measurement strain data xe 2 XXe .
(b)We choose Nparticle ¼ 5000 discrete values of the gap length, called particles. It is at these 5000 particles for the like-
lihood is to be evaluated.
(c)At each of these 5000 particles (or the gap length), and for a given loads hup�true; hdown�true

� �
, the GPR model yields the

true strain value at the ith strain location for the gap length particle hj is denoted by gei
hj;hup�true;hdown�true
� �

, where
i 6 Nsg eð Þ and j 
 5000. We obtain the numerical value of the likelihood of the measurement given the gap length hj at
the observed strain xe 2 XXe using Eq. (12) as:

f Xe jH xejhj
� � ¼ YNsg eð Þ

i¼1

1
rei

/
xei � gei

hj;hup;hdown
� �
rei

 !
: ð13Þ

In the equation above, xei represents the observed strain value at the ith strain gauge.
(d)Evaluate the weight wj for each particle as:

wj ¼
f Xe jH xejhj

� �
XNparticle

k¼1

f Xe jH xejhkð Þ
: ð14Þ

(e)Calculate the cumulative weights to observe big jumps. Resample the weighted particles to obtain unweighted sam-
ples of the posterior distribution over gap length.

It is evident from discussion carried above that evaluating the posterior distribution of the gap length h for a given sensor
measurements Xe requires obtaining the likelihood f Xe jH xejhj

� �
for j 6 Nparticles. This requires running the GPR model

Nparticles times.

3. The objective functional, Bayes risk

3.1. Bayes risk: Expected utility function

Recall Step 2 of the Bayesian optimization framework discussed in Section 2.3. There are three primary goals that we aim
to achieve: (1) Maximize the relative gain in the information; (2) Obtain better information/description of the gap length
when the true value of gap length is larger or the state of the structure approaches a higher degree of damage; (3) Include
the prior knowledge of the gap length.

3.1.1. Relative gain of information: f-divergence
We start with the first goal. As discussed before, the prior distribution of gap length fH hð Þ quantifies our understanding of

the gap length when no additional/new information on the system (through the strain gauge measurements) is available.
When the new information or the sensor measurements xe 2 XXe are available, Bayesian inference allows us to refine our
understanding of the gap length, now quantified by the posterior fHjXe

hjxeð Þ. In this section, for brevity, we denote the pos-
terior distribution as fHjXe

hjxeð Þ ¼ gH hð Þ. Traditionally, the information divergence (similarity or dissimilarity) between two
distributions, for example, deviation of the posterior gH hð Þ from the prior fH hð Þ, is quantified by the relative entropy or Kull-
back–Leibler (KL) divergence or i-divergence (i for information), defined by:

DKL gH hð ÞjjfH hð Þð Þ ¼
Z
XH

gH hð Þ log gH hð Þ
fH hð Þ
� 	

dh: ð15Þ

Since KL divergence is not symmetric, we prefer this form of information divergence because it quantifies the information
gain in the posterior distribution of the gap length as compared to the prior distribution (refer to [52,53]). Although KL
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divergence measures the distance between two probability distributions, it does not qualify as a statistical metric of spread
because it violates the symmetric property and triangular inequality. However, KL divergence does satisfy the other two
properties of a metric: non-negativity and the identity of indiscernible. Therefore, KL divergence of probability distributions
may be loosely interpreted as a nonsymmetric analog of squared Euclidean distance. Like KL divergence, there are many other
divergences used to evaluate the similarity and dissimilarity between probability distributions. Many of these divergences
can be unified under the generic framework of f-divergence [54]. Therefore, i-divergence is a special case of f-divergence. For
a convex function f tð Þ defined for t > 0, with f 1ð Þ ¼ 0, the f-divergence of the posterior gH hð Þ from the prior fH hð Þ is defined
by:

Df gH hð ÞjjfH hð Þð Þ ¼
Z
XH

fH hð Þf gH hð Þ
fH hð Þ

� 	
dh: ð16Þ

Note that the constraint f 1ð Þ ¼ 0 implies that all the f-divergences satisfy the identity of indiscernible. Table 1 in Appendix A
lists some of the important and commonly used f-divergences; more information may be found in [54–57]. Among all the f-
divergences listed in Table 1 (see Appendix A), only the total variance satisfies all the properties of a metric: non-negativity,
symmetry, the identity of indiscernible, and triangular inequality [58].

In this paper, the state parameter (the gap length) is a single-dimensional quantity. However, in many problems, the state
parameter is a multi-dimensional vector. In such scenarios, evaluating the f-divergence becomes computationally expensive.
Many approximation techniques for f-divergence have been proposed, like using higher-order Chi distances [56], penalized
convex risk minimization [59], and random mixture estimator [60]. For completion’s sake and for ensuring generality, we
briefly present approximating f-divergence using Taylor series expansion and higher-order Chi distances [56]. The function
f tð Þ can be expanded about the point t0 using the Taylor series as

f tð Þ ¼
X1
i¼0

1
i!

t � t0ð Þi: @
if tð Þ
@ti

jt¼t0
: ð17Þ

The f-divergence defined in Eq. (16) can be written as:

Df gH hð ÞjjfH hð Þð Þ ¼
Z
XH

fH hð Þ
X1
i¼0

1
i!

gH hð Þ
fH hð Þ � t0

� 	i

:
@if tð Þ
@ti

jt¼t0
dh ¼

X1
i¼0

1
i!
@ if tð Þ
@ti

jt¼t0

Z
XH

gH hð Þ � t0fH hð Þð Þi
fH hð Þi�1 dh

 !

¼
X1
i¼0

1
i!
@ if tð Þ
@ti

jt¼t0
:DviP;t0

gH hð ÞjjfH hð Þð Þ: ð18Þ

Here, DviP;t0
gH hð ÞjjfH hð Þð Þ is the generalization of the ith order Pearson-Vajda f-divergence. The equation above allows us to

write any f-divergence as the weighted sum of the generalized ith order Pearson-Vajda f-divergence, which in turn can be
approximated by the restricted class of exponential families that are easy to evaluate [56].

Table 1
Common f-divergences.

Types of f-divergences Denoted by Function f tð Þ
Kullback–Leibler DKL gH hð ÞjjfH hð Þð Þ t log t
Reverse Kullback–Leibler DKL fH hð ÞjjgH hð Þð Þ � log t
Pearson Chi Square Dv2

P
gH hð ÞjjfH hð Þð Þ t � 1ð Þ2

Neyman Chi Square Dv2
N
gH hð ÞjjfH hð Þð Þ 1�tð Þ2

t

Pearson-Vajda Dvk
P
gH hð ÞjjfH hð Þð Þ t � 1ð Þk

Squared Hellinger DH2 gH hð ÞjjfH hð Þð Þ ffiffi
t

p � 1
� �2

Total variation Dd gH hð ÞjjfH hð Þð Þ 1
2 jt � 1j

K-divergence DK gH hð ÞjjfH hð Þð Þ t log 2t
tþ1

� �
Skewed K-divergence DKa gH hð ÞjjfH hð Þð Þ t log t

1þa 1�tð Þ
� �

Jensen-Shannon DJS gH hð ÞjjfH hð Þð Þ 1
2 t log t � t þ 1ð Þ log tþ1

2

� �� �
a Jensen-Shannon DJSa gH hð ÞjjfH hð Þð Þ 1

2 t log t � t þ 1ð Þ log 1þ a t � 1ð Þð Þð Þ
a-divergence Da gH hð ÞjjfH hð Þð Þ 4

1�a2 1� t
1þa
2

� �
a– � 1;

t log t a ¼ 1;
� log t a ¼ �1:

8><
>:

f b-divergence Df b
gH hð ÞjjfH hð Þð Þ b

b�1 1þ tb
� �1

b � 2
1
b�1ð Þ 1þ tð Þ

� �
b 2 Rn 1f g;

t log t � 1þ tð Þ log 1þt
2 b ¼ 1;

1
2 jt � 1j b ¼ 1:

8><
>:
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3.1.2. Implicit and explicit inclusion of the risk weights into Bayes risk
The space of all the uncertainties in the current problem is defined as Xne ¼ XHup �XHdown

�Xf1 �Xf2 � 	 	 	 �XfNsg eð Þ , such

that the random variable ne represents all the uncertainty sources considered to affect the design e. Let
be ¼ hup; hdown; e1; e2; 	 	 	 ; eNsg eð Þ

� � 2 Xne represents a realization of the random variable ne. Secondly, since the strain measure-
ments xe 2 XXe are representative of the physics of the miter gate, its value also depends on the gap length value h 2 XH. This
fact is mathematically denoted by redefining the random variable Xe to be a function of the uncertainties and the true gap
length, xe ¼ Xe htrue; beð Þ. If there is no external noise and if the true value of gap length htrue exactly known, then xe represents
true value of the strain measurements. However, since the true gap length can’t be obtained under all the inevitable uncer-
tainty, the best one can do is to define the Bayes risk as the expected value of risk-weighted f-divergence averaged over the
entire space XH and Xne , i.e., by considering the entire range of possible true values of the gap length and taking into account
the uncertainties in strain gauge readings and external loads. We reasonably assume that the random variablesH;Hup;Hdown,
and fi are statistically independent. With all the necessary pieces defined, we first state the Bayes risk functional without
including any risk weights as

E eð Þ ¼
Z
XH

Z
Xne

f ne beð ÞfH hð ÞDf fHjXe htrue¼h;beð Þ ujxeð ÞjjfH uð Þ
� �

dbedh: ð19Þ

In the equation above, the variable u gets integrated out in the expression of f-divergence. The f-divergence is a function of
htrue ¼ h; beð Þ, in the sense that

Df fHjXe htrue¼h;beð Þ ujxeð ÞjjfH uð Þ
� �

¼
Z

XH

fH uð Þf fHjXe htrue¼h;beð Þ ujxeð Þ
fH uð Þ

� 	
du ¼ Df htrue ¼ h; beð Þ: ð20Þ

In the Eq. (19) and (20), the f-divergence Df htrue ¼ h; beð Þ measures the divergence in the posterior distribution in the gap
length relative to its prior distribution.

We consider two approaches to incorporate the risk weights in the Bayes risk. In the first approach, we explicitly weigh the
integrand of the Bayes risk defined in Eq. (19) with the risk weights, such that

Eexplicit�risk eð Þ ¼
Z
XH

Z
Xne

f ne beð ÞfH hð Þr htrue ¼ hð ÞDf htrue ¼ h; beð Þdbedh: ð21Þ

The quantity r htrue ¼ hð Þ weighs the risk-based importance factor for all the possible value of true gap length, i.e.
8htrue ¼ h 2 XH. The prior fH hð Þ accounts for the prior knowledge of the gap length, and the distribution f ne beð Þ accounts
for all the uncertainties. Finally, we define the utility function L htrue ¼ h; beð Þ as the risk-weighted f-divergence

L htrue ¼ h;beð Þ ¼ r htrue ¼ hð ÞDf htrue ¼ h; beð Þ: ð22Þ
We understand that in the definition of the Bayes risk,we consider all the possible values of the true gap length. From here on,
we omit writing htrue ¼ h in the argument of utility or the weight function, such that Eq. (22) becomes

L h; beð Þ ¼ r hð ÞDf h; beð Þ: ð23Þ
In the equation above, the argument h represents one possibility of true gap length.

With the simplified notation of f-divergence and definition of the utility function, L h; beð Þ, and the Bayes risk explicitly
considering the risk weights is compactly written as

Eexplicit�risk eð Þ ¼ EHne L h; bð Þ½ � ¼
Z
XH

Z
Xne

fH hð Þf ne beð Þr hð ÞDf h;beð Þdbedh: ð24Þ

Another mathematically equivalent approach to consider risk weighing is by modifying the prior distribution to

f
H
^ h

^

¼ h

� 	
¼ fH hð Þr hð ÞR hup

hlow
fH hð Þr hð Þdh

; ð25Þ

such that f Ĥ ĥ
� �

is transformed prior probability distribution function of the random variable H�!Ĥ with the realization

ĥ 2 XĤ, such that XH ¼ XĤ. The Bayes risk that implicitly incorporates the risk weight in the form of modified prior distribu-
tion is defined as

Eimplicit�risk eð Þ ¼ EĤne
Df ĥ; be

� �h i
¼
Z
XĤ

Z
Xne

f Ĥ ĥ
� �

f ne beð ÞDf ĥ;be

� �
dbedĥ: ð26Þ

The Bayes risk functional Eimplicit�risk eð Þ implicitly considers the risk-weight r hð Þ. We note that the implicit Bayes risk
Eimplicit�risk eð Þ and the explicit Bayes risk Eexplicit�risk eð Þ are proportional to each other, with a positive constant of proportion-

ality, i.e.,
R hup
hlow

fH hð Þr hð Þdh
� �

:

Eimplicit�risk eð Þ / Eexplicit�risk eð Þ: ð27Þ
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Therefore, either explicit or implicit Bayes risk can be used in the optimization problem. Finally, we note that the implicit and
explicit Bayes risk converge when we assign a constant risk-weight (importance factor) to all the true gap length values, such
that

E eð Þ ¼ Eimplicit�risk eð Þjr hð Þ¼1 ¼ Eexplicit�risk eð Þjr hð Þ¼1: ð28Þ
As shown in Eq. (24) Bayes risk is defined as the expected value of the utility function. Ideally, the goal is to maximize the
utility, but due to the uncertainties in the system quantified by be 2 Xne , and our inability to know the true value of the gap
length, the best we can do is to pick a sensor design that maximizes the expected value of the utility averaged over all the
possible values of the true gap length and the uncertainties. An optimal sensor design that maximizes the expected utility is
the most optimal. The next Section 3.2 discusses the quantity r htrueð Þ in detail.

Evaluating the f-divergence Df h; beð Þ for a given true gap length htrue ¼ h and the external uncertainties be (consisting of
hydrostatic heads and the noise in strain gauge readings) requires us to obtain the posterior distribution fHjXe h;beð Þ ujxeð Þ of the
gap length for a given true-variables h; beð Þ. Therefore, as was mentioned above, for a given measurement Xe h; beð Þ, obtaining
the posterior using particle filter requires running the GPR or digital surrogate model Nparticles times. However, since we are
simulating the measurement data Xe h; beð Þ, we need to run GPR model once as mentioned in Eq. (10). Therefore, evaluating
the f-divergence Df h; beð Þ (or the utility L h; beð Þ) requires running the GPR model Nparticles þ 1

� �
times.

For the prior fH uð Þ and the posterior distribution fHjXe h;beð Þ ujxeð Þ, the f-divergence is numerically evaluated by approximat-
ing Eq. (20) as:

Df h;beð Þ � 1
N

XN
i¼1

r uið Þf fHjXe h;beð Þ uijxeð Þ
fH uið Þ

� 	
: ð29Þ

Fig. 5 illustrates a function or a module called ‘‘Evaluate the Utility L h; beð Þ” or ‘‘Evaluating the f-divergence Df h; beð Þ” that
obtains the f-divergenceDf h; beð Þ and the utilityL h; beð Þ for a given design e and the input variables h; beð Þ. Note that obtaining
utility function is just a step away from the f-divergence. It does so in a three step process that requires running the GPRmodel
Nparticles þ 1
� �

times. The first step is to simulate observed/measurement data xe for a design e by assuming a true gap length h,
hydraulic heads hup;hdown

� �
, and a noise structure f fi eið Þ. The second step is to obtain the posterior distribution of the gap length

given themeasurement xe obtained in the first step using particle filter. Finally, the third step is to evaluate f-divergence of the
posterior (obtained in step 2) relative to the prior distribution of the gap length that ultimately yields the utility function.

3.2. Risk-based weight function

In some applications, there is a well-defined limit state that defines damage criticality, and a given structural owner/stake-
holder might want an SHM system to determine the proximity to that limit state. In the current application, there is no well-
defined limit state, and the risk weight function r htrueð Þ can serve as a surrogate to that proximity by assigning relative impor-
tance to the values of true gap length htrue in terms of the degree of damage. For instance, r htrue ¼ h2ð Þ > r htrue ¼ h1ð Þ implies
that the structural owner believes a gap length of h2 is more concerning with regard to criticality than when the true gap
length is h1. This approach is inspired by the fact that different decision-makers mentally assign a different importance factor
(or in economic terms: utility or risk-intensity) to the seriousness/urgency to take necessary actionswith the increasing inten-
sity of structural damage. For instance, given that the true state of the structure ismoderately damaged, a decision-makerwho
is fearful of making any mistake leading to heavy losses, a risk-averter, might suggest major repair and continuous inspection.
On the other hand, another decision-maker might suggest only minor repairs, a risk-seeker. Commensurate with the notion of
subjective risk perception, we suggest risk weights r htrueð Þ that follow the following two properties:

1. The risk weights r htrueð Þ must have a zero or positive slope. This is because, physically, an increase in gap length reflects
higher damage to the structural state of the miter gate. Therefore, to satisfy this physical constraint, we can either assign
constant or monotonically increasing risk weights for all the gap lengths.

2. The risk weight need not be unique and can be selected based on a desirable optimization criterion. For example, if we
decide to equally weigh all the values of true gap length, then the risk weight can be taken as a constant r htrueð Þ ¼ 1 (zero
slope). On the other hand, if we desire to make a better prediction of the state of the miter gate at a higher gap length
value that implies higher damage, we may pick a monotonically increasing risk weight.Since the state estimation depends
on the probabilistic description of the gap length, obtaining a better estimate of the miter gate damage intensity demands
a better estimate of the probability distribution of the gap length. We aim at assigning an increasing importance factor to
damage estimation as the value of the gap length increases. Therefore, for the sake of the optimization problem consid-
ered in this paper, we consider a particular case of monotonically increasing risk-weight of the following form:

r htrueð Þ ¼ e�
htrue�hcritical

b

� �2
; for hlow < htrue < hup ¼ hcritical: ð30Þ

In the equation above, hcritical represents the critical value of gap length such that as the true gap length htrue approaches this
critical value hcritical, the risk-weight increases. We consider hcritical ¼ hup. The factor b controls how quickly the risk-weight
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decays as htrue deviates from hcritical. Now with the Bayes risk functional fully defined, the next section deals with evaluating
the Bayes risk.

4. Evaluating the Bayes risk for a fixed sensor design

4.1. Revisiting Bayes risk

Section 3.1 defined the utility function L h; beð Þ, and the explicit Bayes risk was defined as the expected utility, i.e., aver-
aged over all the values of the uncertainties be 2 Xne , and the possible true values of gap length h 2 XH. We note that these

random variables constituting be and h (or ĥ when Bayes risk considers the risk-weights implicitly) can follow a generic con-
tinuous distribution. We can always transform them to a standard normal random variables. Therefore, in an attempt to gen-
eralize, we transform the true gap length h (or ĥ), hydrostatic heads hup;hdown, and the noise fi into their respective standard

normal forms denoted by a tilde ~	ð Þ over the respective quantity. Since the hydrostatic heads and noise for the ith strain gauge

is Gaussian in our case, their standard normal forms can be written as ~hup, and ~hdown, such that

hup ¼ ~huprhup þ lhup ;hdown ¼ ~hdownrhdown
þ lhdown

, and ei ¼ ~eirei þ lei , where ~hup;
~hdown and ~ei are the realizations of standard

normal random variables H
�
up;H

�
down, and ~fi respectively. We transform the prior fH hð Þ and the modified prior f Ĥ ĥ

� �
to a s-

tandard normal random variable ~H and ~̂H respectively, such that the cumulative density functions are equal: FH hð Þ ¼ F ~H
~h
� �

,

and FĤ ĥ
� �

¼ F ~̂H

~̂h
� �

. This transforms ne into a joint standard normal random variable ~ne (with a realization ~be), such that

f ~ne
~be

� �
¼ f

H
�
up

~hup

� �
:f

H
�
down

~hdown

� �
:
YNsg eð Þ

i¼1

f ~fi ~eið Þ; where;

~be ¼ ~hup;
~hdown; ~e1; ~e2; 	 	 	 ; ~eNsg eð Þ

� �
:

ð31Þ

We can now rewrite Bayes risk in Eq. (24) as:

Eexplicit�risk eð Þ ¼ E ~H~ne
~L ~h; ~be

� �h i
; where; ~L ~h; ~be

� �
¼ L h;beð Þ; ð32aÞ

Eimplicit�risk eð Þ ¼ E ~̂H~ne
~Df

~̂h; ~be

� �h i
; where; ~Df

~̂h; ~be

� �
¼ Df ĥ;be

� �
: ð32bÞ

Fig. 5. Evaluating the f-divergenceDf h; beð Þ and the utilityL h; beð Þ for a given case of true gap length h, uncertainties be , and the risk-based weight function
r hð Þ.
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The next section approximates the Bayes risk defined in Eq. (32) by using univariate dimensional reduction and Gauss-
Hermite quadrature to carry out the integration.

4.2. Univariate dimensional reduction and Gauss-Hermite quadrature

To obtain the optimal sensor placement design, we may either optimize Eexplicit�risk eð Þ or Eimplicit�risk eð Þ. Since these are
both integrals, we will use Gauss-Hermite quadrature to approximate the Bayes risk. In this section, we in parallel detail
the numerical approximation of Eexplicit�risk eð Þ or Eimplicit�risk eð Þ. Recall that the vector ~be consists of Nsg eð Þ þ 2

� �
variables.

To catalyze the derivation to estimate the Bayes risk using univariate dimensional reduction and Gauss-Hermite quadrature,
we define the following spaces

X ~We
¼ X ~H �X~ne

; such that ~we ¼ ~h; ~be

� �
¼ ~h; ~hup;

~hdown; ~e1; ~e2; 	 	 	 ; ~eNsg eð Þ
� �

2 X ~We
ð33aÞ

X ~̂We
¼ X ~̂H

�X~ne
; such that ~̂we ¼ ~̂h; ~be

� �
¼ ~̂h; ~hup;

~hdown; ~e1; ~e2; 	 	 	 ; ~eNsg eð Þ
� �

2 X ~̂We
ð33bÞ

To distinguish between a variable with or without the hat 	̂ð Þ, refer to Eq. (25) for the definition of transformed gap length ĥ
used in the expression of implicit-risk Bayes risk. Equation set (33) allows us to write the Bayes risk in a more desirable form

Eexplicit�risk eð Þ ¼ E ~We
~L ~we

� �h i
¼
Z
X ~We

f ~We
~we

� �
~L ~we

� �
d~we; where; ~L ~we

� �
¼ ~L ~h; ~be

� �
: ð34aÞ

Eimplicit�risk eð Þ ¼ E ~̂We

~Df
~̂we

� �h i
¼
Z
X ~̂We

f ~̂We

~̂we

� �
~Df

~̂we

� �
d ~̂we;where; ~Df

~̂we

� �
¼ ~Df

~̂h; ~be

� �
: ð34bÞ

Like Figs. 5 and 6 illustrates a function or a module called ‘‘Evaluate the Utility ~L ~h; ~be

� �
” and ‘‘Evaluate the f-divergence

~Df
~̂h; ~be

� �
” that obtains the utility ~L ~we

� �
or the f-divergence ~Df

~̂we

� �
for a given design e and the input variables ~h; ~be

� �
or ~̂h; ~be

� �
respectively. The module ‘‘Evaluate the Utility ~L ~h; ~be

� �
” is required to evaluate Eexplicit�risk eð Þ, and the module ‘‘Eval-

uate the f-divergence ~Df
~̂we

� �
” is required to evaluate Eimplicit�risk eð Þ. It does so by transforming the standard-normal variables

back to their original form, i.e., ~h; ~be

� �
�! h; beð Þ or ~̂h; ~be

� �
�! ĥ; be

� �
, and then using the module ‘‘Evaluate the Utility L h; beð Þ”

or ‘‘Evaluate the f-divergence Df ĥ; be

� �
” (illustrated in Fig. 5)) to obtain the respective quantities.

The integrals in Eqs. (34a) and (34a) are high dimensional expectations in Nsg eð Þ þ 3
� �

dimensional spaces, making classic
multivariate quadrature rules (e.g., quasi Monte Carlo or Smolyak sparse grids) prohibitively expensive. Monte Carlo

Fig. 6. Evaluating the utility ~L ~we

� �
¼ ~L ~h; ~be

� �
or the f-divergence ~Df

~̂we

� �
¼ ~Df

~̂h; ~be

� �
for a given ~h; ~be

� �
, or ~̂h; ~be

� �
, respectively.
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approximations converge slowly and require a large number of samples to approximate the expectations. This is problematic
because an expensive Bayesian inference problem needs to be solved to evaluate the integrands in Eqs. (34a) and (34a). To
overcome these issues, we employ an approximation to the integrals in Eqs. (34a) and (34a) based on univariate dimension
reduction. To do so, we define the following vectors, each consisting of Nsg eð Þ þ 3

� �
components:

~w0 ¼ 0;0;0;0;0; 	 	 	 ; 0ð Þ;
~w1 ¼ ~h;0;0;0;0; 	 	 	 ;0

� �
;

~w2 ¼ 0; ~hup;0;0;0; 	 	 	 ; 0
� �

;

~w3 ¼ 0;0; ~hdown;0;0; 	 	 	 ;0
� �

;

~w4 ¼ 0;0;0; ~e1;0; 	 	 	 ;0ð Þ;
~w5 ¼ 0;0;0;0; ~e2; 	 	 	 ;0ð Þ;

..

.

~w Nsg eð Þþ3ð Þ ¼ 0;0;0; 0;0; 	 	 	 ; ~eNsg eð Þ
� �

:

ð35Þ

~̂w0 ¼ 0;0;0;0;0; 	 	 	 ; 0ð Þ;
~̂w1 ¼ ~̂h;0;0;0;0; 	 	 	 ;0

� �
;

~̂w2 ¼ 0; ~hup;0;0;0; 	 	 	 ; 0
� �

;

~̂w3 ¼ 0;0; ~hdown;0;0; 	 	 	 ;0
� �

;

~̂w4 ¼ 0;0;0; ~e1;0; 	 	 	 ;0ð Þ;
~̂w5 ¼ 0;0;0;0; ~e2; 	 	 	 ;0ð Þ;

..

.

~̂w Nsg eð Þþ3ð Þ ¼ 0;0;0; 0;0; 	 	 	 ; ~eNsg eð Þ
� �

:

ð36Þ

Note that ~wi are exactly same as ~̂wi except for i ¼ 1. Using the definitions above and univariate dimensional reduction (refer to

[32]), we approximate the utility function ~L ~we

� �
or the f-divergence ~Df

~̂we

� �
as:

~L ~we

� �
� � Nsg eð Þ þ 2

� �
~L ~w0

� �
þ

XNsg eð Þþ3ð Þ

i¼1

~L ~wi

� �
; ð37aÞ

~Df
~̂we

� �
� � Nsg eð Þ þ 2

� �
~Df

~̂w0

� �
þ

XNsg eð Þþ3ð Þ

i¼1

~Df
~̂wi

� �
: ð37bÞ

Substituting Eq. (37a) into Eq. (32a), we get,

Eexplicit�risk eð Þ � � Nsg eð Þ þ 2
� �

E ~We
~L ~w0

� �h i
þ

XNsg eð Þþ3ð Þ

i¼1

E ~We
~L ~wi

� �h i

¼ � Nsg eð Þ þ 2
� � Z

X ~We

f ~We
~we

� �
~L ~w0

� �
d~we þ

XNsg eð Þþ3ð Þ

i¼1

Z
X ~We

f ~We
~we

� �
~L ~wi

� �
d~we

¼ � Nsg eð Þ þ 2
� �

~L ~w0

� �
þ

XNsg eð Þþ3ð Þ

i¼1

Z
X ~We

f ~We
~we

� �
~L ~wi

� �
d~we: ð38Þ

Similarly, substituting Eq. (37b) into Eq. (32b), we get,

Eimplicit�risk eð Þ � � Nsg eð Þ þ 2
� �

~Df
~̂w0

� �
þ

XNsg eð Þþ3ð Þ

i¼1

Z
X ~̂We

f ~̂We

~̂we

� �
~Df

~̂wi

� �
d ~̂we: ð39Þ

To simplify the expression above, firstly, we realize that f ~We
~we

� �
and f ~̂We

~̂we

� �
are the joint probability density function of

statistically-independent standard normal random variables. Therefore,
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f ~We
~we

� �
¼ f ~H

~h
� �

:f ~ne
~be

� �
¼ f ~H

~h
� �

:f H�
up

~hup

� �
:f H�

down
~hdown

� �
:
YNsg eð Þ

i¼1

f ~fi ~eið Þ; ð40aÞ

f ~̂We

~̂we

� �
¼ f ~̂H

~̂h
� �

:f ~ne
~be

� �
¼ f ~̂H

~̂h
� �

:f H�
up

~hup

� �
:f H�

down
~hdown

� �
:
YNsg eð Þ

i¼1

f ~fi ~eið Þ: ð40bÞ

Since all these random variables are standard normal, using the notation defined in Eq. (1) we can re-write Eq. (40) in a more
desirable form as:

f ~We
~we

� �
¼ / ~h

� �
:/ ~hup

� �
:/ ~hdown

� �
:
YNsg eð Þ

i¼1

/ ~eið Þ ¼
YNsg eð Þþ3

i¼1

/ ~bi

� �
¼

YNsg eð Þþ3

i¼1

1ffiffiffiffiffiffiffi
2p

p e�
1
2
~b2
i

� 	
; ð41aÞ

f ~̂We

~̂we

� �
¼ / ~̂h

� �
:/ ~hup

� �
:/ ~hdown

� �
:
YNsg eð Þ

i¼1

/ ~eið Þ ¼
YNsg eð Þþ3

i¼1

/
~̂
bi

� 	
¼

YNsg eð Þþ3

i¼1

1ffiffiffiffiffiffiffi
2p

p e�
1
2
~̂
b2
i

� 	
: ð41bÞ

In the equation above, ~b1 ¼ ~h; ~b2 ¼ ~hup;
~b3 ¼ ~hdown and ~bjþ3 ¼ ~ej, for j 2 1;2; 	 	 	 ;Nsg eð Þ� �

, with X~bi
representing the respective

space (for example: X~b1
¼ X ~H). Similarly, ~̂b1 ¼ ~̂h;

~̂
b2 ¼ ~hup;

~̂
b3 ¼ ~hdown and

~̂
bjþ3 ¼ ~ej, for j 2 1;2; 	 	 	 ;Nsg eð Þ� �

, with X~̂
bi
represent-

ing the respective space (for example: X~̂
b1

¼ X ~̂H
). Secondly, we note that for any function of the form

g x 2 X; y ¼ 0 2 Yð Þ; EXY g x;0ð Þð Þ ¼ EX g x;0ð Þð Þ, provided X and Y are statistically-independent random variables. This allows
us to simplify the integral in Eq. (38) and (39) as:Z

X ~We

f ~We
~we

� �
~L ~wi

� �
d~we ¼ 1ffiffiffiffiffiffiffi

2p
p

Z
X~bi

~L ~wi

� �
e�

1
2
~b2
i d~bi; ð42aÞ

Z
X ~̂We

f ~̂We

~̂we

� �
~Df

~̂wi

� �
d ~̂we ¼ 1ffiffiffiffiffiffiffi

2p
p

Z
X~̂
bi

~Df
~̂wi

� �
e�

1
2
~̂
b2
i d~̂bi: ð42bÞ

We realize that the Gauss-Hermite quadrature is a natural choice for approximating the integrals in the equation above. This
is because Gauss-Hermite quadrature is meant to estimate integrals of the form

R
x g xð Þe�x2dx, for any function g xð Þ. There-

fore, the approximations are

Z
X ~We

f ~We
~we

� �
~L ~wi

� �
d~we � 1ffiffiffiffi

p
p

Xr
n¼1

wn
~L ~qi;n
� �

; where ~qi;n jð Þ ¼
~wi jð Þ ¼ 0 i– j;

an i ¼ j:

8><
>: ð43aÞ

Z
X ~̂We

f ~̂We

~̂we

� �
~Df

~̂wi

� �
d ~̂we � 1ffiffiffiffi

p
p

Xr
n¼1

wn
~Df

~̂qi;n

� �
; where ~̂qi;n jð Þ ¼

~̂wi jð Þ ¼ 0 i– j;
an i ¼ j:

8<
: ð43bÞ

In the equations above, ~qi;n jð Þ (or ~̂wi jð Þ) represents the jth component of the vector ~qi;n (or
~̂wi); r represents quadrature order;

wn gives the weights; and an gives the point of evaluation of the function for n 6 r. For our calculations, we use r ¼ 3, for

which w1 ¼ 2
3

ffiffiffiffi
p

p
;w2 ¼ 1

6

ffiffiffiffi
p

p
;w3 ¼ � 1

6

ffiffiffiffi
p

p
;a1 ¼ 0;a2 ¼

ffiffi
6

p
2 , and a3 ¼ �

ffiffi
6

p
2 . This choice of the quadrature order satisfies the

computational accuracy that this problem demands and at the same time leads to a computationally efficient numerical esti-
mation of Bayes risk. The approximated Bayes risk functions can now be written as

Eexplicit�risk eð Þ � � Nsg eð Þ þ 2
� �

~L ~w0

� �
þ

XNsg eð Þþ3ð Þ

i¼1

Xr¼3

n¼1

wn
~L ~qi;n
� �

; ð44aÞ

Eimplicit�risk eð Þ � � Nsg eð Þ þ 2
� �

~Df
~̂w0

� �
þ

XNsg eð Þþ3ð Þ

i¼1

Xr¼3

n¼1

wn
~Df

~̂qi;n

� �
: ð44bÞ

Fig. 7 illustrates the algorithmic flowchart to obtain the explicit and implicit form of Bayes risk functional defined in Eq.
(44).

As was noted in Eq. (27) that, mathematically, optimization using explicit and implicit Bayes risk functional should yield
the same result. However, since we numerically estimate Eexplicit�risk eð Þ and Eimplicit�risk eð Þ using Gauss-Hermite quadrature in
conjuncture with univariate dimensional reduction, optimization using these functional leads to a different sensor designs.
This is because evaluating Eexplicit�risk eð Þ requires using observed strain measurements corresponding to the gap length values

h ¼ F�1
H F ~H

~h ¼ an

� �� �
, whereas evaluating Eimplicit�risk eð Þ requires using a different set of observed strain measured corre-

sponding to the true gap length values ~h ¼ F�1
Ĥ F ~̂H

~̂h ¼ an

� �� �
. In other words, since the cumulative distribution functions

F ~H
~h
� �

(obtained from the prior distribution of gap length) and F ~̂H

~̂h
� �

(obtained from the modified prior distribution of
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gap length) are different, the Gauss point an maps to a different values of true gap lengths h and ~h, and hence requires using
different simulated strain data. We use implicit Bayes risk as the objective functional because it shows the effect of risk-
weights more prominently than obtained using the explicit Bayes risk.

It is natural to address the question ‘‘How many times do we need to run the GPR model to obtain the Bayes risk Eexplicit�risk eð Þ
or Eimplicit�risk eð Þ defined by Eq. (44) for a single design consideration e?” We show the calculation for the explicit Bayes risk and
note that the number of GPR runs are the same for explicit or implicit Bayes risk functional evaluation. To start with, we
realize that there are two sums in the expression of Eexplicit�risk eð Þ in Eq. (44). Therefore, the cost function ~L ~qi;n

� �
has to

be obtained r: Nsg eð Þ þ 3
� �

times for all the possible ~qi;n, where i 6 Nsg eð Þ þ 3
� �

and n 6 r. For a fixed value of the index i

and n, the vector ~qi;n consist of some realization of the standard-normal quantities ~h; ~be

� �
obtained by Eq. (43). From Remark

3, obtaining the utility function ~L ~qi;n
� �

for a fixed ~qi;n requires running the GPR model Nparticles þ 1
� �

times. It can also be seen

in the Fig. 7 that the utility ~L ~qi;n
� �

is evaluated for every ~qi;n by calling a function ‘‘Expected the Utility ~L ~qi;n
� �

” that requires
running GPR model Nparticles þ 1

� �
times at every instance the function is called (refer to Fig. 5). Therefore, evaluating Bayes

risk using Eq. (44) for a given design e requires running the GPR model NGPR1 times, such that:

NGPR1 ¼ r� Nparticles þ 1
� �� Nsg eð Þ þ 3

� �
: ð45Þ

These GPR model runs make evaluating Bayes risk computationally expensive.
Bayesian optimization aimed at obtaining the optimal sensor network design consists of evaluating many such designs,

denoted by ei, consisting of Nsg eið Þ number of sensors. To obtain an optimized sensor placement design, we start with an ini-
tially assumed design, denoted by e0, that consists of Nsg e0ð Þ number of sensors. Starting with e0, the subsequent sensor
design ei with Nsg eið Þ sensors is obtained by picking the most optimal sensor location from the available sensors and adding
that sensor location to the previous design ei�1 with Nsg ei�1ð Þ ¼ Nsg eið Þ � 1 sensors. Picking the additional sensor required to
update the design ei�1 to the design ei requires Niter eið Þ number of iterations. Since Bayes risk is the optimiality criteria, it
needs to be evaluated at every iteration for the design ei. Let eI , with i ¼ I, represent the final optimal sensor network design.
The total number of GPR runs to arrive at eI (starting from e0) is denoted by NGPR2, such that:

NGPR2 ¼
XI

i¼1

r� Nparticles þ 1
� �� Nsg eið Þ þ 3

� �� Niter eið Þ: ð46Þ

So far, we have taken two major steps to reduce the computational cost. First, we have used a digital surrogate (GPR) of the
finite element model. Secondly, we have used SVD to reduce the dimension of the GPR model’s output. In the next section,

Fig. 7. Algorithm to evaluate both the explicit and implicit Bayes risk.
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we propose a novel and innovative approach to further minimize the computational cost for evaluating the Bayes risk by
minimizing the number of times we run the GPR model to evaluate the Bayes risk.

4.3. An efficient computational approach to evaluate the Bayes risk

In this section, we highlight the disadvantage of using the algorithm illustrated in Fig. 7 to obtain the explicit and implicit
Bayes risk and propose an alternative novel approach that significantly reduces the computational cost of optimization. For
the sake of discussion, we consider explicit Bayes risk functional. An approach to evaluate Bayes risk Eexplicit�risk eð Þ for a given
design e as illustrated in Fig. 7 involves many repeated evaluation of GPR model ge h;hup;hdown

� �
for same input arguments

h;hup;hdown
� �

. The computational cost can be significantly reduced by realizing that in the entire process of evaluating the
Bayes risk, there are only 7 Nparticles þ 1

� �
unique runs of GPR model. This follows from the following line of reasoning. The

vector ~qi;n is a special case of the vector ~wi as defined in Eq. (35). The first three components of the vector ~qi;n constitute a

sub-vector ~qi;n 1 : 3ð Þ ¼ ~h; ~hup;
~hdown

� �
, the inverse standard-normal transformation of which are the argument of the GPR

model ge h;hup;hdown
� � ¼ ~ge

~h; ~hup;
~hdown

� �
. The remaining Nsg eð Þ components constitute a vector ~qi;n 4 : Nsg eð Þ þ 3

� �
represent-

ing external noise. For any vector ~qi;n, the sub-vector ~qi;n 1 : 3ð Þ ¼ ~h; ~hup;
~hdown

� �
bears an as numerical value of one of the com-

ponents and zero for others. Therefore, we have a set of 7 unique sub-vectors ~h; ~hup;
~hdown

� �
of interest to us. From remark 1,

Figs. 5 and 6, obtaining the utility ~L ~qi;n
� �

for each ~qi;n requires Nparticles þ 1
� �

GPR runs. Therefore, considering all the 7 unique
arguments of GPR model, we essentially need to run GPR model only NGPR3 times, such that:

NGPR3 ¼ 7� Nparticles þ 1
� �

: ð47Þ

For each of these stand-alone GPR runs, we store the strain values in all the 64919 sensors constituting data of size
7� Nparticles þ 1

� �� 64919 in a matrix called ‘‘strain-data” and pick the strain measurements of the sensors constituting a
design e. Therefore, even while carrying out Bayesian optimization that may consider many designs, the number of GPR runs
remains 7� Nparticles þ 1

� �
cutting computational cost intensively. Fig. 8 illustrates this process of storing the strain data.

Once the matrix strain-data is obtained independently, the utility ~L ~qi;n
� �

can be evaluated by extracting the relevant sensor

readings from the matrix strain-data as demonstrated in Fig. 9. Replacing h with ĥ, and ~qi;n with ~̂qi;n in the flowchart 8 gives
the strain-data matrix required to obtain the intrinsic Bayes risk, and replacing them in in the flowchart 9 yields the f-

divergence ~Df
~̂h; be

� �
required to obtain the intrinsic Bayes risk.

The modified algorithm to evaluate the Bayes risk Eexplicit�risk eð Þ is illustrated in Fig. 10. The most important difference
between the algorithm in Fig. 7 and the one in Fig. 10 is that in the modified algorithm the GPR models are not run at every
iteration step.

Fig. 8. Obtaining and storing the strain-data required to obtain Bayes risk Eextrinsic�risk eð Þ.
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The Fig. 11 compares the number of GPR runs required for Bayesian optimization by considering two approaches used to
evaluate Bayes risk as defined in Figs. 7 and 10. Carrying out Bayesian optimization using first approach to evaluate Bayes
risk (either extrinsic or intrinsic) Fig. 7 needs NGPR2 runs of GPR model that depends on the design ei considered as defined in
Eq. (46). We start by assuming Nsg e0ð Þ ¼ 3 number of initial sensors and update the design using up to 10 additional sensors.
For simplicity, we assume a constant average number of iterations for each design Niter eið Þ ¼ 20. We assume Nparticles ¼ 5000.
We observe that number of GPR runs using modified algorithm illustrated in Fig. 10 is NGPR2 ¼ 35007, which is order of mag-
nitudes smaller as compared to NGPR2. For instance, NGPR2 ¼ 2100420 for the first additional sensor, and NGPR2 ¼ 34506900 for
ten additional sensors.

Fig. 9. Obtaining the utility ~L ~qi;n
� �

.

Fig. 10. Computationally efficient algorithm to evaluate the explicit and implicit Bayes risk.
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5. Bayesian optimization: optimal sensor placement design

5.1. Optimal sensor placement design algorithm

Given that our objective is to find the design e� that maximizes a Bayes risk functional, we will use the implicit Bayes risk
form to solve

e� ¼ argmaxe2XE
Eimplicit�risk eð Þ: ð48Þ

In general, obtaining e� involves looking at every possible design combination and choosing the one with the maximum
implicit Bayes risk. In our case, where the total number of sensor locations is n ¼ 64919� 4, this would be choosing e� from
the

Pn
r¼1

n!
r! n�rð Þ! ¼ 2n � 1

� �
possible combinations of sensor locations. Therefore, the exhaustive design space XE consists of

2259676 � 1
� �

� 1078170 possible designs, which is approximately 78090 orders of magnitude more than the number of esti-

mated atoms in the universe. Given the intractable nature of exhaustive search, Bayesian optimization is used to look for
a global optimum in a minimum number of steps, thus minimizing the sampling points to rapidly speed up the optimization
process. Unlike gradient-based optimization methods, Bayesian optimization does not require the derivative of the objective
function; having a black-box model (like a surrogate function) of the objective function suffices to perform the optimization.
It involves two primary elements. The first element is developing surrogate function using another GPR of the objective func-
tion using randomly evaluated samples. The second component is the acquisition function that helps us locate the next most
valuable candidate to update the design [33,34].

The process begins by choosing an initial design e0 ¼ d 1ð Þ;d 2ð Þ; 	 	 	 ;d Nsg e0ð Þð Þ� �
2 XE consisting of Nsg e0ð Þ ¼ N0 P 0 sen-

sors. Here, d lð Þ represents the location of lth strain gauge in the design e0. The next step is to obtain an updated design e1
by adding an additional sensor to e0, such that Nsg e1ð Þ ¼ N0 þ 1. To obtain the optimal e1, we randomly sample a sensor loca-
tions using Latin Hypercube Sampling (LHS), subjected to a space filling property, to be the candidate for the additional sensor
from the unused sensors constituting the measurement space XX . These locations yield a number of design samples
~ek; 8 k 6 a each with Nsg e1ð Þ sensors. We obtain the exact cost Eimplicit�risk ~ekð Þ; 8 k 6 a using approach discussed in the pre-
vious section. Using the set of a additional sensor locations as input data, denoted by ~d, and the exact cost as output data, we

train our surrogate function Ê ~d
� � � N l ~d;r2

~d

� �
. This surrogate can be used to quickly estimate a posterior probability that

describes possible values for the Bayes risk at a remaining candidate location �d spanning the entire design space, with mean
value l �d and standard deviation r �d. We use Expected Improvement EI as our acquisition function that helps us locate the next
most valuable candidate for the next sensor location based on the current posterior over the Bayes risk, given by

EI �dð Þ ¼ l �d � E�� �
U

l �d � E�

r �d

� 	
þ r �d/

l �d � E�

r �d

� 	
: ð49Þ

Here, E� ¼ max~ekEimplicit�risk ~ekð Þ is the current best value of the objective function. For all the remaining possible additional
sensor location candidates, we evaluate EI �dð Þ. The candidate with maximum EI is the next most valuable location. Once

we locate the next most valuable sensor location candidate, we get aþ 1ð Þth design samples. We re-train the GPR with
aþ 1ð Þ data points, and keep adding the next most valuable location from the set of strain locations constituting XX until
the maximum EI is less than a tolerance value e.

Note that the aforementioned details updates an initial design e0 to e1 by adding one additional sensor. We keep updating
the designs by adding one sensor at a time until one of the following two conditions is reached:

Fig. 11. Number of GPR runs for Bayesian optimization.
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1. Bayes risk converges to a constant value, i.e., the design eI ¼ e� (with i ¼ I) can be considered as the most optimal design if

E eIð Þ � E e I�1ð Þ
� �

. Given an updated design ei ¼ d 1ð Þ;d 2ð Þ; 	 	 	 ;d Nsg eið Þð Þ� �
with Nsg eið Þ number of sensors, the aforemen-

tioned steps can be generalized to obtain the updated design e iþ1ð Þ.
2. The total number of sensors in the design reaches the maximum number of sensors limited/constrained by the decision-

maker or other factors.

Given the design ei, the updated design e iþ1ð Þ can be obtained following similar exercise as described above. Let
Ntotal ¼ 64919� 4 represent the total number of strain-gauges attached in the structure (at top and bottom of each 64919
elements in both vertical and horizontal direction). Let enas represent the optimized sensor design with N0 þ nasð Þ sensors,
such that nas 6 Nas. Here, Nas represents the maximum additional sensors considered over the initially assumed number
of sensors N0. The number of sensors int final design shall then be 6 N0 þ Nasð Þ.The optimal design e� is then given by:

e� ¼ argmaxenas
Eimplicit�risk enasð Þ: ð50Þ

The following Algorithm 1 demonstrates the Bayesian optimization procedure to evaluate the design e�.
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5.2. Results and discussion

The initial design e0 consisting of N0 P 0 sensors may be randomly obtained via LHS, pre-defined based on judgment/-
experience, or taken as 0 if no pre-defined design is available and if one does not want to assume a random initial design.
We note in our case study that the miter gate finite element model is so finely meshed that there exists a spatial correlation
between the strain values. Therefore, there are non-unique sensor locations that are sampled by the acquisition function,
leading to non-unique and slightly different sensor designs depending on the different initial design e0. In this paper, we
numerically implement the optimization algorithm by fixing the initial design e0 with N0 ¼ 0. Secondly, we consider
hlow ¼ 70inches, and hup ¼ 180inches. We reasonably assume the gap values below 70inches do not represent significant
damage to the gate, and the gap value of 180inches represents the upper limit of the possible gap value beyond which
the gate is considered to be critically damaged, based on discussions with USACE engineers. We perform the following
studies:

1. In Section 5.2.1, we investigate and compare the capability of predicting the posterior distribution of the gap length using
a random design consisting of 10 sensors (obtained using LHS) vs. optimal sensor design obtained using Bayes risk E eð Þ
that ignores the risk weight and considers KL divergence as the choice of f-divergence in the Bayes risk functional.

2. In Section 5.2.2, we investigate and compare the capability of a sensor design in predicting the posterior distribution of
the gap length obtained using Bayesian optimization of Bayes risk functional constructed using various f-divergences,
with and without the risk weighting. We consider 5 types of f-divergences in constructing the Bayes risk and compare
their effectiveness in arriving at the optimal design.

5.2.1. Comparison of a optimal sensor placement design based on KL divergence (no risk weight) vs. randomly-chosen design
Fig. 13 illustrates the randomly chosen sensor design (left image), and the one arrived at by using KL divergence without

risk weights in the Bayes risk functional (right image). We observe that all these sensors constituting the design obtained
using KL divergence-based functional are concentrated close to the boundary of the quoin block and the gate. This location
is desirable to capture the change in the strain values due to loss of contact between the quoin block and the gate (or for
obtaining a better inference of the gap length), reflecting an unquestionable advantage of using Bayesian optimized sensor
design over the randomly chosen design. It is also seen in Fig. 12, from the strain field plot obtained for a fixed set of loading
parameters, that there is a stress concentration near the gap length that intuitively justifies the fact that optimal sensor
design should contain at least a few sensors near the gap. Secondly, from Fig. 14, we observe that sensor placement optimiza-
tion significantly increases the effectiveness of Bayesian inference. This leads to a significant reduction in the uncertainty
associated with the posterior distribution of the gap length for different realizations of the true gap values. Thirdly, as seen
in Fig. 14b, the uncertainty in the posterior distribution is not equally/uniformly reduced for different realizations of true gap
length. This is because the obtained optimal sensor design can reduce more uncertainty for certain true gap lengths and less
for the other ones. Despite this local non-uniformity, the sensor design obtained using Bayesian optimization is optimal in a
global sense.

Fig. 12. Stress field plot of the miter gate structure obtained for a fixed set of load parameters.
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5.2.2. Comparison of an optimal sensor placement design obtained using f-divergence with risk weights vs. without risk weights
In this section, we compare the effectiveness of sensor design in Bayesian inference obtained using different kinds of f-

divergences with and without the risk weight. We consider the 5 different f-divergences: KL, Hellinger, total variation, Pear-
son, and Jensen divergence. The following subsections illustrate a set of three plots for each of the f-divergence considered:

1. Figs. 15,18,21,24,27, illustrates the sensor design arrived by ignoring the risk weights (left figure), and by including the
risk weights (right figure) in Bayes risk functional.

2. Figs. 16,19,22,25,28, illustrates the posterior distribution of the gap length arrived for different realizations of the true gap
length values by ignoring the risk weight (left figure) and by including the risk weights (right figure).

3. Figs. 17,20,23,26,29, illustrates the ratio of the maximum value of the posterior distribution of the gap length with and
without the risk weights (left figure), and the ratio of the standard deviation of the posterior distribution of the gap length
with and without the risk weights (right figure) for different realizations of the true gap length values.

First, we recall that one of the criteria for the Bayes risk functional was to incorporate our desire to obtain better infor-
mation/description of the gap length when the true value of gap length is larger or when the state of the structure
approaches a higher degree of damage. As is seen in Figs. 16,19,22,25,28, the optimization using risk-weighted (implicit)
Bayes risk functional allows us to have higher confidence in the inference results for larger value of true gap length (or
for higher degree of damage). However, accomplishing better inference at a higher value of the true gap length leads to

Fig. 13. Randomly chosen 10 sensor design (left) vs. KL divergence optimized (no risk weight) 10 sensor design (right).

Fig. 14. Posterior distributions obtained using a randomly chosen 10 sensor design vs. KL divergence (no risk weight) optimized 10 sensor design.
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sacrifice in the performance of the Bayesian optimization at a lower value of the true gap length. This fact is reflected in
Figs. 17a, 20a, 23a, 26a, and 29a, such that the ratio of the maximum value of the posterior with or without risk weight
is higher at larger value of true gap length. Similarly, as seen in Figs. 17b, 20b, 23b, 26b, and 29b, the ratio of the standard
deviation of the posterior with or without risk weight is lower at larger value of true gap length. Second, the majority of the
sensors identified are in the horizontal direction (TH and BH), and only a few are in the vertical direction (TV and BV). Third,
the optimization results are dependent on the choice of f-divergence.

As observed in Fig. 15 for the risk-weighted KL divergence case (right figure) that one sensor (highlighted by a red circle)
is far away from the gap (unlike the other sensors that are close to the gap). This is counter-intuitive and deserves an expla-
nation. The algorithm searches the global domain for the next possible candidate. There are two possibilities of such selection:

1. The outlier (for example: BV sensor circled in red in Fig. 15) could have been selected in the initial iteration steps. It would
have been an incorrect choice that the algorithm would self-correct by picking appropriate sensors in the next iterations.

2. The outlier (for example: BV sensor circled in red in Fig. 15) was selected in the later iteration step (closer to the converg-
ing point). In that case, the information provided by the sensors selected in the preceding iteration steps was enough to
capture the required information and the BV sensor did not add much value to the design. This was the case in selecting
the BV sensor in Fig. 15 highlighted by red circle.

Since the algorithm searches the entire space (global search), it may have been duped by the resembling and related
strain information at different coordinates. However, the self-correcting nature of the algorithm would eventually select a
combination of sensors (in the final design) that would capture the necessary information.

For the case of optimization where risk-weights are ignored, it is observed from Figs. 16a, 19a,22a, 25a, and 28a, that at
true gap length in the neighborhood of 110 inches, the posterior distribution of the gap length has higher variability than the
distributions at other gap values slightly higher or lower to 110 inches. It can be seen with a closer look that there are some
senors near the 110 inches gap value in the final design (see the green circle highlighted portion of the left part of Fig. 15).
These sensors may be relatively more sensitive to the gap value lower or higher than 110 inches partly because of their loca-
tion and the component of the gate they are attached to (a gate is a complex structure consisting of many elements welded
together). Although these sensors may not be as sensitive to 110 inches gap degradation, they certainly are sensitive to other
gap values. Since the optimization framework presented in this paper chooses the optimal design in an average sense, the
relative advantage (optimal sensitivity to the overall damaged state) of these sensors is one possible reason for them to
be picked by the optimization algorithm in the first place.

5.3. Comparison of an optimal sensor placement design obtained using KL divergence with vs. without risk weight

Figs. 15,16,17.

Fig. 15. Sensor placement design using KL divergence: without (left) and with (right) the risk weight.
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5.3.1. Comparison of an optimal sensor placement design obtained using Hellinger divergence with vs. without risk weight
Figs. 18,19,20.

Fig. 16. Posterior distributions obtained using KL divergence.

Fig. 17. Ratio of the maximum value and the standard deviation of the posterior obtained using KL divergence with and without risk weight.

Fig. 18. Sensor placement design using Hellinger divergence: without (left) and with (right) the risk weight.
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5.3.2. Comparison of an optimal sensor placement design obtained using total variation f-divergence with vs. without risk weight
Figs. 21,22,23.

Fig. 21. Sensor placement design using total variation f-divergence: without (left) and with (right) the risk weight.

Fig. 19. Posterior distributions obtained using Hellinger divergence.

Fig. 20. Ratio of the maximum value and the standard deviation of the posterior obtained using Hellinger divergence with and without risk weight.

Y. Yang, M. Chadha, Z. Hu et al. Mechanical Systems and Signal Processing 161 (2021) 107920

27



5.3.3. Comparison of an optimal sensor placement design obtained using Pearson f-divergence with vs. without risk weight
Figs. 24,25,26.

Fig. 24. Sensor placement design using Pearson f-divergence: without (left) and with (right) the risk weight.

Fig. 22. Posterior distributions obtained using total variation f-divergence.

Fig. 23. Ratio of the maximum value and the standard deviation of the posterior obtained using total variation f-divergence with weight and without
weight.
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5.3.4. Comparison of an optimal sensor placement design obtained using Jensen f-divergence with vs. without risk weight
Figs. 27,28,29.

Fig. 25. Posterior distributions obtained using Pearson f-divergence.

Fig. 26. Ratio of the maximum value and the standard deviation of the posterior obtained using Pearson f-divergence with and without risk weight.

Fig. 27. Sensor placement design using Jensen f-divergence: without (left) and with (right) the risk weight.
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5.3.5. Comparison of an optimal sensor placement design obtained using different f-divergences relative to KL divergence with and
without risk weight

Fig. 30a illustrates the ratio of the standard deviation of the posterior distribution of the gap length obtained by various
f-divergences without risk weight with respect to the standard deviation obtained using KL divergence without risk weight.
Similarly, Fig. 30b represents the same ratio when risk weights are considered in the Bayes risk functional.

Fig. 30. Ratio of the standard deviation of the posterior obtained using various f-divergence relative to the standard-deviation obtained using KL divergence.

Fig. 28. Posterior distributions obtained using Jensen f-divergence.

Fig. 29. Ratio of the maximum value and the standard deviation of the posterior obtained using Jensen f-divergence with and without weight.

Y. Yang, M. Chadha, Z. Hu et al. Mechanical Systems and Signal Processing 161 (2021) 107920

30



We observe that among the f-divergences studied for the application of optimal sensor design, Bayes risk functional con-
sidering KL divergence leads to the best sensor placement design for both with or without risk weights.

6. Summary and conclusions

This paper details an optimal sensor design framework for structural health monitoring applications. It was demonstrated
on a miter gate case study with the primary goal of arriving at the optimal strain gauge network design used to infer the
posterior distribution of the loss-in-contact gap length (the damage state parameter). We arrived at such a design by max-
imizing an objective functional referred to as Bayes risk. The Bayes risk is designed to accommodate three crucial elements:
first, it aims to obtain a design that maximizes the gains in the information on the gap length inferred from the strain-gauge
measurements. This gain in the information is quantified by f-divergence that evaluates the similarity or dissimilarity
between two probability measures by evaluating the distance (relative gain of information) between two distributions. Sec-
ond, the Bayes risk incorporates our desire to obtain better information/description of the gap length when the true value of
gap length is larger or the state of the structure approaches a higher degree of damage. It is crucial for deciding the main-
tenance strategies and appropriate action preventing significant losses. It is accomplished by using a risk-weight. Third, the
Bayes risk also takes into account our prior knowledge of the gap length.

Arriving at the optimal sensing design was accomplished by minimizing risk or equivalently maximizing the utility (de-
fined as the risk-weighted gain of information) in an average sense. In this regard, evaluation of the Bayes risk for a given
sensor network design demands considering all the possible degrees of damage (indicated by the true gap length value). This
requires obtaining a large set of simulated observation data and a quick Bayesian inference of the posterior distribution of gap
length for many different realizations of the true gap length values. Given a true gap length value and the loading parame-
ters, the simulated strain gauge readings can be obtained using a high-fidelity finite element model (FEM). The randomness
in the strain measurements is primarily due to uncertainties in the hydrostatic load parameters, and the noise in strain
gauges. Since the high fidelity finite element model is computationally expensive, we built a digital surrogate using Gaussian
Process Regression (GPR), which is around 50000 times faster than FEM. We deploy numerical approximation of the poste-
rior distribution by using particle filters, or specifically the sequential Monte Carlo (SMC) approach. We define two
approaches, intrinsic and extrinsic, to incorporate risk weights into Bayes risk functional. Although both, the intrinsic and
extrinsic, definitions of Bayes risk are mathematically equivalent, the numerical evaluation of the intrinsic and extrinsic
Bayes risk functional yields slightly different results. We use implicit Bayes risk because it shows the effect of risk weights
more prominently than the result obtained using the explicit form of Bayes risk. Numerically evaluating Bayes risk
expression involves evaluating a non-linear, multi-dimensional integral. We use univariate dimension reduction in conjunc-
ture with the Gauss-Hermite quadrature. Apart from reducing the computational cost by using GPR, we also proposed a
novel and innovative approach to further minimize the computational cost for evaluating the Bayes risk by minimizing
the number of times we run the GPR model to evaluate the Bayes risk.

We observe that as compared to random sensor design, the optimal sensor design significantly increases the effectiveness
of Bayesian inference and reduces the uncertainty in the posterior distribution of the gap length value. Inclusion of the risk-
weight in Bayes risk allows us to have higher confidence in the inference results for a higher degree of damage (as was
intended). However, accomplishing better inference at a higher value of the true gap length leads to sacrifice in the perfor-
mance of the Bayesian optimization at a lower value of the true gap length. Amongst the chosen f-divergences, we conclude
that KL divergence is the most suitable choice for this particular class of problems. A future possible work can be to compare
the efficiency and results obtained by the presented Bayesian optimization with other algorithms in the literature for the
given problem. The computational speed, as well as the final design, arrived using various optimization algorithms may
depend on how the algorithm is engineered, and the constraints on the problem at hand, and it remains to be investigated.
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Appendix A

A.1. Various types of f-divergences

Table 1
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