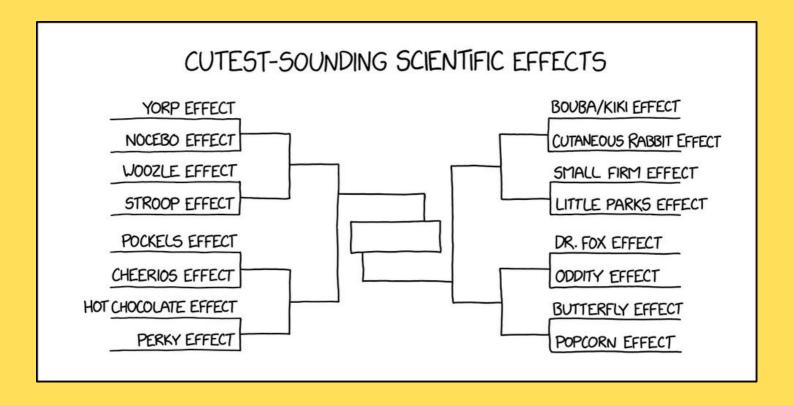

Weekly Param Team Newsletter



If you can't explain it to a six year old, you don't understand it yourself.

Albert Enstein

SIMPLE SCIENCE

17 Equations That Changed the World by Ian Stewart

	by i	ian stewart	
1,	Pythagoras's Theorem	$a^2+b^2=c^2$	Pythagoras,530 BC
2.	Logarithms	$\log xy = \log x + \log y$	John Napier, 1610
3.	Calculus	$\frac{\mathrm{d}f}{\mathrm{d}t} = \lim_{h \to 0} = \frac{f(t+h) - f(t)}{h}$	Newton, 1668
4.	Law of Gravity	$F = G \frac{m_1 m_2}{r^2}$	Newton, 1687
5.	The Square Root of Minus One	$i^2 = -1$	Euler, 1750
6.	Euler's Formula for Polyhedra	V-E+F=2	Euler, 1751
7.	Normal Distribution	$\Phi(x) = \frac{1}{\sqrt{2\pi\rho}} e^{\frac{(x-\mu)^2}{2\rho^2}}$	C.F. Gauss, 1810
8.	Wave Equation	$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	J. d'Almbert, 1746
9.	Fourier Transform	$f(\omega) = \int_{\infty}^{\infty} f(x) e^{-2\pi i x \omega} \mathrm{d}x$	J. Fourier, 1822
10.	Navier-Stokes Equation	$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v}\cdot\nabla\mathbf{v}\right) = -\nabla p + \nabla\cdot\mathbf{T} + \mathbf{f}$	C. Navier, G. Stokes, 1845
11.	Maxwell's Equations	$\begin{array}{ll} \nabla \cdot \mathbf{E} = 0 & \nabla \cdot \mathbf{H} = 0 \\ \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} & \nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial E}{\partial t} \end{array}$	J.C. Maxwell, 1865
12.	Second Law of Thermodynamics	$\mathrm{d}S\geq 0$	L. Boltzmann, 1874
13.	Relativity	$E=mc^2$	Einstein, 1905
14.	Schrodinger's Equation	$i\hbar\frac{\partial}{\partial t}\Psi=H\Psi$	E. Schrodinger, 1927
15.	Information Theory	$H = -\sum p(x)\log p(x)$	C. Shannon, 1949
16.	Chaos Theory	$x_{t+1} = kx_t(1 - x_t)$	Robert May, 1975
17.	Black-Scholes Equation	$\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}+rS\frac{\partial V}{\partial S}+\frac{\partial V}{\partial t}-rV=0$	F. Black, M. Scholes, 1990

PRIME TIME

 $2^{82,589,933} - 1$

Largest prime number known to date

@formulas_for_your_comfort

Mathematicians

always need proof

31 is prime 331 is prime 3331 is prime 33331 is prime 333331 is prime 3333331 is prime 33333331 is prime

But what about 333333333 ?

It turns out not to be, because: 17 x 19607843 = 333333331

Which just goes to show that you can never trust a pattern just because it looks like it might continue.