
My historic
geometric theorem

of
January 2020.



Introduction:

My theorem is to calculus as the theorem of Pythagoras is to all of
mathematics. The theorem was inspired by the first rigorous
formulation of calculus in human history - the New Calculus.

Using the identity, one can well define both the derivative and the
definite integral using only sound geometry. This theorem
produces identical results to the flawed mainstream formulation
of calculus, that is, it allows for derivatives at points of inflection
whereas the rigorous New Calculus does not. Students can now
learn calculus rigorously in high school without the screeds of rot
required in university courses.



Theorem:

If any function 𝒇 is smooth on an interval (𝒙, 𝒙 + 𝒉), it is true that
given any non-parallel secant line with endpoints (𝒙, 𝒇(𝒙)) and(𝒙 + 𝒉, 𝒇(𝒙 + 𝒉)), then the difference in slope between the non-
parallel secant 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 line and the tangent line 𝒇′(𝒙), is given
by 𝑸(𝒙,𝒉) (an expression in 𝒉 that may also include 𝒙), which is
never equal to zero unless 𝒇 is a linear function, that is,𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒇′ 𝒙 + 𝑸(𝒙,𝒉)



The above theorem allows for a rigorous formulation of
calculus without any use of ill-formed concepts such as
infinity, infinitesimals and the circular rot of limit theory.

In Fig. 1 of the next slide, each of the slopes (in terms of
angles) are colour-coded and illustrate the relationship
seen in the historic identity:𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒇′ 𝒙 + 𝑸(𝒙,𝒉)



𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 is the slope of the non-parallel secant line. [1]𝒇′ 𝒙 is the slope of the tangent line. [2]𝑸(𝒙,𝒉) is the difference in slopes, [1]-[2]



Fig. 1



In words, the identity 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒇′ 𝒙 + 𝑸(𝒙,𝒉) can be written as:
Slope of the non-parallel secant line (r)

= Slope of tangent line (s) + Difference in slopes (𝑸(𝒙,𝒉)) .
In geometry, the derivative 𝒇′ 𝒙 is given by 𝒇𝟐𝒉 . The difference𝑸(𝒙,𝒉) is given by 𝒇𝟏𝒉 . Finally, the slope of the non-parallel secant

line 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 is given by 𝒇𝟏𝒉 + 𝒇𝟐𝒉 . We shall shortly look at the proof

that is given by simple trigonometry, but let’s see an example first.



Example.

𝒇 𝒙 = 𝒙𝟐
𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒙+𝒉 𝟐−𝒙𝟐𝒉 = 𝒙𝟐+𝟐𝒙𝒉+𝒉𝟐−𝒙𝟐𝒉 = 𝟐𝒙 + 𝒉 = 𝒇′ 𝒙 + 𝑸(𝒙,𝒉)
If 𝑥 = 1 and 𝒉 = 2:

𝒙𝟐+𝟐𝒙𝒉+𝒉𝟐−𝒙𝟐𝒉 = 𝟐 𝟏 + 𝟐 = 𝟒  ↔   𝒇′ 𝒙 = 𝟒 − 𝟐 = 𝟐
If 𝑥 = 1 and 𝒉 = 1:

𝒙𝟐+𝟐𝒙𝒉+𝒉𝟐−𝒙𝟐𝒉 = 𝟐 𝟏 + 𝟏 = 𝟑  ↔   𝒇′ 𝒙 = 𝟑 − 𝟏 = 𝟐



As you can see, the value of the derivative or tangent line
slope remains unchanged.

In other words, each non-parallel secant line slope has a
unique 𝒉 which never changes. No secant line can have
more than one 𝒉.
Now it’s time for the proof of the theorem.



Proof:

It’s impossible to know using algebra alone where the tangent line
meets the perpendicular that is dropped from the red endpoint of
the non-parallel secant line. One has to start with trigonometry
which is just a special kind of geometry, that is, circular
geometry.

In Fig. 1, 𝑹 = 𝑩 + 𝑺𝑹, so𝐭𝐚𝐧 𝑹 = 𝐭𝐚𝐧 (𝑩 + 𝑺𝑹) = 𝐭𝐚𝐧 𝑩 + 𝐭𝐚𝐧 𝑺𝑹𝟏−𝐭𝐚𝐧 𝑩 𝐭𝐚𝐧 𝑺𝑹 = 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒇𝟏𝒉 + 𝒇𝟐𝒉 = 𝒇𝟏+𝒇𝟐𝒉



We know that 𝐭𝐚𝐧 𝑺𝑹 is the tangent line slope given by 𝒇𝟐𝒉 or𝒇′(𝒙).
Since 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒇𝟏𝒉 + 𝒇′(𝒙), it follows that the difference
between 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 and 𝒇′(𝒙) is equal to 𝒇𝟏𝒉 or 𝑸(𝒙,𝒉).
𝒇𝟐𝒉 depends only on the value of 𝒙 because 𝒇𝟐 is given by
any of the 𝒚 ordinates of the tangent line less the
perpendicular distance of the horizontal line to the 𝒙 axis.



On the other hand, 𝒇𝟏𝒉 depends on the value of 𝒙 and 𝒉
because 𝒇𝟏 = 𝒇 𝒙 + 𝒉 − 𝒇𝟐. Q.E.D
It is important to note that 𝒉 is not relevant in the case of a
linear function, that is, 𝑸 𝒙,𝒉 = 𝟎, meaning this is the only
case where the difference expression contains no 𝒉. In
every other case, the 𝑸 𝒙,𝒉 difference will depend on 𝒉
and may include 𝒙 according to the given function.



Having proved the theorem, it is now easy to express the derivative
using the aforementioned identity as:𝒇′ 𝒙  =  𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 − 𝑸(𝒙,𝒉)
The flawed mainstream definition 𝒇′ 𝒙 = 𝐥𝐢𝐦𝒉 → 𝟎 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 is

equivalent to discarding the difference 𝑸(𝒙,𝒉), however, this
limiting action would suggest that𝒇′ 𝒙  =  𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉
which is false unless 𝒇 is a linear function.



The incorrigible fools of mainstream mathematics academia gave
you this: 𝒇′ 𝒙 = 𝐥𝐢𝐦𝒉 → 𝟎 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉
instead of this𝒇′ 𝒙  =  𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 − 𝑸(𝒙,𝒉)
which is sound geometry and does not require you to learn any of
the theory of limits with its warts and all.



The definite integral can be defined directly in terms of the same identity. I
revealed (many years ago) that any definite integral is a product of two
arithmetic means. The incorrigible morons of mainstream academia laughed
me to scorn back then, but the vile, jealous scum are no longer laughing
having found themselves on the wrong side of history.

To calculate an irregular bounded area between a curve and the 𝒙-axis, we
need to find the arithmetic mean of all the 𝒚 ordinates of the function in the
interval and then multiply it by the interval width – just as we would for a
rectangle.

Let’s see how we can find the definite integral of a function without the use
of limit theory, in other words, the fundamental theorem of calculus which is
directly obtained from the mean value theorem. You probably have never
learned this before, so I’ll quickly show you why it’s true.



From the identity of the mean value theorem:𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒇′(𝒄)
We obtain the fundamental theorem of calculus:𝒇 𝒙 + 𝒉 − 𝒇 𝒙 = 𝒇′ 𝒄 × 𝒉 =  ∫𝒙+𝒉𝒙 𝒇′ 𝒙 𝒅𝒙
The mean value theorem which is about an arithmetic mean, i.e. 𝒇′(𝒄), is
easy to prove and you will see how it is done in the following proof.

We begin with an interval (𝒙, 𝒙 + 𝒉) divided into 𝒏 equal parts as follows:

𝒙 𝒙 + 𝒉𝒏 𝒙 + 𝟐𝒉𝒏      …     𝒙 + 𝒏−𝟏 𝒉𝒏     𝒙 + 𝒉



To find the arithmetic mean of all the 𝑦 ordinates of 𝒇′(𝒙), we use my identity

𝒇′ 𝒙  =  𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 − 𝑸(𝒙,𝒉)
and observe the following:

𝒇′ 𝒙 + 𝑸 𝒙, 𝒉𝒏 = 𝒇 𝒙+𝒉𝒏 −𝒇(𝒙)𝒉𝒏𝒇′ 𝒙 + 𝒉𝒏 + 𝑸 𝒙 + 𝒉𝒏 , 𝒉𝒏 = 𝒇 𝒙+𝟐𝒉𝒏 −𝒇 𝒙+𝒉𝒏𝒉𝒏
...𝒇′ 𝒙 + (𝒏−𝟏)𝒉𝒏 + 𝑸 𝒙 + (𝒏−𝟏)𝒉𝒏 , 𝒉𝒏 = 𝒇 𝒙+(𝒏−𝟏)𝒉𝒏 +𝒉𝒏 −𝒇 𝒙+(𝒏−𝟏)𝒉𝒏𝒉𝒏



Note that the right hand side sum telescopes, and all the

purple terms cancel out to give 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉𝒏 .

Thus, summing the left hand side and the right hand side,
we get:

∑𝒏−𝟏𝒊=𝟎 𝒇′ 𝒙 + 𝒉𝒊𝒏  +  𝑸 𝒙 + 𝒉𝒊𝒏 ,   𝒉𝒏  = 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉𝒏  



Let 𝑸(𝒙,𝒉) =∑𝒏−𝟏𝒊=𝟎  𝑸 𝒙 + 𝒉𝒊𝒏 ,   𝒉𝒏  
∑𝒏−𝟏𝒊=𝟎 𝒇′ 𝒙 + 𝒉𝒊𝒏  + 𝑸(𝒙,𝒉) = 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉𝒏  

Dividing by 𝑛 gives the arithmetic mean:

𝟏𝒏 ×∑𝒏−𝟏𝒊=𝟎 𝒇′ 𝒙 + 𝒉𝒊𝒏  + 𝑸(𝒙,𝒉)𝒏  = 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉   



Now we multiply by 𝒉 to get the area:

[PC]𝒉𝒏 ×∑𝒏−𝟏𝒊=𝟎 𝒇′ 𝒙 + 𝒉𝒊𝒏 + 𝒉∙𝑸(𝒙,𝒉)𝒏  =  𝒇 𝒙 + 𝒉 − 𝒇(𝒙) 
OR

[MC]𝒉𝒏 ×∑𝒏−𝟏𝒊=𝟎 𝒇′ 𝒙 + 𝒉𝒊𝒏  =  𝒇 𝒙 + 𝒉 − 𝒇(𝒙) − 𝒉∙𝑸(𝒙,𝒉)𝒏



The above result [MC] is the fundamental theorem of calculus.
Note that the result is obtained by a FINITE number of steps,
that is, any integer value of 𝒏 > 𝟎 will be sufficient to find the
integral.

One might ask why we need to subtract 𝒉∙𝑸(𝒙,𝒉)𝒏 from𝒇 𝒙 + 𝒉 − 𝒇(𝒙). The reason for this is immediately
obvious from the my geometric identity:

𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒇′ 𝒙 + 𝑸(𝒙,𝒉)



If we want the arithmetic mean of all the 𝑦 ordinates of the

function 𝒇′ 𝒙 , then we must find the arithmetic mean in

terms of 𝒇 𝒙 + 𝒉 − 𝒇(𝒙) − 𝒉∙𝑸(𝒙,𝒉)𝒏 , for otherwise we are

not considering 𝒇′ 𝒙 , but the slopes of non-parallel secant

lines given by 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 .



Example 1: Let 𝒇 𝒙 = 𝒙𝒏
𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 = 𝒇′ 𝒙 + 𝑸(𝒙,𝒉)𝒙𝒏 + 𝒏𝟏 𝒙𝒏−𝟏𝒉+ 𝒏𝟐 𝒙𝒏−𝟐𝒉𝟐+…+𝒉𝒏 − 𝒙𝒏𝒉 = 𝒇′ 𝒙 + 𝑸(𝒙,𝒉)𝒏𝟏 𝒙𝒏−𝟏 + 𝒏𝟐 𝒙𝒏−𝟐𝒉 + … + 𝒉𝒏−𝟏 = 𝒇′ 𝒙 + 𝑸(𝒙,𝒉)

Now subtract 𝑸(𝒙,𝒉) from both sides where 𝑸 𝒙,𝒉 = 𝒏𝟐 𝒙𝒏−𝟐𝒉 + … + 𝒉𝒏−𝟏
Thus, 𝒏𝟏 𝒙𝒏−𝟏 = 𝒇′ 𝒙 or 𝒇′ 𝒙 =  𝒏𝒙𝒏−𝟏 since 𝒏 = 𝒏𝟏



In some instances 𝑸(𝒙,𝒉), may be very hard to find, but since
we know that

𝑸 𝒙,𝒉 = 𝒇 𝒙+𝒉 −𝒇(𝒙)𝒉 − 𝒇′ 𝒙
This is not an impossible task.

The previous example showed you how you can differentiate
using my identity. In the next example, we shall see how you
can understand the definite integral in terms of the same
identity.



Let  𝒇 𝒙 = 𝒙𝟑, 𝒉 = 𝟐, 𝒏 = 𝟑. Find the area from 𝑥 = 1 to 𝑥 = 3.
𝒉𝒏 ×𝒏−𝟏

𝒊=𝟎 𝒇′ 𝒙 + 𝒉𝒊𝒏  + 𝒉∙𝑸(𝒙,𝒉)𝒏 =  𝒇 𝒙 + 𝒉 − 𝒇(𝒙) 
𝟐𝟑 × 𝒇′ 𝟏 + 𝒇′ 𝟓𝟑 + 𝒇′ 𝟕𝟑 +  𝟐∙ 𝟑(𝟏) 𝟐𝟑 +𝟑 𝟓𝟑 𝟐𝟑 +𝟑 𝟕𝟑 𝟐𝟑 +𝟑 𝟐𝟑 𝟐

𝟑
=  𝒇 𝟑 − 𝒇(𝟏) = 𝟐𝟑 × 𝟗𝟑 + 𝟐𝟓𝟑 + 𝟒𝟗𝟑 + 𝟐𝟎𝟒𝟐𝟕 =  𝟐𝟕 − 𝟏
𝟐𝟑 × 𝟖𝟑𝟑 + 𝟐𝟎𝟒𝟐𝟕 =𝟏𝟔𝟔𝟗 + 𝟐𝟎𝟒𝟐𝟕 =  𝟒𝟗𝟖𝟐𝟕 + 𝟐𝟎𝟒𝟐𝟕 =  𝟕𝟎𝟐𝟐𝟕 = 𝟐𝟔



The diagram below makes these facts clearer:



Notice that the orange areas (which are not triangles!) are given by𝑸(𝒙,𝒉) =∑𝒏−𝟏𝒊=𝟎  𝑸 𝒙 + 𝒉𝒊𝒏 ,   𝒉𝒏  
where 𝑸 𝒙, 𝒉𝒊 =  𝟑𝒙𝒉 + 𝒉𝟐 for each 𝒙 + 𝒉𝒊𝒏 .

The green areas are given by

𝒉𝒏 ×∑𝒏−𝟏𝒊=𝟎 𝒇′ 𝒙 + 𝒉𝒊𝒏  
The sum of these orange and green areas is the area between the
curve , the x-axis and the boundaries 𝑥 = 1 and 𝑥 = 3.



If you are wondering how the orange coloured regions are areas, then
observe that

𝒇 𝒙+𝒉 −𝒇 𝒙𝒉 = 𝟑𝒙𝟐 + 𝟑𝒙𝒉 + 𝒉𝟐 if 𝒇 𝒙 = 𝒙𝟑
Since area is the product of two level magnitudes (aka incorrectly as
arithmetic means), we have

𝒇 𝒙 + 𝒉 − 𝒇 𝒙 = 𝟑𝒙𝟐𝒉 + 𝟑𝒙𝒉𝟐 + 𝒉𝟑 =∫𝒙+𝒉 𝒙 𝟑𝒙𝟐𝒅𝒙



𝟐𝟑 × 𝒇′ 𝟏 + 𝒇′ 𝟓𝟑 + 𝒇′ 𝟕𝟑 + 𝟐∙ 𝟑(𝟏) 𝟐𝟑 +𝟑 𝟓𝟑 𝟐𝟑 +𝟑 𝟕𝟑 𝟐𝟑 +𝟑 𝟐𝟑 𝟐
𝟑=  𝒇 𝟑 − 𝒇(𝟏) 

As you can see, there is no use of infinity, infinitesimals or the
circular rot of limit theory, only sound geometry.

I solved the tangent line problem, not Newton or Leibniz or any of
the mainstream mathematics idiots that followed them.



The aforementioned process is far simpler in the New Calculus,
because parallel secant lines (as opposed to non-parallel secant
lines ala Newton and Leibniz) are used and there is no
extraneous term or expression 𝑸 𝒙,𝒉 that led to the
behemoth rot known as the theory of limits. Limit theory is not
required for either the derivative or integral.



Far too long the LIE (sincere or otherwise)
that calculus requires limit theory has been
propagated by the ignorant morons of the
mainstream who are too stupid, too
stubborn and too arrogant to accept
correction.

Calculus does NOT require any LIMIT
theory.



I am the great John Gabriel, discoverer of the first rigorous
formulation of calculus in human history. More advanced
alien civilisations may already know of it, because well-
formed concepts are independent of the human mind or
any other mind.


