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Abstract
Analogous to an experiment, a structural health monitoring (SHM) system may be thought of as an information-gathering
mechanism. Gathering the information that is representative of the structural state and correctly inferring its meaning helps
engineers (decision-makers) mitigate possible losses by taking appropriate actions (risk-informed decision-making).
However, the design, research, development, installation, maintenance, and operation of an SHM system are an ex-
pensive endeavor. Therefore, the decision to invest in new information is rationally justified if the reduction in the expected
losses by utilizing newly acquired information is more than the intrinsic cost of the information acquiring mechanism
incurred over the lifespan of the structure. This article investigates the economic advantage of installing an SHM system for
inference of the structural state, risk, and lifecycle management by using the value of information (VoI) analysis. Among
many possible choices of SHM system designs (different information-gathering mechanisms), pre-posterior decision
analysis can be used to select the most feasible design. Traditionally, the cost–benefit analysis of an SHM system is carried
out through pre-posterior decision analysis that helps one evaluate the benefit of an experiment or an information-
gathering mechanism using the expected value of information metric. This study proposes an alternate normalized metric
that evaluates the expected reward ratio (benefit/gain of using an SHM system) relative to the investment risk (cost of SHM
over the lifecycle). The analysis of evaluating the relative benefit of various SHM system designs is carried out by considering
the concept of the VoI, by performing pre-posterior analysis, and the idea of a perfect experiment is discussed.
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Introduction

Structural health monitoring (SHM)1 aims to assess the
current structural health state in such a way to enable
stakeholders to make informed performance, maintenance,
and/or repair decisions, based on appropriate analyses of
in situ measured data. This goal is achieved by a modern
paradigm involving periodically spaced or continuous data
acquisition, extraction of relevant features to establish the
damage detection or classification hypothesis, and evalu-
ating the hypothesis under all the sources of uncertainty and
variability that inevitably corrupt the monitoring and in-
ference process. Structural health monitoring is integrated
with predictive degradation/failure and demand/loads
models (“prognosis”) into a decision-making framework
for optimal life-cycle management of the structure.2 How-
ever, the benefits related to improved decision-making that
an SHM system is expected to bring to life-cycle manage-
ment are balanced by the costs that it incurs. Fundamentally,

the evaluation of an SHM system essentially depends on its
design; at the core of any well-designed SHM system is a
data acquisition system that relies on (usually an array of)
deployed sensors to initiate the information workflow from
which ultimate decisions about operations, maintenance,
and other life-cycle actions will be made. Therefore, an
SHM system can be thought of as an information-gathering
mechanism, yet there are costs to design, research, develop,
install, maintain, and operate the SHM system. Therefore,
along the lines of the discussion by Howard,3 agreeing to
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invest in new information is rationally justified if the re-
duction in the expected losses by utilizing newly acquired
information is more than the intrinsic cost of the information
acquiring mechanism incurred over the lifespan of the
structure. Along the lines of this logic, a lot of focus has
been on evaluating the value of SHM by using Bayesian
pre-posterior decision analysis and value of information
(VoI) as a metric to evaluate the benefit of an SHM system in
various application problems.4–10

One of the primary objectives of this study is to evaluate
the economic advantage of using a particular SHM strategy
at two levels. First, we quantify whether the SHM strategy
leads to an expected reward to investment risk ratio greater
than unity for an instance of decision-making, considering a
fixed time occurrence. For this scenario, we consider an
initial one-time cost of designing and installing an SHM
system as the investment risk (money spent). As a conse-
quence of acquiring new information from the SHM system
that ostensibly informs an updated understanding of the
structural state, we expect to make better maintenance
decisions at a given instance in time. We expect that the
decision supported by newly acquired data is better than the
decision made without any data, and it leads to a higher
average cost-saving (or the expected reward) than the
money spent on the SHM system itself (the investment risk).
Second, we consider the lifecycle of the structure where the
state of the structure evolves with time, and maintenance
decisions are to be made over time. In this scenario, in
addition to the initial design and installation costs, we also
consider the cost of maintaining and operating an SHM
system over the lifespan of the structure. Making optimal
data-informed (obtained from an SHM system) mainte-
nance decisions over the lifespan of the structure is expected
to lead to relative cost-savings as compared to making
maintenance decisions not backed by continuously updated
data. A feasible SHM system design is the one that leads to
higher cost savings as a consequence of better decision-
making than the cost of design, installation, maintenance,
and operation of the SHM system over the lifespan of the
structure. In other words, an economically beneficial SHM
system is the one that yields an expected reward to in-
vestment risk ratio greater than unity. This article is based on
this key philosophy. We propose an expected reward to
investment risk ratio as an alternative metric to the expected
value of information (EVoI) traditionally used in pre-
posterior decision analysis.

To evaluate the expected reward to investment risk ratio,
we need a decision-making framework. In this article, we
use Expected Utility Theory,11,12 further including the be-
havioral risk profile of the decision-maker modeled using an
individual’s utility versus loss/wealth function as proposed
in Chadha et al.13 We consider the case where the degree of
damage in the structure is completely characterized by a
continuous state parameter. Due to numerous real-world

uncertainties, it is often challenging to accurately estimate
the unknown state parameter. Therefore, the state parameter
is assumed unknown and not directly measurable, and hence
is probabilistically inferred from observable sensor data. We
also assume a specific set of maintenance strategies are
already predefined for the structure of interest and have base
consequence costs predefined by the stakeholder (organi-
zation or individual) for making an assessment for every
possibility of the true structural state. We include the
stakeholder’s risk perception in the decision-making pro-
cess, that is, the valuation about the outcome of an action,
using risk profiling. The utility of a decision-maker is
subjective and hence considers the fact that different
decision-makers mentally assign a different importance
factor (or in economic terms, the utility or risk intensity) to
the seriousness/urgency in taking necessary actions with the
increasing intensity of structural damage. An individual’s
utility versus loss/wealth (the risk profile) may be used to
obtain the modified consequence-cost of performing
maintenance strategies. The approach herein incorporates a
layer of human psychology on selecting appropriate
maintenance strategies that not only depend on the posterior
distribution of unmeasurable damage state but also consider
the behavioral risk profile of the decision-maker.

Our goal is to evaluate the economic advantage of de-
ploying an SHM system before actually installing it. In other
words, we shall only deploy a feasible SHM system that
leads to an expected reward to investment risk ratio greater
than unity. This can also be formulated into a design op-
timization problem: among all the possible SHM system
designs, choose/decide the optimal SHM system design as
the one that maximizes the expected reward to investment
risk ratio. This is a useful problem because we do not have
the SHM data yet. To evaluate the benefit of an SHM
system, we must consider all relevant uncertainties in the
data and arrive at an expected value of the reward (averaged
over all the possibilities of data, process, etc.). This type of
analysis is called pre-posterior decision analysis. It is a
decision-making framework that helps the decision-maker
to analyze the potential benefit of gathering additional
information without actually performing an experiment or
installing an information-gathering system. This pre-
posterior analysis helps us decide (i) if the investment
should be made to gather additional information and (ii) if
multiple mechanisms for acquiring the information are
available, which source of the information is the best.

We consider the inland waterway navigation infra-
structure as an application case. The locks and dams that
comprise the inland waterway navigation infrastructure
consist of multi-hundreds of billions of dollars of capital
investment in a major economic transportation corridor.14–16

The United States Army Corps of Engineers (USACE)
spends further billions of dollars in maintaining and op-
erating this infrastructure, where the unscheduled shutdown
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of these assets and dewatering for inspection or repair are
very costly.17–19 The need for SHM to help facilitate
maintenance and operations appears strong, but highly
constrained budgets suggest SHM system allocation efforts
must be optimized to meet risk-based constraints and yield
the maximum possible VoI. This serves as a strong moti-
vation to apply pre-posterior decision theory to analyze the
VoI acquired through an SHM system (or the Value of
SHM). Given the maintenance and repair policies proposed
by the organization, pre-posterior decision analysis can be
used to arrive at an SHM system design that can be sup-
ported by the budgetary constraints of the organization
while reducing total life-cycle cost.

Within a navigation lock system, miter gates are one of
the most common locking gates used; their most common
failure mechanisms include loss of load-transferring contact
in the quoin block (boundary-related damage).20 Loss of
contact leads to the formation of a gap between the gate and
the wall quoin blocks at the bottom of the gate. The amount
(or length) of loss of contact at the bottom of the gate is
referred to as gap length. We assume that the degree of
damage of the miter gate is completely characterized by this
gap length. A high fidelity finite element model (FEM) of
the gate is used to infer the gap length using a network of
strain gauges. To perform the pre-posterior decision anal-
ysis, we have to consider all the possibilities of upstream
and downstream loads, gap length evolution with time, and
the uncertainties in strain gauge readings. This would re-
quire us to run the FEM numerous times which is com-
putationally prohibitive. We address this problem by using a
Gaussian Process Regression (GPR) machine learning
model of the gate that is trained using the strain gauge
measurements obtained from limited FEM runs. Finally, we
demonstrate an example where we compare three strain
gauge network designs including two randomly placed
sensors with different numbers of sensors and one KL
divergence-based optimized sensor network design (pro-
posed in Ref. 21). We also investigate the impact of various
risk profiles of decision-makers on the value of SHM.

Six new contributions to this field are discussed in this
article: (1) we introduce a normalized measure of quanti-
fying the value of SHM using expected reward to investment
risk ratio; (2) we consider the benefit of SHM at two levels:
(i) cost-saved as a consequence of better decision-making at
any instance of time and (ii) net cost saved over the lifespan
of SHM system usage; (3) along with the impact of the
design of an SHM system towards the value it creates, we
have also considered the influence of behavioral tendencies
(biases and heuristics) of the decision-makers on the value
of SHM; (4) two equivalent approaches to quantify the
benefit of an SHM system are detailed, first using EVoI or
equivalently using expected reward to investment risk ratio,
and secondly using the idea of a perfect experiment; (5) we
propose a relative risk-adjusted reward metric to quantify

the relative benefit of one feasible design relative to another
feasible design; and (6) the elucidated framework is applied
to a real-world case study involving SHM and maintenance
of a miter-gate.

The rest of the article is arranged as follows. Decision-
making framework briefs the concepts of the expected
utility theory, prior and posterior decision theory, and pre-
posterior decision analysis. Value of information consid-
ering an instance of decision-making details the Value of
SHM considering an instance of decision-making. Dem-
onstration problem description describes the demonstration
problem and models the risk profile of the decision-maker.
Value of information for life-cycle cost analysis details the
Value of SHM for lifecycle cost analysis considering the
entire lifespan of the structure. Numerical simulation
demonstrates a numerical example that applies the decision-
making theoretical framework to the miter gate problem.
Finally, Conclusion concludes the article.

Decision-making framework

To evaluate the economic VoI and worthiness of an
information-gathering SHM system, we first need to detail
the following:

1. A decision-making and VoI analysis framework.
2. Description of the structure, the information-

gathering system, and the data to be acquired.

Once these items are defined, the following questions are
investigated:

1. Is installing an SHM system beneficial relative to the
absence of any SHM system?

2. Which SHM system yields the maximum expected
reward to investment risk among the given set of
available SHM system designs?

3. Is an information theory based KullbackLeibler (KL)
divergence (or any other objective function)based
optimal sensor design economically better than a
random sensor network design in terms of life-cycle
cost management?

4. What is the impact of the decision-maker’s risk
profile on the value of SHM system?

5. Given an SHM system design, the base consequence
cost of making maintenance decisions, the risk
profile of the decision-makers, what is the possible
range of SHM system cost for it to be feasible?

Prior and posterior decision analysis

We begin by describing the decision-making framework. In
previous work,13 we detailed an Expected Utility Theory
based decision-making workflow to select an optimal action
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(specifically to choose a maintenance strategy) for a pre-
defined set of choices considering the decision-maker’s be-
havioral risk profile modeled by an individual’s utility versus
loss function. The same framework is adapted as the decision-
making model for this article. Therefore, we abundantly
borrow the results from Chadha et al.13 for this section. We
briefly describe the behavioral psychology weighed decision-
making framework in a form suitable for the current appli-
cation. We start by presenting some preliminary definitions
and notations. The real number space in d dimensions is
represented byRd, withR1 ≡R. A random variable Y is a real-
valued function defined on a discrete or a continuous sample
space SY and is assumed to take values in a measurement
space VY 2R

d , such that Y : SY →VY 2R
d . Lower case

letters y represent realizations of the random variable Y, such
that y 2VY. The probability density function is represented by
fY(y). For a random variable Y following a Gaussian distri-
bution, with the mean μy and the standard deviation σy, we
write the following

fY ðyÞ ¼ 1

σy
f

�
y� μy
σy

�
¼ 1

σy
ffiffiffiffiffi
2π

p e
1
2

�
y�μy
σy

�2

;

Y ∼N
�
μy, σ

2
y

�
:

(1)

The expected value of a function g(y) with respect to
random variable Y is denoted by EY ½gðyÞ�. The random
variable can be any order tensor. No symbolic distinction is
made for different dimensions d of the measurement space
and the random variable. The vector-dimensionality of a
random variable is contextual and is defined as needed.

Consider an SHM-based decision-making problem (like
choosing a maintenance action) that depends on the state
parameter(s) (defined later). LetΘ denote a random variable
that represents the uncertain state parameter with the state
parameter space VΘ, such that θ 2 VΘ is a realization of Θ.
The decision space (e.g., set of different maintenance ac-
tions, or equivalently, the set of the corresponding damage
labels) is represented by VD such that VD = {d0, d1,/, dn}
and θ 2 VΘ. Here, the elements of VD, that is, di 2 VD,
represent a damage label that has a corresponding main-
tenance action associated with (or designed for) it. The
decision-maker attempts to answer the question: For a given
probability distribution of the state parameter, what damage
rating must be assigned to the structure that leads to an
optimal maintenance strategy?

To answer this question, we first define the uncertainty in
the state parameter θ by its probability density function
fΘ(θ). Let θtrue represent the true value of the state pa-
rameter, and we assume that it cannot be measured. The
numerical value of θtrue falls in the domain VΘ. To predict
the optimal decision, we need to minimize the average loss
or the expected risk (also called the Bayes risk functional)

arising as a consequence of making the decision. To arrive at
the Bayes risk, we define the loss/cost function Lðdi,θtrueÞ
that defines the total loss or regret as a consequence of
making the decision di considering all the possible values of
the true state parameter θtrue 2VΘ. It gives an extrinsic cost
involved with decision-making. The expected loss or the
Bayes risk Ψprior(di) is then defined as

ΨpriorðdiÞ¼EΘ½Lðdi,θtrue ¼ θÞ� ¼
Z
VΘ

Lðdi,θtrue ¼ θÞfΘðθÞ dθ

(2)

We understand that in the definition of the Bayes risk in
equation (2), we consider all the possible values of the true
gap length. From here on, unlike equation (2), we omit
writing θtrue = θ in the argument of the cost function while
evaluating the expected value over the state-parameter
space VΘ. The optimal decision, denoted by dprior 2VD,
is the one that minimizes the Bayes risk, or

dprior ¼ argmin
di

ΨpriorðdiÞ (3)

The prior distribution fΘ(θ) embeds our prior knowledge of
the state parameter θ before any additional information is
available. Obtaining the optimal decision using equation (3)
is called a prior decision analysis.

We now consider a scenario where additional informa-
tion is available. For sake of argument, we assume that the
new information is obtained by a mechanism z (e.g., an
SHM system). Let VXz represent the continuous measure-
ment (or additional information) space, such that xz 2VXz.
Let Xz denote the random variable representing the new/
additional measurement/information obtained by the
mechanism z. Designing and installing the information-
gathering system incurs an intrinsic cost C(z). Therefore,
the sum total of the extrinsic and the intrinsic cost functions
(C(z) + L(di, θtrue)) is used for the further decision analysis.
With the availability of additional information, we define
our Bayes conditional risk Rz(di; xz) (conditioned on the new
information/data xz) and obtain the optimal decision dz as

Rzðdi; xzÞ ¼ EΘjXz½Lðdi, θÞ þ CðzÞ�
¼

Z
VΘ

ðLðdi, θÞ þ CðzÞÞfΘjXzðθjxzÞ dθ

dzðxzÞ ¼ arg min
di

Rzðdi; xzÞ
(4)

In the equation above, the quantity Rz(di; xz) represents
Bayes conditional risk defining the expected value of loss as
a consequence of making a decision di considering the
posterior distribution of the state parameter fΘjXz

ðθjxzÞ
(conditioned on the new information obtained by the
mechanism z). If the new information is representative of
the current state of the structure, the decision obtained using
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equation (4) is anticipated to be better than the decision
obtained by the prior analysis using equation (3) because
additional information xz reduces the uncertainty and up-
dates the decision-makers’ understanding of the true state
parameter through inference. Utilizing equation set (4) to
obtain the optimal decision is referred to as posterior de-
cision analysis. The subscript (.)prior and (.)z in Bayes risk
and the optimal decision are meant for the prior analysis and
the posterior decision analysis, respectively (considering the
new information obtained by the mechanism z). We realize
that the posterior fΘjXz

ðθjxzÞ is non-causal. The state pa-
rameter can be thought of as a cause with measurement
being its effect. In this regard, inferring the state parameter
(cause) given the measurement (effect) is non-causal.

Pre-posterior decision analysis

As was discussed in the previous section, obtaining good
quality new information about the system is consequential
in making a better decision. However, acquiring
information/data bears a cost. The pre-posterior decision
analysis is the framework that helps the decision-maker to
analyze the potential benefit of gathering additional in-
formation without actually performing an experiment or
installing an information-gathering system. The decision-
maker can pay to obtain the measurement made by the SHM
system, or carrying out an inspection, or observe the out-
come of an experiment. However, carrying any of these
activities bears cost (like the cost to design the SHM system,
sensor and maintenance costs, labor costs to carry out in-
spection, and testing costs). Acquiring the new information,
regardless of mechanism, is meaningful and economical if
and only if the additional cost required to gather the in-
formation is outweighed by the reduction in the expected
losses evaluated by considering the additional information.
This observation can be thought of as an asset integration
tenet of expected utility theory as noted in Ref. 22; in other
words, the prospect of paying to acquire new information is
acceptable if and only if the utility resulting from ex-
perimenting exceeds the utility evaluated without it. Thus,
pre-posterior analysis helps us decide if the price should be
paid to gather additional information, and if multiple
mechanisms for acquiring the information are available,
which source of the information is the best.

To describe the framework, let VZ represent the space of
all the possible information acquiring mechanisms or sys-
tems (synonymously called experiments from here on), such
that VZ = {z0, z1, z2, …, zm}. Let Xzi represent the random
variable denoting the outcome/measurement of the data
obtained by carrying out the experiment zi, such that
xzi 2VXzi

. Here, z0 represents the null case of carrying out
no experiment, such that Xz0 ¼ ffg. Let C(zi) represent
the intrinsic cost of conducting the experiment zi, with
C(z0) = 0. For the experiment zi, the cost of making a

decision dj for a given state parameter θ is given by the sum
of extrinsic and intrinsic costs (L(dj, θtrue) + C(zi)). The total
cost (L(dj, θtrue) + C(zi)) is independent of the outcome xzi
because the cost of conducting the experiment does not
change with the outcome. Given the experiment-outcome
pair ðzi,xziÞ, the remaining calculation is the same as pos-
terior decision analysis discussed in Prior and posterior
decision analysis, with an exception of using the cost (L(dj,
θtrue) + C(zi)) in place of the cost L(dj, θtrue) in the definition
of Bayes conditional risk as defined in equation (4). There-
fore, the most optimum decision for a given experiment-
outcome pair ðzi,xziÞ is then given as

dzi
ðxziÞ ¼ arg min

dj

Rzi

�
dj; xzi

�
, where (5a)

Rzi

�
dj; xzi

� ¼ EΘjXzi
	
L
�
dj,θ

�þ CðziÞ



(5b)

In the equation above, Rziðdj; xziÞ represents the Bayes
conditional risk for the experiment-outcome pair ðzi,xziÞ and
the decision outcome dj. The discussion so far is exactly the
same as the posterior decision analysis. However, our goal
for the pre-posterior analysis is to decide if and which
experiment must be performed such that the new infor-
mation obtained adds to the value of decision-making. We
note that the experiment is actually not carried out during
this phase of decision analysis, and therefore, all the
possible measurement outcomes must be considered. Since
the measurements depend on the state of the structure, the
probability distribution of the measurements depends on
three quantities: (1) the prior distribution of the state
parameter at an instance of time; (2) the simulation or
physics-based model (like FEM) that establishes a map
between the state parameter and the measurements; and (3)
a reasonably assumed noise structure. Since the mea-
surements are uncertain and are quantified by their
probability distribution function, the quantity that interests
us is the expected value of the minimum Bayes conditional
risk Rziðdj; xziÞ weighted over all the possible outcomes
xzi 2VXzi

conditioned upon the prior distribution of the
state parameter. It is defined by the Bayes risk Ψavg(zi) for
an experiment zi, such that

ΨavgðziÞ ¼ EXzi

�
min
dj

Rzi

�
dj; xzi

�� ¼ EXzi
½Rziðdzi

ðxziÞ; xziÞ�
(6a)

z ¼ argmin
zi

ΨavgðziÞ (6b)

Here, z2VZ represents the optimal experiment. We ob-
serve that if no additional information is acquired, as is the
case with z0, the decision-making process reduces to prior
analysis, such that
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Ψavgðz0Þ ¼ min
di

ΨpriorðdiÞ ¼ Ψprior

�
dprior

�
(7)

One of the quantities required to evaluate the Bayes con-
ditional risk Rziðdj; xziÞ is the posterior fΘjXzi

ðθjxziÞ. However,
unlike the posterior analysis, we do not have the
measurement/outcome data xzi because no experiment has
yet been performed. As the experiment is not performed and
the measurements are not available during this phase of
decision analysis, we consider all possible measurements
that are simulated for a given prior distribution of the state
parameter. Therefore, this analysis is called pre-posterior
decision analysis. To evaluate the posterior fΘjXzi

ðθjxziÞ, we
use the Bayes theorem, which in turn requires obtaining the
likelihood fXzijΘðxzijθÞ. Since there is no availability of the
data, the likelihood is assumed/modeled by the decision-
maker based on past observation, physics-based simula-
tions, or a reasonable assumption.

Value of information considering an
instance of decision-making

Conditional value of information

Consider the prior and posterior decision analysis detailed
in Prior and posterior decision analysis. We restate our
assumption that the new information is of good quality in a
way that it helps the decision-maker to have a better un-
derstanding of the state parameter in comparison to the
decision-maker’s prior knowledge. It is expected that with
additional information, the expected loss should reduce.
Acquiring new information via the system z 2VZ helps us
make better decisions as it reduces uncertainties in the state
parameter, that is, the distribution fΘjXz

ðθjxzÞ has lower
variance than fΘ(θ). This brings us to the definition of
conditional value of information CVoI(xz) as

CVoIðxzÞ ¼ Ψprior

�
dprior

�� Rziðdzi
ðxziÞ; xziÞ (8)

Note that the quantity Rziðdzi
ðxziÞ; xziÞ defined in equation

(5b) takes into account the additional cost C(z) of acquiring
the information. Therefore, obtaining the new information
xz 2VXz is advantageous if the expected loss Rziðdzi

ðxziÞ; xziÞ
<ΨpriorðdpriorÞ, or equivalently, CVoI(xz) > 0. However, it is
more reasonable and desirable to define a quantity that mea-
sures the average VoI considering all the possible measure-
ments as discussed in next section (since the measurements/
data are generically stochastic).

Expected value of information or the value
of experiment

When we perform a pre-posterior analysis for the experi-
ment (or the information-gathering system) zi 2 VZ, all the
possible values of the measurement xzi 2VXzi

corresponding

to the experiment zi are to be considered. Therefore, the
expected value of information EVoI(zi) (also called the
expected value of experiment) is then defined as the ex-
pected value of the CVoIðxziÞ averaged over the entire
measurement space Xzi, yielding

EVoIðziÞ ¼ EXzi
½CVoIðxziÞ� ¼ Ψavgðz0Þ � ΨavgðziÞ

¼ Ψprior

�
dprior

�� ΨavgðziÞ
(9)

To understand the quantity EVoI(zi), we expand the ex-
pression in equation (9) using equations (2) and (6a) as

EVoIðziÞ ¼ min
dj

EΘ

	
L
�
dj,θ

�
� EXzi

�
min
dj

Rzi

�
dj; xzi

��

¼ min
dj

EΘ

	
L
�
dj,θ

�
� EXzi

�
min
dj

EΘjXzi
	
L
�
dj,θ

�
þ CðziÞ


�

¼ min
dj

EΘ

	
L
�
dj,θ

�
� EXzi

�
min
dj

EΘjXzi
	
L
�
dj,θ

�
�
� CðziÞ ¼ CsaveðziÞ � CðziÞ

(10)

where

CsaveðziÞ ¼ min
dj

EΘ

	
L
�
dj,θ

�
� EXzi

�
min
dj

EΘjXzi
	
L
�
dj,θ

�
�
(11)

To proceed further, we note that the following identity holds

EXzi

�
min
dj

EΘjXzi
	
L
�
dj,θ

�
�
≤min

dj
EXzi

h
EΘjXzi

	
L
�
dj,θ

�
i
¼ min

dj
EΘ

	
L
�
dj,θ

�
 (12)

Note that EΘjXzi
½Lðdj,θÞ� is a function of ðdj,xziÞ (state pa-

rameter θ is integrated out). Thus, it is easy to visualize the
identity defined in equation (12) by defining the function
f ðdj,xziÞ ¼ EΘjXzi

½Lðdj,θÞ� and observing that

EXzi

�
min
dj

�
f
�
dj,xzi

���
≤min

dj
EXzi

	
f
�
dj,xzi

�

(13)

The identity (12) when applied to equation (11) leads to
another important formula

CsaveðziÞ ≥ 0 (14)

As mentioned in Ref. 6, the EVoI can be normalized by the
minimum prior consequence costΨpriorðdpriorÞ to obtain the
relative value of information of an experiment z (denoted by
RVoI(z)) as

RVoIðzÞ ¼ Ψprior

�
dprior

�� ΨavgðzÞ
Ψprior

�
dprior

� ¼ EVoIðzÞ
Ψprior

�
dprior

� (15)
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The EVoI is impacted by two aspects. The first is gaining
additional information that helps reduce the expected losses
by an amount Csave(zi). Second, setting up an experiment zi
incurs additional intrinsic cost that leads to increase in the
expected cost by an amount C(zi). Therefore, performing an
experiment/inspection to gain new information is advan-
tageous if and only if the cost of the experiment C(zi) is less
than the reduction in losses Csave(zi), or if Csave(zi)� C(zi) ≥
0. In other words, it would be economical and rational to
perform an experiment zi 2VZ if and only if EVoI(zi) ≥ 0.
The value of experiment z0 is EVoI(z0) = 0 because no new
information is gained (or Csave(z0) = 0) and since there is no
mechanism available to acquire new information, we have
C(z0) = 0.

Inspired from the Gambling theory23 and the stock-
market trading system design,24,25 in the next section, we
propose an alternate normalized metric to quantify the VoI
that is inherently suitable for business-oriented decision-
making in SHM.

Expected reward to investment risk ratio for an
information-gathering system

We consider the concept of reward to risk ratio used in
designing trading systems in the stock market. A technical
analysis26,27-based trading system utilizes the newly ac-
quired information on the price action of a stock to make
trading decisions. Since the stock market is inherently
uncertain and there is always a chance of a black-swan or a
fat-tail event28 (also known as a high-consequence low-
probability event in the field of reliability analysis), a
trading system must ensure that the trader gets out of a
position taking a predefined loss instead of incurring severe
portfolio-crippling loss. Therefore, a trading system is
designed to expect a reward by risking a predefined
monetary loss. This trading philosophy is popularly known
as “winning by losing” in the trading world. Thus, among
many possible trading-system designs, the one with a higher
expectancy or adjusted reward to risk ratio (adjusted for the
probability of winning and losing trades yielded by the
trading system—also informally called Batting average) is
the optimal. The goal is not to choose the system that gives
maximum profit but may lead to severe draw-downs (hence
can possibly lead to complete ruin—also called gambler’s
ruin), rather the goal is to design a system that yields
maximum reward for a given risk (expecting a consistent
long-term compounding of wealth). Similarly, Thorp23–25 in
his groundbreaking research developed a risk-adjusted
reward-based betting system for Black Jack and Roulette
(in collaboration with Claude Shannon) that decided on
when and how much (optimal position sizing) to bet based
on newly acquired information using card-counting for

Black Jack and wearable-computer running a physics-based
updating model for Roulette.

Along a similar line of reasoning, the reward obtained by
newly acquired information/data from an SHM system (in
terms of making optimal maintenance decisions and in-
creasing the lifespan of the structure) must outweigh the
financial resources risked for the design, installation,
maintenance, and operation of an information-gathering
system. We define the expected reward to investment risk
ratio λ(z) for an information-gathering system z as

λðzÞ ¼ CsaveðzÞ
CðzÞ ¼ CsaveðzÞ

EVoIðzÞ þ CsaveðzÞ

¼ 1

CðzÞ
�
min
dj

EΘ

	
LjðθÞ


� EXzi

�
min
dj

EΘjXzi
	
LjðθÞ


��
(16)

Therefore, the SHM system with λ(z) ≥ 1 is a feasibly
acceptable system with a positive risk-adjusted reward. The
quantity Csave(z) denotes the expected reward as a conse-
quence of data-informed decision-making, and the quantity
C(z) can be thought of as an investment risk (money paid to
design and install an SHM system). Among many possible
information-gathering systems in VZ, the most desirable
system z is the one that yields the maximum risk-adjusted
reward, or

z ¼ arg max
zi

λðzÞ (17)

Consider two feasible designs z1 and z2, such that λ(z1) > 1
and λ(z2) > 1. To quantify the relative benefit of one feasible
design with respect to another feasible design in terms of
their risk-adjusted reward, we propose relative risk-adjusted
reward metric, denoted by χ(z1, z2), such that

χðz1, z2Þ ¼ λðz1Þ � 1

λðz2Þ � 1
(18)

For two feasible designs z1 and z2, χ(z1, z2) quantifies the
relative risk-adjusted reward of the design z1 as compared to
the design z2. The value of χ(z1, z2) greater than one implies
that the design z1 leads to higher risk-adjusted savings as
compared to the design z2 by χ(z1, z2) times.

Perfect experiment and perfect information

We now consider an experiment z with the cost C(z) that
gives the exact value (zero error) of the state parameter, such
that θ = xz, where xz 2VXz. This implies

fXzjΘðxzjθÞ ¼ fΘjXzðθjxzÞ ¼ δðxz � θÞ (19a)

fXzðxzÞ ¼ fΘðθÞ (19b)
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It might appear that the experiment z defined above involves
directly measuring the state parameter. However, in most of
the practical problems, the state parameter is not directly
measured, and rather, it is inferred from some other at-
tainable measurement. If that is the case, then we assume
that the inferred state parameter gives the true value of the
state parameter without any error. In that case, VXz would
denote the space of the predicted/inferred gap length, such
that equation (19) holds.

Using equations (5b) and (19), the Bayes conditional risk
for the experiment z is written as

Rz

�
dj; xz

� ¼ EΘjXz
	�
L
�
dj, θ

�þ CðzÞ�

¼

Z
θ

�
L
�
dj, θ

�þ CðzÞ�δðθ � xzÞ dθ
¼ L

�
dj, θ ¼ xz

�þ CðzÞ
(20)

Using equations (6a) and (20), the average Bayes risk as-
sociated with the perfect experiment z is defined as

ΨavgðzÞ ¼ EXz

�
min
dj

Rz

�
dj, xz

��

¼ EXz

�
min
dj

�
L
�
dj, θ ¼ xz

�þ CðzÞ��: (21)

As a consequence of equation (19b), we can write

ΨavgðzÞ ¼ EΘ

�
min
dj

�
L
�
dj, θ

�þ CðzÞ�� (22)

We call any experiment z that satisfies equation (19) as a
perfect experiment. Since the cost of any experiment z is
independent of its outcome xz and the decision space VD,
equation (22) can be simplified as

ΨavgðzÞ ¼ EΘ

�
min
dj

�
L
�
dj, θtrue ¼ θ

���þ CðzÞ (23)

The value of perfect experiment is defined using equation
(9) as

EVoIðzÞ ¼ Ψprior

�
dprior

�� ΨavgðzÞ (24)

Using equations (2) and (3), we can write ΨpriorðdpriorÞ ¼
mindjEΘ½Lðdj, θÞ�. Therefore, using equations (23) and (24),
we get

EVoIðzÞ ¼ CsaveðzÞ � CðzÞ, where (25a)

CsaveðzÞ ¼ min
dj

EΘ

	
L
�
dj, θ

�
� EΘ

�
min
dj

�
L
�
dj,θ

���
(25b)

We note that a perfect experiment yields an exact and error-
free value of the state parameter. We now define the value of
perfect information PVoI as the cost of the perfect exper-
iment ẑ for which the EVoI vanishes, or

EVoIðẑÞ ¼ 0 (26)

In other words, ẑ is a fictitious experiment that is a special
case of a perfect experiment in which the reduction in losses
due to additional information CsaveðẑÞ compensate with the
cost of the experiment CðẑÞ, or the risk-adjusted reward
becomes unity: λðẑÞ ¼ 1. Hence, PVoI ¼ CðẑÞ is the
maximum expense that should be incurred out of pocket to
acquire additional information. Experiment or SHM system
z with the cost CðzÞ>CðẑÞ need not even be considered.
Therefore, a rational decision-maker decides to perform an
experiment z if either of the following five equivalent
statements hold

EVoIðzÞ ≥ 0 (27a)

Csave ≥CðzÞ (27b)

RVoIðzÞ ≥ 0 (27c)

λðzÞ ≥ 1 (27d)

CðzÞ ≤Cð̂zÞ (27e)

Equation set (27) gives the conditions satisfying the asset
integration tenet of expected utility theory as mentioned in
Ref. 22. In other words, the prospect of carrying out an
experiment z is acceptable if the utility resulting from
carrying out the experiment exceeds the utility evaluated
without it, that is, EVoI(z) ≥ 0. We reinforce the fact that the
experiments z0 and ẑ have zero value of experiment because
z0 does not yield any new information and the experiment ẑ
yields the maximum possible information at the highest
rationally payable cost CðẑÞ.

Having discussed the decision-making and VoI frame-
work, we detail a demonstration problem in the next section.

Demonstration problem description

Miter gate

To demonstrate the application of the concepts discussed so
far, we consider an example problem of the Greenup miter
gate maintained and managed by USACE located on the
Ohio River, USA. Figure 1 shows the Greenup lock and the
miter gate (image adapted from the USACE website and
Eick et al.29). Loss of contact in the quoin blocks (boundary-
related damage) is the most commonly observed damage
mode in such systems.19,30,20 Loss of contact leads to a
formation of a gap between the gate and the wall quoin
blocks at the bottom of the gate. The amount (or length) of
loss of contact at the bottom of the gate is referred to as gap
length in this article. Therefore, we consider the gap length
as the continuous state parameter θ 2VΘ (refer to Figure 2),
such thatVΘ = [θmin, θmax]. Here, θmin is the lower bound of
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the gap length and θmax is the upper bound of the gap length
which indicates that the gate is critically damaged and the
failure is to follow. This value is suggested by the USACE
engineers based on their experience and past inspection
data. In many cases, the data related to the failure of the
structure may not be available because the decision-makers
are risk-averse and they do not want to see a gap length to be
large enough leading to failure. In such scenarios, a rigorous
high-fidelity numerical simulation should be performed to
estimate the θmax. Based on feedback from the field engi-
neers,20 the upper bound of the gap length can be considered
as θmax = 180 inches for the gates that have similar structural
characteristics as the Greenup miter gate. If no value of θmin

is specified, it can be taken as 0 inches (indicating pristine
state of the gate). Unlike non-binary rating protocols used
by USACE, that is (A, B, C, D, F, and CF), to build our
framework, we use a rather simplified binary labeling
system that consists of two discrete damage labels/index of
the miter gate, such that the decision space isVD = {d0, d1},
where the binary decisions are

d0 : label indicating that the gate is undamaged with
excellent operational capacity

d1 : label indicating that the gate is damaged and is
not safely operational

(28)

The loss-of-contact part of the gate is always submerged in
highly turbid water, and it consequently cannot be easily
measured directly during normal operational conditions.
Hence, gap length is an unknown parameter and must be
inferred from indirect measurements. The Greenup miter
gate is equipped with a strain gauge network illustrated by
red dots in Figure 2. These strain gauge readings are
recorded in real-time and are used as the observable set of
measurements that will be used to infer the gap length. We
simulate our data acquisition process using a high-fidelity
FEM of the Greenup miter gate previously validated in the
undamaged condition with the available strain sensor
readings.20 When the miter gate is first deployed, the gap

Figure 1. Greenup locks and miter gate.

Figure 2. Physics-based model of miter gate and the bearing gap.
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length is reasonably assumed to be zero. An FEM of the
pristine miter gate needs to be constantly updated as and
when new information from the strain gauge sensor network
is obtained. Because a very limited amount of data is
available from Greenup, we turn to an FEM as the ground
truth surrogate for data. In that regard, we assume that
there is no measurement bias and the sensor readings are
subject to random unbiased noise. As with any such model,
its representative predictive value is only as good as its
validation with regard to the real structure that it repre-
sents. In this case, the FEMwas previously validated to the
Greenup miter gate in the undamaged condition, as
mentioned earlier, but the modeling of the damage itself
could not be validated on actual data from the gate in a
known damaged condition, so modeling bias error in the
damage state could creep into the process. That does not
change or otherwise invalidate the demonstration of the
proposed approach or its utility, but rather it provides
caution on interpreting the specific results for this case
beyond the demonstration of the overall approach. The
posterior distribution fΘjXz

ðθjxzÞ of the gap length given the
strain sensors measurement is then obtained using
Bayesian inference. Here, Xz denotes a random variable
that represents the measurement obtained from the sensors
deployed in the SHM system z, with VXz representing the
space of those measurements. Figure 2 shows the physics-
based FEM of the miter gate.

To simulate the strain gauge data, we rely on a GPR-
based model trained using simulated observable strain
values obtained from the validated FEM. Although there are
infinite possible locations where strain gauges can be placed
on a real miter gate, the FEM discretely covers the possible
sensor locations using a countable number of strain gauges.
The FEM itself is constructed using 3D quadrilateral and

triangular shell elements in Abaqus and consists of a total of
64,919 elements. Every element has a local coordinate
system {ti} defined in the underformed state and a global
coordinate system {Ei}. The thickness of the element is in
the direction t3, and the top and bottom surface of the
element is spanned by the vectors ðt1, t2Þ as shown in
Figure 3. The strain gauges are attached to the top and
bottom surface of each element, measuring uniaxial strains
along the direction t1 and t2. Each element is identified by
its geometric centroid at the origin of the local coordinate
system. Therefore, there are four possible arrangements of
strain gauges on each element. These possibilities are
identified using the following abbreviations

TH: top element, horizontal orientation along t1

TV: top element, vertical orientation along t2

BH: bottom element, horizontal orientation along t1

BV: bottom element, vertical orientation along t2

(29)

Based on the above abbreviations, for a typical elementm,
xmTH and xmTV in Figure 3 represent the measurement of
strain from gauges attached to the top surface and oriented
along t1 and t2, respectively. Similarly, xmBH and xmBV in
Figure 3 represent the measurements of strain from gauges
attached to the bottom surface and oriented along t1 and t2,
respectively.

The gate is subjected to uncertain upstream and down-
stream hydrostatic loads quantified by the hydrostatic up-
stream and downstream heads; these are denoted by the
random variables Hup and Hdown, with realizations hup 2
VHup and hdown 2VHdown, respectively, whereVHup andVHdown

represents space of all possible values of upstream and
downstream head, respectively. The water heads over the

Figure 3. Orientation and the location of the strain gauge and different type of shell elements used in finite element model.
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lifespan of the miter gate are modeled by time-series
models using autoregressive moving average (ARMA) as
follows

hupðtiÞ¼ 172þ εupi þ0:33hupðti�2Þþ0:35hupðti�2Þ
þ0:52εupi�2þ0:55εupi�1, where, ε

up
i ∼N

�
0,22

�
;

hdownðtiÞ¼ 95þ εdowni þ0:23hdownðti�2Þþ0:25hdownðti�2Þ
þ0:52εdowni�2 þ0:61εdowni�1 , where, εdowni ∼N

�
0,22

�
(30)

Figure 4 illustrates one realization of the hydrostatic head
time-series constructed using ARMA over a 60-month time
period.

For an ith strain gauge in the SHM system z, we assume
an independent zero-mean additive Gaussian noise, denoted
by a random variable ζ zi with the realization εzi, is assumed
for each strain gauge

ζ i ∼N
�
μεzi ¼ 0, σ2

εzi

�
(31)

The standard deviation of noise is assigned to be σεzi ¼
5 × 10�6 in accordance with reasonable commercial strain
gauge performance.

Maintenance actions for the miter gate and the
associated cost function

Let M0 and M1 represent the actions associated with the
labels d0 (rating the structure as undamaged) and d1 (rating
the structure as damaged), respectively. That is, if the
structure is labeled/rated as di, with i 2{0, 1}, then we
perform the maintenance Mi, such that

M0 : Do nothing ðcontinue operationÞ
M1 : Shut down, inspect, and repair or replace as

required based on the inspection results
(32)

Choosing either M0 or M1 will have an associated con-
sequence cost depending on what the true state of damage
is. For instance, choosingM0 for a newly constructed gate
(with the true gap length value being zero or small) is
obviously an optimal decision. On the other hand, the
same maintenance action M0 can lead to catastrophic
consequences when the true value of gap length is close to
θmax (implying a heavily damaged gate). Similarly,
choosing M1 for a pristine gate is unnecessary while it
may be an optimal decision when the gate is approaching
critical failure (with a larger value of true gap length).
Therefore, to consider the economical consequence of
deciding a maintenance action (or, equivalently choosing
the state label), the organization needs to estimate the cost
of performing maintenance for all the possible true de-
grees of damage defined by the state parameter gap length
θtrue 2VΘ. The organization estimates this cost based on a
detailed cost analysis of past maintenance data and/or
their current maintenance policies.

For the sake of demonstration purposes, we adopt a
linear cost function as discussed in Chadha et al.13 This
represents a case where the cost linearly increases with
the true degree of damage. Another reasonable as-
sumption would be a step function that assigns equal
consequence cost to a range of true gap length values.
We evaluate the consequence cost for both the main-
tenance strategies considering the extreme values of true
gap length (θtrue = θmin = 0 inches and θtrue = θmax = 180
inches) and linearly interpolate the cost function for all
the intermediate θtrue values. We do this because the
extreme values of the gap have interpretable physical
meaning. The value of θtrue = 0 inches indicates that the
gate is pristine, and the value of θtrue = 180 inches in-
dicates that the gate is severely damaged and a critical
failure is expected. Under such damage conditions, the
economical consequence of choosing a maintenance
action can be reasonably evaluated since the conse-
quences of decision-making are well-defined. However,
we note that the organization can estimate/design the

Figure 4. Realization of the hydrostatic water head time series.
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cost functions as per their requirements and policies that
need not necessarily be linear (another practical example
can be a step-wise consequence cost). The framework
developed here is generic and can support any such cost
model. Let L(d0, θtrue) and L(d1, θtrue) denote the con-
sequence costs of performing the maintenance actions
M0 andM1, respectively, when the true degree of damage
is defined by θtrue, such that

Lðd0, θtrueÞ ¼
�
Lðd0, θmaxÞ � Lðd0, 0Þ

θmax � θmin

�
θtrue þ Lðd0, 0Þ

Lðd1, θtrueÞ ¼
�
Lðd1, θmaxÞ � Lðd1, 0Þ

θmax � θmin

�
θtrue þ Lðd1, 0Þ

(33)

In the equation above, the extremes costs L(di, 0) and L(di,
θmax) are assumed to be known and fixed by the organization.
Since L(d0, θmax) is the maximum extreme cost, all other
extreme costs can be expressed as a fraction of L(d0, θmax). For
the purposes of numerical simulation in this article, we assume
L(d1, 0) = 0.15 L(d0, θmax) and L(d1, θmax) = 0.4 L(d0, θmax).
We assign dollar value of US$1 million to L(d0, θmax). Under
this assignment, Figure 5 gives the cost functions L(d0, θtrue)
and L(d1, θtrue).

The base cost functions L(di, θtrue) are defined by the
organization. Although the base cost is assumed to be linear

in this article, it can bear any form (step-function, piecewise
function, quadratic, etc.). In most cases, these costs are
estimated based on the available data and are approximate.
When it comes to maintenance decisions guided by the
organization’s maintenance policies or collective expe-
rience, we consider the real-world scenario where in-
spection engineers are authorized to execute those
decisions. These decisions are subjective to the engi-
neer’s experience and their thought processes assumed
commensurate with the broader policies or guidance
provided by the organization. Therefore, the maintenance
decisions may have slightly different cost consequences
as defined by the base cost function. The risk profile of the
decision-maker can be mathematically modeled by their
utility versus wealth (or loss) function, or generally a
utility function. An individual’s utility gives their eval-
uation of the consequence/outcome of an action. The
utility may be different from the real dollar cost (or
value). Since a risk-averse decision-maker aims at losing
less (or gaining more), his perceived value of cost/loss is
higher than the real dollar cost. This leads to a concave-
down utility function. On the other hand, a risk-seeker
decision-maker is willing to risk more and hence assign a
lower valuation to the real cost, leading to concave-up
utility function. As discussed in Chadha et al.,13 an in-
dividual’s utility (or the risk profile) can be used to obtain
the modified cost functions. This allows us to incorporate
the risk-perception into the decision-making process. The
risk-adjusted cost functions (distinguished by a hat ðb� Þ)
can be expressed as

L̂ðd0,θtrue;γ,ξÞ¼a0 log

�
1þb0

�
Lðd0,θmaxÞ�Lðd0,0Þ

θmax�θmin

�
θtrue

�
þLðd0,0Þ

L̂ðd1,θtrue;γ,ξÞ¼a1 log

�
1þb1

�
Lðd1,θmaxÞ�Lðd1,0Þ

θmax�θmin

�
θtrue

�
þLðd1,0Þ

(34)Figure 5. The cost function L(di, θtrue).

Figure 6. Risk intensitymodified cost function.
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The risk profile is parameterized by (γ, ξ). For a given risk
profile (γ, ξ), the constants a0, a1, b0, and b1 may be obtained
by solving equation (16) of Chadha et al.13 We note the
following conditions defining the characteristics of the risk
profile

L̂ðdi, θtrue; γ, ξÞ> Lðdi, θtrueÞ or ξ < γ
: For risk� averse profile

L̂ðdi, θtrue; γ, ξÞ ¼ Lðdi, θtrueÞ or ξ ¼ γ
: For risk� neutral profile

L̂ðdi, θtrue; γ, ξÞ< Lðdi, θtrueÞ or ξ > γ
: For risk� seeker profile

(35)

For the purpose of simulation, we consider the 5 risk profiles
mentioned in Table 1.

Figure 6 illustrates the modified cost function for various
risk profiles listed in Table 1.

Empowered with the idea of risk profiles, we realize that
risk profiles can be interpreted in 2 ways: (1) Forward
interpretation: each risk profile represents individual de-
cision-maker’s behavior and (2) Inverse interpretation: each
risk profile represents a risk intensity that the organization
wants to include over the base cost to make a decision. A
risk-averse profile demands a conservative decision, that is,
a tendency to perform the maintenance M1 at a relatively
lower level of damage to avoid any disastrous and expensive
consequence. On the other hand, a risk-seeker profile allows
more flexible decision-making that would recommend the
maintenanceM1 only when the degree of structural damage
is approaching failure, that is, in a more risky state. To
include the behavioral influence of the decision-maker into
the decision-making framework discussed in Decision-
making framework and Value of information considering
an instance of decision-making, we simply replace the cost
functions with the risk-modified cost functions, that is,
Lðdj, θtrueÞ→ L̂ðdj, θtrue; γ, ξÞ.

Remark 1. For a multi-dimensional state parameter (unlike
a scalar used in this article), the cost function would take a
form of a hypersurface. The risk intensity of the decision-
maker can then be introduced by defining an appropriate
mapping function that takes the base hypersurface to a risk-
modified hypersurface parameterized by appropriate risk-

parameters with appropriate boundary restrictions. If the
hypersurface is a Riemannian manifold, then the local risk
intensity at a given state-vector can be defined by Rie-
mannian curvature at that state.

A practical and simple example of pre-posterior
decision analysis

As discussed in the introduction, the unscheduled shutdown
of these navigation locks and inspecting them with divers or
even dewatering them for inspection or repair is very costly
to USACE. Consider the following simple information-
gathering mechanism concerning the miter gate problem
at hand:

1. z0: No acquisition of data.
2. z1: Send the diver to measure the gap length.
3. z2: Dewater the gate and measure the exact gap

length.

We analyze which option to choose among the above
three choices constituting the inspection (or experiment)
space VZ = {z0, z1, z2} using the pre-posterior decision
analysis. We assume the cost of these inspections as C(z0) =
US$0, C(z1) = US$0.02, and C(z2) = US$0.2 (in millions).
We also note that z2 is a perfect experiment/inspection as it
yields the exact value of the gap length. As such, with an
aim of focusing on the pre-posterior analysis, we consider a
prior distribution modeled by a Gaussian distribution with
the mean μθ = 75 inches and standard deviation σθ = 20

inches, that is, fΘðθÞ ¼ 1
20f

�
θ�75
20

�
. We consider the linear

cost function (or RP3) for the purpose of this example.
Since the information acquired through z1 and z2 directly

give the gap length, VXzi
represents the space of gap length

obtained from the experiment zi such that VXzi
≡VΘ. Since

we are not actually collecting new information (or con-
ducting an experiment) for pre-posterior analysis, the
likelihood fXzijΘðxzijθÞ is to be provided by the organization
from the past data/experience/simulation. If no past data is
available, a reasonable assumption of the likelihood must be
made. Experiment z1 involves sending a diver in. We as-
sume that the gap length measured by the diver has some
noise. We assume Gaussian noise of zero mean and a
standard deviation of 3 inches leading to the likelihood

fXz1jΘðxz1jθÞ ¼
1
3f

�
xz1�θ
3

�
. Since z2 is a perfect experiment,

we have fXz2jΘðxz2jθÞ ¼ δðxz2 � θÞ.
Given all the entities discussed above, by virtue of

equivalence in the equations (27a) and (27e), there are two
approaches to know if inspection must be conducted, and if
yes, then which among the two z1 and z2 is most optimal.
The first approach involves obtaining the expected value of
information EVoI(zi) and using equation (27a) to make a

Table 1. Examples of different risk profiles.

Risk profiles ID γ ξ

Extreme risk-averter RP1 0.8 0.25
Moderate risk-averter RP2 0.8 0.6
Neutral risk bearer RP3 0.8 0.8
Moderate risk-seeker RP4 0.8 0.95
Extreme risk-seeker RP5 0.8 0.999
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decision, whereas, the second approach involves obtaining
the value of perfect information PVoI ¼ CðẑÞ and using
equation (27b) to make a decision. Figures 7 and 8 illus-
trates the two approaches to decide on choosing the in-
spection strategies.

We can obtain the value of perfect information by solving
for Cð̂zÞ in the slightly modified form of equation (26)

EVoIðẑÞ ¼ min
dj

EΘ

h
L̂
�
dj, θtrue; γ, ξ

�i
� EΘ

�
min
dj

�
L̂
�
dj, θtrue; γ, ξ

���� Cð̂zÞ ¼ 0

(36)

Solving the equation above for Cð̂zÞ for the current case, we
obtain CðẑÞ ¼ 0:263 million.

Approach 1 given in Figure 7 requires evaluation of the
posterior and the evidence which can be involved and

computationally expensive to obtain. On the other hand,
approach 2 illustrated in Figure 8 demands an evaluation of
Cð̂zÞ using equation (36) that if solved numerically would
require using sample-based integration which is computa-
tionally cheaper to perform than to obtain the posterior and
the evidence. We suggest readers use either approach 1 or 2
as it suits their problem.

For the given three inspection strategies zi, Table 2 details the
expected costs and the value of experiment/inspection EVoI(zi).
Table 2 clearly indicates that performing both the experiments z1
and z2 will be beneficial in accordance with all four conditions
in equation set (27). However, although dewatering yields a
higher net savings Csave(z2) > Csave(z1), sending the diver in for
takingmeasurement yields the best risk-adjusted reward, that is,
λ(z1) > λ(z2). The relative risk-adjusted reward of design z1
relative to the design z2 is χ(z1, z2) = 38.387, that is, design z1
leads to 38.387 timesmore risk-adjusted savings as compared to

Figure 8. Approach 2 to make a decision on choosing the inspection strategies.

Figure 7. Approach 1 to make a decision on choosing the inspection strategies.
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the design z1. Figure 9 shows the decision tree for pre-posterior
analysis.

All the discussions carried so far, including the example
in this section, consider only one instance of true gap length
value at a fixed time (or the structural state at a fixed instance
of time). The next section is about quantifying the VoI-
gathering over time evolution of true gap length, or the life
cycle of the structure.

Value of information for lifecycle
cost analysis

Over the life cycle of the miter gate, the structural state
evolves from pristine condition (defined by 0 gap length
value) to approaching critical failure (defined by gap length
being unacceptably high as θmax). This evolution of state
takes over the lifespan of the structure and is quantified
by VT = [0, tmax]. We use months as the unit of time.
Therefore, to evaluate the VoI gathered throughout the
lifespan of the structure, we need a gap-growth or degra-
dation model.

Gap-growth (degradation) model

Let Θt denote a random variable representing the gap length
at any time t 2VT, such that its realization is denoted by θ(t)

2VΘ(t), withVΘ(t) =VΘ. Since the time evolution of the gap
length is not precisely known, we model it probabilistically
(as shown in Figure 10), such that fΘ(t) (θ(t)) denotes the
prior distribution of gap length at time t.

The gap evolution over time is described by a piecewise
multi-stage degradation model as follows

θðtkþ1Þ ¼ θðtkÞ þ θðtkÞwðtkþ1Þ:Qðtkþ1Þ:expðσðtkþ1Þ:Uðtkþ1ÞÞ
(37)

In the equation above, θ(tk+1) denotes the gap length at time
step tk; Nt is the total number of time steps; U(tk+1) is a

Table 2. Information-gathering mechanisms and their value of information.

Data-acquisition C(zi) (in millions) Ψavg(zi) EVoI(zi) RVoI(zi) Csave(zi) (in millions) λ(zi)

z0 0 0.254 0 0 0 N/A
z1 0.020 0.135 0.119 0.468 0.139 6.950
z2 0.200 0.223 0.031 0.122 0.231 1.155

Figure 9. The decision tree for pre-posterior analysis.

Figure 10. The time evolution of gap length.
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stationary Gaussian stochastic process; σtkþ1, Q(tk+1), and
w(tk+1) are degradation state-dependent model parameters,
which are given as follows

σðtkþ1Þ ¼ σj
Qðtkþ1Þ¼ Qj

wðtkþ1Þ ¼ wj

(38)

where, the index j represents the degradation state, such that

j ¼ hsðθðtkÞÞ (39)

The function hs(�) maps the gap length to the degradation
state j, such that

j ¼ hsðθðtÞÞ ¼

8>><
>>:

1, if θðtÞ 2 ½0, e1�
2, if θðtÞ 2 ½e1, e2�

«
Nd , if θðtÞ 2 ½eNd�1,∞�

(40)

where ei for i 2{1, 2,/, (Nd � 1)} are the switching points
that govern the transition between different degradation
stages and Nd is the number of degradation stages. We
assumed Nd = 3 for the current study. Since the switching
points ei in equation (40) are uncertain in nature, they are
modeled by the Gaussian distribution as shown below

ei ∼N
�
μei, σ

2
ei

�
" i2f1; 2,/,Nd � 1g (41)

Inflation-adjusted cost function

Since we intend to do a lifecycle cost analysis that deals with
decision-making at different time periods, we estimate all
the costs at the current time. We do inflation adjustment to
define the cost for any future time. The factor (r(t) + 1)t

adjusts for the future inflation, where r(t) is the assumed
future monthly rate of inflation at time t (in months). We
consider the following costs:

1. Cost A: The inflation-adjusted consequence-cost of
decision-making at time t for the risk profile (γ, ξ),
denoted by b~Lðdj, θtrueðtÞ, t; γ, ξÞ, such that

L̂e
�
dj, θtrueðtÞ, t; γ, ξ

� ¼ L̂
�
dj, θtrueðtÞ; γ, ξ

�
:ðrðtÞ þ 1Þt (42)

We note maintenance/repair/inspection decisions are made
based on planned inspections/data-gathering at discrete
time-steps. We assume a discrete time-space, denoted by
VTA ¼ ftA1, tA2,/, tANA

g, containing NA time-step (not nec-
essarily uniform), such that tANA

≤ tmax.

2. Cost B: The maintenance cost of the information-
gathering system, denoted by CM(t) = CM (r(t) + 1)t.
Here, CM is the current estimated cost of maintenance

for one instance of system maintenance. We assume
that the maintenance of data-gathering system is
done at discrete time-step, defined by the space
VTB ¼ ftB1, tB2,/, tBNB

g, containingNB time step (not
necessarily uniform), such that tBNB

≤ tmax.
3. Cost C: The operation cost of the information-

gathering system, denoted by CO(t) = CO (r(t) +
1)t. Here, CO is the current estimated operation-cost
per month. We assume that the operational-cost is
evaluated every month defined by the discrete time-
space VTC ¼ ftC1, tC2,/, tCNC

g containing NC time-
step (not necessarily uniform), such that tCNC

≤ tmax.
4. Cost D: The cost of design and initial installa-

tion of an information-gathering system C(z). We
assume this to be an initial cost and hence time-
independent.

Expected value of information for lifecycle
cost analysis

To start with, we consider the case when no new information
is available. The expected consequence-cost at time t, de-
noted by Ψprior(di, t), and the optimal decision, denoted by
dpriorðtÞ 2VD is defined as

Ψpriorðdi, tÞ ¼ EΘðtÞ
h
L̂e
�
dj, θtrueðtÞ, t; γ, ξ

�i
¼ EΘðtÞ

h
L̂
�
dj, θtrueðtÞ; γ, ξ

�
:ðrðtÞ þ 1

�ti
dpriorðtÞ ¼ argmin

di

Ψpriorðdi, tÞ
(43)

Assuming time-continuous decision-making, the total ex-
pected cost as a consequence of making optimal decisions
over the structure’s lifespan VT, denoted by ΨpriorLC, is
obtained as

ΨpriorLC ¼
XNA

n¼1

min
di

Ψpriorðdi, tAnÞ

¼
XNA

n¼1

Ψprior

�
dpriorðtAnÞ, tAn

� (44)

The subscript LC in ΨpriorLC and the following future no-
tations represents lifecycle.

Now consider a situation when new information about
the structure is available through the mechanism z (simu-
lated for the purpose of preposterior analysis). Let Xz(t) be
the random variable representing the acquired (or simu-
lated) data, such that its realization is denoted by xzðtÞ 2
VXzðtÞ. Therefore, the most optimum decision at time t for a
given experiment-outcome pair (z, xz(t)) is then given as

dzðxz, tÞ ¼ argmin
dj

Rz

�
dj; xzðtÞ

�
, where (45a)
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Rz

�
dj; xzðtÞ

� ¼ EΘðtÞjXzðtÞ
hb~L�dj, θtrueðtÞ, t; γ, ξ�þ CðzÞ

i
¼ EΘðtÞjXzðtÞ

h
L̂
�
dj, θtrueðtÞ; γ, ξ

�
:ðrðtÞ þ 1Þt

i
þ CðzÞ

(45b)

The Bayes risk Ψavg(z, t) is obtained by evaluating the
expected value of the conditional Bayes risk Rzðdzðxz, tÞ;
xzðtÞÞ corresponding to optimal decisiondzðxz, tÞ for all the
possible information/data (i.e., probabilistically defined by
fXzðtÞðxzðtÞÞ and is conditioned upon the prior distribution of
the gap length at time t, or fΘ(t) (θ(t)), which in turn is
obtained from the prior gap-degradation model). We have

Ψavgðz, tÞ ¼ EXzðtÞ

�
min
dj

Rz

�
dj; xzðtÞ

��
¼ EXzðtÞ½RzðdzðxzðtÞÞ; xzðtÞÞ�

(46)

Considering decision-making at a fixed time t (as discussed
in Expected value of information or the value of experi-
ment), the EVoI for the experiment z at time t is given by

EVoIðz, tÞ ¼ Ψprior

�
dpriorðtÞ, t

�� Ψavgðz, tÞ (47)

The quantity EVoI(z, t) is useful to evaluate the advantage of
information-gathering as a consequence of decision-making
using the acquired data through the experiment z at a fixed
instance of time t (not the entire lifespan). Since EVoI(z, t)
measures the benefit of SHM for decision-making at an
instance of time, in the form presented in equation (47), it
only considers the cost A at time t and cost D and ignores the
cost of maintenance and operations. The expression of
EVoI(z, t) in equation (47) is particularly desirable to un-
derstand how the value of acquiring information to make
maintenance decisions evolves over time. Finally, equation
47 can be written in a more desirable form using equations
(46) and (43) as

EVoIðz,tÞ ¼ Csaveðz, tÞ � CðzÞ, where,

Csaveðz, tÞ ¼ EXzðtÞ

�
min
dj

L̂e
�
dj, θtrueðtÞ, t; γ, ξ

��

�min
dj

EΘðtÞ
h
L̂e
�
dj, θtrueðtÞ, t; γ, ξ

�i
(48)

In the equation above, Csave(z, t) gives the expected cost
saved by virtue of making a better decision based on newly
acquired data at time t through the mechanism/system z.

Finally, the total expected cost including the conse-
quence cost of making optimal decisions based on newly
available data, and also including the maintenance cost

(cost B) and operational cost (cost C) of the information-
gathering system over the structure’s lifespan, denoted by
ΨavgLC is obtained as

ΨavgLCðzÞ¼CðzÞþ
XNA

n¼1

�
Ψavgðz, tAnÞ�CðzÞ�

þ
XNB

n¼1

CM :ðrðtBnÞþ1ÞtBn þ
XNC

n¼1

C0:ðrðtCnÞþ1ÞtCn

(49)

Note that, for null experiment z0, we have ΨavgLC(z0) =
ΨpriorLC. Finally, the expected value of information over the
lifecycle EVoILC(z) of the information-gathering mechanism
z is defined as

EVoILCðzÞ ¼ ΨpriorLC � ΨavgLCðzÞ
¼ CsaveLCðzÞ � ðCðzÞ þ CM&OðzÞÞ

(50)

In the equation above, CM&O(z) denotes the total cost of
maintenance and operation of the SHM system over the
lifespan of the structure, such that

CM&OðzÞ ¼
XNB

n¼1

CM :ðrðtBnÞ þ 1ÞtBn þ
XNC

n¼1

C0:ðrðtCnÞ þ 1ÞtCn

(51)

The quantity CsaveLC(z) in equation (50) denotes the ex-
pected savings over the lifecycle of the structure, such that

CsaveLCðzÞ ¼
XNA

n¼1

�
mindiEΘðtAnÞ

h
L̂e
�
dj, θtrueðtAnÞ, tAn; γ, ξ

�i�
:ðrðtAnÞ þ 1ÞtAn

�
XNA

n¼1

�
EXzðtAnÞ

�
min
di

EΘðtAnÞjXzðtAnÞ

�
h
L̂e
�
dj, θtrueðtAnÞ, tAn; γ, ξ

�i��
:ðrðtAnÞ þ 1ÞtAn

(52)

The relative value of information over the lifecycle of an
experiment z (denoted by RVoI(z)) can be obtained by
normalizing EVoILC(z) with respect to the prior lifecycle
cost ΨpriorLC

RVoILCðzÞ ¼ ΨpriorLC � ΨavgLCðzÞ
ΨpriorLC

¼ EVoILCðzÞ
ΨpriorLC

(53)

Finally, the risk-adjusted return ratio for lifecycle cost
analysis is defined as
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λLCðzÞ ¼ CsaveLCðzÞ
EVoILCðzÞ þ CsaveLCðzÞ (54)

For two feasible designs z1 and z2, such that λLC(z1) > 1 and
λLC(z2) > 1, the relative benefit of one feasible design with
respect to another feasible design in terms of their risk-
adjusted reward over the lifecycle of the structure is defined
by χLC(z1, z2), such that

χLCðz1,z2Þ ¼
λLCðz1Þ � 1

λLCðz2Þ � 1
(55)

An SHM system z with EVoILC(z) ≤ 0, or equivalently
λLC(z) ≥ 1 leads to net cost-saving (in average sense) over
the lifespan of the structure and hence is economi-
cally feasible. The next section deals with the application of
the theoretical results discussed so far into a miter gate
problem.

Remark 2.Note that EVoILC(z) is a differential measure. On
the other hand, the expected reward to investment risk
λLC(z) is a normalized metric. Therefore, EVoILC(z) quan-
tifies absolute gain in dollar over the lifecycle, whereas,
λLC(z) quantifies the compounded gain in percentage over
the lifecycle. In that regard, λLC(z) is a better metric than
EVoILC(z). For instance, consider two feasible SHM
systems:

1. z1: SHM system z1 leads to an expected reward of
US$1100 on an investment of US$1000 over the
lifecycle of the structure

2. z2: SHM system z2 leads to an expected reward of
US$10,100 on an investment of US$10,000 over the
lifecycle of the structure

Both the systems have same expected value of infor-
mation over the lifecycle, that is, EVoILC(z1) = EVoILC(z2) =
US$100. Therefore, both the investment scenarios are
equivalent as per the EVoI metric. However, it is clear that
the first scenario lead to a percentage gain of 10% (or
λLC(z1) = 1.1) and the second scenario leads to a net per-
centage gain of 1% (or λLC(z2) = 1.01). Therefore, clearly,
SHM system z1 is superior to the system z2 which EVoILC(z)
fails to capture. The design z1 leads to 10 times more risk-
adjusted savings than the design z2, that is, χLC(z1, z2) = 10.
Therefore, an optimal design is the one that maximizes the
risk-adjusted reward and not the one that maximizes ab-
solute gain.

Similar to λLC, RVoILC is also a normalized measure.
We note that, for two designs z1 and z2, the following
condition holds

RVoILCðz1Þ
RVoILCðz2Þ ¼

EVoILCðz1Þ
EVoILCðz2Þ ≠

λLCðz1Þ
λLCðz2Þ (56)

Since λLC(z) is expressed in terms of the expected reward
and investment risk ratio (that are crucial in making business
decisions), inherently by its very definition it is advantageous
to use λLC for the scenario where the business decision on
SHM are to be made.

Numerical simulation

We consider the miter gate structure with strain data ac-
quired using strain gauge network. As such, consider the
following four SHM system designs, including three strain
gauge network designs and one null design:

1. z0: No acquisition of data (null design).
2. z1: Acquire data using Bayesian optimized strain

gauge network containing Nsg(z1) = 10 number of
strain gauges as detailed in Yang et al.21 (optimized
using risk-weighed KL divergence objective
functional).

3. z2: Acquire data using strain gauge network ran-
domly distributed across the miter gate structure
containing Nsg(z2) = 10 number of strain gauges.

4. z3: Acquire data using strain gauge network ran-
domly distributed across the miter gate structure
containing Nsg(z3) = 20 number of strain gauges.

Let XziðtÞ be the random variable representing strain
gauge readings at time t for the network design ziwith i2{1,
2, 3}. Evaluating EVoILC(zi) and the reward to risk ratio
λLC(z) over the lifecycle, requires obtaining the posterior
distribution fΘðtÞjXziðtÞðθðtÞjxziðtÞÞ using Bayesian inference

as discussed in the next section.

Bayesian inference

For any given sensor-design z, a realization of the mea-
surement vector xz 2VXz (say at any fixed time t and z here
represent any design zi of interest) is the strain recorded at
Nsg(z) number of strain gauge locations. The measurements
obtained from the strain gauges are used to infer the gap
length θ using the Bayes theorem. In the context of inferring
θ, the evidence fXzðxzÞ is just a normalizing constant.
Therefore, the Bayes theorem may be written as

fΘjXzðθjxzÞ} fXzjΘðxzjθÞfΘðθÞ (57)

The prior distribution at any time t is obtained from the gap
length evolution model discussed in Gap-growth (degra-
dation) model. For the problem at hand, we estimate
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the likelihood fXzjΘðxzjθÞ using simulated data obtained
through the FEM model or a digital twin. Let gz(θ, hup,
hdown) define the true strain response for the sensors in-
cluded in design z obtained by the FEM or digital twin
model, such that gzðθ, hup, hdownÞ ¼ ðgz1ðθ, hup, hdownÞ,/,
gzNsgðzÞ ðθ, hup, hdownÞÞ. Similarly, xz ¼ ðxz1,/,xzNsgðzÞÞ 2VXz

represent the observed strain readings. The measure-
ment model for the strain gauges included in the design z
is given by

xz ¼ gz
�
θ, hup, hdown

�þ εz (58)

In the equation above, xz is one of the realizations of the
random vector Xz. The vector εz is the realization of the
random vector ζ zwith εz ¼ ðεz1, εz2,/, εzNsgðzÞÞ. It represents
the measurement noise/error vector for the design z, where
εzi denotes the error between the measurement output and
FEM predicted response (assumed to be the true response)
corresponding to the ith strain gauge in the design z. Let ζ zi
(with εzi as its realization) denote the random variable for the
noise in ith strain gauge. We assume that εz follows a zero-
mean Gaussian distribution with independent components,
that is, the noise/error terms of all Nsg(z) strain gauges are
assumed to be statistically independent. In addition, we
assume that each strain gauge has same standard deviation
σεzi, such that

fζ z
�
εz1, εz2,/, εzNsgðzÞ

� ¼ ∏
NsgðzÞ

i¼1
fζ ziðεziÞ ¼ ∏

NsgðeÞ

i¼1

1

σεzi

f

�
εzi
σεzi

�
(59)

Using the measurement model defined in equation (58), and
the description of noise in equation (59), the likelihood of
observing the strain measurement xz 2VXz for the gap
length θ can be written as

fXzjΘðxzjθÞ ¼ ∏
NsgðzÞ

i¼1

1

σεzi

f

�
xzi � gzi

�
θ, hup, hdown

�
σεzi

�
(60)

Since the relationship between the gap length θ and the
strain data xz is highly non-linear and complex, we nu-
merically infer the posterior distribution by using particle
filters (see Ref. 21, 31, 16). Evaluation of the likelihood
fXzjΘðxzjθÞ at numerous values of θ at different time periods
using the full FEM is exorbitantly expensive. Therefore, we
use a digital twin modeled by GPR model to predict the true
strain value gz(θ, hup, hdown). To simulate the measurement
data, we obtain the response of the digital surrogate gz(θtrue,
hup-true, hdown-true) parameterized by a chosen/fixed value of
true gap length θtrue subjected to chosen/fixed input loading

(hup-true, hdown-true). This strain gauge response is now
corrupted by Gaussian noise of standard deviation σεzi to
mimic the real-world measurement noise. This corrupted
strain response is now used as the measurement/observed
data xz 2VXz.

Numerical results

Considering no SHM system is installed: Null design z0. For
design zo, there is no new information in the form of strain
gauge measurements. Therefore, we use the prior gap length
degradation model illustrated in Figure 10 to evaluate the
minimum prior expected Bayes risk, that is, mindiΨprior

ðdi, tÞ ¼ Ψpriorðdprior, tÞ, for various modified consequence
cost or risk profiles (see Figure 11). This quantity provides a
base relative to which the benefit of other SHM designs {z1,
z2, z3} at making better (or worse) maintenance decisions is
evaluated. We make the following observations:

1. The minimum expected cost is a continuously in-
creasing function. This is expected as the assumed
base cost function illustrated in Figure 5 increases as
the degree of damage increases. It is obvious that the
gap length would increase over time and hence the
cost of maintenance would also increase accordingly.

2. For a fixed time, the minimum expected cost in-
creases as the risk-aversion of the decision-maker
increases (or equivalently, risk-seeker tendencies of
the decision-maker decreases). A risk-averse profile
demands a conservative decision, that is, a tendency
to perform the maintenanceM1 (more expensive and
conservative than the maintenanceM0) at a relatively
lower level of damage to avoid any disastrous and
expensive consequence. On the other hand, a risk-
seeker profile allows more flexible decision-making

Figure 11. Design z0: minimum prior expected Bayes risk or
expected loss.
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that would recommend the maintenance M1 only
when the degree of structural damage is approaching
failure, that is, in a more risky state.

Considering SHM system with 10 optimally designed sensors:
Design z1. Sensor network design z1 was arrived by max-
imizing the KL divergence that quantifies the relative gain in
information contained in the posterior distribution of the
gap length conditioned upon acquired (or simulated) strain
data as compared to the information contained in the prior
distribution of the gap length.21 All the sensors in the design
z1 are closer to the gap and hence lead to better inference of
the state (or the gap length). Figure 12 illustrates the sensor-
network design z1.

1. Figure 13 illustrates the inferred posterior gap-
degradation model. We observe that the variability
in the posterior distribution of the gap length at every
time instance is smaller relative to the variability
observed in the gap length in prior distribution
shown in Figure 10. This is because the acquired
sensor data helps us better understand (or infer) the
current state of the structure (defined by gap length).

2. Figure 14 illustrates the cost saved as a consequence
of choosing optimal maintenance strategy at the
various instance of time based on newly acquired
strain data for various risk profiles. As mentioned
before, since Csave(z1, t) evaluates the advantage of
SHM on decision-making relative to the null design
z0 at an instance of time, we do not consider the cost

of maintenance and operation (cost B and C) of
the SHM system in the evaluation of the quantity
Csave(z1, t). For each of the risk profiles, we observe
that the Csave(z1, t) is greater than or equal to zero
(as per equation (14)) and it increases to a certain
range of gap length following which it goes down.
The value of Csave(z1, t) evaluates the economical
benefit of arriving at a data-informed maintenance
decision as a consequence of having an SHM system
installed as compared to the decisions we would
have made using null design z0 (or by using our prior
understanding of the state parameter). However,
beyond a certain gap length value, the maintenance
decision obtained using the posterior distribution of

Figure 13. Design z1: posterior gap-degradation model.

Figure 12. Design z1: sensor network design.
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gap length is the same as the decision obtained using
the prior gap length distribution. For instance, when
the gap length is toward the higher end of the
spectrum, say θ = 170 inches (closer to the critical

failure), it is obvious that an engineer with any risk
profile would choose to label the gate as damaged. In
such obvious decisions, SHM is not necessarily
useful at that instance of time. Similarly, it can be

Figure 15. Design z1: cost classifiers for different risk profiles.

Figure 14. Design z1: cost saving (Csave(z1, t)) over time as a consequence of making better decisions.
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seen that beyond 100 inches, the Csave(z1, t) for
extreme risk seeker profile starts to decrease because
the optimal decision-making considering the SHM
system is converging towards the decision made
using prior distribution (that does not have an SHM
system installed).

3. As time passes, the gap value increases. We also
observe a shift in the peaks of Csave(z1, t) towards the
lower gap length as the risk aversion increases (or
towards the higher gap length as intensity of risk-
seeking increases). This is because the increase in
risk-aversion of the decision-maker decreases the
threshold of the gap beyond which it is obvious to
her/him that the gate is damaged and the SHM
system does not offer much benefit.

4. Figure 15 illustrates the cost classifier for various risk
profiles that differentiates between a feasible and
non-feasible SHM system considering the net benefit
over the entire lifespan of the structure. It answers the
following question: given an SHM system design, the
base consequence cost of making maintenance de-
cisions, the risk profiles of the decision-maker, what
is the range of SHM system cost for it to be feasible
over the lifespan of its usage? Every point on the plot
gives a coordinate for the cost combination (C(z),
CM&O(z)). An SHM system with a cost combination
of (C(z), CM&O(z)) is feasible if it yields λLC ≥ 1 or
EVoILC ≥ 0. A straight line classifier illustrated in
different colors for various risk profiles is the locus
of the cost coordinates (C(z), CM&O(z)) for which
λLC = 1 or EVoILC = 0. An SHM system with the cost
coordinate (C(z), CM&O(z)) belonging to the region
below and including the classifier is a feasible design
and leads to net cost saving over the lifespan of its
usage. The converse holds for the region above the
classifier. Finally, we observe that as the intensity of
risk-aversion behavior increases, the flexibility to
choose an SHM system decreases. This is because a
risk-averse decision-maker makes more conservative
and expensive decisions. For an SHM system to be
feasible in the scenario where maintenance decisions
are expensive, it must cost less.

Considering SHM system with 10 random sensors: Design
z2. The design z2 illustrated in Figure 16 is obtained by ran-
domly selecting 10 sensors using Latin Hypercube Sampling
(LHS) that is subjected to a space-filling property.

1. Figure 17 illustrates the inferred posterior gap-
degradation model for the design z2. We observe
that the variability in the posterior distribution of the
gap length obtained using the design z2 at every time
instance is smaller relative to the variability observed
in the gap length in prior distribution shown in

Figure 10 but larger relative to the posterior gap-
degradation model obtained using optimal design z1
as shown in Figure 13. This is not surprising because
the optimal sensors were designed to yield posterior
with the maximum gain in information relative to the
information contained in the prior. Just as seen in the
design z1, Figure 18 illustrates similar properties in
Csave(z2, t) for various risk profile. The plots of
Csave(z2, t) have similar properties of Figure 14 as
discussed in Considering SHM system with 10 op-
timally designed sensors: Design z1.

Figure 17. Design z2: posterior gap-degradation model.

Figure 16. Design z2: sensor network design.
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2. Figure 19 illustrates the cost classifier for the design
z2 considering the lifecycle of the structure. Design
z2 being a random design with merely 10 sensors
combined with the fact that the cost functions

corresponding to other relatively risk-averse be-
havior lead to conservative and expensive decisions
budgetarily limits the choices of feasible SHM
system z2 as compared to the optimal design z1.

Figure 19. Design z2: cost classifiers for different risk profiles.

Figure 18. Design z2: Cost saving (Csave(z2, t)) over time as a consequence of making better decisions.
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This is evident from the fact that for a given
risk profile, the classifier for the design z2 shifts
below the classifier for the design z1. Hence, a random
design with 10 sensors underperforms as compared
to an optimal design with 10 sensors (as expected).
However, we may anticipate competing results (rel-
ative to optimal KL divergence–based design) if we
add more sensors (since the design is random). We
consider such a design in the next section.

Considering SHM system with 20 random sensors: Design
z3. The design z3 shown in Figure 20 is obtained by ran-
domly selecting 20 sensors using Latin Hypercube Sam-
pling (LHS).

1. As seen in Figure 21, design z3 leads to better in-
ference of gap length as compared to the design z2.
Figure 22 illustrates similar properties in Csave(z3, t)
for various risk profile as observed for the design z1
and z2.

2. We observe that the resultingCsave(z3, t) is better than
the results obtained for the design z2 illustrated in
Figure 18. This is not surprising since we have
double the number of sensors and hence have su-
perior edge due to additional data.

3. Figure 23 illustrates the cost classifier for design z3
considering the lifecycle of the structure. Just like the

designs z1 and z2, we observe that SHM strategy z3 is
feasible for all the risk profiles. Although design z3
has 20 sensors, it leads to almost similar performance
(or slight under performance) as the design z1 for the
following two reasons:
· Design z1 is optimal (optimized using KL di-

vergence of the posterior relative to the prior ga-
length distribution);

· Design z1 has half the number of sensors as
design z3. Therefore, it has lower intrinsic cost, or
C(z1) < C(z3).

Key observations. Table 3 presents the cost-savings over the
lifecycle of the structure corresponding to various SHM
designs for all five risk profiles.

Based on Table 3, following are the key observations:

1. Among the three SHM designs considered, KL di-
vergence optimized design z1 is the most valuable
SHM system. Design z1 outperforms the design z2
for all the risk profiles, and it outperforms the design
z3 for risk-neutral, moderate risk-seeker, and extreme
risk-seeker profiles. By outperformance, we mean
that for a fixed C(z) and CM&O(z), the design z1
maximizes the expected reward to investment risk
ratio. This shows the importance of well-designed
SHM systems.

2. The value of SHM not only depends on its design,
but it is also impacted by the behavioral biases in-
volved in the decision-making. As the intensity of
risk-aversion behavior increases, the flexibility to
choose a feasible SHM system decreases (as seen
from the classifier of extreme risk-averter for all three
designs). This is because a risk-averse decision-
maker makes more conservative and expensive de-
cisions. For an SHM system to be feasible in the
scenario where maintenance decisions are expensive,

Figure 20. Design z3: sensor network design. Figure 21. Design z3: posterior gap-degradation model.
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Figure 23. Design z3: cost classifiers for different risk profiles.

Figure 22. Design z3: cost saving (Csave(z3, t)) over time as a consequence of making better decisions.
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it must cost less. This budgetary constraint restricts
our options for a feasible SHM system design.

Conclusion

This article utilizes pre-posterior decision analysis to evaluate
the VoI acquired using an SHM system. An SHM system
provides additional information from which the state of the
structure can be inferred. However, it costs to design, install,
maintain and operate an SHM system. Therefore, it is war-
ranted to quantify the net benefit an SHM strategy would yield
while in its design phase. Since there is no availability of real
data (as the SHM system is in its design phase and has not yet
been installed), the likelihood of observing the measurement
data (like strain gauge reading) is assumed/modeled by the
decision-maker based on the past observation, physics-based
simulation, or a reasonable assumption. Since the SHM system
is not installed yet and the measurements are not available, to
evaluate the net benefit of an SHM system, it is necessary to
consider all possible outcomes and uncertainties. This analysis
is called pre-posterior decision analysis.

The benefit of an SHM system relative to the case where
no new data is acquired is studied at 2 levels. Firstly, the
benefit of an SHM strategy is investigated for an instance of
decision-making at a fixed time occurrence. The SHM
strategy leads to a greater than one expected reward to in-
vestment risk ratio for an instance of decision-making con-
sidering a fixed time occurrence. For this scenario, an initial
one-time cost of designing and installing an SHM system is
considered as the investment risk (money spent). Secondly,
the net advantage of using an SHM system over the life cycle
of the structure is evaluated. In this scenario, in addition to the
initial design and installation costs, we also consider the cost
of maintaining and operating an SHM system over the
lifespan of the structure. A feasible SHM system is expected
to yield relative cost-savings over the lifespan of the structure
as compared to making maintenance decisions not backed by
continuously updated data. An economically beneficial SHM
system is the one that yields a greater than or equal to unity
expected reward to investment risk ratio. This study proposes
an expected reward to investment risk ratio as an alternative

quantity to EVoI traditionally used in pre-posterior decision
analysis. Unlike EVoI that is defined as the difference be-
tween expected reward and investment risk and hence a
differential measure, an expected reward to investment risk
ratio gives a normalized benefit of an SHM system.

It is observed that the benefit of an SHM system depends
on two key factors: its design and risk profile of the decision-
maker or equivalently, the risk intensity (just like a factor
of safety) that an organization wants to impose on their
base cost estimates. The approach is exemplified in a case
study involving SHM and maintenance of a miter gate, part
of a lock system enabling navigation of inland waterways.
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