EYFS/ KS1 MATHS INFORMATION FOR PARENTS/ CARERS

[Beaso
Primary
School

Maths in EYFS

What are we working towards?

Number ELG
Children at the expected level of development will:

- Have a deep understanding of number to 10 , including the composition of each number; - Subitise (recognise quantities without counting) up to 5; - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

Numerical Patterns ELG Children at the expected level of development will: 12 - Verbally count beyond 20, recognising the pattern of the counting system; - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity; - Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.

Six Areas of Maths in EYFS

SIX KEY AREAS OF EARLY MATHEMATICS LEARNING

Cardinality and Counting
Understanding that the cardinal value of a number refers to the quantity, or 'howmanyness' of things it represents

Pattern

Comparison
Understanding that comparing numbers involves knowing which numbers are worth more or less than each other

Shape and Space

Composition
Understanding that one number can be made up from (composed from) two or more smaller numbers

Measures

Recitation and Enumeration

Twinkle Twinkle Counting

The new number names are: Twinkle, little, how, wonder...

- Count with me
- Can you count by yourself
- Can you count from how to the
- Can you count back from up
- Can you count in littles

Subitising

Instantly recognizing the number of objects in a small group, without counting.

$\left(\begin{array}{|cc|}\hline \text { Boxgrove } \\ \text { Primary } \\ \text { School }\end{array}\right.$

(B)

(B)
Boxgrove
Primary
School

One-to-one principle

Each counting word (number) matches an object

Cardinal Principle

The last number you say is the cardinal value, (total)

I have 5 bears

Abstraction principle

- Mixed sets - what is countable.

Order Irrelevance

It doesn't matter in which order you count objects.

Ofs

Fiveness of 5

Activities and opportunities:

Boxgrove
Primary
School

Maths Through Stories

Picture books provide meaningful opportunities in teaching key mathematical skills and concepts.

Provide a context in which to learn maths and children perform better on tasks which are embedded and suggest rich possibilities for investigation and encourage the children's own mathematical thinking.

High quality picture books develop positive attitudes to taking risks and trying out new ideas.

They offer valuable language models and extend children's vocabulary.

Maths Through Stories

Maths is everywhere!

What is above the Ferris wheel? What
is next to the balloon?

How many orange robots are there? Are there more orange robots or green robots?

How can you help at Home?

Pairing socks together.
How many socks?
How many pairs?

Counting when you walk . How many blue cars? How many wheels? Swings in the park Birds in the tree.
Let's pick up 6 leaves

Go shopping together We need 4 apples Let's get 3 more. How many do we have altogether?

Counting stairs as they climb, when you lay the table and when they have a snack. How many breadsticks have you got?

Sing number rhymes together.
10 in the bed...
12345, once I caught a fish alive.

Through play. Count the cars... How many pieces of puzzle are missing?
Can we make 5 cakes using the playdough?

Boxgrove Primary School

Maths in KS1

Key Aims of the Maths National Curriculum

Fluent recall of mental maths facts e.g. times tables, number bonds.

To reason mathematically - children need to be able to explain the mathematical concepts with number sense; they must explain how they got the answer and why they are correct.

Problem solving - applying their skills to reallife contexts.

Multiplication

Year One

- Recognising and making equal groups
- Repeated Addition
- Using arrays
- Making doubles
- Count in 2s, 5s and 10s

Year Two

- Recognising and making equal groups
- Using arrays
- Making doubles
- 2x, $3 x, 5 x$ and $10 x$ table

Repeated Addition

$$
10+10+10+10+10+10=60
$$

Repeated Addition task

Use the resources on your table to represent 20 as repeated addition.

Challenge: How many ways can you find of representing 20? How can you prove that you've found them all?

Now explain how you made 50 with another person who used a different resource.

Arrays

$$
6 \times 10=60
$$

Arrays task: Taking learning outside

Use objects found in the outside area to create an array.

Challenge: Can you write on your

 whiteboard the array your friend has made? Can they do the same for your arrays?

Arrays Mastery Task

Draw two arrays to represent the flowers shown below:

Doubles

$12+12=24$ double $12=24$

School

Doubles task: Mirror image

Use the mirrors provided to create a double. Write your number sentence on a whiteboard.

Challenge: Can you write your number sentence in words?

Counting in 2's, 5's and 10's

Counting in 2's task: Shoes and socks!

Take your shoes off and line them up in a row.
Can you count in 2?
If you run out of shoes you could always use your socks!

Times Tables- Matching Card Game

Race Track
With a partner have a go at this game:

Reasoning and Problem Solving with Multiplication

Rosie counts back from 50 in 2s.
Amir counts up from 12 in 2 s .

Eva says,

They say their numbers together. Who will say 30 first.

Year One

Every number in the 2 times-table is even.

Is she correct? Explain your answer.
Year
Two

Division

Year One
Odd and even numbers
Making equal groups- sharing
Making equal groups- grouping

Year Two
Odd and even numbers
Making equal groups- sharing
Making equal groups- grouping
Divide by 2, 5 and 10

Making Equal Groups- Sharing

12 divided by 3

Making Equal Groups- Grouping

12 divided by 3

Division on a Numberline Repeated Subtraction

15 divided by 3

Division task

Use the resources on your table to represent 20 divided by 5 .

Challenge: How many ways can you group 20 equally?

Reasoning and Problem Solving with Division

Dora has 10 biscuits.

She wants to share them equally at her party.

How many people could be at the party?

> Year
> One

This is what he does:

Is it possible to work out $60 \div 3$ in the same way?
Prove it.
Is it possible to work out $60 \div 4$?
What is different about this calculation?
Year
Two

Bar Modelling

$$
24 \div 3=?
$$

Fractions

Year One

- Find a half
- Find a quarter

Year Two

- Recognise and find a half
- Recognise and find a quarter
- Recognise and find a third
- Unit fractions and non- unit fractions
- Equivalent fractions
- Find three quarters

Recognising Equal Groups

The UK is the whole and Scotland is a part of it.

Finding a Fraction of a Shape

Finding a Fraction of a Number

Can the counters be split into 4 equal groups?

How many counters will each child get?

Here is a $\frac{1}{4}$ of a shape \square

Which shape does it belong to?

Is $\frac{1}{4}$ bigger than $\frac{\mathbf{1}}{\mathbf{2}}$ because 4 is bigger than 2?

What do you think? Explain your reasoning.

Unit Fractions and Non- Unit Fractions

$\frac{1}{4}$

$\frac{1}{8}$

$\frac{1}{3}$

Equivalent Fractions

| $\frac{1}{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

