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A B S T R A C T

This paper presents a novel generalized framework for optimal sensor placement design for
structural health monitoring (SHM) applications using Bayes risk as the objective function.
Bayes risk considers the costs of consequences associated with making decisions and design
selection (extrinsic cost) in the monitoring process, as well as intrinsic costs (e.g., sensor
deployment and maintenance costs), which suggests that it is a natural choice for an SHM design
objective function. The framework is intended to be sufficiently generalized to be applicable
to any optimal sensor placement design used for SHM. To demonstrate the effectiveness
and comprehensiveness of the proposed framework, it is applied to an example problem
concerning the state detection of the boundary of a beam modeled by springs. We discuss
in-depth the specific formulation of Bayes risk for this demonstration problem and detail
multiple approaches to evaluate it. This paper addresses the challenges encountered in optimal
sensor design problem due to the computationally expensive physics-based model, and it
considers various uncertainties through the investigation and integration of Bayesian inference
methods, uncertainty quantification, and optimization strategies. The effect of the initial design
assumption and the technique used to approximate the Bayes risk on the final optimal sensor
design is discussed.

. Introduction

Structural health monitoring (SHM) may be generally defined as the process of making an assessment, based on appropriate
nalyses of in-situ measured data, about the current ability of a structural component or system to perform its intended design
unction(s) successfully. When coupled with future predictive capabilities, a successful SHM strategy may enable significant owner-
hip cost reduction through maintenance optimization, performance maximization during operation, and unscheduled downtime
inimization, and/or enable significant life safety advantage through catastrophic failure mitigation. Such an SHM strategy

nevitably must, for a sufficiently well-defined application, include in-situ data acquisition, feature extraction from the acquired
ata, statistical modeling of the features, and subsequent hypothesis-based synthesis of the feature probabilistic models to make
nformed decisions about what to do with the structural component or system. Clearly, an important underlying enabler for an SHM
trategy is the design of the sensor system, since data acquisition is the initiator of this multi-part paradigm [1,2]. As no widely
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accepted sensing strategy in SHM has been adopted for use, this paper will propose and demonstrate the implementation of minimal
Bayes risk as a natural target objective for SHM system design.

The application case that will be used in this paper is taken from the inland waterways infrastructure. The locks and dams that
omprise the inland waterways infrastructure require an effective SHM system to prevent their unexpected failure and continuous
onitoring in order to prevent huge economic losses [3,4]. The United States Army Corps of Engineers (USACE) spends billions of
ollars in maintaining and operating this infrastructure, where unscheduled shutdown of these assets and dewatering for inspection
r repair is very costly [5–8]. The need for SHM to help facilitate maintenance and operations appears strong, but highly constrained
udgets suggest SHM system allocation efforts must be optimized to meet risk-based goals. Within the navigation lock systems,
iter gates are one of the most common locking gates used; their most common failure mechanisms include long-term corrosion

nd loss of load-transferring contact in the quoin block (boundary related damage) [9]. As many of these structures have been
perational for over 50 years, many are presently potentially operating in a higher-risk profile without engineers knowing their real
tructural capability [10]; current practice involves engineering elicitation via inspection, followed by lock closures if the inspection
o warrants. Since this process is based on the varied experience and interpretation of field engineers, it bears high uncertainties
nd variability [11]. The use of SHM could potentially reduce those uncertainties, but the value of information obtained depends
pon its design [12]. In general terms, the first step of the SHM system design is to decide what suitable sensors (e.g., strain-gauges,
ccelerators, etc.) provide measurements from which the extracted features are correlated to the type of damage or state to be
nferred. The second step is then to obtain a sensor network design (e.g., number of sensors, location/placement, duty cycle, etc.)
hat provides the most valuable information at a minimal cost [13–15].

Numerous seminal contributions have been made in optimal sensor placement design for a wide class of SHM applications [16–
8]. The overall goal of choosing the best sensor design is to let the monitoring system gather the most effective information from

in-situ monitoring to detect the target state [19]. During the optimization process, an optimality criterion or an objective function
is used to evaluate the effectiveness of the design. The best sensor design for a considered application, therefore, depends on the
optimality criterion or objective function chosen. Thus, engineers from different fields may have different criteria for defining this
to obtain the best design that leads to the most effective information use. In other words, the engineers look for the best objective
function that is in line with the primary goal of the monitoring system, and it evaluates the value of that information in some
way. Some classic such objective functions include the probability of detection (POD), and the probability of classification [20]. For
instance, in the aviation sector, engineers maximize the probability of detection because the cost of life is assumed invaluable [21].
Papadimitriou et al. [22] have proposed sensor placement design by minimizing entropy focusing on the applications of structural
model updating. Similarly, Udwadia [23] and Basseville [24] have used the Fisher information matrix to maximize the parameter
identification through SHM.

In many SHM systems used for large civil infrastructure such as the application area considered in this paper, the primary goal
of the SHM system is to minimize the long-term monitoring and maintenance costs [5]. In this context, optimal sensor design is
tied to the rate of incorrect decisions (e.g., the probability of false alarms for a binary decision case) and the costs/consequences
associated with those wrong decisions. Flynn and Todd [25,26] first introduced Bayesian experimental design [27] by minimizing
expected loss or risk (also termed as Bayes risk) as a consequence of making the decision (choosing optimal design in their case).
They demonstrated it in an ultrasonic guided wave sensor design problem. Bayes risk is proposed as a suitable choice of the objective
function because it considers the costs of consequences associated with making decisions (parameterized by design selections in the
monitoring process)–known as extrinsic costs, as well the cost of sensors system design, deployment, and maintenance—known as
intrinsic costs. The optimal sensor design essentially demands arriving at the sensor network design that minimizes the expected
losses as a consequence of making a decision, or equivalently, that minimizes the losses in an average sense (the idea adapted from
Bayesian experiment design and Bayesian decision theory). Because the monitoring process is subject to many sources of noise and
variability, structural state determination is inherently stochastic. Thus, the goal is to arrive at a sensor network design that considers
all the uncertainties and the consequences of inferring the structural state using the data gathered by the design of interest. The
prediction of the structural state bears a cost/risk. For example, if the predicted structural state is not the same as the true state
(unknown), there will be an associated penalty in the form of planned or unplanned maintenance costs, operational availability
losses, or even structural failure costs. The design that leads to the least expected loss/risk as a consequence of making structural
state decisions is the optimal design. Since we are operating in an uncertain domain, arriving at an optimal design that minimizes
Bayes risk is the best one can do. In this paper, Bayes risk will be used as an objective function in a strain-based measurement sensor
optimization problem; however, we note that the framework proposed herein can also be applied to any SHM by formulating an
appropriate form of Bayes risk constrained to that particular problem.

A common approach to function optimization includes iteratively evaluating the optimal value of the function locally guided
by the steepest gradient descent. This approach has been used in machine-learning [28] and in developing an optimal sensor
network [29]. Akbarzadeh [19] used a gradient descent algorithm in sensor optimization by deriving derivatives at each step, which
requires less computational effort. However, in many problems, the exact analytical derivatives are not available. Agarwal [30]
used the greedy algorithm to find a minimum number of sensors for covering a 2-dimensional space. The main shortcoming of
the greedy algorithm is that it chooses the ‘‘current best’’ at each step so that it can easily converge to a local optimum instead
of a global optimum. Heuristic algorithms are also widely used in the existing literature; for example, Jin [31] used a genetic
algorithm to minimize the communication distance of sensors, while Yi et al. [32] utilized a genetic algorithm to obtain optimal
sensor placement for a high-rise building monitoring system. However, the main drawback of these optimization strategies is that
they must run many samples, and hence are computationally expensive to arrive at the global optimal value of the objective function.
2

In complex large-scale civil structures SHM applications, the sensor design space is potentially colossal. This coupled with the fact
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that obtaining and evaluating Bayes risk is computationally expensive and we do not have its derivatives, Bayesian optimization is
the most suitable technique to apply. Bayesian optimization can optimize objective functions parameterized by high-dimensional
design spaces with relatively low computational effort [33–35]. This paper details a general Bayesian optimization framework for
obtaining the optimal sensor network design for SHM applications by using Bayes risk as the objective function. We address three
implementation-based challenges: (1) Bayesian calibration of the discrete parameters defining the damage state; (2) the expensive
evaluation of Bayes risk; and (3) the global optimization of an extremely high-dimensional design space informing Bayes risk.

After laying the theoretical foundation of Bayes risk and Bayesian optimization, we detail the general framework. We believe
hat the best possible way to demonstrate our sensor optimization framework is through an example that by itself does not pose
remendous uninformative challenges, is relatively simple to conceive, and has all the essential elements to utilize and showcase the
ptimization framework presented. To this end, we apply it to an example problem concerning the boundary condition detection state
f a beam structure. This example was considered because it covers a broader spectrum of detection and inference-type problems
hat are common in SHM. One instance of a resembling but slightly different problem is that of contact loss detection between the
uoin blocks of the miter gate. Moreover, the demonstration example is sufficiently complex to highlight the sensor optimization
ramework and the associated challenges while not inducing computational complexities and costs associated with more complex
tructural scenarios.

The rest of the paper is arranged as follows. Section 2 briefs the concepts of the Bayes risk functional and explains the four steps
f the general sensor optimization framework. Section 3 describes the demonstration problem and details the associated Bayes risk
unctional, followed by Section 4 that investigates three different approaches to evaluate the Bayes risk. Section 5 discusses the
ptimal sensor placement design using Bayesian optimization in detail and presents the algorithm used. After a general discussion
n Bayesian optimization, the remaining part of Section 5 discusses the effect of the initial design assumption and the approaches
sed to evaluate the Bayes risk on the final optimal sensor design for the demonstration problem. We present three methods to
valuate the Bayes risk functional: a sampling-based method, mean-value approximation, and univariate dimensional reduction
ith Gauss–Hermite quadrature. The sampling-based method yields the most accurate Bayes risk if large sample size is considered.
onsequently, the sampling-based method suffers from a high computational cost. This drawback makes the sampling-based method
nsuitable for sensor placement optimization. Secondly, as is the inherent case with any Monte-Carlo based approach, the values
f Bayes risk obtained from the sampling-based technique change as a different set of samples are chosen. The other two methods
vercome these challenges and disadvantages. However, the mean-value approximation of the Bayes risk does not yield accurate
alues. The univariate dimensional reduction with Gauss–Hermite quadrature is fairly accurate and has acceptable computational
peed. Therefore, we use this third approach to evaluate Bayes risk, and then Bayesian optimization follows. Finally, Section 6
oncludes the paper and lists ongoing research directions.

. Bayes risk and general optimization framework

We first present some preliminary definitions and notations. The real number space is represented by R. A random variable
𝑋 is a real-valued function defined on a discrete or a continuous sample space 𝑆𝑋 and the measurement space 𝛺𝑋 , such that
𝑋 ∶ 𝑆𝑋 ⟶ 𝛺𝑋 ⊂ R. Let 𝑥 represent the realization of the random variable 𝑋, such that 𝑥 ∈ 𝛺𝑋 . The probability density function
and the cumulative density function is represented by 𝑓𝑋 (𝑥 ∈ 𝛺𝑋 ) and 𝐹𝑋 (𝑥 ∈ 𝛺𝑋 ). The expected value of a function 𝑔(𝑥) is denoted
y 𝐸𝑋 [𝑔(𝑥)]. Lastly, a random variable 𝑋 following Gaussian distribution, with the mean 𝜇𝑥 and standard deviation 𝜎𝑥 is denoted
y:

𝑓𝑋 (𝑥) =
1
𝜎𝑥

𝜙
(

𝑥 − 𝜇𝑥
𝜎𝑥

)

;

𝐹𝑋 (𝑥) = 𝛷
(

𝑥 − 𝜇𝑥
𝜎𝑥

)

;

𝑋 ∼ 𝑁(𝜇𝑥, 𝜎𝑥).

(1)

.1. Bayes risk for decision-making

Generally speaking, for a problem concerning Bayesian decision-making, the goal is to arrive at a decision that minimizes the
xpected risk (also referred to as Bayes risk in this paper) or expected loss. The idea is that we have information about the system in
he form of observable measured data. The goal is to learn the behavior of the system from the data (called training) and then use
he learned model to predict the outcome. Primarily, the outcomes can be categorized by detection, classification, and regression.
or instance, detecting if the structure is damaged or not damaged given the measured strain gauge data is an example of detection;
rouping the raw grades of the class into the letter grades is an example of classification; developing a digital twin/surrogate of a
on-linear system is an example of regression. The goal is to make a decision that minimizes the expected loss or risk that arises
s a consequence of making a decision (every action/decision has a consequence). Therefore, the optimality criterion used in this
aper is the expected loss/risk, which is also referred to as Bayes risk functional and is a problem-dependent quantity. The strong
imilarity of Bayes risk with the action functional in variational structural mechanics is not surprising.

We focus on the classification type problem of which detection is a special case. Let 𝛺𝑋 represents the measurement space,
𝑌 represents the true state (or outcome) space with 𝑀 classes (for detection as defined above, 𝑀 = 2), such that the
3

eature/measurement/observable is 𝑥 ∈ 𝛺𝑋 , true outcome (or decision) is 𝑦 ∈ 𝛺𝑌 = {𝑦0, 𝑦1,… , 𝑦(𝑀−1)}, and the predicted outcome
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(or decision) is 𝑔(𝑥) ∈ 𝛺𝐺 = {𝑔0, 𝑔1,… , 𝑔(𝑀−1)}, where 𝑖 = {0, 1,… , (𝑀 − 1)}. Let 𝑋, 𝑌 , and 𝐺 represent the random variables
corresponding to the uncertain measurement space, the true outcome, and the predicted outcome respectively. Note that 𝛺𝐺 ≡ 𝛺𝑌 ,
and the two representations of outcome space is to distinguish between the true (but unknown) and the predicted states. In fact,
𝑔(𝑥) represents the trained model. For instance, in the case of a simple detection problem, 𝑦0 denotes a true damaged state; and
𝑔0 is a prediction of a damaged state. Bayes risk is designed such that it minimizes the effects of incorrect decisions. This is done
by incorporating a loss function 𝐿(𝑔(𝑥), 𝑦) ∶ 𝛺𝐺 × 𝛺𝑌 ⟶ R. It defines the consequence-cost of deciding the outcome to be 𝑔(𝑥)
when 𝑦 is the true outcome. Since our goal is to minimize losses incurred as a consequence of making a data-informed decision that
could be possibly incorrect, the Bayes risk (objective functional) is defined as the expected loss, averaged over all possible (noisy)
measurements and the true state 𝑦𝑖. Since the goal in this section is to estimate the state 𝑔(𝑥) when the true state is 𝑦 using the
measurement 𝑥, the Bayes risk 𝛹state is a function of the predicted outcome/state 𝑔(𝑥) which in turn is a function of newly acquired
ata 𝑥 ∈ 𝛺𝑋 . The Bayes risk is then defined as:

𝛹state (𝑔(𝑥)) = 𝐸𝑋𝑌 [𝐿(𝑔(𝑥), 𝑦)] =
𝑀−1
∑

𝑖=0
∫𝛺𝑋

𝑓𝑋𝑌 (𝑥, 𝑦𝑖)𝐿(𝑔(𝑥), 𝑦𝑖) d𝑥

=
𝑀−1
∑

𝑖=0
∫𝛺𝑋

𝐿(𝑔(𝑥), 𝑦𝑖)𝑃𝑋|𝑌 (𝑥|𝑦𝑖)𝑃𝑌 (𝑦𝑖) d𝑥.

(2)

Bayes risk can also be written in terms of conditional risk 𝑅state (𝑔(𝑥)), conditioned on measurement 𝑥, as:

𝛹state (𝑔(𝑥)) = 𝐸𝑋
[

𝑅state (𝑔(𝑥))
]

= ∫𝛺𝑋

𝑓𝑋 (𝑥)𝑅state (𝑔(𝑥)) d𝑥, where, (3a)

𝑅state (𝑔(𝑥)) =
𝑀−1
∑

𝑖=0
𝐿(𝑔(𝑥), 𝑦𝑖)𝑓𝑌 |𝑋 (𝑦𝑖|𝑥). (3b)

The conditional risk is defined as the expected loss averaged over all possible true states and considering (or conditioned on) fixed
measurement 𝑥. The optimal decision is the one that minimizes the expected loss, or,

g(𝑥) = arg min
𝑔(𝑥)

𝑅state(𝑔(𝑥)) ∈ 𝛺𝐺 . (4)

The Bayes risk 𝛹state (𝑔(𝑥)) defined in this section is an objective functional that is used to optimally predict the most likely state
𝑔(𝑥) given the measurement 𝑥 (hence the subscript state in 𝛹state and 𝑅state). However, among possible choices of an SHM system
design, every design will predict a unique state for a given set of measurements (obtained by (4)). Inversely, the predicted outcome
is dependent on the sensor design. In the next section, we consider the problem of design selection that would warrant a different
Bayes risk functional. The goal is to pick the design that leads to the least erroneous state estimation (the optimality criterion is
defined in the next section). Unlike the problem of state-estimation, where Bayes risk was a function of the estimated state 𝑔(𝑥), the
Bayes risk for the design selection, represented by 𝛹design (𝑒), will be a function of design 𝑒.

2.2. Bayes risk for design selection and optimal sensing framework

The primary goal of this paper is to arrive at an optimal sensing design, and Bayes risk can accommodate this notion. Let 𝛺𝐸
represent the design/experiment space, such that 𝑒 ∈ 𝛺𝐸 represents a design realization. Every design 𝑒 yields different measurement
data 𝑥𝑒 ∈ 𝛺𝑋𝑒

, and corresponding likelihoods 𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦). Here, 𝛺𝑋𝑒
represents the measurement space for the design 𝑒, and 𝑋𝑒

denotes the corresponding random variable. Let g(𝑥𝑒; 𝑒) represents the optimally estimated state obtained using Eq. (4) for the
measurement 𝑥𝑒 corresponding to the design 𝑒 ∈ 𝛺𝐸 . Therefore, the decision g(𝑥𝑒; 𝑒) is also design-dependent. In other words, we
now care about choosing the design with the least error/deviation in the decision g(𝑥𝑒; 𝑒) relative to the true value 𝑦. Eq. (4) can be
used to arrive at the optimal state g(𝑥𝑒; 𝑒) for a given design 𝑒; or equivalently, for each design 𝑒, a threshold (or a classifier) can
be established using Eq. (4) in the measurement space 𝛺𝑋𝑒

that helps classify each realization of measurement 𝑥𝑒 into the optimal
state g(𝑥𝑒; 𝑒). Therefore, Eq. (4) establishes a mapping between the continuous measurement parameter 𝑥𝑒 and the decision (discrete
in case of detection problem) g(𝑥𝑒; 𝑒). This allows us to write the Bayes risk for each design 𝑒 focusing on minimizing the deviation
of the predicted outcome g(𝑥𝑒; 𝑒) relative to the true outcome 𝑦 as:

𝛹design(𝑒) = 𝐸𝐺𝑌
[

𝐿(g(𝑥𝑒; 𝑒), 𝑦)
]

=
𝑀−1
∑

𝑖,𝑗=0
𝐿(𝑔𝑖, 𝑦𝑗 )𝑓𝐺|𝑌 (g(𝑥𝑒; 𝑒) = 𝑔𝑖|𝑦𝑗 )𝑓𝑌 (𝑦𝑗 ), where, (5a)

𝑓𝐺|𝑌
(

g(𝑥𝑒; 𝑒)|𝑦
)

= ∫𝛺𝑋𝑒

𝑓𝐺|𝑋𝑒

(

g(𝑥𝑒; 𝑒)|𝑥𝑒
)

𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦) d𝑥𝑒. (5b)

For a design 𝑒, the true state 𝑦, and the observed measurement 𝑥𝑒, the estimated state g(𝑥𝑒; 𝑒) is one of the states in the set
𝛺𝐺. Equivalently, for a design 𝑒, the true state 𝑦, and the measurement 𝑥𝑒, every state 𝑔𝑖 ∈ 𝛺𝐺 has a likelihood probability of
𝑓𝐺|𝑌 (g(𝑥𝑒; 𝑒) = 𝑔𝑖|𝑦) to be selected as the optimal estimated state g(𝑥𝑒; 𝑒). The Bayes risk functional 𝛹design(𝑒) defined in Eq. (5a)
calculates the expected value of loss (or risk) considering all the possibilities of the estimated states g(𝑥𝑒; 𝑒) ∈ 𝛺𝐺 and considering
all the possible true states 𝑦 ∈ 𝛺𝑌 . Minimizing this function yields a design that leads to the best prediction of the state. We will
adapt the Bayes risk defined in Eq. (5a) focusing on a detection-type problems common in SHM. The following paragraphs detail
the generalized step-by-step procedure for the proposed optimal sensor framework.
4
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Step 1: Problem description
The first step involves a well-defined problem description. We need to decide our decision and the true space (𝛺𝐺 , 𝛺𝑌 ), or what

needs to be detected, and what is its true condition/state, respectively. Both, the decision and the true space refer to the state of the
structure defined accordingly. A discrete decision space in SHM answers the question ‘‘Is a structure critically damaged or not?’’,
e.g., whether a bolted assembly is at design torque or not; a continuous decision space, such as where regression may be utilized,
might be to infer crack length. In this paper, we focus on discrete decision spaces, but at the same time note that the framework can
easily be extended to the continuous case. In theory, that would essentially replace the summation over the decision space in Eq. (5a)
by an integral. In practice, the continuous decision space can be discretized by identifying the mutually exclusive and exhaustive
subsets with a decision state. For instance, a corroded surface area < 10% of a bridge girder might be classified as not damaged,
10%–30% can be identified as moderately damaged, and > 30% can be considered as severely damaged. Secondly, we need to define
he measurement of the observable quantity using which the structural state is inferred. The features used to infer the structural
tate can be extracted from the measured quantity, although the measured data itself can be the feature. The measurement space
𝑋𝑒

essentially is the space from which the decision is directly inferred; therefore, in current content, the measurement space is
he feature space. Once we know what needs to be measured (for example, strain values), the design space 𝛺𝐸 follows (e.g., all the
ossible arrangements of a strain gauge network). Therefore, the problem description consists of defining the decision space, the
rue state space, the measurement (or feature) space, and the design space.

tep 2: Definition of the design dependent Bayes risk functional
For a simple classification problem, Eq. (5) represents the Bayes risk functional. However, as the complexity of the problem

volves, suitable adjustments to the Bayes risk should be made. For instance, in our demonstration problem described in detail
ater, where we are focusing on the problem of multiple load path changes through boundary connections, the space of collective
rue states of the springs (denoted by 𝛺𝐴) becomes important. Second, in the case of collective decision-making problems, some
ecisions are more preferred or weighed than others. To incorporate such situations, we can assign weights to each of these decisions.
hird, unlike the Bayes risk expression in Eq. (5) that incorporates the cost of making a decision or extrinsic cost only, the intrinsic
osts (like the sensor deployment and maintenance costs) must be included in SHM applications. All these considerations lead to
ayes risk 𝛹design(𝑒) to bear a form defined in Eq. (9), with the extrinsic cost defined in Eq. (10) of Section 3.2.

tep 3: Evaluation of the design-dependent Bayes risk functional
For a Bayes risk of a simple classification or detection type problems represented in Eq. (5a), the first challenge is to evaluate the

hree probabilities present in Eq. (5): 𝑓𝑌 (𝑦𝑗 ), 𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦), and 𝑓𝐺|𝑋𝑒
(g(𝑥𝑒; 𝑒)|𝑥𝑒). The quantity 𝑓𝑌 (𝑦𝑗 ) represents the prior probability

f the true state, and in absence of any information can be assumed as 0.5 for a detection type problem. The likelihood 𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦) is
btained using either a physics-based model or a digital twin. The posterior of the decision given the measurement 𝑓𝐺|𝑋𝑒

(g(𝑥𝑒; 𝑒)|𝑥𝑒)
s more involved to evaluate. For a binary detection problem it can be written using the law of total probability as:

𝑓𝐺|𝑋𝑒
(𝑔𝑖|𝑥𝑒) =

2
∑

𝑗=1
𝑓𝐺|𝑌 (𝑔𝑖|𝑦𝑗 )𝑓𝑌 |𝑋𝑒

(𝑦𝑗 |𝑥𝑒). (6)

he probability of making a decision given the true state 𝑓𝐺|𝑌 (𝑔𝑖|𝑦𝑗 ) depends on the detection threshold evaluated for each design
ase using Eq. (4). The quantity 𝑓𝑌 |𝑋𝑒

(𝑦𝑗 |𝑥𝑒) is anti-causal and can be evaluated using Bayes theorem as:

𝑓𝑌 |𝑋𝑒
(𝑦𝑗 |𝑥𝑒) =

𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦𝑗 )𝑓𝑌 (𝑦𝑗 )
𝑓𝑋𝑒

(𝑥𝑒)
. (7)

The second difficulty in obtaining Bayes risk is to evaluate the integral in Eq. (5b). To approximate the integral, we first change
the variable of the integral from the measurement space to the uncertain input space. For instance, in our demonstration problem,
the load, its location, and the noise in the strain values are uncertain, causing randomness in the strain measurement. We realize
that a unique value of the load, its location, and the noise in the strain gauge give a unique realization of the strain measurement.
This allows us to change the variables of integration as defined in Eq. (17). The integral can then be numerically approximated. We
discuss three different approaches to evaluate the integral in Section 4.4.

Step 4: Obtaining the optimal sensor design using Bayesian optimization
Once the problem is well defined (step 1) and the associated Bayes risk is obtainable (steps 2–3), the question that we intend to

answer for optimal sensor design is: ‘‘Given 𝛺𝐺 , 𝛺𝑌 , 𝛺𝑋𝑒
, and 𝛺𝐸 , and given an assumed initial design 𝑒0, what is the design 𝑒∗ ∈ 𝛺𝐸

that minimizes the Bayes risk 𝛹design(𝑒)?’’
We very briefly detail the sensor optimization algorithm, which will be explained in great depth in Section 5. We start with an

initial design 𝑒0 consisting of 𝑁0 number of sensors. To obtain the optimal design 𝑒1 with (𝑁0 + 1) sensors, we search the entire
design space for the (𝑁0 + 1)th sensor location. The (𝑁0 + 1)th sensor location that maximizes the acquisition function constitutes
the next additional sensor. In this paper, we use expected improvement [36,37] as the acquisition function. Similarly, we repeat the
optimization process to arrive at the optimal design 𝑒𝑛as consisting of 𝑁0+𝑛as sensors (or 𝑛as number of additional sensors relatively
to the initially assumed design 𝑒0). Finally, we pick 𝑒∗ = arg min𝑒𝑛as

𝛹design(𝑒𝑛as ) as the most optimal design, where 𝛹design(𝑒𝑛as )

represents the Bayes risk associated with the design 𝑒𝑛as . Fig. 1 illustrates the pipeline of the proposed Bayesian optimization
framework. Section 3 deals with the description of a demonstration problem and derives the associated Bayes risk (steps 1 and
2). Section 4 discusses the approaches to evaluate the Bayes risk pertaining to the demonstration problem (step 3). Finally, Section 5
details the Bayesian optimization algorithm for optimal sensor placement 1 for general detection-type problems and discusses the
5

results concerning the demonstration problem.
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Fig. 1. Bayesian optimization framework for optimal sensor network design.

Fig. 2. Design optimization problems in SHM similar to the demonstration example presented in this paper.

3. Demonstration problem description and the associated Bayes risk

As we mentioned in the introduction, our primary motivation for choosing the following example problem as a case study to
demonstrate this framework is that it resembles in behavioral characteristics a typical detection-type problem in SHM that has a
discrete decision space: the loss of contact in the quoin block of a miter gate. As discussed in Section 2.2, even the continuous decision
space can be reasonably broken down into a rather more convenient discrete decision space. Hence, the presented framework is also
suitable for problems involving crack propagation, corrosion, weld defect growth, etc. To demonstrate the framework, we consider
a beam modeled by 2D shell elements and focus on detecting the state of the boundary modeled using connecting springs. This
problem is complicated enough to highlight the Bayesian optimization framework for sensor placement and undemanding enough
to implement our algorithms with a lower computational cost. Fig. 2 shows similar types of problems in SHM where the presented
sensor-design framework can be extended (although each specific problem would require it’s own carefully considered Bayes risk
functional).

3.1. Demonstration problem description

The demonstration problem consists of a cantilever beam supported by a roller on the left end and a free boundary on the
right end. The Young’s modulus of the beam is 2.1 × 109 N m−2. There exist 11 wall-to-beam springs with the stiffness 107 N m−1

connected to the left side of the 2D shell element providing structural stability as shown in Fig. 3. The finite element model for the
beam was build in OpenSees [38] with quadrilateral meshing. The entire beam was meshed finely to 22 500 elements to capture
accurate strain responses, particularly at the left edge of the beam, where the springs are attached. The horizontal axial strain of
the element is considered to be the strain gauge measurement. Therefore, there are 22 500 possible strain gauges (with horizontal
orientation). In the general case, the strain gauge may be discrete or continuous and can have any orientation [39].

Our problem statement is as follows: we aim to arrive at the best possible sensor placement design 𝑒 ∈ 𝛺𝐸 , where 𝛺𝐸 is the design
space, such that the existence of the springs on the left of the beam can be most optimally predicted (‘‘detected’’), given that the
magnitude of the load 𝑝 and its location 𝑝loc ∈ [0, 10] are uncertain. We also assume that the strain gauge readings are noisy. By
sensor placement design, we mean the arrangement of the strain gauges (including the number used and their locations). To simplify
the problem further, we fix the top six springs. Hence, we need not predict their existence. Our goal is, therefore, to predict the
existence of the remaining five springs 𝑠 , 𝑠 , 𝑠 , 𝑠 , and 𝑠 .
6
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Fig. 3. Schematic diagram of the 2D beam modeled by 2D shell elements.

Table 1
Cost function.

True state

𝑦0 𝑦1

Predicted state 𝑔0 𝐶00 𝐶01
𝑔1 𝐶10 𝐶11

3.2. Bayes risk for the optimal sensor placement

As discussed before, for each spring, our predicted decision space 𝛺𝐺 and the true outcome space 𝛺𝑌 consist of two possible
outcomes, such that 𝛺𝐺 = {𝑔0, 𝑔1} and 𝛺𝑌 = {𝑦0, 𝑦1}, where

𝑔0 ∶ Prediction is that the spring exists;
𝑔1 ∶ Prediction is that the spring does not exist;
𝑦0 ∶ True state is that the spring exists;
𝑦1 ∶ True state is that the spring does not exist.

(8)

Recall that we have 5 critical springs 𝑠𝑛, with 𝑛 ∈ {1, 2, 3, 4, 5}. For 𝑛th spring, we denote the predicted state by 𝑔𝑖|𝑛thspring = 𝑔𝑛𝑖,
and the true state by 𝑦𝑗 |𝑛thspring = 𝑦𝑛𝑗 , with 𝑖, 𝑗 ∈ {0, 1}, such that 𝑔𝑛𝑖 ∈ 𝛺𝐺 and 𝑦𝑛𝑗 ∈ 𝛺𝑌 . Since there are five springs, with each
of them existing in the either of two possible states {𝑦0, 𝑦1}, there are 25 possibles states of the springs collectively. We define the
collective true state of the five springs by a set of vectors 𝛺𝐴, such that 𝐴𝑘 = [𝑦̄1, 𝑦̄2, 𝑦̄3, 𝑦̄4, 𝑦̄5] ∈ 𝛺𝐴 and 𝑦̄𝑛 ∈ {𝑦𝑛0, 𝑦𝑛1} = 𝛺𝑌 , with
𝑘 ∈ {1, 2, 3,… , 25}, and 𝑓𝐴(𝐴𝑘) = 2−5 ,∀ 𝑘. Similarly, we define the collective prediction state of the five springs by a set of vectors 𝛺𝑆 ,
uch that 𝑆𝑘 = [𝑔̄1, 𝑔̄2, 𝑔̄3, 𝑔̄4, 𝑔̄5] ∈ 𝛺𝑆 and 𝑔̄𝑛 ∈ {𝑔𝑛0, 𝑔𝑛1} = 𝛺𝐺, with 𝑘 ∈ {1, 2, 3,… , 25}. We define 𝐴 and 𝑆 as the random variables

corresponding to the space 𝛺𝐴 and 𝛺𝑆 respectively, such that, 𝐴𝑘 and 𝑆𝑘 represents the realizations of 𝐴 and 𝑆 respectively.
For the considered sensor placement design 𝑒, the Bayes risk specific to this problem consists of intrinsic and extrinsic costs.

The intrinsic cost 𝛹design-in(𝑒) includes the expenses associated with the sensor installation and maintenance. On the other hand,
the extrinsic cost 𝛹design-ex(𝑒) accounts for the cost of making a decision and the design selection. It resembles the form of Eq. (5).
Therefore, the total Bayes risk is defined as:

𝛹design(𝑒) = 𝛹design-in(𝑒) + 𝛹design-ex(𝑒). (9)

We now focus on constructing the extrinsic cost 𝛹ex-design(𝑒). We denote the cost 𝐿
(

𝑔𝑛𝑖, 𝐴𝑘
)

∶ 𝛺𝐺 × 𝛺𝐴 ⟶ R, defining the
regret of making the decision 𝑔𝑖 for the strain gauge 𝑛, when the true collective state is 𝐴𝑘. We further define the cost function:
𝐶𝑛𝑖𝑗 = 𝐿

(

𝑔𝑛𝑖, 𝐴𝑘(𝑛) = 𝑦𝑛𝑗
)

, and assume that it is independent of the selected design 𝑒. For the fixed spring 𝑛, the cost 𝐶𝑛𝑖𝑗 = 𝐶𝑖𝑗 is
defined as in Table 1.

The cost values 𝐶𝑖𝑗 assign penalty/losses to each predicted state 𝑔𝑖 when the true state is 𝑦𝑗 . Consider the case where the spring
exists in reality, i.e. the state 𝑦0. If the prediction is correct, i.e. 𝑔0, there is no loss since no action is warranted, or 𝐶00 = 0. On
the contrary, if the prediction is 𝑔1 (spring not existing), then the engineers would decide to perform unnecessary inspection and
service leading to a loss of 𝐶10. However, as a consequence of this incorrect decision, there would be no major failure since the
spring exists in reality. Similarly, consider the case where the spring does not exist, represented by 𝑦1 (the boundary is actually
damaged). If we estimate (from strain gauge data) that spring does not exist (correct decision), then there will be cost (denoted by
𝐶 ) incurred to inspect and repair the spring (or the boundary). However, if the spring is predicted to exist, when it is non-existent
7
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Table 2
Assumed cost function values.
Cost Definition Breakdown Assumed dollars

𝐶00 True positive cost Zero cost, as no action is needed 0
𝐶10 False positive cost Cost due to service and inspection 20
𝐶01 False negative cost Cost due to service, failure, and replacement 200
𝐶11 True negative cost Cost due to service and repair 50

(incorrect decision), it can lead to the most expensive mistake since the structure can potentially fail if appropriate actions are not
taken. This leads to the maximum cost of 𝐶01. For simplicity, we assume 𝐶01 = 200 dollars and assume other costs to be fraction of
𝐶01, such that 𝐶10 = 0.1𝐶01 and 𝐶11 = 0.25𝐶01. Individual costs 𝐶𝑖𝑗 are defined in Table 2.

In cases of problems involving multiple decisions, there may be instances where the consequences of making some decisions
are more important or weighed for some cases than the others (like some springs being more important than the others). To
incorporate these kind of situations, we assume that the top two springs (𝑠4, 𝑠5) are more important than the bottom three (𝑠1, 𝑠2, 𝑠3).

e incorporate this assumption by assigning weights to each of these springs as 𝑤 = [1, 1, 1, 1.5, 1.5]. Our goal is to define the extrinsic
ayes risk functional, considering the importance of the consequence of decisions associated with each spring, as a quantity that
inimizes itself with the most optimal sensor arrangement 𝑒. Along the similar lines of Eq. (5), the extrinsic Bayes Risk is defined

s:

𝛹design-ex(𝑒) =
5
∑

𝑛=1
𝑤𝑛𝐸𝐺𝐴

(

𝐿
(

𝑔𝑛𝑖, 𝐴𝑘
))

=
5
∑

𝑛=1
𝑤𝑛

32
∑

𝑘=1

1
∑

𝑖=0
𝐿
(

𝑔𝑛𝑖, 𝐴𝑘
)

𝑓𝐺|𝐴(𝑔𝑛𝑖|𝐴𝑘)𝑓𝐴(𝐴𝑘). (10)

n the equation above, 𝑓𝐴(𝐴𝑘) = 2−5 is the prior probability of the collective state of springs being 𝐴𝑘. Secondly, 𝑥𝑒 ∈ 𝛺𝑋𝑒
epresents the measured/observed data. For instance, 𝑥𝑒 can be strain measurements for any design 𝑒. For the 𝑛th spring, the quantity
𝐺|𝐴(𝑔𝑛𝑖|𝐴𝑘) represents the probability of predicting the state 𝑔𝑖 for the spring 𝑛, when the true collective state is 𝐴𝑘. This is a difficult
it to evaluate, and like Eq. (5b) can be broken down into more manageable pieces:

𝑓𝐺|𝐴(𝑔𝑛𝑖|𝐴𝑘) = ∫𝛺𝑋𝑒

𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒).𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) d𝑥𝑒. (11)

he likelihood 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒) depicts our belief of deciding the state of the spring 𝑛 to be 𝑔𝑖 for a given measurement 𝑥𝑒 ∈ 𝛺𝑋𝑒

. We
btain the likelihood using Bayesian inference (detailed in next section).

. Evaluating Bayes risk for a fixed design

To perform Bayes optimization that yields the most optimal sensor placement design, we will have to start with a design that
volves/improves with every iteration of the optimization process. At every iteration, for a suggested design 𝑒, we need to obtain
he Bayes risk defined in Eq. (10). Therefore, in this Section, we detail on calculating the Bayes risk for a design 𝑒 consisting of 30
ensors, the arrangement of which was obtained using Latin Hypercubic Sampling (LHS) technique [40]. The first step of the process
s to evaluate the likelihood of making a decision given the measurement, 𝑓𝐺|𝑋𝑒

(𝑔𝑛𝑖|𝑥𝑒).

.1. Analytical formulation to obtain the likelihood

The goal is to obtain 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒). Recall that 𝑆𝑘 ∈ 𝛺𝑆 defines the collective prediction state of the springs. We can therefore

rite:

𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒) =

32
∑

𝑘=1
𝑓𝐺|𝑆 (𝑔𝑛𝑖|𝑆𝑘).𝑓𝑆|𝑋𝑒

(𝑆𝑘|𝑥𝑒). (12)

e note that:

𝑓𝐺|𝑆 (𝑔𝑛𝑖|𝑆𝑘) =
{

1 if 𝑆𝑘(𝑛) = 𝑔𝑛𝑖;
0 otherwise. (13)

o evaluate the distribution 𝑓𝑆|𝑋𝑒
(𝑆𝑘|𝑥𝑒) in Eq. (12), we assume that to make a decision given the measurement data, we have

non-conflicting threshold or boundary to make a prediction of the spring state, such that 𝑓𝑌 |𝑋𝑒
(𝑦𝑛0|𝑥𝑒) and 𝑓𝑌 |𝑋𝑒

(𝑦𝑛1|𝑥𝑒) do not
intersect. This also implies 𝑓𝐺|𝑋𝑒

(𝑔𝑛𝑖|𝑥𝑒) = 𝑓𝑌 |𝑋𝑒
(𝑦𝑛𝑖|𝑥𝑒). With this assumption, we have 𝑓𝑆|𝑋𝑒

(𝑆𝑘|𝑥𝑒) = 𝑓𝐴|𝑋𝑒
(𝐴𝑘|𝑥𝑒).

We note that the quantity 𝑓𝐴|𝑋𝑒
(𝐴𝑘|𝑥𝑒) is anti-causal, as it is asking for the true state of the springs when the measurement 𝑥𝑒 is

iven. We use Bayes theorem to write it in a more desirable and causal form:

𝑓𝐴|𝑋𝑒
(𝐴𝑘|𝑥𝑒) =

𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘).𝑓𝐴(𝐴𝑘)
∑32

𝑙=1 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑙).𝑓𝐴(𝐴𝑙)
=

𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘)
∑32

𝑙=1 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑙)
. (14)

The likelihood 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) remains to be evaluated for all 𝑘. For a fixed collective spring state 𝐴𝑘, and a design 𝑒 with 𝑁sg(𝑒)
umber of strain gauges, 𝑓 (𝑥 |𝐴 ) is the joint distribution of the 𝑁 (𝑒) strain measurements.
8
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Although the true strain values of different strain-gauges are related due to the underlying physics, the noise in strain gauge
easurements is taken to be statistically independent. We also assume (for modeling purposes) that the randomness in the strain

auge readings, primarily due to noise and uncertainties in loading, follows a Gaussian distribution. Let 𝑥𝑒𝑛 represent the observed
strain measurement in 𝑛th strain-gauge of the design 𝑒, such that 𝑥𝑒 = {𝑥𝑒𝑛} with 𝑛 ≤ 𝑁sg(𝑒). For the selected spring state 𝐴𝑘 and the
esign 𝑒, if 𝑥𝑒𝑛, 𝜇𝑒𝑛, and 𝜎𝑒𝑛 represent the measurement of the strain gauge 𝑛 (a random variable), its mean value, and the standard
eviation respectively, we can write the following:

𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) =
𝑁sg(𝑒)
∏

𝑛=1

1
√

2𝜋𝜎2𝑒𝑛
exp

(

−1
2

(

𝑥𝑒𝑛 − 𝜇𝑒𝑛
𝜎𝑒𝑛

)2
)

=
𝑁sg(𝑒)
∏

𝑛=1

1
𝜎𝑒𝑛

𝜙
(

𝑥𝑒𝑛 − 𝜇𝑒𝑛
𝜎𝑒𝑛

)

. (15)

his gives us all the pieces to obtain 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒). We obtain the measurement data 𝑥𝑒 using Finite Element Model (FEM) developed

using OpenSees [38] or using a surrogate model developed using Gaussian Process Regression (GPR) [35].
We note that obtaining the likelihood 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) and the posterior 𝑓𝐴|𝑋𝑒

(𝐴𝑘|𝑥𝑒) is not complicated for the chosen demonstration
problem. Since our emphasis is more on the optimization framework, for simplicity we have assumed strain values to be uncorrelated
and evaluation of the posterior can be done analytically as the decision space is discrete. However, for more complicated problems
with correlated measurement values and continuous decision space, evaluation of the likelihood and the posterior will be more
involved. For instance, in such cases, we use numerical techniques like Markov Chain Monte Carlo (MCMC), Sequential Monte Carlo
(SMC) (refer to [41]), or other methods to evaluate posterior.

Remark 1. We note that the true strain values of different strain gauges are correlated (or functionally related) by the underlying
physics of the problem. That is, each of the strain gauge readings embeds some information about the state of the structure. In this
paper, we use the Finite Element Model (FEM) as the ground truth (discussed more in the next section). This implies that the strain
values obtained from the FEM are treated as the actual/true strain measurement that is impossible to be known since there will
always be noise in observed strain readings. For a given load condition, we have a deterministic prediction of the mean value of the
strain reading using the FEM model (or the respective digital surrogate constructed using strain data obtained from the FEM) which
is considered to be the ground truth. However, the noise in the various strain gauge reading is statistically independent since the
noise pertains to a given strain gauge itself. In this paper, we have assumed a Gaussian structure to the noise.

4.2. Finite element and surrogate model

Section 3 details the finite element model of the structure of interest built using shell elements. We consider that the loading in
the beam is uncertain, such that, the concentrated load 𝑝 ∈ 𝛺𝑃 and its locations 𝑝loc ∈ 𝛺𝑃loc is represented by the random variables
𝑃 and 𝑃loc respectively. We run the FE model for 5000 samples of random input data consisting of seven quantities: the true state
of the springs 𝐴𝑘 ∈ 𝐴 (consisting of states of 5 springs), the magnitude of the load 𝑃 ∼ 𝑁(𝜇𝑝 = 1000N, 𝜎𝑝 = 100N), and the location
of the load 𝑃loc ∼ 𝐻𝑁(𝜇loc = 10 m, 𝜎loc = 1 m). Here, 𝐻𝑁(⋅, ⋅) represents the half normal distribution. For each input sample, we
obtain 22,500 strain responses. From here on 𝛺𝑍 represent the space of input sample, such that 𝑧 ∈ 𝛺𝑍 .

We would like to note that in many machine learning problems, physics-based models are unavailable, and the engineers must
rely on fitting a numerical model using the data obtained from the experiments. In our case, we obtain the data from the finite
element model, which we consider as ‘‘ground truth’’. Although we have the luxury of utilizing the finite element model, the
computational cost is restrictive, and therefore, not the best option with which to carry out Bayesian optimization. For Bayesian
calibration, metamodels or surrogate models are preferable, e.g., Support Vector Regression (SVR) [42], Gaussian Process Regression
(GPR) [35,42], Neural Network [43], and Polynomial Chaos Expansion (PCE) [44]. Models like PCE and SVR yield a point prediction
of the output. Therefore, they are computationally cheaper than approaches like GPR that also predicts the uncertainties in the
output. We use GPR to build our surrogate model which turns out to be 5000 times faster than the FEM model. The output of the
surrogate model usually has a very large dimension. We overcome the issue of high-dimensional output space using the Single Value
Decomposition (SVD) technique that reduces the high-dimensional correlated output space to low-dimensional uncorrelated features.
We transform the strain response from 22 500 dimensions to lower 28-dimensional latent space using SVD. These 28 important
features cover 99.2% of the total information of the data. These 28 features can be inverted to obtain the complete strain gauge
response. We have built the surrogate model for each of these 28 features using GPR. One-third of the 5000 data points were used for
training the GPR, whereas, the remaining Two-third was used for validation to verify the accuracy of the surrogate. Fig. 4 illustrates
the discussion carried out so far.

The Figs. 5a and 5b show the nearly identical strain field obtained for FEM and the surrogate model for a random input sample.
Fig. 6a shows the error in the prediction of the strain values using the FEM and GPR model for the bottom 100 strain gauge locations
at the left boundary of the beam. Overall, the absolute prediction error is of the order 10−7, and the relative error is of the order
10−3. However, a relatively high prediction error is observed at the locations of springs. Similarly, Fig. 6b shows the distribution of
the absolute prediction error across the beam for a random input sample. Once again, relatively higher errors are observed at the
9

spring locations and the location where the concentrated load acts.
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Fig. 4. Flowchart describing strain data generation using FEM, and prediction using GPR surrogate model.

Fig. 5. Comparison of the strain fields obtained using FEM and GPR model.

Fig. 6. Error in the strain values obtained using FEM and GPR model.
10
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4.3. Revisiting Bayes risk

As seen in Section 4.2, the measurement 𝑥𝑒 ∈ 𝛺𝑋𝑒
depends on the load 𝑝 ∈ 𝛺𝑃 , its location 𝑝loc ∈ 𝛺𝑃loc . The randomness in the

strain values (observations) 𝑥𝑒 ∈ 𝛺𝑋𝑒
are primarily due to the noise in strain gauge, uncertainties in the concentrated load, and its

location. We assume a zero mean Gaussian noise structure 𝜁 ∼ 𝑁(𝜇𝜀 = 0, 𝜎𝜀 = 5 × 10−7). Let 𝜀 represent the realization of noise and
𝛺𝜁 represent the noise space, such that 𝜀 ∈ 𝛺𝜁 .

Consider a design 𝑒 with 𝑁sg(𝑒) number of strain measurement locations. Let 𝜁𝑖 represent the random variable for the noise
in the 𝑖th strain location. It is reasonable to assume that the

(

𝑁sg(𝑒) + 2
)

random variables 𝑃 , 𝑃loc, 𝜁𝑖,… , 𝜁𝑁sg(𝑒) are statistically
independent. We define a design dependent product space 𝛺𝜉𝑒 = 𝛺𝑃 ×𝛺𝑃loc ×𝛺𝜁1 ×𝛺𝜁2 ×⋯×𝛺𝜁𝑁sg (𝑒)

. The random vector 𝜉𝑒 consists
of the realizations of the random variables 𝑃 , 𝑃loc, 𝜁𝑖,… , 𝜁𝑁sg(𝑒). The joint density function is then written as:

𝑓𝜉𝑒 (𝛽) = 𝑓𝑃 (𝑝).𝑓𝑃loc (𝑝loc).
𝑁sg(𝑒)
∏

𝑖=1
𝑓𝜁𝑖 (𝜀𝑖), where,

𝛽 =
(

𝑝 ∈ 𝛺𝑃 , 𝑝loc ∈ 𝛺𝑃loc , 𝜀1 ∈ 𝛺𝜁1 , 𝜀2 ∈ 𝛺𝜁2 ,… , 𝜀𝑁sg(𝑒) ∈ 𝛺𝜁𝑁sg (𝑒)

)

∈ 𝛺𝜉𝑒 .

(16)

Noting that the randomness in the measurement space 𝛺𝑋𝑒
is by virtue of the uncertainty in 𝛺𝜉𝑒 space, we rewrite Eq. (11) as

follows,

𝑓𝐺|𝐴(𝑔𝑛𝑖|𝐴𝑘) = ∫𝛺𝜉𝑒

𝑓𝐺|𝜉𝑒 (𝑔𝑛𝑖|𝛽, 𝐴𝑘).𝑓𝜉𝑒 (𝛽) d𝛽 where, (17a)

𝑓𝐺|𝜉𝑒 (𝑔𝑛𝑖|𝛽, 𝐴𝑘) = 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥). (17b)

The second equation holds because a fixed input sample 𝑧, and noise value, yields a determinate and unique value of the
measurement 𝑥 ∈ 𝛺𝑋𝑒

. Substituting Eq. (17) into Eq. (10) yields:

𝛹design-ex(𝑒) = ∫𝛺𝜉𝑒

32
∑

𝑘=1
ℒ (𝛽, 𝐴𝑘; 𝑒)𝑓𝐴(𝐴𝑘)𝑓𝜉𝑒 (𝛽)𝑑𝛽, where, (18a)

ℒ (𝛽, 𝐴𝑘; 𝑒) =
5
∑

𝑛=1

1
∑

𝑖=0
𝑤𝑛𝐿

(

𝑔𝑛𝑖, 𝐴𝑘
)

𝑓𝐺|𝜉𝑒 (𝑔𝑛𝑖|𝛽, 𝐴𝑘). (18b)

We note that these random variables constituting 𝛽 can follow a generic distribution. We can always transform them to a standard
normal random variables. Therefore, in an attempt to generalize, we transform the load 𝑃 , its location 𝑃loc, and the noise 𝜁𝑖 into
their respective standard normal forms. Since the load and the noise for the 𝑖th strain gauge is Gaussian in our case, their standard
normal forms can be written as 𝒰 (standard normal counterpart of 𝑃 ), and 𝒱𝑖 (standard normal counterpart of 𝜁𝑖), such that
𝑝 = 𝑢𝜎𝑝 + 𝜇𝑝, and 𝜀𝑖 = 𝑣𝑖𝜎𝜀 + 𝜇𝜀, where 𝑢 and 𝑣𝑖 are the realizations of 𝒰 , and 𝒱𝑖 respectively. We transform 𝑓𝑃loc (𝑝loc) from Half
Normal to a Standard Normal random variable 𝒰loc, such that the cumulative density functions are equal: 𝐹𝑃loc (𝑝loc) = 𝐹𝒰loc (𝑢loc),
and 𝜇𝑝loc = 𝐹−1

𝑃loc

(

𝐹𝒰loc (𝜇𝑢loc )
)

. This transforms 𝜉𝑒 into a joint standard normal random variable ℬ𝑒 (with a realization 𝒷, where
𝒷 ∈ 𝛺ℬ𝑒

), such that

𝑓ℬ𝑒
(𝒷) = 𝑓𝒰 (𝑢).𝑓𝒰loc (𝑢loc).

𝑁sg(𝑒)
∏

𝑖=1
𝑓𝒱𝑖

(𝑣𝑖), where,

𝒷 =
(

𝑢, 𝑢loc, 𝑣1, 𝑣2,… , 𝑣𝑁sg(𝑒)

)

.

(19)

We can now rewrite Eq. (18) as:

𝛹design-ex(𝑒) = ∫𝛺ℬ𝑒

32
∑

𝑘=1
𝜆(𝒷, 𝐴𝑘; 𝑒)𝑓𝐴(𝐴𝑘)𝑓ℬ𝑒

(𝒷)d𝒷, where, (20a)

𝜆(𝒷 = (𝑢, 𝑢loc, 𝑣𝑖), 𝐴𝑘; 𝑒) = ℒ
(

𝛽 =
(

𝑢𝜎𝑝 + 𝜇𝑝, 𝐹
−1
𝑃loc

(

𝐹𝒰loc (𝑢loc)
)

, 𝑣𝑖𝜎𝜀 + 𝜇𝜀, 𝐴𝑘; 𝑒
))

. (20b)

Section 4.4 deals with evaluating the Bayes risk discussed in this section. To maintain generality, we present the formula for Bayes
risk as an approximation of both, Eqs. (18a), and (20a).

4.4. Evaluating the expected cost considering uncertainties in load and noise in the observed strains

4.4.1. Obtaining the cost ℒ for a given input sample 𝑧 and noise structure
Once we have the GPR models, we can obtain 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘), and hence evaluate 𝑓𝐺|𝑋𝑒

(𝑔𝑛𝑖|𝑥𝑒) using Eq. (14). To demonstrate a
simple case of the evaluation of posterior probability of spring existence, we ignore the uncertainties due to load and its location by
fixing the load as: 𝑝 ∈ 𝛺𝑃 and 𝑝loc ∈ 𝛺𝑃loc . We consider a design with 𝑁sg(𝑒) strain gauges, picked randomly using Latin Hypercubic
Sampling. Assuming that the true state of the springs is 𝐴, we consider the input sample as 𝑧 = (𝐴; 𝑝; 𝑝loc) ∈ 𝛺𝑍 . For the chosen
11

design 𝑒 and the input sample 𝑧, we run multiple surrogate runs over different noise values in the Monte Carlo sense. The posterior
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Fig. 7. Flowchart describing the approach to obtain the cost ℒ for a given design 𝑒 and input sample 𝑧.

can then be obtained using Eq. (15). Similarly, for the same fixed load and its location, the likelihood 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) for all possible
spring states can be obtained, yielding 𝑓𝐴|𝑋𝑒

(𝐴𝑘|𝑥𝑒) using Eq. (16). Finally, we can obtain 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒) using Eqs. (12) and (13).

Eqs. (17b) and (18b) yields ℒ (𝛽, 𝐴𝑘; 𝑒). Fig. 7 illustrates the discussion so far.
For this special example with a fixed load and its location, and that we have assumed a well defined noise structure with zero

mean 𝜁 ∼ 𝑁(0, 5 × 10−7), we can obtain the likelihood 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) without numerous surrogate runs. For the fixed input sample 𝑧,
let 𝑥̄𝑒𝑖 represent the strain values at the 𝑛th sensor locations obtained using either a forward FEM or a surrogate model. The closed
form likelihood for such case can then be written as 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) =

∏𝑁sg(𝑒)
𝑛=1

1
5×10−7 𝜙

(

𝑥𝑒𝑛−𝑥̄𝑒𝑛
5×10−7

)

.
We need to incorporate the cumulative uncertainties due to all the aforementioned entities into evaluating the Bayes risk.

Evaluating 𝛹design-ex(𝑒) and calculating the associated integral in Eq. (18a) is computationally expensive and not so trivial. We do
this by using three techniques discussed in the next section: a sampling-based approach, mean value approximation, and univariate
dimension reduction with Gauss–Hermite quadrature.

4.4.2. Approach 1: Sampling-based method
This is a Monte Carlo based approach, where we generate large number of random samples of 𝐴𝑖 ∈ 𝛺𝐴, and 𝛽𝑖 ∈ 𝛺𝜉𝑒 , with

𝑖 ∈ {1, 2, 3,… , 𝑁mcs}. Here, 𝑁mcs denotes the number of Monte Carlo samples. For the design 𝑒, we can obtain the cost ℒ (𝛽𝑖, 𝐴𝑖; 𝑒)
for each 𝐴𝑖 and 𝛽𝑖 similar to the procedure detailed in previous Section 4.4.1. The Bayes risk is then approximated as:

𝛹design-ex(𝑒) ≈
1

𝑁mcs

𝑁mcs
∑

𝑖=1
ℒ (𝛽𝑖, 𝐴𝑖; 𝑒) (21a)

𝛹design-ex(𝑒) ≈
1

𝑁mcs

𝑁mcs
∑

𝑖=1
𝜆(𝒷𝑖, 𝐴𝑖; 𝑒). (21b)

The approximated Bayes risk depicted in the above equations is also called empirical risk. We recall here that Eqs. (21a) and
(21b) represents the approximated Bayes risk corresponding to Eqs. (18), and (20) respectively. Fig. 8 illustrates a convergence
plot for the sampling-based method obtained for a design 𝑒, with 𝑁sg(𝑒) = 30 strain gauges. The expected cost converges to 327.2
(showed by the red line) around 𝑁mcs = 10 000 samples with the average noise of 0.71. However, the evaluation of Bayes risk for
10 000 samples takes 265 seconds. The optimization process demands an evaluation of the cost function around ten thousand times.
Therefore, the sampling-based method is computationally expensive.

4.4.3. Approach 2: Mean value approximation
Here, we evaluate the Bayes risk as the cost ℒ (𝛽, 𝐴𝑘; 𝑒) evaluated for all the spring states 𝐴𝑘 at the mean value of the load, its

location, and noise, weighted over by the probability 𝑓𝐴(𝐴𝑘), such that:

𝛹design-ex(𝑒) ≈
32
∑

𝑘=1
ℒ

(

𝛽 =
(

𝜇𝑝, 𝜇𝑝loc , 𝜇𝜀1 , 𝜇𝜀2 ,… , 𝜇𝜀𝑁sg(𝑒)

)

, 𝐴𝑘; 𝑒
)

𝑓𝐴(𝐴𝑘); (22a)

𝛹design-ex(𝑒) ≈
32
∑

𝑘=1
𝜆
(

𝒷 =
(

𝜇𝑢, 𝜇𝑢loc , 𝜇𝑣1 , 𝜇𝑣2 ,… , 𝜇𝑣𝑁sg

)

, 𝐴𝑘; 𝑒
)

𝑓𝐴(𝐴𝑘). (22b)

Since, 𝒰 , 𝒰 , and 𝒱 are standard normal random variables, we have 𝜇 = 0; 𝜇 = 0; 𝜇 = 0, ∀𝑖 ≤ 𝑁 (𝑒).
12
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Fig. 8. Convergence plot of Bayes risk obtained using sampling-based method.

4.4.4. Approach 3: Univariate dimensional reduction with Gauss–Hermite quadrature
Approach 1 is computationally expensive as it involves considering a large sample size, whereas approach 2 is feasible but not

very accurate when there is large variability. We tackle these limitations using the current approach to evaluate Bayes risk.
We assume a design 𝑒, with 𝑁sg(𝑒) number of strain gauges. We start by redefining Bayes risk in Eq. (20) as:

𝛹design-ex(𝑒) = ∫𝛺ℬ𝑒

ℎ(𝒷; 𝑒)𝑓ℬ𝑒
(𝒷)d𝒷, where, (23a)

ℎ(𝒷; 𝑒) =
32
∑

𝑘=1
𝜆(𝒷, 𝐴𝑘; 𝑒)𝑓𝐴(𝐴𝑘). (23b)

Recall, that the vector 𝒷 = (𝑢, 𝑢loc, 𝑣1, 𝑣2,… , 𝑣𝑁sg (𝑒)) consist of
(

𝑁sg(𝑒) + 2
)

variables. We now define the following vectors consisting
of

(

𝑁sg(𝑒) + 2
)

elements:

𝑏0 = (0, 0, 0, 0,… , 0);

𝑏1 = (𝑢, 0, 0, 0,… , 0);

𝑏2 = (0, 𝑢loc, 0, 0,… , 0);

𝑏3 = (0, 0, 𝑣1, 0,… , 0);

𝑏4 = (0, 0, 0, 𝑣2,… , 0);

⋮

𝑏(
𝑁sg(𝑒)+2

) = (0, 0, 0, 0,… , 𝑣𝑁sg(𝑒)).

(24)

Using the definitions above and univariate dimensional reduction (refer to [45]), we approximate the function ℎ(𝒷; 𝑒) as:

ℎ(𝒷; 𝑒) ≈ −
(

𝑁sg(𝑒) + 1
)

𝜆(𝑏0, 𝐴𝑘; 𝑒) +

(

𝑁sg(𝑒)+2
)

∑

𝑖=1
𝜆(𝑏𝑖, 𝐴𝑘; 𝑒). (25)

Substituting Eq. (25) into Eq. (23), we get,

𝛹design-ex(𝑒) ≈
32
∑

𝑘=1

⎛

⎜

⎜

⎜

⎝

−
(

𝑁sg(𝑒) + 1
)

𝜆(𝑏0, 𝐴𝑘; 𝑒) +

(

𝑁sg(𝑒)+2
)

∑

𝑖=1
∫𝛺ℬ𝑒

𝜆(𝑏𝑖, 𝐴𝑘; 𝑒)𝑓ℬ𝑒
(𝒷)d𝒷

⎞

⎟

⎟

⎟

⎠

𝑓𝐴(𝐴𝑘). (26)

To simplify the expression above, firstly, we realize that 𝑓ℬ𝑒
(𝒷) is the joint probability density function of statistically-independent

standard normal random variables. Therefore,

𝑓ℬ𝑒
(𝒷) = 𝜙(𝑢).𝜙(𝑢loc).

𝑁sg(𝑒)
∏

𝑖=1
𝜙(𝑣𝑖) =

𝑁sg(𝑒)+2
∏

𝑖=1
𝜙(𝒷𝑖) =

𝑁sg(𝑒)+2
∏

𝑖=1

(

1
√

2𝜋
𝑒−

1
2 𝒷

2
𝑖

)

. (27)

In the equation above, 𝒷1 = 𝑢, 𝒷2 = 𝑢loc, and 𝒷𝑗+2 = 𝑣𝑗 , for 𝑗 ∈ (1, 2,… , 𝑁sg(𝑒)). Secondly, we note that for any function of the form
𝑔(𝑥, 𝑦), 𝐸 (𝑔(𝑥, 0)) = 𝐸 (𝑔(𝑥, 0)), provided 𝑋 and 𝑌 are statistically-independent random variables. This allows us to simplify the
13
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Table 3
Comparison of various approaches in evaluating Bayes risk for a design 𝑒 with 𝑁sg(𝑒) = 30.

Bayes risk 𝛹design-ex(𝑒) Run time in seconds

Approach 1 (104 samples) 327.32 229.97
Approach 2 309.81 0.82
Approach 3 321.35 46.53

integral in Eq. (26) as:

∫𝛺ℬ𝑒

𝜆(𝑏𝑖, 𝐴𝑘; 𝑒)𝑓ℬ𝑒
(𝒷)d𝒷 = 1

√

2𝜋 ∫𝒷𝑖
𝜆(𝑏𝑖, 𝐴𝑘; 𝑒)𝑒

− 1
2 𝒷

2
𝑖 d𝒷𝑖. (28)

e realize that the Gauss–Hermite quadrature is a natural choice for approximating integral in the equation above. This is because
auss–Hermite quadrature is meant to estimate integrals of form ∫ 𝑔(𝑥)𝑒−𝑥2 d𝑥, for any function g(x). Therefore, the integral above

s approximated as:

∫𝒷
𝜆(𝑏𝑖, 𝐴𝑘; 𝑒)𝑓ℬ𝑒

(𝒷)d𝛺ℬ𝑒
≈ 1

√

𝜋

∑

𝑛
𝓌𝑛𝜆(𝑞𝑖,𝑛, 𝐴𝑘; 𝑒);

𝑞𝑖,𝑛(𝑗) =

{

𝑏𝑖(𝑗) = 0 𝑖 ≠ 𝑗;
√

2𝛼𝑛 𝑖 = 𝑗.

(29)

n the equation above, 𝑛 represents quadrature order, 𝓌𝑛 gives the weights, and 𝛼𝑛 gives the point of evaluation of the function.
or our calculations, we use 𝑛 = 2, for which 𝓌𝑛 = 0.5

√

𝜋, and 𝛼𝑛 = ± 1
√

2
. The approximated Bayes risk can now be written as:

𝛹design-ex(𝑒) ≈
32
∑

𝑘=1

⎛

⎜

⎜

⎜

⎝

−
(

𝑁sg(𝑒) + 1
)

𝜆(𝑏0, 𝐴𝑘; 𝑒) +

(

𝑁sg(𝑒)+2
)

∑

𝑖=1

∑

𝑛
𝓌𝑛𝜆(𝑞𝑖,𝑛, 𝐴𝑘; 𝑒)

⎞

⎟

⎟

⎟

⎠

𝑓𝐴(𝐴𝑘). (30)

The advantage of Bayes risk expressed in the form of Eq. (20) is clear from the discussion carried out so far. The expression of Bayes
Risk in Eq. (30) can easily be extended to obtain Bayes risk in the form of Eq. (18).

Table 3 compares the value of Bayes risk and the run time for various approaches discussed in this section. The sampling-based
method is the most accurate when a large sample size is considered. However, it is computationally expensive. Secondly, irrespective
of the sample size, the Bayes risk approximated using approach 1 changes with the new sample even with the same sample size,
hence, is random and non-unique. Approach 2 is the most feasible but not so accurate. Approach 3 enjoys acceptable accuracy and
computational speed.

The discussion in the paper so far was about evaluating the Bayes risk for a given design 𝑒. The next section focus on the problem
of optimal sensor placement using Bayesian optimization. We use approach 3 to evaluate the extrinsic Bayes risk 𝛹design-ex(𝑒) and
assume an intrinsic cost of unity per additional sensor.

5. Bayesian optimization: Optimal sensor placement design

5.1. Optimal sensor placement design algorithm

Our primary objective is to obtain the optimal sensor placement design 𝑒∗ that minimizes the Bayes risk functional discussed in
the previous sections. Mathematically,

𝑒∗ = arg min
𝑒

𝛹design(𝑒) ∈ 𝛺𝐸 . (31)

In absolute terms, obtaining 𝑒∗ involves looking at every possible design combination, and picking the one with the least Bayes
risk. In our case, if 𝑛 = 22 500, this would be picking 𝑒∗ from the ∑𝑛

𝑟=1
𝑛!

𝑟!(𝑛−𝑟)! = (2𝑛 − 1) possible combinations of sensor locations.
learly, sampling the entire design space 𝛺𝐸 , which consists of (222500 − 1) ≈ 106773 number of possible designs, is daunting even

or this modest problem. The main motivation of using Bayesian optimization is to arrive at the optimal solution 𝑒∗ by minimizing
he sampling points to fasten the optimization process. Bayesian optimization looks for the global optimum in a minimum number
f steps.

Unlike gradient-based optimization methods, Bayesian optimization is a global optimization technique that does not require
he derivative of the objective function. Having a black-box model (like a surrogate function) of the objective function suffices to
erform the optimization. It involves two primary elements. The first element is developing surrogate function using Gaussian process
egression (GPR) of the objective function using randomly evaluated sample. Consider, for example in our case, we assume an initial
esign 𝑒0 ∈ 𝛺𝐸 , with 3 strain locations. To obtain the next optimal design with 4 strain gauges, we randomly sample, for instance,
0 locations to be the candidate for the 4th sensor. These locations yield 20 design samples 𝑒(𝑘), ∀ 𝑘 ≤ 20 each with four sensors.

We obtain the exact cost 𝛹design(𝑒(𝑘)), ∀ 𝑘 ≤ 20 using approach 3 discussed in previous section. Using the 20 set input data of the
̂

14

fourth sensor location 𝒹 = (𝑥1, 𝑥2), and the output data of the exact cost, we train our surrogate function 𝛹design(𝒹) ∼ 𝑁(𝜇𝒹, 𝜎𝒹). It
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Fig. 9. Flowchart of Bayesian optimization algorithm for optimal sensor placement design.

provides a posterior probability that describes possible values for the cost at a candidate fourth location 𝒹, with the mean value 𝜇𝒹,
and the standard deviation 𝜎𝒹. The second component is the acquisition function that helps us locate the next most valuable candidate
for the fourth location based on the current posterior over the cost. We use Expected Improvement EI as our acquisition function.

𝐸𝐼(𝒹) =
(

𝜇𝒹 − 𝛹∗
design

)

𝛷

(𝜇𝒹 − 𝛹∗
design

𝜎𝒹

)

+ 𝜎𝒹𝜙

(𝜇𝒹 − 𝛹∗
design

𝜎𝒹

)

. (32)

Here, 𝛹∗
design = min𝑒(𝑘) 𝛹design(𝑒(𝑘)) is the current best values of the objective function. For all the remaining (22 500 − 20 − 3) = 22 477

possible fourth location candidates, we evaluate 𝐸𝐼(𝒹). The candidate with maximum EI is the next most valuable location. Once
we locate the next most valuable fourth location candidate, we get 21st design sample. We re-train the GPR with 21 data points,
and keep adding the next most valuable location until the maximum EI is less than a tolerance value 𝜀. For detailed understanding
of Bayesian optimization, readers are recommended to refer to [33] and [35].

To generalize our optimization algorithm, we define the initial sensor design as 𝑒0 ∈ 𝛺𝐸 , with 𝑁0 = 𝑁sg(𝑒0) number of strain
gauges. If 𝒹(𝑖) = (𝑥(𝑖)1 , 𝑥(𝑖)2 ) represents the location of 𝑖th strain gauge (𝑥(𝑖)1 and 𝑥(𝑖)2 denote the horizontal and vertical coordinates of
the sensor 𝑖), we have 𝑒0 =

(

𝒹(1),𝒹(2),… ,𝒹(𝑁0)
)

. Let 𝑁as represent number of additional sensors that will be added one by one to
𝑁0 during the optimization process. Let 𝑒𝑛as represent the optimized sensor design with

(

𝑁0 + 𝑛as
)

sensors, such that 𝑛as ≤ 𝑁as, and
𝑒∗ = arg min𝑒𝑛as

𝛹design(𝑒𝑛as ). Finally, 𝑁total = 22 500 represents total number of strain gauge locations. Fig. 9 details the flowchart of

the optimization algorithm 1 developed for obtaining optimal sensor placement. In Yang et al. [46], this algorithm was deployed
to obtain a sensor placement design of a more complex real-world miter gate structure that had a different type of damage (unlike
the detection type of problem here) and a different Bayes risk functional (quantifying the net relative gain in information). It shows
the generality and applicability of the proposed algorithm.

5.2. Results and discussion

5.2.1. Comparison of a Bayesian optimized sensor placement design with randomly-chosen designs
To numerically implement the optimization algorithm discussed in Section 5.1, we consider an initial design 𝑒0 with 𝑁0 = 3,

with sensors picked randomly, and consider 𝑁as = 10 additional sensors. We fix 𝛼 = 20. Fig. 10a shows the sensors constituting 𝑒0 by
blue dots and the additional sensor location by red dots placed on the strain contour (for a random input sample) of the beam. For
instance, the design 𝑒1 consists of all the three initially considered sensors along with the fourth sensor in red (marked by number
4). Fig. 10a also shows the strain field for a realization of load and its location. Fig. 10b illustrates Bayes risk for the designs 𝑒𝑛as .
We observe that the Bayes risk converges with 4 additional sensor, i.e., 𝑒4 can be considered as the optimal design. We also observe
that almost all these additional sensors are concentrated close to the boundary where the springs are present. We observe in all the
following convergence plots (Figs. 10b, 13b–17b) that the Bayes risk increases after the minimum value is attained because every
additional sensor bears an intrinsic cost, which in this case was assumed to be unity per additional sensor.

To demonstrate the fact that Bayesian optimization produces the optimal sensor placement design, we consider a random design
𝑒 , with 𝑁 (𝑒 ) = 13. Fig. 11a shows the arrangement of the sensors for design 𝑒 . Although design 𝑒 has 6 more sensors than
15
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Algorithm 1: Bayesian optimization for sensor placement
1 Initialize 𝑒0 =

(

𝒹(1),𝒹(2),⋯ ,𝒹(𝑁0)
)

;
2 for 𝑛as = 1 to 𝑁as do
3 Using LHS, randomly select 𝛼 locations to be candidates for the (𝑁0 + 𝑛as) sensor location, with coordinates

𝒳 =
(

𝒹(1),𝒹(2),⋯ ,𝒹(𝛼));
4 Obtain 𝛼 number of possible designs: 𝑒𝑘 = concatenate

(

𝑒(𝑛as+1),𝒹
(𝑘)
)

, for all 𝑘 ≤ 𝛼;
5 Obtain the exact cost of all the 𝛼 designs: 𝛯 =

(

𝛹design(𝑒1), 𝛹design(𝑒2),⋯ , 𝛹design(𝑒𝛼)
)

;
6 while 𝑖 = 1 or maxEI < 𝜀 do
7 Construct the GPR model for 𝛹̂design (⋅) trained using (𝑋,𝛯);
8 For all the remaining strain locations 𝑍 =

(

𝒹(1),𝒹(2),⋯ ,𝒹(𝛽)), where 𝛽 =
(

𝑁total −
(

𝑁0 + 𝑛as − 1
)

− 𝛼
)

, obtain 𝛽

number of possible designs: 𝑒𝑚 = concatenate
(

𝑒(𝑛as+1),𝒹
(𝑚)

)

, for all 𝑚 ≤ 𝛽;
9 Obtain the cost 𝛹̂design

(

𝒹(𝑚)) for all 𝑚 ≤ 𝛽 designs using GPR developed before;
10 Obtain the current best 𝛹∗

design = min𝛯;
11 Obtain the Expected Improvement for all the 𝛽 designs using:

𝐸𝐼(𝒹(𝑚)) =
(

𝜇𝒹(𝑚) − 𝛹∗
design

)

𝛷

(𝜇𝒹(𝑚) − 𝛹∗
design

𝜎𝒹(𝑚)

)

+ 𝜎𝒹(𝑚)𝜙

(𝜇𝒹(𝑚) − 𝛹∗
design

𝜎𝒹(𝑚)

)

, where 𝑚 ≤ 𝛽;
12 Obtain:

𝑚𝑎𝑥𝐸𝐼 = max
𝒹(𝑚)

(

𝐸𝐼(𝒹(𝑚))
)

𝒹 = arg max
𝒹(𝑚)

(

𝐸𝐼(𝒹(𝑚))
)

𝑒 = concatenate
(

𝑒(𝑛as+1),𝒹
)

Evaluate the exact cost E(𝑒);
13 Update:

𝒳 = concatenate
(

𝒳 ,𝒹
)

𝑒(𝛼+𝑖) = 𝑒

𝛯 = concatenate
(

𝛯,𝛹design(𝑒)
)

𝑖 = 𝑖 + 1;
14 end
15 Update the sensor design: 𝑒𝑛as = concatenate(𝑒𝑛as−1,𝒹);
16 end
17 Obtain: 𝑒∗ = arg min

𝑒𝑘
𝛹design(𝑒𝑘), where, 𝑘 ≤ 𝑁as;

design 𝑒4, the Bayes risk for 𝑒𝑟 is much higher than that of the minimum Bayes risk for optimized design 𝑒𝑟. The reason is that the
new information acquired by adding the 5th sensor or more does not add to the value of decision-making as much as it leads to the
increase in the intrinsic cost due to the addition of more sensors. This is clear from Fig. 11b.

We used approach 3 to evaluate Bayes risk while performing Bayesian optimization. Figs. 12a and 12b, compare the expected
cost obtained using the sampling-based method (approach 1, with 104 samples) and approach 3 for designs 𝑒4 and 𝑒𝑟 respectively.

s expected, the results obtained using approach 3 are very close to the sampling-based method (that can be assumed as ground
ruth). The plots also show the Kernel Density Estimate (KDE) for the sampling-based method. Finally, the deviation of Bayes risk in
he case of random design 𝑒𝑟 as compared to the optimal design 𝑒4 is noteworthy.

emark 2. We note that obtaining new information (for example: strain gauge data) is consequential in making a better decision
for example: detecting the existence of springs). However, acquiring information through a mechanism 𝑒 bears cost, represented
y 𝛹design-in(𝑒). Acquiring the new information is meaningful and economical if and only if the additional cost required to gather
he information is outweighed by the reduction in the expected losses evaluated by considering the additional information (see
hadha et al. [47]). Recall the expression of the Bayes risk 𝛹design(𝑒) in Eq. (9). The Bayes risk is defined as the sum of intrinsic
ost 𝛹 (𝑒) and extrinsic cost 𝛹 (𝑒). Increasing the number of sensors has the following effects:
16
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Fig. 10. Optimized sensor placement and the associated Bayes risk obtained using approach 3.

Fig. 11. Randomly selected sensor design 𝑒𝑟 and the associated Bayes risk obtained using approach 3.

Fig. 12. Comparison of the Bayes risk evaluated using sample-based method (approach 1), and univariate dimensional reduction technique (approach 3).

1. Every addition of the sensor increases the cost due to the intrinsic cost of the sensor, cost incurred to install and maintain
the SHM system. Therefore, 𝛹design-in(𝑒) increases.

2. Every addition of the sensor also adds to the new information about the state of the structure leading to better decision
making. Therefore, with the increase in sensor count, 𝛹 (𝑒) decreases.
17
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Fig. 13. Optimized sensor placement and the associated Bayes risk obtained using sampling-based method (approach 1).

Fig. 14. Optimized sensor placement and the associated Bayes risk obtained using mean value approximation (approach 2).

With the addition of a new sensor up to the optimal design 𝑒∗, the 𝛹design-ex(𝑒) decreases more than the increase in 𝛹design-in(𝑒), leading
𝛹design(𝑒) to decrease overall. However, beyond the optimal design, with any new addition of the sensors, 𝛹design-ex(𝑒) decreases less
than the increase in 𝛹design-in(𝑒), leading 𝛹design(𝑒) to increase overall. In other words, there comes a time when the benefit of the
additional information obtained by adding an additional sensor is dwarfed by the cost incurred due to a sensor addition. This effect
is observed in all the convergence plots presented in this section.

5.2.2. Comparison of a Bayesian optimized sensor placement design with Bayes risk evaluated using various approaches
We now focus on the performance of various approaches detailed in Section 4.4 used in evaluating the Bayes risk while

performing Bayesian optimization. Figs. 10, 13, and 14 illustrate optimized sensor placement and the associated Bayes risk obtained
using approaches 3, 1, and 2, respectively. It is not surprising that the convergence rate depends on the approach picked to evaluate
the Bayes risk. Approach 2 (mean value approximation of Bayes risk) is not accurate, and the sampling-based method, like any
Monte-Carlo based approach, bears uncertainties because it attempts to evaluate the integral in Bayes risk functional by sampling
it. For a different sample with the same sample size, the Bayes risk evaluated using approach 1 is different. This randomness in the
evaluation of Bayes risk using approach 1 leads the acquisition function to pick different sensor locations. Unlike these approaches,
approach 3 attempts to evaluate the integral, and rather quickly and consistently (unlike sampling-based method), using Gaussian–
Hermite quadrature. These inherent advantages of approach 3 catalyze the optimization code to converge faster. It can be observed
that approach 3 finds the first 4 sensors to be well spread in the vertical direction. The first four additional sensor locations obtained
by using the Sampling-based technique are concentrated to the bottom-left, and the code is forced to arrive at sensors 5 and 6 at
the middle and the top left of the beam, respectively. We also note that there are instances where the sampling-based method
converges faster than the other two approaches owing to the randomness in the prediction of Bayes risk by its very inherent nature.
However, we note a commonality in the prediction by all three approaches. All the significant additional sensor locations (the first
six additional sensors) are spread across the vertical direction near the left boundary of the beam, which is suitable for the spring
detection problem.
18
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Fig. 15. Optimized sensor placement and the associated Bayes risk obtained considering initial sensor design with three sensors concentrated at the bottom-left.

Fig. 16. Optimized sensor placement and the associated Bayes risk obtained considering initial sensor design with three sensors concentrated at the bottom-right.

5.2.3. Comparison of a Bayesian optimized sensor placement design with different initial designs
In this section, we compare the optimal sensor placement design evaluated using approach 3 for different initial designs 𝑒0.

Fig. 10 shows the sensor designs obtained when the initial sensor locations consist of well spread out strain-gauges across the beam.
To demonstrate the effect of the choice of initial sensor designs, we consider three extreme cases of 𝑒0 with the sensors concentrated
on the bottom-left, bottom-right, and top-right, as shown in Figs. 15, 16, and 17.

The Expected Improvement function defined in Eq. (32) guides the optimization algorithm to exploit and explore the design space
to pick for the next sample. The algorithm exploits the strain locations at which the GP mean function is larger, and it explores the
strain locations where the GP standard deviation is larger. For instance, in Fig. 15, the algorithm obtains the first 4 additional sensors
by exploiting the strain locations with higher GP mean value, whereas in Fig. 16, with 𝑒0 consisting of concentrated bottom-right
sensors, the algorithm obtains the additional sensors mostly by exploring the region of high GP standard-deviation. Since it evaluates
the additional sensors 2, 3, 4, and 5 concentrated at the top left, it is forced to obtain sensors 6, 7, and 8 in the middle of the left end,
leading to late convergence. Like the previous section, we do observe that irrespective of the initial design, the algorithm arrives at
a sensor design that consists of additional sensor locations spread out across the left end.

We note that the beam is so finely meshed that there exists a correlation between the strain values. Therefore, there are non-
unique sensor locations that are sampled by the acquisition function, leading to non-unique sensor design depending on different
initial design 𝑒0.

5.2.4. Comparison of a Bayesian optimized sensor placement design for different noise level in sensors
In this section, we compare the optimal sensor placement design evaluated using approach 3 and considering initial design 𝑒0

with 𝑁0 = 3 for different noise levels as depicted in Table 4. Case 1 to 4 represents various noise levels (standard deviation in the
strain measurements) in ascending order. It is observed that the number of sensors in the optimal sensor design increases with the
increase in noise level in the acquired data. This is an expected result since a large amount of data is required to compensate for
the increased uncertainty due to higher noise levels.
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Fig. 17. Optimized sensor placement and the associated Bayes risk obtained considering initial sensor design with three sensors concentrated at the top-right.

Table 4
Different cases of the noise level in strain gauges.

Cases Noise standard deviation 𝜎𝜀 Figure representing the resulting design Number of sensors in optimal design

Case 1 5.0 × 10−7 Fig. 18 4
Case 2 1.0 × 10−6 Fig. 19 5
Case 3 2.5 × 10−6 Fig. 20 9
Case 4 5.0 × 10−6 Fig. 21 10

Fig. 18. Optimized sensor placement and the associated Bayes risk obtained for case 1 of noise level.

6. Summary and conclusions

This paper details an optimal sensor design framework for structural health monitoring applications where detection of a critical
state is of prime importance. The primary contribution of the paper is to present a sensor optimization framework and an algorithm
that obtains the optimal sensor design yielding the least regrettable decision/inference of the state detection. The optimality criterion
or the objective function used for optimization is the expected loss (arising as a consequence of decision making), the term also
referred to as the Bayes risk. It is advantageous to use Bayes risk as it helps us incorporate the consequence-cost/regret of making a
decision (extrinsic cost), as well as the intrinsic costs (e.g., sensor costs and their maintenance costs). A Bayes risk (or the expected
loss/risk) minimized design leads to a prediction of the state that minimizes losses in an average sense.

The proposed optimal sensor placement design framework presented in this paper can be summarized in four sequential steps
as illustrated in Fig. 1. The optimization framework proposed in this paper is demonstrated on an example problem, where the
existence of the boundary springs is in question (a binary decision problem). Noteworthy conclusions are: (1) Bayesian optimized
sensor design is better than the random design since it leads to less expected loss/regret as a consequence of making a decision all
the while using less number of sensors; (2) Generally, the Bayes risk functional has a non-linear integrand and is a high dimensional
integral that demands sophisticated numerical approaches to evaluate it. Among the three approaches investigated, approach 3
(using univariate dimensional reduction with Gauss–Hermite quadrature) is the most desirable; (3) Irrespective of the initial sensor
design, the proposed optimization algorithm arrives at a sensor design that is suitable for desirable decision making. In the proposed
20
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Fig. 19. Optimized sensor placement and the associated Bayes risk obtained for case 2 of noise level.

Fig. 20. Optimized sensor placement and the associated Bayes risk obtained for case 3 of noise level.

Fig. 21. Optimized sensor placement and the associated Bayes risk obtained for case 4 of noise level.
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example problem, irrespective of the initial design, the optimal design consisted of additional sensor locations spread out across the
left end close to the springs; (4) It is observed that the number of sensors in the optimal sensor design increases with the increase
in noise level in the acquired data.
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