ONWARD & UPWARD:

Navigating the Future of Sustainability in Aviation

Module 4: Economic Sustainability in Aviation

O Look out for:

General Knowledge & Insightful Facts

Self- paced Learning Activity

Key Things to Note

Required Tasks

Module 4: Objectives & Learning Outcomes

- **4.1:** Examining economic aspects of sustainable aviation
- 4.2: Exploring cost benefit analysis tools in aviation sustainability
- **4.3:** Defining criteria for sustainable business models

Learning Outcomes

- 4.a: Recognize the importance of economic sustainability for longterm industry resilience
- 4.b: Utilize tools to evaluate efficacy of sustainability initiatives
- **4.c:** Strategize sustainable policies and approaches for businesses

Write down and set your learning intentions for this module. Ask yourself what do you want to learn and why?

Skills: Structured problem solving, win-win negotiations, organisational awareness, drive change and innovation

Objective 4.1:

Economic Aspects of Sustainable Aviation

Aviation Economics:

Principles

Source: Altrurki

Aviation Economics: *Principles*

Cost Structure	Description
Revenue Management	Techniques to maximize revenue by managing inventory and pricing.
Yield	Measure of revenue per unit, critical for profitability analysis.
Carrier Type	Differentiation between low-cost, regional, and full-service carriers.
Taxation	Impact of taxes on profitability and cost management.
Capital	Financial resources required for operations and expansion.
Fuel	Significant cost component, influenced by market volatility.
Volatility	Economic factors affecting stability and financial planning.

Considering the various cost components in aviation, such as fuel, revenue management, and capital, how can airlines balance the need for profitability with the adoption of sustainable practices? Reflect on the potential challenges and think about potential solutions to achieve this balance.

Aviation Finance: *Industry Statistics*

Airlines have spent

\$1 trillion

on new aircraft in the last decade

Airlines have spent

\$4.3 trillion

on fuel in the last 30 years

Global airline operating expenses over the last 30 years (1990-2019):

\$19.3 trillion

(or an average of \$670 billion per year)

Annual spend on efficiency research and development by aerospace:

\$15 billion

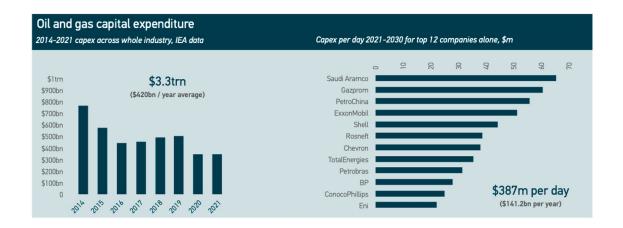
(up to \$450 billion over 30 years)

ACI estimates that global airports will need over

\$2.4 trillion

in capital expenditure over the next 20 years: for capacity and routine upgrades 14

Airport capital expenditure needs 2021-2040 total needed capex by region



The next 20 years will require \$2.4 trillion in airport capex worldwide.

Source: ICAO

Aviation Finance: *Industry Statistics*

Source: The Economist

Aviation Finance: *Industry Statistics*

87.7 million

Jobs supported by aviation worldwide

- » 11.3 million direct jobs in the industry:
 - 648,000 at airport operators
 - 5.5 million in other on-airport jobs
- 3.6 million at airlines
 1.3 million in civil aerospace
- 237,000 at air navigation service providers
- » 18.1 million jobs supported through the aviation industry supply chain
- » 13.5 million jobs through induced benefits of industry and employee spending
- » 44.8 million jobs supported in the tourism industry

\$3.5 trillion

Global contribution to GDP, 2018 (4.1% of world economic activity)

4.3x

Aviation jobs are, on average, 4.3 times more productive than other jobs

35%

Worldwide trade by value carried by air transport, 2018 (\$6.5 trillion). By volume: 0.5%

17th

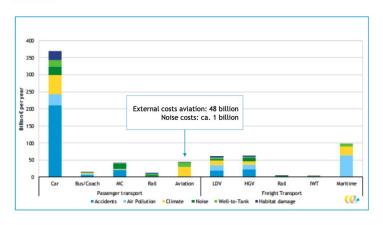
If aviation were a country, it would rank 17th in size by $\ensuremath{\mathsf{GDP}}$

Regional statistics

Region	Jobs supported	GDP supported	Passengers (2019)	% of global passengers	Annual growth 2018-2038	Flights (2019)
AFRICA	7.7 m	\$63 bn	115 m	2.5%	3.4%	1.3 m
ASIA-PACIFIC	46.7 m	\$944 bn	1.7 bn	37%	4.2%	12.8 m
EUROPE	13.5 m	\$991 bn	1.2 bn	26%	2.1%	9.1 m
LATIN AMERICA AND THE CARIBBEAN	7.6 m	\$187 bn	356 m	7.7%	3.2%	3.2 m
MIDDLE EAST	3.3 m	\$213 bn	192 m	4.2%	4.1%	1.3 m
NORTH AMERICA	8.8 m*	\$1.1 trn*	1 bn	22.7%	2.1%	10.6 m

*In the USA, the FAA also collects employment and economic impact data, but includes domestic tourism and general aviation in its figures (not included in this conservative analysis). With these wider catalytic impacts, civil aviation jobs in the USA alone amount to 10.9 million, with \$1.1 trillion contribution to GDP.

Source: Aviation Benefits


Aviation Economics:

Environmental Impact

Source: Interrog

Total external costs of transport in EU28 in 2016

Targets

World-first targets for CO₂ reductions for a global sector, set by the industry in 2008:

- Improve 1.5% per annum average fleet fuel efficiency between 2009 and 2020 (currently at 2.1% rolling average improvement)
- 2. Stablise net CO₂ emissions from 2020 through carbon-neutral growth (will be made possible through the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) at ICAO)
- Reduce net CO₂ emission from aviation to half of 2005 levels, by 2050 (through new technologies and sustainable aviation fuels)

\$188 billion

Spent by airlines on fuel, 2019

CORSIA

The world's first global offsetting scheme for any single sector: www.enviro.aero/CORSIA

914 million

Tonnes of CO2 emitted by airlines in 2019, 2% of the global man-made total of 43 gigatonnes

80%

of aviation CO₂ emissions are from flights over 1,500 km in length

-54.3%

CO2 emissions per passenger kilometre since 1990 through technology and operations

270,000

Flights on sustainable aviation fuel (SAF) since 2011: see www.enviro.aero/SAF for updates

11 billion tonnes

CO₂ avoided since 1990 via new technology, better operations, improved infrastructure

\$15 billion

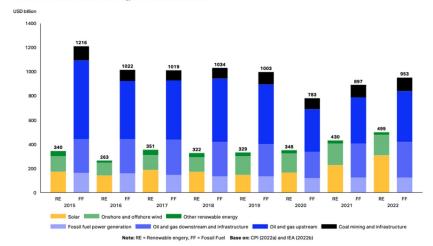
Spent each year by aerospace companies on research for aircraft technology efficiency

Source: Springer

Economic Implications

17 April 2023 Share

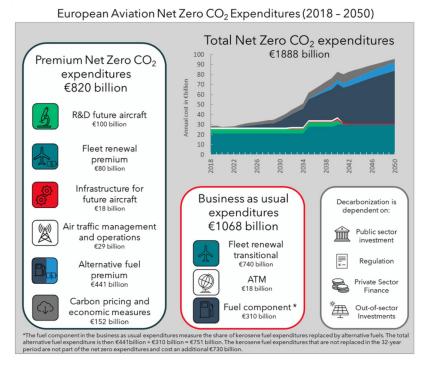
The cost of decarbonising air travel is likely to push up ticket prices and put some off flying, a group representing the UK aviation industry says.


Measures such as moving to higher-cost sustainable aviation fuel will "inevitably reduce passenger demand", according to Sustainable Aviation.

But it found people will "still want to fly" despite "slightly higher costs".

Source: BBC

industry



Sources: IRENA and CPI. Global landscape of renewable energy finance, 2023, International Renewable Energy Agency, Abu Dhabi

Source: SAP

Sustainable Aviation: Economic Implications

Source: SEO

Financial Viability

DfT Aviation MACC study: Technical Report: Final

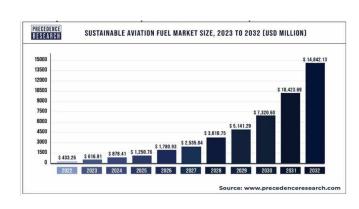
Table (ii) Estimated emission savings over the period 2010 to 2050 from "UK aviation" by policy lever ($MtCO_2$).

Demand baseline		Low			Central			High		
Policy	Low	Mid	High	Low	Mid	High	Low	Mid	High	
Regulatory CO ₂ Standards	0	9	10	-ve	9	11	-ve	11	13	
Early fleet retirement	0	1	33	1	19	59	20	41	84	
Achieve CAEP goals	4	25	44	7	40	66	8	53	84	
Retrofitting	1	2	4	1	3	4	1	3	5	
Airport capacity	13	14	18	37	37	13	159	77	88	
ATM efficiency	12	23	33	15	27	38	16	30	41	
Operational incentives	59	92	139	69	108	162	77	120	180	
Biofuel demonstration										
plant	11	20	44	13	23	51	14	26	58	
Mandatory biofuels	39	66	108	34	68	118	23	64	125	
Behavioural change	0*	11	19	0*	37	43	0*	12	27	
Videoconferencing	0*	0	5	0*	-ve	7	0*	17	1	
Total savings	139	263	457	177	371	572	318	454	706	

Key: * lever defined as having no impact for the demand/policy case. -ve: model reports increase in emissions for the lever in question over the period. For explanation of shading, see text

DfT Aviation MACC study: Technical Report: Final

Table (ii) Estimated emission savings over the period 2010 to 2050 from "UK aviation" by policy lever ($MtCO_2$).


policy level (MCCO2).										
Demand baseline	Low				Central			High		
Policy	Low	Mid	High	Low	Mid	High	Low	Mid	High	
Regulatory CO ₂ Standards	0	9	10	-ve	9	11	-ve	11	13	
Early fleet retirement	0	1	33	1	19	59	20	41	84	
Achieve CAEP goals	4	25	44	7	40	66	8	53	84	
Retrofitting	1	2	4	1	3	4	1	3	5	
Airport capacity	13	14	18	37	37	13	159	77	88	
ATM efficiency	12	23	33	15	27	38	16	30	41	
Operational incentives	59	92	139	69	108	162	77	120	180	
Biofuel demonstration										
plant	11	20	44	13	23	51	14	26	58	
Mandatory biofuels	39	66	108	34	68	118	23	64	125	
Behavioural change	0*	11	19	0*	37	43	0*	12	27	
Videoconferencing	0*	0	5	0*	-ve	7	0*	17	1	
Total savings	139	263	457	177	371	572	318	454	706	

Key: * lever defined as having no impact for the demand/policy case. -ve: model reports increase in emissions for the lever in question over the period. For explanation of shading, see text.

Source: BMC

Economic Drivers

MATURITY STAGES Start-ups and R&D Early technology bet KEY MECHANISMS Grants Public Private Partnership (PPP) Venture capital Offtake agreements Concessionary loans Loan guarantees Private equity Standard loans Export guarantees and debt Bonds, including GSSS Equity Higher risk exposure and cost of capital

Source: Precede

Source: Cordeiro

Industry Collaborations

Industry Collaborations:

Objective 4.2:

Cost- Benefit Analysis of Sustainable Aviation Practices & Technologies

Sustainable Aviation: Cost- Benefit Analysis

Costs ✓ Direct costs ✓ Indirect costs ✓ Intangible costs ✓ Opportunity costs ✓ Costs of potential risks Benefits ✓ Direct ✓ Indirect ✓ Total benefits ✓ Net benefits

Cost-Benefit Analysis

Pros

- Requires data-driven analysis
- Limits analysis to only the purpose determined in the initial step of the process
- Results in deeper, potentially more reliable findings
- Delivers insights to financial and non-financial outcomes

Cons

- May be unnecessary for smaller projects
- Requires capital and resources to gather data and make analysis
- Relies heavily on forecasted figures; if any single critical forecast is off, estimated findings will likely be wrong.

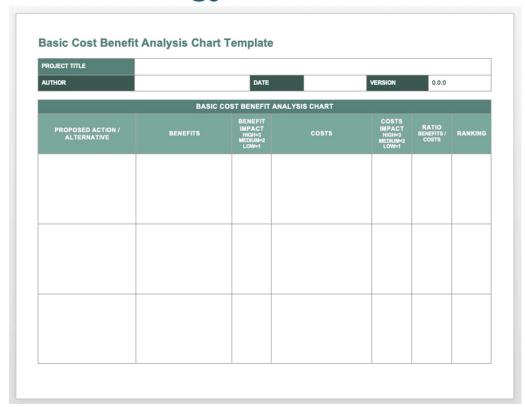
Source: EVA Community

Cost- Benefit Analysis

Table 4.5 Source, type and taxonomy overview

Components	Public vs. private	Investment vs. cost	Finance taxonomy
a. Future aircraft R&D	Private and public Private: new aircraft Public: high risk R&D	Investment	Transitional and green Transitional: efficient kerosene air- craft Green: zero-carbon aircraft
b. Fleet renewal	Mostly private	Investment	Transitional and green Transitional: efficient kerosene air- craft Green: zero-carbon aircraft
c. Airport infrastructure	Private and public Private: Revenue generating pro- jects Public: Subsidies replacement	Investment	Transitional and green Transitional: more efficient ground ops. Green: SAF infrastructure
d. ATM & operations	Private and public	Investment	Transitional and green Transitional: more efficient ATM Green: electric taxing
e. Alternative fuels	Private and public Public funding possible to re- duce price gap (examples) to prevent negative connectivity ef- fect	Cost	Out of sector investment
f. Economic measures and negative emissions	Private	Cost	Out of sector investment

Table 4.3 Total expenditures per pillar, associated CO₂ savings, and average efficience


Pillar	Cost components	Total expenditures (B€)	CO ₂ reduction (Mt)	Average efficiency (€/tCO₂)
Improvements in technology	Future aircraft R&D Fleet renewal Infrastructure for future aircraft	938	1410	665
Improvements in ATM and operations	Airline operationsAirspace and ATMGround operations at airports	47	555	85
Alternative fuels	Drop-in SAFHydrogenRenewable electricity	751	1609	467
Carbon pricing / negative emissions		152	1148	132
Total		1888	4820	392

Source: Slide Team

Cost Benefit Analysis:

Methodology

Source: Smart Sheet

Cost Benefit Analysis:

Case Study

Zeron Example 1:

Example 1 is a base case scenario. This is an example where purchasing land, equipment and constructing a SAF refining plant cost \$260 million. Both operating costs and revenues ramp up, then remain consistent from year 3. In a real world scenario these are not likely to be linear but this does not impact the example. A discount rate of 9% is used. This is the rate that must be achieved to deliver a NPV of \$0. This example delivers a forecast NPV of \$83.28 million or an internal rate of return on the funds employed of 3.82%. This does not meet the hurdle rate (of 9%) hence a rational firm would not undertake this project.

EXAMPLE: 1		Simplified cost-benefit example - base case project CBA									
Project analysis (Million USD)											
Year	0	1	2	3	4	5	6	7	8	9	10
Capital costs											
Project construction	-250										187.5
Improvements						-25					17.5
Equiptment	-10					-10					5
Total	-260	0	0	0	0	-35	0	0	0	0	210
Operating costs											
Aggregate annual costs		-5	-15	-20	-20	-20	-20	-20	-20	-20	-20
Revenues											
Annual aggragate revenues		15	25	40	40	40	40	40	40	40	40
Net Cash Flow	-260	10	10	20	20	-15	20	20	20	20	230
Discount rate	9%										
NPV	-\$83.28										
IRR	3.82%										

Source: ICAO Fuel Guidance

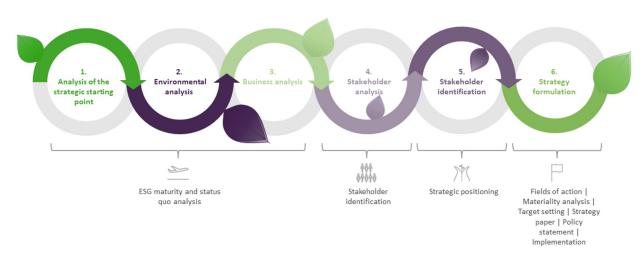
Sustainable Business Models:

Guiding Concepts

ESG: Three Pillars of Long-Term Sustainable Business

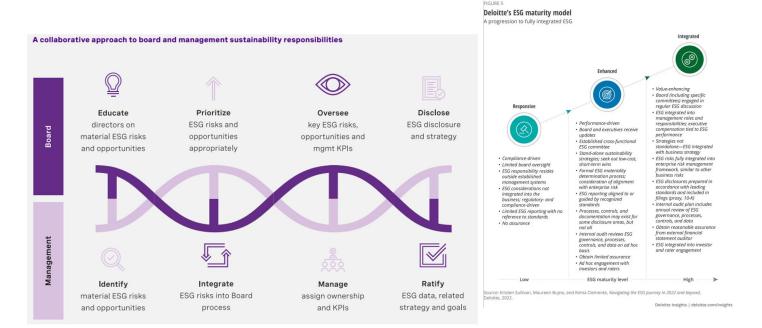
Environment: Preserving nature and ensuring resource efficiency

Social:Building safe, inclusive and empowered communities



Governance: Responsible corporate practices and policies

Aviation Sustainability:

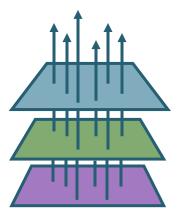

Strategy

Source: ESG Strategy

Aviation Sustainability:Oversight & Reporting

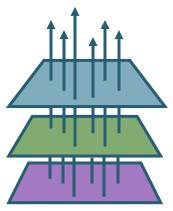
Source: Activating Sustainability

Objective 4.3:

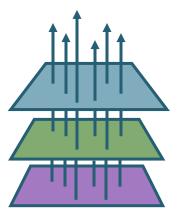

Defining criteria for sustainable business models

Aviation Sustainability:

Strategy


Partners	Activities Resources	Value Propos	sition	Customer Relationship Channels	Customer Segments
Costs			Rever	nues	

Aviation Sustainability: *Strategy*


Supplies and Outsourcing	Production Materials	Functi Value	onal	Customer End-of-Life Distribution	Use Phase
Environment	tal Impacts		Enviro	onmental Bene	efits

Aviation Sustainability: *Strategy*

Local Communities	Governance Employees	Social	Value	Societal Culture Scale of Outreach	End-User
Social Impac	ts		Social	Benefits	

Aviation Sustainability:

Assessment and Measurement Criteria in Aviation

- Integration of ESG Metrics
- Stakeholder Engagement
- Cost-Benefit Analysis
- Reporting and Disclosure
- Technology and Innovation Tracking

