

HOCHVOLTLABORE

LEISTUNGSELEKTRONIK TESTEN & ABSICHERN.

Mehr Performance Verbesserte Qualität Höhere Lebensdauer

Individuell angepasste Tests von Leistungselektroniken.

Seit 2010 beschäftigen wir uns mit der elektrischen Absicherung zukünftiger Antriebselektronik und Ladetechnik und bieten dabei alles aus einer Hand. Von der Planung, Spezifikation, Durchführung und Automatisierung der Testfälle bis zur Fehleranalyse sind wir Ihr kompetenter Partner.

Doch wir sind mehr als ein reiner Prüfdienstleister: Wir kümmern uns als Entwicklungsund Testdienstleister ganzheitlich um die Absicherung (inkl. Support) bei Prüflingsbefähigungen, prüflingsspezifischen Anpassungen sowie Prüflingseinstellungen.

Mit unserem Know-how leisten wir einen wertvollen Betrag zur Nachhaltigkeit von Energie- und Mobilitätslösungen. Denn die Erkenntnisse aus den Tests führen zu einer maximalen Leistung und Effizienz Ihrer Bauteile.

Wir freuen uns auf Ihre Testfälle.

Manuel Kroh Senior Business Development Manager

Tel +49 176 15297008 manuel.kroh@vispiron.de

Zunehmender Kostendruck und steigende Variantenanzahl fordern zielorientierte, exakte Testplanung & -durchführung.

Das bieten wir:

- Testplanung und -management
- Spezifikation von Testfällen
- Automatisierung der Testfälle am Prüfstand
- Durchführung/Betreuung
- Fehleranalysen und Tracking
- Problemmanagement

Das testen wir:

- Leistungselektronik/Inverter
- Ladetechnik
- LV-123/HV-Prüfungen
- LV-124
- Umwelt- und Lebensdauerqualifizierungen
- EMV-Emission und -Immunität

Bei der Realisierung deiner individuellen Anforderung begleiten wir dich entlang des gesamten Testprozesses. Von der Anforderungsanalyse bis zum finalen Testreporting sowie von der Systemebene bis hin zu einzelnen Komponenten.

Maximale Flexibilität für maximalen Erfolg.

Contraction of the contraction o

Dank der Zusammenarbeit mit ausgewählten Prüflaboren lassen sich unsere Kapazitäten flexibel an deine spezifischen Anforderungen anpassen.

8 Prüfplätze, 5 Testsysteme – unzählige Varianten.

Unsere Prüfumgebung ist individuell konfigurierbar und bietet damit eine große Flexibilität bei der Umsetzung deiner Anforderungen.

1250 V

900 A

3-/6-phasige

1040 A

Batteriespannung

Phasenströme

Konfigurationen

DC-Strom

Aufgrund der individuellen Konfigurierbarkeit unserer Prüfumgebung können unterschiedliche Prüflinge und Testläufe variabel kombiniert werden.

Die Umsetzung der Tests erfolgt in unseren HV-sicheren Testplätzen, die mit INCA-Messrechnern ausgestattet sind.

Die Tests werden, je nach Anforderung, unter Simulation verschiedener Umweltbedingungen (inkl. Feuchte) durchgeführt.

Messtechnik, Diagnosetools und Diagnoseprotokolle:

- Wärmebild
- HV-Spannung/ -Ströme
- LV-Spannung/ -Ströme
- Ruhestrom
- INCA
- CANalyzer
- CAN-XCP
- LIN
- Flexray
- CAN/CAN-FD
- Power Analyzer

Spezifikation unserer Prüfplätze.

Prüfplätze	1 Power HIL	7 Systemprüfplätze
------------	-------------	--------------------

Prüflingsumgebung

	Klimakammer	Medientemperierung	
Anzahl	5 8 Kanäle		
Temperaturbereich	-70 °C bis +120 °C -40 °C bis +90 °C		
Kühlleistung	bis zu 5 kW	bis zu 51 kW	
Durchfluss	-	22 L/min	
Volumen	1 000-1 500 L	-	
Feuchteregelung	10 % bis 98 % –		
Temperatur- gradient	-6 K/min		
	+8 K/min	_	

Batteriesimulationen (HV)

HVDC-Spannung	bis 1 250 V
Umladestrom	bis ±1 440 A
Dauerstrom	bis ±1 040 A
Dynamik	bis ±700 V/ms
Funktionen	CC, CV, CR, CP, Ri-Sim, Funktionsgenerator bis 10 kHz

6 VISPIRON SYSTEMS

E-Maschinen-Emulator (HV)

elektrische Drehzahl	1 250+ Hz
Phasenanzahl	1 x 3 Phasen/ 1 x 6 Phasen/ 2 x 3 Phasen
Multilevelbetrieb	3-Level
Phasenstrom	bis 900 A bei Dauerlauf/ bis 1 080 A bei 1 s
Rotor-Emulator	bis 130 A
Rotorlagegeber	AMR/GMR sowie Resolver

Aktive Statorlast (HV)

elektrische Drehzahl	200+ Hz
Polpaarzahl	1 bis 25
Phasenanzahl	1 x 3 Phasen/ 1 x 6 Phasen/ 2 x 3 Phasen
Phasenstrom	bis 500 A bei Dauerlauf/ bis 700 A bei 60 s
Rotorlagegeber	AMR/GMR sowie Resolver
Schaltfrequenz	4 bis 14 kHz

Spezifikation unserer Prüfplätze.

Batteriesimulationen (LV)

	Battsim LV (1)	Battsim LV (2)	
Spannung	-20 V bis 80 V	0 bis 80 V	
Strom	±40 A dauerhaft	±676 A dauerhaft	
	±75 A für 200 ms		
Funktionen	hochtransiente Spannungsprofile, überlagerte AC-Spannung	CC, CV, CR, CP, Ri-Sim, Funktionsgenerator bis 10 kHz	
Bandbreite	DC bis 250 kHz	-	
Dynamik		Spannung 0 % - 90 %: bis 22 μs	
	-	Strom -90 % - 90 %: bis 70 μs	

Sensor-/Restbussimulation

Restbus

- CAN/CANFD
- Flexray
- LIN
- SENT

DACs

- Kanäle bis 18 x isoliert
- Ausgangsspannung bis ±10 V
- Ausgangsstrom bis ±20 mA
- Dynamik bis 2 μs
- Funktionen: DC, Sinus, Pattern bis 1 μs

8 VISPIRON SYSTEMS

Fehlersimulationen

	FIU HV			
Kanäle	6 x AC-Leitungen			
	2x DC-Leitungen			
Funktionen	Phasenkurzschlüsse			
	Leitungsunterbrechnung (AC/DC)			

Ripplegenerator (HV)

- Frequenzbereich 0 bis 300 kHz
- Strom bis 400 App
- Leistung bis 8kVArms
- Artificial Network nach ISO 21498

	FIU LV
Kanäle	8 x Leistungskanäle (30 A, 60 V)
	60 x Signalkanäle (2 A, 60 V)
	8 x Differentielle Kanäle (2A, 60 V) optimiert für different. Signale z.B. CAN
	2 x Fast Interrupter (1 x 2 A, 1 x 40 A) für schnelle Unterbrechungen
Funktionen	Schnelle Leitungsunterbechung (10 µs Schaltflanke) Unterbrechungsmuster z.B. Wackelkontakt
	Kurzschlüsse gegen GND, gegen Ubat und zwischen den Kanälen
	Automatisiertes Zuschalten von Equipment (z.B. Elektronische Last, Multimeter, Osziloskop, u.v.m.)

Technische Informationen zur vorhandenen Sensorik.

Messgröße	Messbereich	Genauigkeit	Messart/ -informationen	Abtast- frequenz
Umgebungs- temperatur	-70 bis 180 °C	0,5 K	-	1 Sa/s
Umgebungs- feuchte	10 bis 98 % r.F.	±3 %	Feuchtemessung psychochrometisch mit zwangsbenetztem selbst- reinigendem Nass- temperatursensor	-
Kühlmittel- temperatur	-40 bis +250 °C	0,5 K	Pt100	1 Sa/s
Kühlmittel- durchfluss	0,2 bis 30 L/ min	1 % v.M. bei > 2 L/min	Magnetisch-induktive Durchflussmessung	1 Sa/s
LV-Spannung	±30 V	25 mV (0,2 % v.M.)		bis 1,2 MSa/s
	±48 V	6 mV	Differenziell, isoliert	1. 40016
	±100 V	20 mV		bis 100 kSa/s

Messgröße	Messbereich	Genauigkeit	Messart/ -informationen	Abtast- frequenz
HV-Spannung	0 bis 1 200 V	0,02 % v.E.	Differenziell, isoliert	bis 100 kSa/s
LV-Strom	1 μA bis 100 A	1 % v.E.	Shunt mit autom. Bereichsumschaltung	bis 125 kSa/s
AC-Strom	±3 000 A	1 % bei 1 000 A	Hall-Effekt-Sensor	bis 25 kSa/s
DC-Strom	±1 800 A	1 % bei 600 A	Hall-Effekt-Sensor	bis 25 kSa/s
AC/DC-Strom- alternative	±1 000 A	0,0054 %	Hall-Effekt-Sensor	bis 100 kSa/s
Rotorstrom	±75 A	1 % bei 25 A	Hall-Effekt-Sensor	bis 25 kSa/s

Diese Tabelle bildet die Standartparameter ab, die Messtechnik kann jederzeit bedarfsgerecht erweitert werden.

Joseph-Dollinger-Bogen 28 80807 München

Ihr Ansprechpartner Manuel Kroh Senior Business Development Manager

Tel +49 176 15297008 manuel.kroh@vispiron.de

Kompetente Realisierung von individuellen Tests:

Anforderungsanalyse

- Analyse des Lastenhefts
- Anforderungsbewertung und -abdeckung

Testspezifikation

- Erstellung von Testspezifikationen
- Versuchsvorbereitung und -planung
- Entwicklung von Teststrategien
- Beratung bzgl. Musterphasen-Absicherungsumfang
- Ausplanung der Meilensteine im Absicherungsumfang

Testdurchführung

- Erfassung des Teststatus aller Testcluster
- Durchführung von elektrischen Tests
- Befähigung von Prüflingen am Testsystem

Datenauswertung und Reporting

- Zusammenfassung Teilergebnisse aus den Testclustern
- Plausibilitätsprüfung der Ergebnisse
- Analyse und Bewertung von Testergebnissen
- Erstellung von Testberichten