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a b s t r a c t

In this paper, we investigate an approach towards curve framing using material frames (MF). Motivated
from the successful application of MF in shape sensing of rods in our previous work, we now present
these frames as an alternative curve framing method. There are numerous instances of practical impor-
tance, where the dynamic system in consideration can be geometrically modeled by means of framed
space curve. Unlike the Frenet-Serret and relatively parallel adapted frames (RPAF), the MF is conve-
niently defined in terms of the parameters associated with the system configuration.
We detail the construction of the various material frames. We develop the relationships among the MF,

Frenet frame, and the RPAF. We discuss the estimation of state space of the system from a limited set of
material curvature and velocity data. In one of the approaches discussed, we obtain curvature-dependent
shape functions to estimate the framed curve globally and discuss the errors associated with such esti-
mations.
We also describe the potential strengths of framed space curves in the reconstruction of slender struc-

tures, trajectory estimation of moving objects (like drone swarms), and in computer graphics. We do this
by creating an analogy between the non-linear geometry of Cosserat beams and these applications.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The space curves are the simplest structures in the theory of dif-
ferential geometry because they are manifolds of dimension one.
The interest in space curves dates back to 17th century. The idea
of tangent to the curve is attributed to Pierre De Fermat that was
first mentioned in 1629 in a letter to M. Despagnet. It seemingly
was invented as a side product of Fermat’s investigation on max-
ima and minima (refer to [1]). In 1637, Descartes was the first to
define the algebraic curve in his famous work [2]. In 1748, Euler
used the parametric representation of curves in his renowned work
[3]. The idea of curve framing by means of tangent, normal, and
binormal vectors are attributed to Frenet [4] and Serret [5]. Dar-
boux [6] exploited the moving frame technique to study surfaces,
which was further generalized by Cartan (refer to: for example,
[7,8]) and it was used to develop tetrad theory of general relativity
[9]. Under the Frenet-Serret curve framing technique, the curve is
geometrically characterized by means of coordinate system invari-

ant quantities: curvature j and torsion s. A unique Frenet frame
exists for a regular, at least C3 continuous and non-degenerate
curve.

Despite the fact that a Frenet–Serret formulation is at the heart
of curve framing, it has limitations for certain practical problems
and applications such as (but not limited to) graphics generation,
shape reconstruction from finite strain measurements, modeling
the trajectory and motion of certain classes of moving objects,
defining the configuration of object swarms, modeling the contin-
uummechanics of Cosserat beams, and so forth. These applications
demand the existence of a continuously varying frame along the
curve, even if the curvature vanishes at certain point on the curve.
The principal normal of the curve is discontinuous at the point
where the curvature is 0 (point of inflection or when the curve
straightens momentarily), rendering a limitation to use of the Fre-
net frame for these applications.

Bishop [10] proposed an alternative framing methodology
called relatively parallel adapted frame (RPAF). RPAF can be used
to frame a regular, minimally C2 continuous curve using two
invariants say j1;j2ð Þ that can be uniquely defined if we specify
the orthogonal vectors spanning the normal plane of such a curve
at a particular point on it. Bishop called the invariants j1;j2ð Þ as
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the normal development of the curve. Like the Frenet frame, we only
have two invariants in RPAFs that define the curve. The curve still
needs to be regular, but the requirements of continuity and the
non-degeneracy condition of the curve are relaxed.

The benefit of RPAF has been proven since its proposal in 1975.
The application of RPAF in computer graphics to create ribbons,
tubes from 3D space curves, and the generation of forward-facing
camera orientation was investigated by Hanson and Ma [11]. The
RPAF has successfully been used to develop trajectory tracking
and auto-pilot control system for UAVs (refer Fig. 1 in Xargay
et al. [12] and references therein). The work by Zahradová [13]
used RPAF to construct waveguides for curves that did not possess
unique Frenet frames.

The Frenet frames and RPAF are intrinsic to the curve itself.
Therefore, the curvature terms j; sð Þ in case of Frenet frame and
the terms j1;j2ð Þ in case of a unique RPAF are frame invariants
and depend solely on the properties of the curve. However, in mul-
tiple practical applications where a physical system can be mod-
eled by means of framed curve, it is convenient to frame the
curve by means of the material frame (MF). The evolution of the
MF along the curve depends on the configuration-dependent
parameters. When MF includes the tangent vector of the curve, it
is called as material-adapted frame (MAF). The curvatures related
to such frames usually have a physical meaning associated with
the change of state of the system. One of the best example to justify
the importance of the MF is the kinematics of rods and beams
(slender structures).

The inception of the idea to use framed curves in studying the
mechanics of rods is likely attributed to Duhem [14] and was used
by Cosserat and Cosserat [15] to develop the finite strain theory of
rods and shells. In this framework, a configuration of the beam is
defined by the midcurve (locus of centroid of the cross-section)
and the family of cross-sections given by the director frame field
(also known as the Cosserat triad). The director triad is an example
of MF used to frame Cosserat beams, for example. Interested read-
ers are recommended to refer to Chadha and Todd [16], Ericksen
and Truesdell [17] and the references therein for further details.
The contribution of Simo (refer to: for example, [18]) and Eric
Reissner (refer to [19]) on the development of geometrically-
exact non-linear beam theory is noteworthy. The idea to capture
the three-dimensional shape of slender rod-like structure sub-
jected to bending and elongation using a finite number of surface
strain gauges was proposed by Todd et al. [20] using MAF. Chadha
and Todd [21] extended the work in [20] by developing a general
shape reconstruction theory that captures shear deformations
and torsion by using a director triad. The geometric relationship
between MAF and director triad was used to uniquely define orien-
tation of cross-section and the shear angles (refer to Section 3.2 of
Chadha and Todd [16]). It was also proved that the director triad
reduces to MAF when shear deformation and torsion is ignored.
The fact that the Frenet-Serret frame and the RPAF do not materi-
ally change orientation with the cross-section during the deforma-
tion of the beam, motivated Todd et al. [20] to propose a problem-
specific MAF (we will later call this as special material adapted
frame or SMAF as it ignores torsion and this adds some interesting
properties to this frame). This also makes it favorable to define
geometry of single-manifold characterizable structures like DNA,
tubes with continuously varying cross-section, architectural design
of spiral stair case and their handrails where the central column is
not necessarily a vertical element, and body-centered frame for
fixed wings airplanes to name a few.

Motivated from the success of a MAF in the theory of shape
reconstruction, we attempt to further investigate the properties
of MAF and explore its potential applications in the field of com-
puter graphics and path estimation (for drones and swarms of
drones, for example). In this exposition, we systematically eluci-

date the construction of the MAF and establish the relationship
between MAF, Frenet frame, and RPAF. We finally detail the gen-
eral material frame. We illustrate the application of these frames
towards generation of certain structures: double helix intertwining
a space curve (like DNA), a leaf and a plant.

We derive the evolution equations of the material frames and
illustrate an algorithm to estimate a smooth framed curve using
limited set of curvature data. This estimation technique is very
useful for structural monitoring of slender structures like pipelines
or for path estimation of underwater drones, where the data is
scarce due to challenges associated with underwater communica-
tion. We illustrate various interpolation approaches. One of the
approaches that has a closed form solution is smooth patch estima-

tion and gluing technique (SPEG) that involves C�1 estimation of the
material linear and angular velocity data (or equivalently cross-
sectional strain and curvature in case of beam). We develop
curvature-dependent local shape functions (for a given segment
or patch of the curve) and ‘‘glue” these patches together such that
the global solution obtained is smooth. Other higher order interpo-
lation of the input curvature data to numerically obtain the config-
uration space is also discussed. The accuracy of the estimated curve
depends on the quality of curvatures data set and the interpolation
method that was used to estimate the path. We illustrate applica-
tion of this algorithm to estimate the path of a moving object or
swarm of drones using limited set of data obtained from the sen-
sors (like Inertial Measurement Units (IMU), strain gauges, etc.).

In Section 2, we briefly describe the Frenet frame and RPAF. We
delineate the construction of the MF and discuss the concept of
finite rotations in Section 3. In Section 4, we derive the curvature
vector for various frames and obtain the required constraints for
Frenet frame and RPAF to be a special case of GMAF. In Section 5,
we delineate the estimation of the state space of a single-
manifold characterized system from limited material tangent data.
We also perform error analysis for different interpolation
approaches. In Section 6, we illustrates various applications of the-
ory discussed so far in the field of computer graphics, and we
finally draw some conclusions and primary observations in
Section 7.

2. Curve framing by Frenet-Serret frame and RPAF

In this section, we briefly review the concepts of Frenet frame
and RPAF and discuss the relevant concepts for completion. Unless
otherwise stated, the curves are parametrized using arc-length n1
throughout the paper. The dot product between two vectors v1

and v2 is defined as v1;v2h i.

2.1. Frenet-Serret frame

Consider a fixed orthonormal Cartesian frame Eif g in Euclidean
space R3. Consider a non-degenerate and at least C3 continuous
space curve u : 0; l0½ � ! R3, such that, u n1ð Þ ¼ ui n1ð ÞEi, with the
arclength n1 2 0; l0½ �. Uniquely framing a curve using Frenet frame
requires a continuously varying Frenet triad consisting of tangent
T n1ð Þ, principal normal N n1ð Þ, and binormal vectors B n1ð Þ defined
as

T n1ð Þ ¼ u;n1
;

N n1ð Þ ¼ u;n1n1
ku;n1n1

k ;

B n1ð Þ ¼ T n1ð Þ � N n1ð Þ:
ð1Þ

The vector triad T n1ð Þ;N n1ð Þ;B n1ð Þf g as given in Eq. (1) defines the
Frenet frame. Before we mention the Frenet formula that governs
the evolution of the Frenet triad, we make the following remarks
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that are required to understand the unique existence and continuity
requirement of the frame.

Remarks:

Remark 2.1.1. A parametrized C1 continuous curve u n1ð Þ is called
a regular curve if it has a non-vanishing derivative. This guarantees
the existence of non-zero and continuous tangent vector field
T n1ð Þ. A regular curve parametrized by the arc-length n1 gives a
unit tangent vector, i.e. ku;n1

k ¼ 1.

Remark 2.1.2. For a parametrized C2 continuous curve u n1ð Þ, we
define the scalar curvature j n1ð Þ ¼ ku;n1n1

k. The point on the curve
at which the curvature vanishes j ¼ 0, is called as the inflection
point. The point with j– 0 on a regular curve is called as a strongly
regular point. At the point of inflection, the curve is momentarily
straight and the normal vector is not uniquely defined. Thus, the
Frenet frame consisting of unique principal normal does not exist
at the point of inflection.

Remark 2.1.3. At a strongly regular point of C2 continuous curve
with j n1ð Þ – 0, the tangent T and the principal normal vector N
are linearly independent (orthonormal) and spans the osculating
plane. This condition is called as non-degeneracy. The normal vector
points towards the center of curvature. The circle on the osculating
plane centered at the center of curvature with the radius 1

j is called

as the osculating circle. A regular C2 curve with j n1ð Þ – 0 (implying
linear independence of T and N) is called as non-degenerate curve.
The curvature j n1ð Þ measures the rate of change of the tangent
when moving along the curve. It represents the deviation of the
curve at a point from a straight line (along the tangent at a point)
in the neighborhood of the point in consideration.

Remark 2.1.4. The binormal vector B as defined in Eq. (1) is per-
pendicular to the osculating plane. The plane spanned by the vec-
tors T and B is called as the rectifying plane. For the Frenet frame
to be continuous along the curve, the osculating plane must change
continuously along the curve. This brings us to the definition of tor-
sion s n1ð Þ. The deviation of the osculating plane is obtained from
the derivative of the binormal vector, which can be obtained as
B;n1 ¼ �sN (refer Chapter II of Kreyszig [22]). The continuity of
the Frenet frame along the curve requires the vector B;n1 to be at

least C0 continuous, implying the curve u n1ð Þ to be at least C3 con-
tinuous. The C2 continuity of a non-degenerate curve implies the
existence of osculating circle (curvature continuity) and the C3

continuity of such curve implies that osculating circle or osculating
plane changes smoothly (torsion continuity).

The Frenet-Serret formulas represent the first derivatives of
vectors T ;n1 ;N ;n1 and B;n1 as a linear combination of the Frenet triad
as is shown below

T ;n1

N ;n1

B;n1

2
64

3
75 ¼

0 j 0
�j 0 s
0 �s 0

2
64

3
75 T

N
B

2
64

3
75: ð2Þ

The Frenet triad continuously moves along the curve. If the Frenet
triad is obtained by finite rotation of the fixed triad Eif g, we have

Q f ¼ T � E1 þ N � E2 þ B� E3: ð3Þ
The tensor Q f n1ð Þ represents the family of orthogonal tensors
belonging to the SO 3ð Þ rotational Lie groups. From Eq. (3), the fol-
lowing holds

T ;n1 ¼ Q f ;n1Q
T
f T ¼ jf � T ;

N ;n1 ¼ Q f ;n1Q
T
f N ¼ jf � N;

B;n1 ¼ Q f ;n1Q
T
f B ¼ jf � B:

ð4Þ

For an orthogonal matrix Q f , it can be proven that Q f ;n1Q
T
f is an

anti-symmetric matrix. Therefore, there exists a corresponding
axial vector jf such that Eq. (4) holds. The vector jf ¼ sT þ jB is
called as the Darboux vector (refer Chapter II of Kreyszig [22]). It
can also be interpreted as a rotation vector of the Frenet triad for
a non-degenerate C3 continuous curve u n1ð Þ causing infinitesimal
rotation of the triad as we move along the curve. Finally we present
the formula for the frame invariants j; sð Þ,

j n1ð Þ ¼ ku;n1
�u;n1n1

k
ku;n1

k3 ;

s n1ð Þ ¼
u;n1

�u;n1n1

� �
; u;n1n1n1

� �D E
ku;n1

�u;n1n1
k2 :

ð5Þ

Fig. 1 illustrates the construction discussed above.

2.2. Relatively parallel adapted frame: Bishop’s frame

As explained in the last section, a curve may be uniquely framed
by Frenet triad if it is non-degenerate and at least C3 continuous.
Bishop [10] proposed an alternative curve framing approach that
relaxes the continuity requirement among others. For a curve to
be framed by RPAF, it needs to be at least C2 continuous and regu-
lar. We present an argument that justifies the construction of RPAF.

Let us consider a regular and at least C2 continuous curve. Such
a curve guarantees a non-zero tangent vector. The idea is to device
a method to span the plane perpendicular to the tangent vector
(normal plane) such that the two vector fields spanning the normal
plane and the tangent vector forms an orthonormal triad that is
continuously varying along the curve. Therefore, we first define a
normal vector field as the vector field that is perpendicular to the
tangent vector T n1ð Þ of the curve u n1ð Þ. Let v represent set of all
the continuous normal vector field. The aim is to obtain a unique
pair of orthonormal vector fields N1 n1ð Þ;N2 n1ð Þ 2 v spanning the
normal plane. For the construction of the triad, we assume that
the normal vector fields N1 n1ð Þ and N2 n1ð Þ are perpendicular to
each other. Bishop proposed that the normal vector fields N1 n1ð Þ
(or N2 n1ð Þ) can be obtained if the total derivative dNi

dn1
¼ N i;n1 is par-

allel to the tangent vector field T n1ð Þ for i ¼ 1;2. The uniqueness of
this field can be guaranteed by fixing the normal vectors at a fixed
arclength n10 such that N i n10ð Þ ¼ N i0 (called as generators). Let us
call this as the uniqueness criterion and the vector N i0 as the
generator.

The vector field N i n1ð Þ 2 v is called as relatively parallel normal
field if N i;n1 is parallel to the tangent vector T n1ð Þ. Theorem 1 in
Bishop [10] gives continuity and uniqueness requirement of rela-
tively parallel normal fields. The frame consisting of the tangent
vector T n1ð Þ and two unique relatively parallel orthonormal fields
N1 n1ð Þ;N2 n1ð Þ 2 v is called as relatively parallel adapted frame
(RPAF). Theorem 2 in Bishop [10] defines the family of RPAF (we
can obtain a unique frame by invoking the uniqueness criterion).
If T;N1;N2f g is a RPAF, we have,

T ;n1

N1;n1

N2;n1

2
666664

3
777775 ¼

0 j1 j2

�j1 0 0

�j2 0 0

2
666664

3
777775

T

N1

N2

2
666664

3
777775: ð6Þ
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It is thus clear that if the regular curve u is Cr continuous with
r P 2, the tangent vector is Cr�1 continuous. Using Eq. (6), this fact
implies that the normal fields are Cr�1 continuous (refer Theorem 1
in Bishop [10]). The parameters j1;j2ð Þ governs the evolution of
the RPAF and are determined uniquely up to rotation (for properly
oriented frame). These parameters can be determined uniquely by
invoking the uniqueness criterion defined above and are called as
the normal development of the curve u. The Darboux vector corre-
sponding to RPAF is jb ¼ j1N2 � j2N1.

For a regular non-degenerate and at least C3 curve, the relation-
ship between Frenet frame and the RPAF can be summarized as
(refer Bishop [10]),

j2 ¼ j2
1 þ j2

2; ð7aÞ
s ¼ g;n1

; ð7bÞ

g ¼ arctan
j2

j1
: ð7cÞ

Here, g represents the angular deviation of the vectors N and B from
the vectors N1 and N2 respectively measured in clockwise direction
(refer Fig. 2).

Remarks:

Remark 2.2.1. An arbitrary vector field is relatively parallel if its
tangential component is a constant multiple of the unit tangent
field T n1ð Þ and its normal component is relatively parallel in the
sense discussed above.

Remark 2.2.2. In differential geometry, there is a notion of
parallel-transport, in which, a geometric object (say a vector) is said
to be parallel transported along a curve in a manifold if its covari-
ant derivative vanishes (refer chapter 2 of Do Carmo [23]). Two
parallel-transported vector fields do preserve length and relative
orientation in Riemannian manifold. However, it must be noted
that the relatively parallel vector field, say M n1ð Þ, is not obtained
by parallel-transport of the normal vector M n10ð Þ ¼ M10 along the
curve. Therefore, in our opinion, it is inappropriate and misleading
to call RPAF as parallel-transport frame.

3. Material frames and finite rotations

3.1. Motivation

In numerous practical applications the idea of curve framing is
very useful to model the geometry of the system. Many a times, the
frame is required to be attached to the system, thus justifying the
word ‘‘material” in Material frames (MF). The configuration of such
system is defined by a curve and the frame attached to the curve. If
the frame consist of the tangent vector of the curve as one of three
orthogonal vectors, it is called as ‘‘adapted” frame. We shall see in a
while that there are systems that requires a more general frame
that are attached to the curve but does not contain tangent vector

Fig. 1. Frenet-Serret frame.

Fig. 2. Orientation of various adapted frames in the normal plane.
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as a part of the triad (for example, a general director triad). Those
are still ‘‘material” frames, but not ‘‘material-adapted” frames.
Unlike Frenet frame or the RPAF, the orientation of these frames
depends on the parameters defining the configuration of the sys-
tem under consideration. Let us explain the idea of ‘‘material
adapted” frame with some examples.

Consider the non-linear large deformation of a cantilever beam
subjected to pure bending (no shear deformation) and elongation.
Such a structure may be modeled by a curve (called the midcurve,
obtained by joining the cross-sectional centroidal loci along the
rod) and the family of rigid cross-sections. Euler-Bernoulli beam
theory assumes bending as the predominant cause of deformation
and ignores shear and other inplane and out of plane deformations.
For such a case, bending guarantees that the cross-sections of the
rod is perpendicular to the tangent vector of the midcurve, or in
other words, the cross-sections lie on the normal plane of the curve
at any deformed configuration. This is also valid for non-linear
Kirchhoff-Love beams that constraints the cross-section to be per-
pendicular to the midcurve. Thus, we need a material-adapted
frame to model such a rod (as we shall see later, this frame will
be called as special material adapted frame SMAF). Todd et al. [20]
in their first work on shape reconstruction used SMAF because
bending curvatures and elongation dominate the overall contribu-
tions to deformation in case of slender rods.

Consider a similar rod subjected to torsion along with the bend-
ing and elongation. The cross-sections still lie on the normal plane
but they are subjected to rotation about the tangent vector. Consider
another example of a fixed wing airplane that has three degrees of
freedom in rotation. The configuration of an airplane can be mod-
eled by a curve parametrized with time. The normalized tangent
vector of such curve is along the roll axis, whereas the pitch axis
and yaw axis span the normal plane. We call these kind of frames
as general material adapted frame (GMAF). If the roll angle in case
of airplane and the torsion deformation in case of rods vanish, the
GMAF reduces to SMAF. In other words, GMAF can be obtained from
SMAF by orthogonal rotation about the tangent vector.

Finally, consider a general example of rod deformation. Let us sub-
ject the rod to shear deformation along with all the other effects dis-
cussed before. Inclusion of shear deformation relaxes the constraint
of the cross-section to lie on the normal plane. Therefore, to model
such a structure, we need a frame that contains a vector perpendicu-
lar to the cross-section (need not be along the tangent vector of the
curve) and a pair of orthogonal vectors to span the cross-section (that
need not lie on the normal plane but still is subjected to rigid cross-
section assumption). Chadha and Todd [21,24] used this framing
technique (in this case we used Cosserat frame) to generalize the the-
ory of shape sensing to include shear deformations and Poisson’s
inplane cross-sectional deformation among other effects. In general,
we call this frame as material frame (MF) and not MAF because the
tangent vector is not a part of triad anymore.

Another interesting application of MF can be realized in the
design of a spiral staircase. If the central column is straight (which
is usually the case in practical designs), the tread falls on the nor-
mal plane of the column and the hand rail is perfectly spiral, thus
MAF is apt to describe such a geometry. However, if the central col-
umn is slightly deviated or inclined due to construction require-
ment, the tread may no longer be on the normal plane and
secondly, the handrail will not be a perfect spiral anymore. We
would need MF to address such geometries.

3.2. Finite rotations: rotation matrix and rotation tensor

In practical applications, the material frames are obtained by
finite rotation of the triad Eif g. For instance, the Inertial
Measurement Unit (IMU) of a dynamic system are always initially
calibrated with respect to some fixed triad, say Eif g. Before we

construct various material frames, we briefly describe finite rota-
tion of a vector and an orthonormal triad.

3.2.1. Rotation of a vector: rotation tensor
The rotation tensor belong to a proper orthogonal rotation group

SO 3ð Þ. The SO 3ð Þ manifold is a compact Lie group having skew-
symmetric matrix as its Lie algebra, so 3ð Þ. The Lie algebra to
SO 3ð Þ represents its tangent plane at the identity element of SO 3ð Þ.

Consider a vector V i that is to be rotated to V f by a proper
orthogonal tensor Q 2 SO 3ð Þ such that, V f ¼ QV i. The component
of the tensor Q represented by the matrix Q½ �Ei�Ej

¼ Qij Ei � Ej
� �

has three independent entries because of the orthogonality con-
straint: Q TQ ¼ I3. Therefore, Q can be parametrized by three
parameters or a vector in R3. There are multiple ways for the
parametrization of the rotation tensor. We focus on three of them:
the Euler Angles, the quaternions and the Rodrigues rotation for-
mula. We omit the description of Euler angles (that deals with
sequential rotations) for they are straight forward and common.
However, we briefly describe the quaternion approach and Rodri-
gues rotation formula.

3.2.1.1. Rodrigues rotation formula. We first describe Rodrigues
rotation approach for finite rotations. The vector V f can be
obtained by rotation of the vector V i about the unit vector
nh ¼ nhiEi by an angle h. This enables us to parametrize the rotation
tensor Q by means of a vector h ¼ hnh, such that V f ¼ Q hð ÞV i. By
Rodrigues formula,

V f ¼ V i þ nh � nh � V i½ � þ nh � V i½ � sin h

� nh � nh � V i½ � cos h: ð8Þ
If H 2 so 3ð Þ represents the spin matrix with the corresponding axial
vector h ¼ h nhiEið Þ ¼ hiEi, we have,

H hð Þ ¼ h

0 �nh3 nh2

nh3 0 �nh1

�nh2 nh1 0

2
64

3
75: ð9Þ

We state a useful property associated with Eq. (9) as

h2 ¼ h; hh i ¼ 1
2
H : H ¼ 1

2
Tr H2� �

: ð10Þ

Noting that nh � V i ¼ 1
h

� �
H hð ÞV i and using the MacLaurin expansion

of sin h and cos h (refer Eq. (29) in Argyris [25]), we get

Q hð Þ ¼ I3 þ sin h
h

Hþ 1� cos hð Þ
h2

H2 ¼
Xn
i¼0

Hi

i!
¼ eH; ð11aÞ

Q T hð Þ ¼ I3 � sin h
h

Hþ 1� cos hð Þ
h2

H2 ¼ e�H: ð11bÞ

Here, H0 ¼ I3. Subtracting Eq. (11b) from (11a), we obtain the asso-
ciated skew-symmetric matrix H as

H ¼ h
2 sin h

Q � Q T
� �

: ð12Þ

Taking trace of Q in Eq. (11a) and using the result in Eq. (10), we get
another important relation:

cos h ¼ Tr Qð Þ � 1
2

: ð13Þ

It is a known fact that the exponential map is a homeomorphism in
the neighborhood of Identity element I3 2 SO 3ð Þ such that h 2 0;p½ Þ.
That implies the existence of an inverse of exponential map (the
logarithm) in the neighborhood of I3 such that

log Q hð Þð Þ ¼ log eH
� � ¼ H 2 so 3ð Þ: ð14Þ

Using the above result along with Eqs. (12) and (13), we get
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log Q hð Þð Þ ¼ h
2 sin h

Q � Q T
� �

: ð15Þ

We define the norm of logarithm map as the Euclidean norm of the
associated rotation vector, such that

k log Q hð Þð Þk ¼ h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
Tr H2� �r

: ð16Þ

Section 3.2.2 discusses local homeomorphism of exponential maps.

3.2.1.2. Unit quaternions. Another approach to capture finite rota-
tions is by using unit quaternions. In general, a quaternion is a 4-
tuple q ¼ q0 þ q1iþ q2jþ q3k, where qi 2 R, such that,

i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1;
ij ¼ k; ji ¼ �k;
jk ¼ i; kj ¼ �i;

ki ¼ j; ik ¼ �j:

ð17Þ

The first of the equations mentioned above has a special signifi-
cance in the history of mathematics (refer to [26]). The relationship
between a complex number and plane geometry inspired William
Rowan Hamilton to find a higher dimensional number that can be
associated with 3D geometry. Hamilton realized need of 4-tuple
(not a triplet) to establish a 4D algebra that can be related to 3D
geometry, that he called quaternions.

The multiplication between two quaternion (called Hamilton
product) can be carried in a way similar to the complex numbers
using the properties in Eq. (17). Unlike complex numbers, the mul-
tiplication of quaternion is non-commutative. The conjugate, norm
and inverse of a quaternion are defined as

conjugate : q� ¼ q0 � q1i� q2j� q3k;

norm : kqk ¼ ffiffiffiffiffiffiffiffi
qq�p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
0 þ q2

1 þ q2
2 þ q2

3

q
;

inverse : q�1 ¼ q�

kqk2 :

ð18Þ

To establish the relationship between a quaternion and 3D
geometry, Hamilton suggested considering quaternion to be con-
sisting of a scalar and a vector (the terms that he proposed), such
that q ¼ q0;qð Þ. For two quaternion q ¼ q0;qð Þ and a ¼ a0;að Þ, the
quaternion sum, Hamilton product, conjugate and norm is then
given by:

qþ a ¼ q0 þ a0;qþ að Þ;
qa ¼ q0a0 � q;ah i; q0aþ a0qþ q� að Þ;
q� ¼ q0;�qð Þ;
kqk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
0 þ q;qh i

q
:

ð19Þ

We can consider a vector V i as a pure quaternion
V initial ¼ 0;V ið Þ. A unit quaternion qu ¼ q0;qð Þ with kquk ¼ 1 can
be used to rotate vector V i to V f (with the associated pure quater-
nion V final ¼ 0;V fð Þ), such that

V final ¼ quV initialq�
u ¼ 0;Q quð ÞV ið Þ;

V f ¼ Q quð ÞV i:
ð20Þ

The rotation tensor Q can be parametrized by a unit quaternion
qu. If V i ¼ V ijEj and q ¼ qiEi, then using Eq. (20), we get

Q quð Þ½ �Ei�Ej
¼ 2

q2
0 þ q2

1 � 0:5 q1q2 � q0q3 q0q2 þ q1q3

q0q3 þ q1q2 q2
0 þ q2

2 � 0:5 q2q3 � q0q1

q1q3 � q0q2 q0q1 þ q2q3 q2
0 þ q2

3 � 0:5

2
64

3
75:
ð21Þ

We can parametrize the unit quaternion using the rotation vector h.
Notice from Eq. (21) that the Tr Q quð Þð Þ ¼ 4q2

0 � 1. A trace being an
invariant of a tensor implies (from Eq. (13)) that

4q2
0 � 1 ¼ 2 cos hþ 1;

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
cos hþ1

2

q
:

ð22Þ

Thus, there exist two possible and equivalent qu leading towards
same rotation. The qu with q0 > 0 implies 0 < h 6 p about the axis
nh and the one with q0 < 0 represents rotation about the axis �nh

with the magnitude 2p� h, representing same rotation. We call this
property as the equivalence of the unit quaternion and its negative or
double cover.

Lets consider q0 ¼ cos h
2

� �
. The unity quaternion constraint

implies

qu hð Þ ¼ cos
h
2

� �
; sin

h
2

� �
nh

� �
: ð23Þ

This representation, sometimes called as rotation vector represen-
tation, satisfies the unit quaternion constraint and is same as the
Rodrigues rotation.

The equivalence of the unit quaternion and its negative in repre-
senting rotation was exploited by Klumpp [27] to extract the
quaternion from the component of rotation tensor without any sin-
gularity. Spurrier [28] recognized the Klumpp’s algorithm to be
sensitive to numerical imprecision and proposed a modified algo-
rithm, now popularly known as Spurrier’s algorithm.

The primary disadvantage of representing the rotation using
Euler angle formulation is its dependence on the sequence of
angles considered and singularities arising due to gimbal lock. Unit
quaternion approach completely gets rid of this singularity but is
subjected to the unit quaternion constraint. There is plenty of
excellent literature to which one may refer for further understand-
ing of rotations (for example, [25,29–31]). The work by Diebel [31]
serves as an excellent resource that describes all these approaches
and establishes relationships to obtain one form from the other.

3.2.2. On many-to-one nature and local homeomorphism of
exponential map

As discussed in Section 3.2.1, the exponential map is a mapping
from Lie algebra so 3ð Þ to Lie group SO 3ð Þ. However, the exponential
map is not bijective. For a given H 2 so 3ð Þ, there is a unique
Q hð Þ ¼ eH 2 SO 3ð Þ (thus surjective), however, for a given
Q hð Þ ¼ eH 2 SO 3ð Þ, there are many possible H 2 so 3ð Þ (hence not
injective). For example for h1 ¼ hnh and h2 ¼ hþ 2npð Þnh with n
being an integer, Q h1ð Þ ¼ Q h2ð Þ. However, if we restrict h 2 0;p½ Þ,
we obtain a local homeomorphism in the exponential map as
explained below.

Let us start our discussion by restricting h 2 �p;p½ Þ. For this
case every rotation tensor identifies a unit vector as �nh (unique
up to a multiple of �1) except at h ¼ �p, in which case nh is
unique. Thus, the rotation angle and unit vector combination
h;nhð Þ and �h;�nhð Þ defines same rotation vector. This fact looks
trivial because h ¼ hnh, however, it forbids us to uniquely define
a unit rotation vector nh.

To uniquely define the unit rotation vector nh, we restrict h to
positive value h 2 0;p½ Þ. At h ¼ 0, the unit vector nh can be any arbi-
trary vector but h ¼ 0 and the corresponding rotation tensor is
Q ¼ I3. At h ¼ p, there are two possible unit vectors �nh (thus,
the map is not homeomorphic for h ¼ p). Thus, the exponential
map is local homeomorphism in the neighborhood of I3 such that
h 2 0;p½ Þ.

From Eq. (13), Tr Qð Þ ¼ �1 at h ¼ p. Therefore, the logarithm
map is a well-defined continuous map if Tr Qð Þ – � 1 and
h 2 0;p½ Þ. Eq. (15) can be used to obtain logarithm of rotation ten-
sor (the associates spin matrix), however, as h approaches 0 and p
radians, Eq. (15) becomes unstable as sin h vanishes. Spurrier’s
algorithm [28] can be used to extract the quaternions and the asso-
ciated rotation vector. Spurrier’s algorithm gives h 2 0;p½ � and
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restricts quaternion component q0 P 0. However, at q0 ¼ 0 or
equivalently h ¼ p, there are two possible unit vectors. The quater-
nions are related to the rotation vector h ¼ hnh by the following
relationships:

h ¼ 2arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
1 þ q2

2 þ q2
3

q� �
¼ 2 arccos q0ð Þ;

nhi ¼ qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
1
þq2

2
þq2

3

p :
ð24Þ

3.2.3. Rotation of a triad: rotation matrix
The entity Q discussed in previous section, transforms one vec-

tor to another. Therefore, it is a tensor. However, consider a prop-
erly orthonormal triad dif g such that di ¼ QEi. We can then obtain
direction cosine matrix such that, .
The component of matrix . Here, Qji represents
Ej � Ei component of the rotation tensor Q . It can be observed that

. Notice that is a matrix whereas Q is a tensor.

3.3. Construction of MAF and MF

In this section, we construct these frames by carrying finite
rotations of the fixed orthogonal triad Eif g using Euler angle
approach. We use the following notations: cos h ¼ ch and
sin h ¼ sh, for any angle h.

3.3.1. Special material adapted frame: SMAF

Consider a regular and at least C2 continuous curve u n1ð Þ. Let
Q s 2 SO 3ð Þ be the rotation tensor that generates SMAF consisting
of orthonormal triad T;Y s;Psf g, such that Ps;E2h i ¼ 0. This can
be obtained by first rotating the frame Eif g about E2 by an angle
/y (yaw angle) and then rotating about the updated E3 by an angle
/p (pitch angle). Thus, if, Q s ¼ T � E1 þ Y s � E2 þ Ps � E3, then,

T
Y s

Ps

2
64

3
75 ¼

c/p
c/y

s/p
�c/p

s/y

�s/p
c/y

c/p
s/p

s/y

s/y
0 c/y

2
64

3
75

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Q s½ �TEi�Ej

E1

E2

E3

2
64

3
75: ð25Þ

Here, Y s and Ps represent the yaw and pitch axis respectively.
The fact that Ps n1ð Þ;E2h i ¼ 0 or Ps n1ð Þ lies in E1 � E3ð Þ plane is

advantageous in practical standpoint. This is because Ps n1ð Þ acts
as a reference vector in the normal plane with respect to which,
the torsion angle or the roll angle and the shear angles can be
defined to obtain GMAF and MF. Note that we can define another
special case in which only one angle is non-zero (either pitch or
yaw angle). But that would define a curve in 2D plane, hence not
desirable for spatial curves.

3.3.2. General material adapted frame: GMAF
Rotating SMAF about the tangent vector by an angle /r (roll

angle) gives us GMAF consisting of orthonormal triad T;Yg;Pg

 �

,
obtained by finite rotation of Eif g by the rotation tensor Q g, such
that Q g ¼ T � E1 þ Yg � E2 þ Pg � E3. Thus,

T
Yg

Pg

2
64

3
75 ¼

c/p
c/y

s/p
�c/p

s/y

�c/r
c/y

s/p
þ s/r

s/y
c/p

c/r
c/y

s/r
þ c/r

s/p
s/y

c/y
s/p

s/r
þ c/r

s/y
�c/p

s/r
c/r

c/y
� s/p

s/r
s/y

2
64

3
75

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qg½ �TEi�Ej

E1

E2

E3

2
64

3
75:
ð26Þ

This sequence of rotations falls under Tiat-Bryan intrinsic rota-
tion with the sequence yaw first, pitch second and roll third.

3.3.3. Material frames: MF
As discussed in Section 3.1, we might encounter a situation in

which the plane of interest need not be normal to the curve. Con-
sider a general orthogonal triad dif g such that the vector d1 is not
along the tangent vector of the curve T and the vectors d2 � d3f g
spans a plane normal to d1. For instance, a cross-section of a beam
subjected to shear is not normal to the tangent vector or a rigid
swarm of drones need not be perpendicular to the direction of
motion. In such instances, MF are desirable.

Consider a general orthonormal frame dif g with its origin at
some point on the curve. It can be obtained from finite rotation
of the frame Eif g such that di ¼ QmEi or from any other triad, say
SMAF using the rotation tensor Qms such that,

Qm ¼
X3
i¼1

di � Ei;

Qms ¼ d1 � T þ d2 � Y s þ d3 � Ps;

Qm ¼ QmsQ s:

ð27Þ

4. Curvature of an evolving frame

4.1. Curvatures of a general material frame

Let us consider the material frame dif g. The frame is a function
of the quantity parameterizing the curve under consideration. The
choice of parameter is problem-dependent. For instance, the frame
attached to a UAV is evolving with time. Similarly, a frame repre-
senting the orientation of a cross-section of a beam varies along
the arclength of the deformed beam or the frame attached at a fixed
cross-section of a cable changes with time when the cable under-
goes dynamic deformation. The change of directors with respect
to the parameter gives local information about deviation of the
configuration of system at a point. For instance, the curvature j
of Frenet frame gives the deviation of the curve from its tangent
vector at the given arclength.

The derivative of the director triad dif g with respect to the
arclength parameter n1 is obtained using the Eq. (27) as

di;n1 ¼ Qm;n1
Ei ¼ Qm;n1

Q T
mdi ¼ Kdi ¼ j� di: ð28Þ

Since Qm 2 SO 3ð Þ, it can be proved that K ¼ Qm;n1
Q T

m is anti-
symmetric with corresponding axial vector j. Here,
j ¼ jiEi ¼ jidi, represents the Darboux vector of the frame when
parameterized by the arclength n1. Note that the overline on the
components ji represents the component of the Darboux vector
in the MF. In matrix form,

d1;n1

d2;n1

d3;n1

2
64

3
75 ¼

0 j3 �j2

�j3 0 j1

j2 �j1 0

2
64

3
75

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{KT

d1

d2

d3

2
64

3
75: ð29Þ

4.1.1. Curvature terms of Frenet frame
The fact that the tangent vector T n1ð Þ depends on the pitch /p

and yaw angle /y, enables us to represent the Frenet frame in
terms of these functions. With the rotation about E2 first followed
by the rotation about the updated E3, and using the results dis-
cussed in Section 2.1, the following results can be obtained

u n1ð Þ ¼ u 0ð Þ þ
Z n1

0
T sð Þds; ð30aÞ

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

p;n1
þ /2

y;n1
c2/p

q
; ð30bÞ
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s¼ 1
j2

� �
/y;n1 2s/p

/2
p;n1

þc/p
c/p

s/p
/2

y;n1
þ/p;n1n1

� �� �
�c/p

/p;n1/y;n1n1

� �
;

ð30cÞ

Q f½ �TEi�Ej
¼ 1

j

� � jc/p
c/y

js/p
�jc/p

s/y

�c/y
s/p

/p;n1 �c/p
s/y

/y;n1 c/p
/p;n1 s/p

s/y
/p;n1 �c/p

c/y
/y;n1

s/y
/p;n1 �c/p

c/y
s/p

/y;n1 c2/p
/y;n1 c/y

/p;n1 þc/p
s/p

s/y
/y;n1

2
64

3
75:

ð30dÞ

4.1.2. Curvature terms of SMAF and GMAF
From Eqs. (25) and (28), we arrive at the Darboux vector for the

SMAF js ¼ js1T þ js2Y s þ js3Ps such that,

js1 ¼ /y;n1s/p
; js2 ¼ /y;n1c/p

; js3 ¼ /p;n1 : ð31aÞ
js;jsh i ¼ /2

p;n1
þ /2

y;n1
; ð31bÞ

j2 ¼ j2
s2 þ j2

s3: ð31cÞ
Similarly, from Eqs. (26) and (29), we arrive at the Darboux vec-

tor for the GMAF, jg ¼ jg1T þ jg2Yg þ jg3Pg such that,

jg1 ¼ /r;n1 þ /y;n1 s/p
¼ /r;n1 þ js1; ð32aÞ

jg2 ¼ /y;n1c/p
c/r

þ s/r
/p;n1 ¼ js2c/r

þ js3s/r
; ð32bÞ

jg3 ¼ c/r
/p;n1 � c/p

s/r
/y;n1 ¼ �js2s/r

þ js3c/r
; ð32cÞ

jg;jg
�  ¼ /2

p;n1
þ /2

y;n1
þ /2

r;n1

� �
þ 2s/p

/r;n1/y;n1 : ð32dÞ

It is interesting to note from above relations that

jg1

jg2

jg3

2
64

3
75 ¼

1 0 0
0 c/r

s/r

0 �s/r
c/r

2
64

3
75 js1

js2

js3

2
64

3
75þ

/r;n1

0
0

2
64

3
75: ð33Þ

The curvatures in terms of quaternions and Rodrigues parameters
are presented in the Appendix A.1.

4.2. RPAF and Frenet frame as GMAF

The RPAF can be considered as GMAF with /r ¼ qb representing
the rotation of the normal vectors N1 and N2 from the vector Y s

and Ps respectively, in a constrained fashion. It is clear from Eqs.
(6) and (29) that the constraint over RPAF is jg3 ¼ 0. With this con-
straint in mind, we can obtain the roll angle field qb n1ð Þ for the
RPAF by using Eq. (32a). We have

qb n1ð Þ ¼ qb 0ð Þ �
Z n1

0
js1 kð Þdk: ð34Þ

Fixing the value of qb 0ð Þ provides uniqueness to the RPAF. From
Eqs. (32b) and (32c), we can arrive at the expression of the normal
development (or curvatures) of RPAF in terms of the Euler angles
associated with the GMAF as

j1 ¼ �jg2j /r¼qbð Þ ¼ �js3sqb
� js2cqb

; ð35aÞ
j2 ¼ jg3j /r¼qbð Þ ¼ js3cqb

þ js2sqb
: ð35bÞ

Substituting for j1 and j2 from the results obtained in Eqs. (35a)
and (35b) into the Eq. (7a) yields the result in Eq. (31c). Using
Eqs. (35a) and (35b) along with the result in (7c), we arrive at an
important relationship between the angle qb and g, thus enabling
us to express Frenet frame as a GMAF (refer Fig. 2).

tanqb ¼ � js2 þ js3 tang
js3 þ js2 tang

� �
: ð36Þ

We can independently arrive at the angle /r ¼ qfð Þ subtended by
the vectors N and B with Y s and Ps respectively by imposing a con-
straint jg2 ¼ 0 on GMAF such that,

tanqf ¼ �js2

js3
¼ tan gþ qbð Þ: ð37Þ

We note that the results obtained in Eqs. (36) and (37) are
consistent.

Fig. 3 shows a curve with the point of inflection marked by a
dot, the red vectors representing the tangent vector field and the
circles representing the normal plane to the curve. In Fig. 3a, the
solid green and blue arrows represent Y s and Ps field, whereas
the dotted green and blue vectors stand for N1 and N2 respectively.
Similarly, the green and blue vectors in Fig. 3b show N and B
respectively. Fig. 3a and b shows that the SMAF and RPAF (obtained
using Eq. (34) and setting qb 0ð Þ ¼ 0) are continuous whereas the
Frenet frame is not uniquely defined at the point of inflection
and the normal vector (binormal vector as well) abruptly changes
its orientations at the inflection point.

4.3. Linear and angular velocity

A regular Cr continuous curve u n1ð Þ parametrized by the
arclength n1 can be re-parametrized by another variable t (say
time) such that n1 ¼ n1 tð Þ is at least C1 continuous and dn1

dt – 0.
We define linear velocity of the curve as,

u;t ¼ @u
@t ¼ @u

@n1

dn1
dt ¼ dn1

dt T ¼ v tð ÞT ;
u;t ¼ v idi ¼ v tð Þ tidi

� �
where T ¼ tidi:

ð38Þ

The scalar v tð Þ ¼ dn1
dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2 þ v2
3

q
gives the magnitude of linear

velocity vector at time t. The angular velocity vector x is related to
the evolution of the frame when the curve is parametrized by time.

Let us consider the derivative of the director triad di tð Þf g with
respect to time t. From Eq. (27), we have,

di;t ¼ Qm;tEi ¼ Qm;tQ
T
mdi ¼ W tð Þdi ¼ x tð Þ � di tð Þ: ð39Þ

The fact that K ¼ Qm;n1
Q T

m implies that W tð Þ ¼ v tð ÞK n1 tð Þð Þ or
x tð Þ ¼ v tð Þj n1 tð Þð Þ. Thus,
d1;t

d2;t

d3;t

2
664

3
775 ¼ v tð Þ

0 j3 n1 tð Þð Þ �j2 n1 tð Þð Þ
�j3 n1 tð Þð Þ 0 j1 n1 tð Þð Þ
j2 n1 tð Þð Þ �j1 n1 tð Þð Þ 0

2
664

3
775

d1

d2

d3

2
664

3
775;

d1;t

d2;t

d3;t

2
664

3
775 ¼

0 x3 tð Þ �x2 tð Þ
�x3 tð Þ 0 x1 tð Þ
x2 tð Þ �x1 tð Þ 0

2
664

3
775

d1

d2

d3

2
664

3
775: ð40Þ

Note that x ¼ xidi ¼ xiEi such that

x1;x2;x3½ �T ¼ Qm½ �Ei�Ej
: x1;x2;x3½ �T .

The results presented so far describes the construction of vari-
ous frames, their curvatures and their relationship to each other.
These results will be used to develop algorithm to estimate a
smooth framed curve from limited set of curvature data.

5. Estimating the global state space of single-manifold
characterized system using limited number of material
curvature and velocity data

5.1. Configuration and state space of single-manifold characterized
systems

5.1.1. Tangent space and tangent bundle of the configuration space
Consider a rigid body, the configuration of which is defined by a

space curve u and the vector triad field dif g that defines the orien-
tation of the rigid body under motion. Thus, the configuration
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space C :¼ R3 � SO 3ð Þ � SE 3ð Þ defines such systems and is para-
metrized by a single-parameter (time in case of rigid body motion).
Here SE 3ð Þ is the special Euclidean group, that defines rigid body
motion. Thus,

U tð Þ :¼ u tð Þ;Q tð Þð Þj u : Rþ ! R3; Q : Rþ ! SO 3ð Þ
 � 	 C: ð41Þ

In the equation above, Rþ represents set of non-negative real num-
ber. If n1 tð Þ 2 Rþ represents the total distance travel at time t 2 Rþ,
the linear velocity is defined as n1;t ¼ v tð Þ.

Consider the curve parametrized by the arclength n1. For any
U n1ð Þ 2 C, we define the tangent space TUC as,

TUC :¼ u;n1
;Q ;n1

� �
j u;n1

:Rþ!R3; Q ;n1
¼KQ :Rþ!TQSO 3ð Þ

n o
: ð42Þ

Here, TQSO 3ð Þ refers to the tangent plane of the non-linear manifold

SO 3ð Þ at Q such that Q ;n1
2 TQSO 3ð Þ. We recall that K ¼ Q ;n1

Q T is an
antisymmetric matrix with the axial vector j n1ð Þ. If the rotation
tensor Q is parametrized by the rotation vector h ¼ hnh as shown
in the Section 3.2, then using Eq. (11a) the following relationship
is obtained

K ¼ sin h
h

� �
H;n1 þ

1� cos h
h2

� �
HH;n1 �H;n1H
� �

þ h� sin h

h3

� �
h; h;n1
� 

H: ð43Þ

In the equation above, HH;n1 �H;n1H
� �

:¼ H;H;n1

� �
is the Lie

bracket of two anti-symmetricmatrices. The action of the Lie bracket
on any vector p 2 R3 is given by: H;H;n1

� �
p ¼ h� h;n1

� �� p. Using Eq.
(43) and the definition of Lie bracket, we obtain the corresponding
axial vector (the curvature vector) as

j ¼ Thh;n1 ;

h;n1 ¼ T�1
h j;

Th ¼ sin h
h I3 þ 1�cos h

h2
Hþ h�sin h

h3

h i
h� h;

T�1
h ¼ 1

2
h

tanh
2
I3 � 1

2Hþ 1
h2

1� 1
2

h
tanh

2

h i
h� h:

ð44Þ

Refer to Ibrahimbegovic [29] for the derivation of T�1
h . In the above

equations,H andH;n1 represents the spin matrix associated with the
vector h and h;n1 respectively.

Therefore, with slight abuse of notation, we define an abused
but equivalent tangent space as,

TUC � ~U ¼ u;n1
;j

� �
j u;n1

: Rþ ! R3; j : Rþ ! R3
n o

	 R3 � R3:

ð45Þ
A one-to-one correspondence between R3 and so 3ð Þ justifies this
abuse of notation. The state space of the problem is defined by
the tangent bundle TC of the configuration space C defined as,

TC :¼ U; ~U
� �j U 2 C; ~U 2 TUC


 �
: ð46Þ

From Eqs. (45) and (46) it is clear that the state space is defined by

the set u; dif g;u;n1
;j

� �
.

5.1.2. Material and spatial representation of curvature (or equivalently
angular velocity and the associated spin tensor)

We define the quantity K ¼ Q TKQ 2 T I3SO 3ð Þ :¼ so 3ð Þ
obtained by parallel transport of KQ from TQSO 3ð Þ ! so 3ð Þ. Here,
I3 ¼ Ei � Ei represents the rotation tensor with respect to which
the motion is calibrated and is usually taken as identity.

Thus, if Q ¼ di � di, such that di ¼ QEi, then Q represents the
finite rotation, whereas K represents an infinitesimal rotation with
respect to the calibrating frame of reference Eif g. Whereas,
QK ¼ KQ represents infinitesimal rotation with respect to dif g
frame. In the physical context of rotation, the tangent vector QK
and KQ performs an infinitesimal rotation with respect to dif g
frame but the quantity QK is obtained by left translation of the
quantity K 2 so 3ð Þ to QK 2 TQSO 3ð Þ, whereas, KQ represents the
superimposition of infinitesimal rotation contributed by K onto
the finite rotation contributed by Q (this is also called as right
translation of K 2 so 3ð Þ to the tangent vector KQ 2 TQSO 3ð Þ). The
former kind of tangent vector fields are known as left-invariant
and the later as right-invariant fields. We also observe that,

K½ �di�dj
¼ K

� �
Ei�Ej

¼
0 �j3 j2

j3 0 �j1

�j2 j1 0

2
64

3
75 ð47Þ

Let j and j represent the axial vector corresponding to the anti-
symmetric matrix K and K respectively. It can then be proved that
j ¼ Q Tj such that if j ¼ jidi, then j ¼ jiEi. As in continuum
mechanics, we call the quantities K and j asmaterial representation;

Fig. 3. Example of a curve with point of inflection (marked by black dot) and the SMAF, RPAF and Frenet frames.
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and K and j are the spatial representation of the curvature tensor and
the curvature vector respectively. Figs. 4 and 5 provide a physical
and geometric interpretation of the discussions carried out in this
section.

Similar to the curvature tensor, we summarize following rela-
tionship associated with the angular velocity vector x and the
associated spin tensor W .

W ¼ ��ijkxk di � dj
� �

;

W ¼ Q TWQ ¼ ��ijkxk Ei � Ej
� �

;

W½ �di�dj
¼ W

� �
Ei�Ej

;

WQ 2 TQSO 3ð Þ and W 2 so 3ð Þ;x ¼ Q Tx:

ð48Þ

5.2. Estimating global framed curve from limited material curvature
and velocity data

Wemotivate the problem statement by a real life example. Con-
sider a moving rigid body with midcurve and director triad para-
metrized with time. From Section 4.3, the system is governed by
the following set of differential equations

u;t

d1;t

d2;t

d3;t

2
6664

3
7775 ¼ v tð Þ

0 t1 t2 t3
0 0 j3 �j2

0 �j3 0 j1

0 j2 �j1 0

2
6664

3
7775

u

d1

d2

d3

2
6664

3
7775;

u;t

d1;t

d2;t

d3;t

2
6664

3
7775 ¼

0 v1 v2 v3

0 0 x3 �x2

0 �x3 0 x1

0 x2 �x1 0

2
6664

3
7775

u

d1

d2

d3

2
6664

3
7775:

ð49Þ

In this section, we attempt to obtain estimated state space from dis-
crete linear velocity (equivalently axial strain in case of beams) and
angular velocity (or equivalently Darboux or curvature vector in
case of beams). This would involve integrating Eq. (49). We assume
the initial condition at t ¼ 0 as u 0ð Þ ¼ 0 and di 0ð Þ ¼ di0 ¼ Ei. There
is no loss of generality in considering the initial condition di0 as our
reference frame. We assume that we have the data for linear and
angular velocity expressed in dif g frame at time steps tn such that
v tnð Þ ¼ vn;x tnð Þ ¼ xn (with Wn being corresponding material spin
matrix) and n ¼ 1;2;3; . . . ;N. The frame dif g is to be approximated

using Eq. (49). However, knowing the component of spatial quantity
in current frame dif g naturally gives the associated material quan-
tity as is clear in Eqs. (47) and (48). This is the key observation that
is exploited to develop the estimation algorithm discussed in the
upcoming section.

The idea is to approximate the material linear and angular
velocity (recall R3 and so 3ð Þ are linear spaces). We use these inter-
polated quantity to estimate our state space. From here on, the
component of any material quantity will be expressed in Eif g
frame. Thus, for simplicity, we write W

� �
Ei�Ej

¼ W .

5.2.1. Smooth patch estimation and gluing technique (SPEG)
In this approach, we discretized the total time span into N

patches n ¼ 1;2; . . . ;Nð Þ or segments with center of the segment
n being at tn (except for the first and last segment). We consider
the co-rotated derivatives of linear velocity and the angular veloc-
ity to vanish for each patch. Equivalently, we truncate the Taylor
series expansion of the velocity fields about tn to zeroth order,
thereby reducing the system of differential Eq. (49) into a
constant-coefficient system such that the solution of the differen-
tial equation gives an approximated configuration

Uh
n ¼ uh

n;Q
h
n

� �
� uh

n; dh
in

n o� �
2 C valid in the patch n. Therefore,

N segments would involve solving for 12N constants of integration.
Imposing continuity in the u; dif gð Þ fields at the boundary between
the segments gives 12 N � 1ð Þ constraints, and an appropriate
boundary condition gives the additional 12 conditions. We obtain
a solution for nth segment as

uh
n tð Þ ¼ An1 þ An2t þ An3 sinxnt þ An4 cosxnt;

dh
in tð Þ ¼ Bni1 þ Bni2t þ Bni3 sinxnt þ Bni4 cosxnt:

ð50Þ

In the above equation xn ¼ kxnk. Eq. (50) yields a helix (which is
smooth). This is commensurate with Mozzi–Chasles’s theorem, the
equivalent statement of which for this case would be: ‘the motion
of a rigid body with the co-rotational derivative of linear and angular
velocity vanishing, is a screw (or helix) motion’.

We glue the solution of each patch using heavy side function (as
shown in (51)) such that the global approximated configuration

Uh ¼ uh; dh
i

n o� �
2 C is continuous at the point of gluing, thus jus-

tifying the name smooth patch estimation and gluing technique
(SPEG).

Fig. 4. Finite and infinitesimal rotations and the flowchart of various transformations.
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uh tð Þ ¼
XN
n¼1

uh
n tð Þ H t � t̂n�1

� �� H t � t̂n
� �� �

;

dh
i tð Þ ¼

XN
n¼1

dh
in tð Þ H t � t̂n�1

� �� H t � t̂n
� �� �

:

ð51Þ

In the equation above H :ð Þ represents Heaviside function and t̂n rep-
resents the right boundary of nth segment (such that t̂n�1 < t̂n), with
t̂0 ¼ 0. Appendix A.2 details the vector coefficients in Eq. (50). Inter-
estingly, a closed form solution of the director triads can be arrived
without solving the differential Eq. (49), by using our understanding
of SO 3ð Þ manifold as discussed in Section 5.1.2.

To carry out the discussion further, let Qh tð Þ 2 SO 3ð Þ represent
the approximated rotation tensor with respect to
I3 ¼ Ei � Ei ¼ d0i � d0i. For the first segment n ¼ 1, the approxi-

mated director dh
i n¼1ð Þ ¼ dh

i1 is obtained by rotating the prescribed

boundary di0 ¼ Ei by an angle
R t
0 x1dt ¼ x1t (with t̂0 6 t 6 t̂1)

about the unit vector x1
x1

such that,

dh
i1 tð Þ ¼ eW1tdi0 ¼ Q h

1 tð Þdi0 with t̂0 6 t < t̂1: ð52Þ
The director triad at the right end of patch 1 becomes the boundary
for the patch n ¼ 2. For patch 2 with t̂1 6 t 6 t̂2 the approximate

director triad dh
i2 tð Þ can be obtained by rotating dh

i1 t̂1
� �

(obtained

in Eq. (52)). However,W2 2 T I3SO 3ð Þ is a material tensor whose cor-
responding spatial counterpart associated with TQh

1 t̂1ð ÞSO 3ð Þ is given
by Wh

2 ¼ Q h
1 t̂1
� �

W2Q
hT

1 t̂1
� �

such that Wh
2Q

h
1 t̂1
� � 2 TQh

1 t̂1ð ÞSO 3ð Þ. We

observe that Wh
2Q

h
1 t̂1
� �

is a right translated vector field. Similarly
we can obtain left translated vector field as

Q h
1 t̂1
� �

W2 2 TQh
1 t̂1ð ÞSO 3ð Þ. Eqs. (53a) and (53b) gives the approxi-

mated director field for patch 2 by using right invariant and left
invariant vector fields, respectively.

dh
i2 tð Þ¼eW

h
2 : t�t̂1ð Þdh

i1 t̂1
� �¼eW

h
2 : t�t̂1ð ÞQ h

1 t̂1
� �

di0¼Q h
2 tð Þdi0

with t̂16 t6 t̂2; ð53aÞ

dh
i2 tð Þ¼Q h

1 t̂1
� �

eW2 : t�t̂1ð Þdi0 with t̂16 t6 t̂2: ð53bÞ

Similarly for the third patch with Wh
3 ¼ Q h

2 t̂2
� �

W3Q
hT

2 t̂2
� �

, we have,

dh
i3 tð Þ ¼ eW

h
3 : t�t̂2ð ÞQ h

2 t̂2
� �

di0 ¼ Q h
3 tð Þdi0 with t̂2 6 t 6 t̂3; ð54aÞ

dh
i3 tð Þ ¼ Q h

2 t̂2
� �

eW3 : t�t̂2ð Þdi0 with t̂2 6 t 6 t̂3: ð54bÞ
Along similar lines of reasoning, the solution for nth patch is given
by

dh
in tð Þ ¼ Q h

n tð Þdi0: ð55Þ

where

Using right invariant vector field :

Qh
n tð Þ ¼ eW

h
n : t�t̂n�1ð ÞQ h

n�1 t̂n�1

� �
with t̂n�1 6 t 6 t̂n; ð56aÞ

Using left invariant vector field :

Qh
n tð Þ ¼ Q h

n�1 t̂n�1

� �
eWn : t�t̂n�1ð Þ with t̂n�1 6 t 6 t̂n: ð56bÞ

Fig. 5. Geometric representation of the finite and infinitesimal rotations, curvature tensor K and the projection from the tangent plane TQ SO 3ð Þ to the manifold SO 3ð Þ using
exponential map.
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The spatial curvature tensor Wh
n in Eq. (56a) is given below. Note

that Wh
n is not a function of time for a given patch n and unlike

the material tensor Wn, the spatial curvature tensor is an approxi-
mated quantity.

Wh
n ¼ Q h

n�1 t̂n�1

� �
WnQ

hT

n�1 t̂n�1

� �
: ð57Þ

The global approximated rotation tensor is then given by,

Q h tð Þ ¼
XN
n¼1

Q h
n tð Þ H t � t̂n�1

� �� H t � t̂n
� �� �

: ð58Þ

From Eqs. (49) and (56b), the approximated position vector for
patch n is obtained as,

uh
n tð Þ ¼

Z t

t̂n�1

eWntdt

" #
:vn þ

Xn�1

k¼1

Z t̂k

t̂k�1

eWktdt

" #
:vk: ð59Þ

Fig. 6 gives geometric interpretation of the discussion so far.

Remarks: This approach has following noteworthy geometric
interpretations:

Remark 5.2.1.1. Consider the nth patch where the approximated
configuration Uh

n is parametrized by t 2 tn�1; tn½ �. The co-rotated
derivative of angular velocity being zero implies that the angular

velocity is parallel-transported along a curve Qh
n tð Þ on the manifold

SO 3ð Þ such that the approximated angular velocity xh
n at time t is

given as,

xh
n tð Þ ¼ Q h

n tð Þxn ¼ Q h
n tð ÞQ hT

n t̂n
� �

xh
n: ð60Þ

The vector xh
n is the associated axial vector for the spatial tensor

Wh
n. From the equation above and Eq. (57), we observe that the spa-

tial angular velocity xh
n ¼ Q h

n tnð Þxn and the associated spin tensor

Wh
n are approximate quantities. It is interesting to observe that

kxh
nk ¼ kxnk ¼ xn.

Remark 5.2.1.2. The solution obtained above is free of singularity
(unlike Frenet frame). If the angular velocity measurement for the
nth patch is zero (implying point of inflection), we have the solution
of the form,

lim
xn!0

uh
n tð Þ ¼ Cni4 þ t Cnijvnj

� �� �
Ei; ð61aÞ

lim
xn!0

dh
in tð Þ ¼ CnjiEj ¼ dh

i n�1ð Þ t̂n�1

� �
: ð61bÞ

Solution of the form above suggests a local linear solution for the
approximated position vector and a constant solution for the
approximated director triads. However, if vn ¼ 0 and xn ¼ 0, the
approximated local solution is a point (the object is stationary) with
a fixed director triad given by Eq. (61b) and the position vector
reduces to,

lim
vn ! 0
xn ! 0

uh
n tð Þ ¼ Cni4Ei ¼ uh

n�1 t̂n�1

� �
: ð62Þ

Similarly, the limiting case of solution with vn ¼ 0 represents a
rotating rigid body with no translation. In case where vn – 0 and
xn – 0, the solution represented by Eq. (50) is a helix. Thus, if the
moving object follows a helix exactly with constant speed, we need
only one data point along with the prescribed boundary condition
to give exact state space (provided there is no noise in the data).
Lastly, the accuracy of global solution depends on the nature of
data. If the data is representative of the local configuration of a
patch, a good approximation is obtained.

5.2.2. Other higher order approximation techniques
In the SPEG technique discussed above, the approximated lin-

ear and angular velocity fields were C�1 continuous. The advan-
tage of the SPEG technique lies in the existence of a closed-form
solution, making it a desirable approach provided the linear and
angular velocity data (or equivalently, strain and curvature data
in case of shape sensing of rods) does not vary too much along
the patch. Todd et al. [20] and Chadha and Todd [21,24] used
SPEG to develop shape reconstruction of rods and observed that

Fig. 6. Geometric representation of SPEG.
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a fairly accurate solution is obtained in such case. However, if
the system is more dynamic (like a UAV), a higher order approx-
imation of linear and angular velocity field is desirable. We can
approximate these fields using Lagrangian Polynomial, cubic
splines, Hermite polynomial interpolation, and moving least
square (MLS), to name a few.

Note that the data for linear and angular velocity are obtained
in dif g frame, which is time dependent. However, to numerically
integrate Eq. (49), we utilize the approximated fields of the compo-
nents vh

i and xh
i (we do not approximate the spatial linear velocity

and the angular velocity vectors). Equivalently, we are interpolat-
ing the material linear velocity v tð Þ ¼ v iEi and the material angular
velocityx tð Þ ¼ xiEi. Let vh tð Þ andxh tð Þ (with Wh tð Þ being the cor-
responding spin tensor) represent the approximated material lin-
ear and angular velocity. The estimated configuration is obtained
as

Q h tð Þ ¼ e
R t

0
Wh tð Þdt

;

uh tð Þ ¼ R t
0 Q

h tð Þ:vh tð Þdt;
ð63Þ

with,Z t

0
Wh tð Þdt 2 so 3ð Þ: ð64Þ

5.2.3. Error quantification
We quantify the error eu tð Þ in the position vector by the usual

Euclidean norm of difference in the exact and estimated position
vector,

eu tð Þ ¼ ku tð Þ �uh tð Þk; ð65aÞ

RMSu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

k¼1e2u tkð Þ
M

s
: ð65bÞ

Similarly, we define error in each director as,

edi tð Þ ¼ kdi tð Þ � dh
i tð Þk; ð66aÞ

RMSdi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

k¼1e
2
di

tkð Þ
M

s
: ð66bÞ

Local homeomorphism (refer to Section 3.2.2) of exponential
map allows us to define Reimannian metric on SO 3ð Þ that evalu-
ates the deviation between the approximated rotation tensor

Qh tð Þ and the exact rotation tensor Q tð Þ by measuring the length
of geodesic between them. The error is associated with the

amount of rotation Q error tð Þ required to align Q h tð Þ with Q tð Þ
such that,

Q tð Þ ¼ Q error tð ÞQ h tð Þ: ð67Þ
Let Q error tð Þ be parametrized by he ¼ henhe such that he 2 0;p½ Þ. We
define the error eQ as,

eQ tð Þ ¼ Q ;Q h
D E

¼ he tð Þ ¼ k log Q error tð Þð Þk 2 0;p½ Þ; ð68aÞ

RMSQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

k¼1eQ tkð Þ2
M

s
: ð68bÞ

In the equation above, :; :h i : SO 3ð Þ � SO 3ð Þ ! 0;p½ Þ defines a bi-
invariant (refer to Eqs. (70e) and (70f) below) Reimannian metric
such that for any Q1;Q2 2 SO 3ð Þ,

Q1;Q 2h i ¼ k log Q 1Q
T
2

� �
k: ð69Þ

For any Q1;Q2;Q3 2 SO 3ð Þ the metric defined above has following
properties:

Non-negativity : Q 1;Q 2h i 2 0;p½ Þ ð70aÞ
Identity of indiscernibles : Q 1;Q 2h i ¼ 0 () Q 1 ¼ Q 2 ð70bÞ
Symmetry : Q 1;Q 2h i ¼ Q 2;Q 1h i ð70cÞ
Triangle inequality : Q 1;Q 2h i 6 Q 1;Q 3h i þ Q 3;Q 2h i ð70dÞ
Right invariant : Q 1Q 3;Q 2Q 3h i ¼ Q 1;Q 2h i ð70eÞ
Left invariant : Q 3Q 1;Q 3Q 2h i ¼ Q 1;Q 2h i ð70fÞ
Refer to Park [32] for more details on this metric. The paper by
Huynh [33] serves as a great reference to understand various kinds
of metric on SO 3ð Þ. Huynh [33] also provides proof for the proper-
ties stated above.

5.3. Similarities in the path estimation of rigid body (or swarm of rigid
bodies) and shape reconstruction of slender structure (like rods)

A rigid body motion and a beam with rigid Euler-Bernoulli’s
cross-section is defined by an identical configuration space
C :¼ R3 � SO 3ð Þ. The Cosserat beam is defined by a midcurve
curveu and the director triad field dif g that defines the orientation
of the cross-section. However, the configuration of the beam
U1 2 C is parametrized by the undeformed arc length of the mid-
curve, lets call it s 2 Rþ, and the configuration of the moving rigid
body U2 2 C is parametrized by time t 2 Rþ, such that

U1 sð Þ :¼ u sð Þ;Q sð Þð Þj u : Rþ ! R3; Q : Rþ ! SO 3ð Þ
 � 2 C;

U2 tð Þ :¼ u tð Þ;Q tð Þð Þj u : Rþ ! R3; Q : Rþ ! SO 3ð Þ
 � 2 C:

ð71Þ
If n1 represents the arclength in the deformed state of the beam or
the distance traveled by the moving object, then an analogy can be
observed between the axial strain of the midcurve e sð Þ for the beam
and the velocity v tð Þ of the moving object, such that, n1;s ¼ 1þ e sð Þ
for beams, and n1;t ¼ v tð Þ in case of a moving rigid body.

Like the configuration space, the tangent space of the two sys-
tems is identical. The equivalent of angular velocity (spin) tensor
W tð Þ ¼ Q ;tQ

T is the spin tensor corresponding to the Darboux vec-

tor (also called the curvature tensor) K sð Þ ¼ Q ;sQ
T . Therefore, the

problem of shape reconstruction of beam from finite number of
surface strain gauge readings bears a striking similarity with the
path estimation of rigid body motion using discrete linear and
angular velocity data. In case of path estimation, the data is
obtained in the form of Euler angles (or quaternions) and their
derivatives (from the IMU and other sensors), whereas in case of
shape sensing, the strain gauge data can be used to obtain the sec-
tional curvatures and midcurve strains. Furthermore, the problem
of dead reckoning is common in case of path estimation and shape
sensing (refer to [21]). Chadha and Todd [21] presents the method
to obtain cross-sectional curvatures and finite strains using strain
gauges attached to the surface and a more recent work of Chadha
and Todd [34], explores the relationship between scalar strain
gauge readings with the finite strain parameters.

A geometrically-exact Kirchhoff beam and a rigid body can be
defined by an adapted frame. If the torsion angle is zero along
the beam or if the roll angle field vanishes (which is seldom in case
of rigid body motion), SMAF is sufficient to define the orientation.
Presence of torsion field in the beam and roll angle in the rigid
body demands GMAF to define the orientation.

A more interesting case arises when we consider swarm of
rigid-bodies (say drones). If the swarm is a rigid-formation, the rel-
ative positions of follower drone is fixed (with vanishing co-
rotational derivative) and pre-defined with respect to the leader
drone. If the rigid-formation is planar, the orientation of the plane
and the position vector of the leader drone defines the configura-
tion of the system. This is analogous to Simo-Reissner beam (refer
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to: Simo [18] and Reissner [19]) that has rigid cross-section and is
allowed to have shear deformation (unlike Euler-Bernoulli beam,
where the cross-section is perpendicular to the midcurve and shear
deformations are ignored). In a leader-follower model of drone for-
mations, the follower drones need not have a fixed relative position
with respect to the leader drone. However, if the relative positions
of follower drones are pre-defined (that is useful for drone light-
shows that have gained recent popularity), the system maintains
its single-manifold character. This system is similar to Simo-
Reissner beam with in-plane and out-of-plane cross-sectional
deformation with warping and Poisson’s transformation being
pre-defined. Material frame (MF) can be used to define orientation
in these type of problems. The paper by Chadha and Todd [34] is
dedicated to developing a generalized single-manifold beam kine-
matics that includes fully coupled Poisson’s and warping effect (such
that the cross-sectional deformation is pre-defined to maintain
single-manifold nature of problem).

The compact approach in defining the shape of swarm at any
given time is accomplished using partial differential equation.
For a system like swarm of drones, trajectory tracking is essential
to define controls for the system so that the shape of swarm con-
verges to the solution of prescribed differential equation at a given
time. Defining the shape as a solution to governing differential
equation is compact, communication and memory efficient, and
it helps in developing a local corrective algorithm (distributed con-

trol) where one drone corrects its position based on the position of
neighboring drones. This process is very much similar to obtaining
warping function from the Neumann boundary value problem cor-
responding to warping in beam. The local corrective algorithm in
case of swarm of drones is comparable to the compatibility condi-
tions in solid mechanics.

5.4. Illustration and simulation

We simulate the path of a moving rigid body like UAV. We con-
sider the pitch, yaw and roll angle fields parametrized by t 2 0; t

� �
calibrated with respect to Eif g frame,

/p tð Þ ¼ 0:5 sin 0:7t
� �þ p

2 cos pt
t

� �
þ sin pt

t

� �
: 1� sin 3:5pt

t

� �� �h i
;

/y tð Þ ¼ 4þ 1
25 t � t
� �þ sin tð Þ þ p sin 4pt

t

� �
;

/r tð Þ ¼ 0:1 p sin 4pt
t

� �
þ sin tð Þ

� �
;

v1 tð Þ ¼ 1þ 0:15 sin 0:3tð Þ þ 0:2 cos 4pt
2t

� �
;

v2 tð Þ ¼ v3 ¼ 0:
ð72Þ

The rigid-body motion defined by (72) is similar to Kirchhoff
beam kinematics. A GMAF is sufficient to frame this path because
v2 tð Þ ¼ v3 tð Þ ¼ 0. Thus, we obtain the angular velocity components
xi from the assumed Euler angles in Eq. (72) using the results
obtained in Section 4.1.2 (except that the independent parameter
here is time t). We can equivalently consider unit quaternion field
and obtained the angular velocity using Eqs. 86a, 86b and 86c. The
exact rotation tensor is obtained by using Eq. (26). Note that for
this example d1;d2;d3f g � T ;Yg ;Pg


 �
. At t ¼ 0, the initial condi-

tions are di 0ð Þ ¼ di0 ¼ Ei. The exact position vector is then obtained
as,

u tð Þ ¼
Z t

0
v1 kð Þd1 kð Þdk: ð73Þ

Table 1
Various approach to interpolate the material linear and angular velocity data.

Cases Interpolation method

Case 1 C�1 approximation (constant over the patch n of SPEG)
Case 2 Cubic Hermite
Case 3 C0 approximation
Case 4 Moving least square approximation (MLS)
Case 5 Cubic B-Spline
Case 6 Quadratic B-Spline

Fig. 7. Estimated trajectory and orientation of the rigid body (or equivalently the cross-section of slender rod).
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We consider t0 ¼ 100 s and number of discrete data points as N
with tn representing the time corresponding to nth data point. We
assume t1 ¼ 0:25 s and tN ¼ t � 0:25

� �
s. The time steps in between

t1 and tn are uniformly spaced. We use 6 different interpolation
techniques listed in Table 1 to approximate the material linear
and angular velocity.

Consider the following points:

1. In case 1, the data vn and xn are assumed constant over the
patch n as described in Section 5.2.1. The estimated configura-
tion space using SPEG is the same as the configuration space
obtained using Eq. (63) with vh

n and xh
n being C�1 approxima-

tion of the data over the patch n. This technique was used by
Chadha and Todd [21] to develop shape sensing algorithm for
beams.

2. Readers can refer to chapter 3 of Bartels et al. [35] for more
information on Cubic Hermite and B-Spline interpolation. Case
3 represents the data being linearly interpolated between two
time steps tn and tnþ1.

3. We briefly describe the MLS approach here. Let

P tð Þ ¼ 1; t; t2; . . . ; tm

 �T

represent set of mth order polynomial
set and W t � tnð Þ represent the moving weight function, then
the approximate linear velocity component vh

i tð Þ is given as,

vh
i tð Þ ¼ PT tnð ÞM�1

XN
n¼1

P tnð ÞvniW t � tnð Þ;

M :¼ Moment matrix ¼
XN
n¼1

P tnð ÞPT tnð ÞW t � tnð Þ:
ð74Þ

We have used cubic B-spline weight function, such that

W t� tnð Þ¼W znð Þ¼
2
3�4z2nþ4z3n; for 06 zn60:5
4
3�4znþ4z2n�4

34z
3
n; for 0:56 zn 61

0 otherwise

8><
>: ;

zn¼jt�tn j
a :

ð75Þ

The term a in the equation above is the support size. For mth

order basis set, the weight function must be spread enough to
cover at least mþ 1ð Þ data points. This fact is used to evaluate
the support size. The accuracy of MLS approach depends on
the choice of support size and the order of polynomial. In a sim-
ilar fashion, the approximate angular velocity fields xh

i tð Þ is
obtained. Interested readers can refer to the landmark paper
on interpolation of surface using MLS approach by Lancaster
and Salkauskas [36]. A paper by Levin [37] discusses how MLS
is the near-best approach towards interpolation. MLS approxi-
mation became popular in the field of applied mechanics after

Fig. 8. RMS error in the approximated material linear and angular velocity fields by various approaches.

Fig. 9. RMS error in the estimated Q and di by various approaches.
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it was used to develop Meshfree finite element analysis (refer
Belytschko et al. [38] and Chen et al. [39]).

We consider N = 20, 50, 75, 100, 300 and 500 to compare vari-
ous approaches. The idea is to estimate the configuration space

uh tð Þ;Qh tð Þ
� �

using Eq. (63) (for all cases except Case 1) and (51)

(for Case 1). The spatial linear and angular velocity is estimated
by left translating approximated material linear and angular veloc-
ity as,

vh tð Þ ¼ Q hvh tð Þ;
xh tð Þ ¼ Q hxh tð Þ:

ð76Þ

Fig. 7 demonstrates the estimated configuration (the trajectory
and the orientation of object at 20 uniformly spaces time steps) for
N = 50, 75, 100 and 300 obtained using interpolation methods
mentioned in Table 1. The estimated shape converges with the
increase of data points as expected. Fig. 8 shows RMS errors in

the approximated material linear and angular velocity vh;xh
� �

and the estimated position vector, director triads and rotation ten-
sor for N = 100 and 300, calculated using M = 500 in Eqs. (65b),
(66b) and (68b). Excellent estimates are obtained for N = 100 with
the error: RMSQ ¼ 0:386;0:216;0:516;0:226;0:141;0:148f g radian
and RMSu ¼ 2:237; 0:570;4:193;0:669;0:309;0:326f g m for case 1
to 6 respectively. The RMS error further reduces with increase of
data points, as observed in Fig. 9. Fig. 9 and 10 show the error fields
eu tð Þ; eQ tð Þ and edi tð Þ obtained using the error definition in Eqs.
(65a), (66a) and (68a). Fig. 11 shows comparison of RMS error in
the configuration space for different interpolation approaches with
increasing number of sensors (see Fig. 12).

Here are the important observations:

1. As is clear from Fig. 13, the algorithm is convergent.
2. The MLS (case 4) and Cubic spline interpolation (case 5 and 6)

are amongst the best approaches to estimate the state space.
This is because Case 4 and 5 (and 6) interpolated the input data
better than other approaches.

Fig. 10. RMS error in the estimated u by various approaches.

Fig. 11. Error eu and eQ for N ¼ 100 and N ¼ 300.
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3. Proper choice of support size and polynomial order in MLS
method can drastically reduce the error. In this case, we have
used polynomial of 2nd order with support size of a = 15.7,
5.08, 3.09, 2.5 and 0.998; for N = 20, 50, 75, 100 and 300
respectively.

4. Linear interpolation of input data (case 3) is the worst per-
former in terms of the configuration space estimate.

5. Despite having highest RMS error in estimating the input data,
SPEG technique (case 1) performs fairly well (better than case 3
that gives highest error) at the estimation of configuration. The
advantage of SPEG is existence of a closed form solution as dis-
cussed in Section 5.2.1 whereas other higher order approaches
(case 2–5) includes numerical integration (Eq. (63)) to obtain
the configuration space. We also observe that the error propa-
gates along the trajectory of object attaining maximum value
at the farthest end from the point of initial condition.

6. Cubic and quadratic B-splines gives nearly same result. With
increase in number of data, B-spline approximation and Cubic
Hermite approximations converges.

7. The error discussed here is purely due to the numerical algo-
rithm used to estimate the configuration space. However, in
real time, the noise in the measurement must be considered.
Another source of error might be in the uncertainty of initial
condition (especially in shape sensing of beams: refer to Chadha
and Todd [21]).

6. Applications in computer graphics

Theory of curves and moving frames has found a dominant
place in generating computer graphics, including but not limited
to ribbons, orientation of camera frames and quantum waveguide
construction, CAD-CAM modeling and animations (refer
[11,13,35]). Extruding a cross-section along a straight center line
has long been used in CAD modeling. In this section, we present
few applications of various types of framed space curves discussed
so far in computer graphics.

6.1. Double helix intertwining a space curve

We elucidate the construction of double helix using GMAF. Con-
sider the pitch /p n1ð Þ and yaw angle /y n1ð Þ field corresponding to
the space curve u n1ð Þ with total length l0, parametrized by the
arclength n1 2 0; l0½ � such that,

u n1ð Þ ¼
Z n1

0
T kð Þdk: ð77Þ

In the above equation, T n1ð Þ represents the tangent vector field of
the curve, the component of which can be obtained from either
Eq. (25) or (26) (note than T n1ð Þ is sufficient to define the mid-
curve). Let r and c represents the radius and total number of wind-
ings (that can be fractional) of double helix respectively. We can

Fig. 12. Error edi for N ¼ 100 and N ¼ 300.

Fig. 13. RMS error in the approximated configuration space considering no noise in the data obtained from the sensors.
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obtain the position vectors of two curves constituting the double
helix as u1 n1ð Þ and u2 n1ð Þ as,
u1 n1ð Þ ¼ u n1ð Þ þ rYg n1ð Þ;
u2 n1ð Þ ¼ u n1ð Þ � rYg n1ð Þ: ð78Þ

In the equation above, Yg n1ð Þ represents the constituent vector of
GMAF as defined in (26), with the roll angle field given by,

/r n1ð Þ ¼ 2pc n1
l0

� �
: ð79Þ

This formulation can be used to generate graphics and defining the
reduced geometry of DNA molecule with the curves u1 n1ð Þ and
u2 n1ð Þ representing the sugar-phosphate backbone and the vector
rYg n1ð Þ and �rYg n1ð Þ showing the nitrogenous base pairs.

Fig. 14 shows two examples of double helix intertwining a
space curve u n1ð Þ. The dotted black curve represents the curve
u n1ð Þ, the green and red strand (with n being number of strands
per cycle) represents the vectors rYg n1ð Þ and �rYg n1ð Þ respectively.
The blue curves shows the curves u1 n1ð Þ (connected to green
strands) and u2 n1ð Þ (connected to red strands). Following are the
parameters required to obtain the structures in Fig. 14a,

l0 ¼ 500; r ¼ 40; c ¼ 6; n ¼ 16;

/p n1ð Þ ¼ p
2 sin pn1

l0

� �
: 1� 0:5 sin 3:5p

l0

� �� �
;

/y n1ð Þ ¼ p sin pn1
l0

� �
:

ð80Þ

Following are the parameters required to obtain Fig. 14b,

Fig. 14. Double helix intertwining a space curve.

Fig. 15. 3D printed model of double helix.
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l0 ¼ 500; r ¼ 35; c ¼ 3; n ¼ 12;

/p n1ð Þ ¼ p
8 sin 2pn1

l0

� �
;

/y n1ð Þ ¼ p
8 sin 2pn1

l0

� �
:

ð81Þ

Animation 1 shows evolution of double helix with changing mid-
curve. It is obtained by using dynamic pitch and yaw angle field
(say, time dependent). The winding and unwinding effect can be
obtained by making /r n1ð Þ dynamic. Fig. 15 shows a 3D printed
model of double helix. The beads in the left figure marks the center
curve u n1ð Þ (absent in 3D printed model).

6.2. Leaf like structure using RPAF

To obtain a leaf like structure that bears a single manifold char-
acter, we first consider a leaf with node at origin (node is the point
of contact of stem and leaf). The midrib of leaf (vein running from
the node to the leaf tip) is given by the curve u n1ð Þ, obtained using
the pitch and yaw angle fields /p n1ð Þ and /y n1ð Þ with n1 2 0; l0½ �.
Here, l0 gives the length of midrib.

We generate the lamina of leaf as a mesh obtained using rela-
tively parallel normal vector field and the inner and outer margins
of the leaf. We divide the leaf surface into two parts: lamina 1
and lamina 2. The relatively parallel normal vector field M1 n1ð Þ and
M2 n1ð Þ with the generators M10 and M20, used to define lamina 1
and 2 respectively, are given as

Mi n1ð Þ¼Mi0þ Yg
� �

/r n1ð Þ¼qbi n1ð Þ; ð82aÞ

qbi n1ð Þ¼qbi 0ð Þ�
Z n1

0
js1 kð Þdk¼qbi 0ð Þ�

Z n1

0
/y;ksin /p kð Þ� �

dk; ð82bÞ
Mi0¼Q g 0ð Þj /r 0ð Þ¼qbi 0ð Þð Þ 
E2;with i¼1;2: ð82cÞ

In Eq. (82b), qbi n1ð Þ is obtained using the results (31a) and (34). It
represents the roll angle field required to obtain a relatively normal
vector field (refer Section 4.2). The predefined angle qbi 0ð Þ are used
to obtain the generator Mi0 using Eq. (82c).

Leaf margin essentially represents the outer boundary of the
lamina. We call that as an outer margin, with C1

outer and C2
outer rep-

resenting outer margin for lamina 1 and 2 respectively. In order
to mesh the lamina, we define inner margins with C1

innerI and

C2
innerI representing Ith inner margin for lamina 1 and 2 respectively.

The position vectors representing these curves are given by,

uCi
outer

¼uþ rW n1ð ÞMi for outermargin of lamina i; ð83aÞ
uCi

innerI
¼uþ rW n1ð ÞWIMi for Ith innermargin of lamina i: ð83bÞ

In the equation above, r represents the width parameter of the lam-
ina, W n1ð Þ represents the weight function for the outer margin and

WI 2 0;1ð Þ is additional weight for the Ith inner margin. Note that if
max W n1ð Þð Þ ¼ 1, then r represents the maximum width of lamina,
similarly, if W n1ð Þ ¼ constant, then all the inner and outer margins
transforms to relatively parallel curves to the midrib. Therefore, the
width of lamina at the arclength n1 is given by rW n1ð Þ. Fig. 16
demonstrates the construction discussed so far.

Any other orientation of the leaf defined by
l0;/p n1ð Þ;/y n1ð Þ;qbi 0ð Þ, can be obtained by rotating the leaf pivoted
at the origin and then translating it as required. The stem of leaf
can be obtained by extruding the cross-sections along a space
curve.

Fig. 17 shows three different leaves constructed using same
l0;/p n1ð Þ;/y n1ð Þ;qbi 0ð Þ but different weights W1 n1ð Þ;W2 n1ð Þ and
W3 n1ð Þ and widths r as,

l0 ¼ 6; qb1 0ð Þ ¼ 0:7; qb2 0ð Þ ¼ 0:7þ 5p
9 ;

r1 ¼ r2 ¼ l0
3:5 ; r3 ¼ 0:4;

/p n1ð Þ ¼ /y n1ð Þ ¼ p
8 sin pn1

l0

� � ð84Þ

W1 n1ð Þ ¼ 0:5 1þ sin 2pn1
l0

� p
2

� �� �
;

W2 n1ð Þ ¼ W1 n1ð Þ þ 2
75 sin2 4pn1

l0
� p

� �
;

W3 n1ð Þ ¼ f n1ð Þ þ

14n1
3 0 6 n1 � 0:75

�4n1
3 þ 4:5 0:75 6 n1 � 1:5

5n1
6 þ 1:25 1:5 6 n1 � 3

�3n1
5 þ 3:6 3:5 6 n1 6 l0

8>>>><
>>>>:

:

ð85Þ

In the equation for the weight W3 of leaf 3, the function f n1ð Þ rep-
resents the triangular wave with the period of 0.16 and amplitude

Fig. 16. Geometry of leaf obtained using RPAF.
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of 0.084. This is used to generate corrugation and irregularity in the
outer margin of the leaf 3 (Fig. 17c).

An entire plant can be generated as shown in Fig. 18. The stems
are obtained by extruding circular cross-section varying smoothly
along the curves. Leaves of different sizes and orientation are
obtained as discussed before.

The dynamic motion in the leaf (say due to wind load) can be
graphically obtained by making /p n1ð Þ;/y n1ð Þ;qbi 0ð Þ dynamic.
Animation 2 shows the dynamic effect added to leaf (fluttering
of leaf).

7. Summary and conclusions

This paper can be broadly summarized into three domains. In
the first part, we detail various approaches to curve framing. After
a brief discussion on Frenet and RPAF frame and their continuity
requirements, we delineate the construction of general material
frame MF. We also discuss three approaches to parameterize finite
rotations: Euler angle approach, unit quaternion and Rodrigues
rotation formula. The relationship between curvature tensor of
various frames are obtained.

Secondly, we propose an algorithm to estimate the state space
of a single manifold characterized system using a limited set of
material curvature and velocity data. The idea is to estimate the
material linear and angular velocity data (or equivalently midcurve
strain and curvature vector of beam) using various interpolation
approaches. This interpolation is consistent as we estimate the
material linear and angular velocity field (vh n1ð Þ;xh n1ð Þ) in a linear
so 3ð Þ plane. We use the approximated fields (vh n1ð Þ;xh n1ð Þ) to first

estimate the configuration space uh n1ð Þ;Qh n1ð Þ
� �

and then the

tangent space vh;xh
� �

. Amongst all the interpolation approaches

suggested, the C�1 interpolation of material data is special, because
it results in a closed form solution to the estimated configuration,
and because it leads to the development of curvature dependent
shape functions that may be glued together to obtain a smooth glo-
bal configuration. We call this approach smooth patch estimation
and gluing technique (SPEG). An interesting method to obtain the
solution of SPEG merely by using the idea of parallel-transport is
presented. The estimation methods discussed are convergent and
free of singularity. An illustration that compares all the approaches
and demonstrates the error analysis is presented. We also note that

Fig. 17. Leaf obtained using same midrib but different weight function.
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the state space of beam and a moving rigid body has similar math-
ematical nature because both of them are single manifold charac-
terized systems. Thus, we observe the similarity in the problem of
path estimation of moving object and the shape sensing of the
beam under deformation.

The applications of framed space curves are numerous. Finally,
we demonstrate the ability of the framed space curve to develop
computer graphics. We do this by presenting the construction of
double helix intertwining a space curve using GMAF. We present
a second example demonstrating construction of leaves and plant
using RPAF.

We anticipate that in the future, we will combine the estima-
tion method developed in this paper with the general kinematics
of the Cosserat beam (refer Chadha and Todd [34]) to extend our
work in the field of shape reconstruction of slender structures.
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Appendix A

A.1. Curvature in terms of unit quaternion parameters and Rodriguez
parameters
A.1.1. Curvature in terms of unit quaternion parameters

j1 ¼ 2 �q1q0;n1 þ q0q1;n1 þ q3q2;n1 � q2q3;n1

� �
; ð86aÞ

j2 ¼ 2 �q2q0;n1 � q3q1;n1 þ q0q2;n1 þ q1q3;n1

� �
; ð86bÞ

j3 ¼ 2 �q3q0;n1 þ q2q1;n1 � q1q2;n1 þ q0q3;n1

� �
: ð86cÞ

A.1.2. Curvature in terms of Rodriguez parameters

j1 ¼ shnh1;n1 þ 1� chð Þ nh3nh2;n1 � nh2nh3;n1

� �þ nh1h;n1 ; ð87aÞ
j2 ¼ shnh2;n1 þ 1� chð Þ nh1nh3;n1 � nh3nh1;n1

� �þ nh2h;n1 ; ð87bÞ
j3 ¼ shnh3;n1 þ 1� chð Þ nh2nh1;n1 � nh1nh2;n1

� �þ nh3h;n1 : ð87cÞ
Note that above set of equations can be obtained by using Eqs. (9)
and (11a) or alternatively by substituting q0 ¼ ch=2; qi ¼ sh=2nhi

where i ¼ 1� 3, in Eqs. 86a, 86b and 86c.

A.2. Vector coefficient for SPEG technique of state estimation

We represent the vector coefficients in the form given below,

An1½ � Eif g; An2½ � Eif g; An3½ � Eif g; An4½ � Eif g
h i

3�4
¼ Cn½ �3�4 An½ �4�4; ð88aÞ

Bni1½ � Eif g; Bni2½ � Eif g; Bni3½ � Eif g; Bni4½ � Eif g
h i

3�4
¼ Cn½ �3�4 Bin½ �4�4; ð88bÞ

In the equation above, the notation An1½ � Eif g ¼ An1;E1h i; An1;E2h i;½
An1;E3h i�T , represents the component of the coefficient vector
An1½ � Eif g in Eif g frame. Therefore, the approximated solution is
expressed in Eif g frame (Note that the boundary conditions were
expressed in Eif g frame). The matrix Cn½ � represents the 12 con-
stants of integration corresponding to nth patch and is determined
using continuity conditions or the boundary conditions. The matri-
ces An½ � and Bin½ � (for i ¼ 1;2;3) contains coefficients that are func-
tion of the discrete velocity data vn and xn.

An½ � ¼

xn�vn ;E1h i
x2

n

vn ;xnh i xn ;E1h i
x2

n
� xn�xn�vn ;E1h i

x3
n

� xn�vn ;E1h i
x2

n

xn�vn ;E2h i
x2

n

vn ;xnh i xn ;E2h i
x2

n
� xn�xn�vn ;E2h i

x3
n

� xn�vn ;E2h i
x2

n

xn�vn ;E3h i
x2

n

vn ;xnh i xn ;E3h i
x2

n
� xn�xn�vn ;E3h i

x3
n

� xn�vn ;E3h i
x2

n

1 0 0 0

2
6666664

3
7777775
ð89Þ

Fig. 18. Computer generated plant with varying sizes and orientation of leaves.
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Bin½ � ¼

di0þxn�xn�di0 ;E1h i
x2

n
0

di0�xn ;E1h i
xn

� xn�xn�di0 ;E1h i
x2

n

di0þxn�xn�di0 ;E2h i
x2

n
0

di0�xn ;E2h i
xn

� xn�xn�di0 ;E2h i
x2

n

di0þxn�xn�di0 ;E3h i
x3

n
0

di0�xn ;E3h i
xn

� xn�xn�di0 ;E3h i
x2

n

0 0 0 0

2
66666664

3
77777775

ð90Þ

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.compstruc.2019.03.
011.
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