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Abstract 

The gold standard for precise diagnostic classification of brain tumors requires tissue sampling, which carries relevant 
procedural risks. Brain biopsies often have limited sensitivity and fail to address tumor heterogeneity, because small 
tissue parts are being examined. This study aims to explore the detection and quantification of diagnostically relevant 
somatic copy number aberrations (SCNAs) in cell‑free DNA (cfDNA) extracted from cerebrospinal fluid (CSF) in a real‑
world cohort of patients with defined brain tumor subtypes. A total of 33 CSF samples were collected from 30 
patients for cfDNA extraction. Shallow whole‑genome sequencing was conducted on CSF samples containing > 3ng 
of cfDNA and corresponding tissue DNA from nine patients. The sequencing cohort encompassed 26 samples of 23 
patients, comprising 12 with confirmed CNS cancer as compared to 11 patients with either ambiguous CNS lesions 
(n = 5) or non‑cancer CNS lesions (n = 6). After mapping and quality filtering SCNAs were called by depth‑of‑coverage 
analyses with a binning of 5.5 Mbp. SCNAs were exclusively identified in CSF cfDNA from brain tumor patients (10/12, 
83%). In tumor patients, SCNAs were detectable in cfDNA from all patients with, but also in five of seven patients with‑
out tumor cells detected by CSF cytopathology. A substantial number of shared SCNAs were traceable between tissue 
and CSF in matched pair analyses. Additionally, some SCNAs unique to either CSF or tissue indicating spatial hetero‑
geneity or tumor evolution. Also, diagnostically relevant genomic alterations as well as essential and desirable SCNAs 
as implemented in the current WHO classification of CNS tumors for certain primary brain tumor subtypes were trace‑
able. In summary, this minimally invasive cfDNA‑based LB approach employing shallow whole genome sequencing 
demonstrates potential for providing a molecularly informed diagnosis of CNS cancers, mapping tumor heterogene‑
ity, tracking tumor evolution, and surveilling tumor patients. Further prospective trials are warranted.
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Introduction
Accurate diagnostic evaluation of lesions in the central 
nervous system (CNS) usually necessitates invasive pro-
cedures like stereotactic brain biopsy. However, CNS 
tissue sampling poses substantial risks, particularly in 
eloquent CNS areas or in patients with compromised 
performance states. To address these challenges, less 
invasive approaches provide an opportunity to mitigate 
complications and allow for repeated sampling, which is 
particularly advantageous in clinical scenarios when non-
surgical treatment is the preferred option or for longitu-
dinal disease monitoring.

The term liquid biopsy (LB) refers to diagnostic tools 
that allow for the minimal invasive assessment of param-
eters from body fluids and various cellular and cell-free 
(cf ) analytes can be investigated simultaneously in a 
single sample. The RANO (Response Assessment in 
Neuro-Oncology) group has recently taken the initia-
tive to review the utilization of LBs in both primary [1] 
and secondary [2] brain tumors as well as CNS lym-
phomas [3] with the goal to assess the feasibility of LB 
approaches and their potential integration into clinical 
trials or neuro-oncological practice. LBs derived from 
cerebrospinal fluid (CSF) offer advantages over blood 
LBs in patients with brain tumors, as they exhibit higher 
sensitivity in detecting brain tumor-derived analytes such 
as cfDNA [1, 2, 4–8]. Currently, routine CSF diagnostics 
primarily serves the purpose of clarifying non-neoplastic 
differential diagnoses or detecting tumor cells in case of 
leptomeningeal disease (LMD) due to its prognostic rele-
vance and urgent therapeutic implications. This includes 
the analysis of indirect LMD parameters (increased 
opening pressure, barrier dysfunction, or lactate eleva-
tion), direct LMD parameters (detection of tumor cells 
through cytology), or non-cellular tumor markers. How-
ever, in contrast to the advances in tissue diagnostics, 
molecular pathological CSF profiling is still limited to 
individual applications such as clonality assays or the 
detection of hotspot mutations to support specific diag-
noses, such as diffuse large B-cell lymphoma of the CNS 
(CNS-DLBCL) [9]. Given the importance of accurate and 
timely molecular pathological profiling, now considered 
a state-of-the-art for tissue diagnostics in neuro-oncol-
ogy [10, 11] and facilitated by emerging technologies 
allowing for same-day or even intraoperative molecularly 
informed diagnosis [12–15], there exists vast potential to 
explore the applications of LBs in neuro-oncology [1, 4]. 
Tumor-derived cfDNA emerges as a particularly promis-
ing analyte, with various features available for evaluation 
[16–18]. Aneuploidy, represented by somatic copy num-
ber aberrations (SCNAs), is a fundamental characteristic 
of tumor-derived DNA detectable in cfDNA for exam-
ple through next-generation sequencing (NGS). Further, 

quantifying cfDNA aneuploidy via chromosomal number 
instability (CNI) scoring proved to be promising for pre-
dicting early responses to immunotherapy in advanced 
non-CNS tumors. The approach surpasses merely meas-
uring the total tumor cfDNA concentration as the CNI 
score serves as a metric for tumor-derived copy number 
instability and does not necessitate prior knowledge of 
somatic tumor mutations [19]. Taken together, SCNA 
profiling has gained immense significance for diagnostic 
classification of brain tumors. Among the approximately 
100 different subtypes of brain tumors according to the 
current WHO classification, particular SCNAs are incor-
porated as essential criteria in 12 subtypes and as desir-
able criteria in 13 subtypes [11]. For instance, detecting 
the 1p/19q co-deletion aids in diagnosing oligodendro-
gliomas, while + 7/ − 10 copy number changes in IDH-
wildtype diffuse astrocytomas enable the diagnosis of 
glioblastoma. The CDKN2A/B homozygous deletion 
is an essential diagnostic alteration in diagnosing CNS 
WHO grade 4 in IDH-mutant astrocytomas and desir-
able for pleomorphic xanthoastrocytoma [11]. Moreover, 
certain SCNAs were identified as indicators for predict-
ing the prognostic outcome [11, 20, 21]. Besides brain 
tumors, SCNAs also play a role in the context of extrac-
ranial tumors that exhibit a strong propensity for CNS or 
CSF involvement. The amplification of HER2 in breast 
cancer serves as a notable example in this regard.

Thus, the primary goal of this study is to examine the 
feasibility of a NGS approach for detecting and quantify-
ing SCNAs in cfDNA from CSF of patients with defined 
CNS cancers.

Material and methods
Study setting and patient cohort
Within this systematic retrospective observational 
study, we collected 33 CSF samples from 30 patients 
(Fig. 1, Table 1). A sufficient yield of cfDNA for NGS was 
obtained in 26 samples collected from 23 patients. Of this 
NGS cohort, 12 patients had histologically confirmed 
CNS cancer, five patients had etiologically unclear CNS 
lesions, and six control patients lacked a cancer diagnosis. 
Among the 12 CNS tumor patients, nine patients suffered 
from primary CNS tumors such as gliomas (n = 6), CNS-
DLBCL (n = 1) or meningeal melanocytoma (n = 1). Diag-
noses of patients with secondary CNS tumors were brain 
and leptomeningeal metastases of lung adenocarcinoma 
(n = 1) and secondary CNS manifestation of lymphoma 
(n = 2). The median age at the time of CSF sampling was 
54  years (range 22 to 85), with ten of 23 patients being 
female (43%). Serial CSF samples were obtained from two 
patients, with each patient undergoing two different lum-
bar punctures at different time points during the disease 
(samples 2 and 3 of patient 2; samples 21 and 22 of patient 
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19). All patients were diagnosed and treated at the Uni-
versity Hospital Frankfurt. Routine pathological or neu-
ropathological workup of tumor tissue was performed at 

the Departments of Pathology and/or Neuropathology 
(Edinger Institute). Data from routine DNA methylation-
based tumor profiling (Infinium MethylationEPIC Array) 

Fig. 1 Study workflow and consort diagram. A Study workflow. CSF, cerebrospinal fluid; DNA, Deoxyribonucleic acid. B The consort flow diagram 
illustrates the study approach leading to a real‑life cohort of patients with different types of CNS cancers with the purpose of analyzing somatic 
copy number aberrations (SCNAs) through next‑generation sequencing
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[10] was available from four patients in the Department 
of Neuropathology (Edinger Institute). Demographic 
and other clinical data (such as routine CSF parameters: 
protein, lactate, cytology) were extracted from patients’ 
records, deidentified, and entered into password-pro-
tected databases. All patients included in the study gave 
consent towards the sample collection and analyses. The 
study protocol was endorsed by the local ethical commit-
tee Frankfurt (SNO-9–2022).

Collection and processing of cerebrospinal fluid
All CSF samples were collected during routine clini-
cal care, primarily through lumbar puncture, except for 
two patients who underwent ventricular CSF sampling 
(patients 2 and 5). Samples were immediately centrifuged 
at 400  g for 10  min to separate cell-free from cellular 
components and transferred into liquid nitrogen for stor-
age and shipped frozen to the central laboratory of Chro-
nix (Göttingen, Germany).

Extraction, quantification and quality control of cfDNA
The cfDNA was extracted from 33 CSF samples (1–2 mL) 
using the High Pure Viral Nucleic Acids Extraction Kit 
LV (Roche) as previously described for plasma speci-
men[19]. The entire processing, including cfDNA extrac-
tion and sequencing, was conducted on two separate 
aliquots from the CSF sample of patient 7. These aliquots 
(samples 8 and 9) were utilized as technical controls. The 
concentrations of the total extracted cfDNA were deter-
mined by droplet digital PCR as previously described for 
plasma specimen [19].

Shallow whole‑genome sequencing
Sequencing libraries were prepared for all samples that 
yielded ≥ 3  ng cfDNA using the SMARTer ThruPlex Kit 
(Takara) with 5–50 ng input depending on sample yield. 
Shallow whole-genome sequencing with ~ 39  M (SD: 
15  M) read-pairs per sample was performed using a 
NextSeq500 (Illumina) instrument. Sequence data were 
mapped to the human reference genome (HG19) using 
BWA [22]. Duplicates and read-pairs with a mapping 
quality (MAPQ) < 60 were removed (average read-pairs 
after filtering: 20 M, SD: 8 M per sample). Additionally, 
DNA from matching Formalin-fixed Paraffin-embedded 
(FFPE) bulk tissue of 9 patients (7 with diagnosis of CNS 
cancer, 1 control patient, and 1 patient with an unclear 
CNS lesion) was sequenced accordingly (average read-
pairs: 13 M, SD: 3 M), with 50 ng DNA used for sequenc-
ing library preparation.

SCNA profiling
SCNAs were in 5.5 Mbp sliding bins (genomic windows). 
Depth-of-coverage analyses were conducted using the R 
package QDNAseq[23]. Briefly, after correction for GC-
content and mappability per bin, the read counts were 
normalized by the median read count over all windows. 
This ratio was transformed into log2 ratios. Windows 
with log2-ratios above 0.1 for amplifications or below -0.1 
for deletions were scored as significantly aberrant. Three 
metrics were developed to convert the detected SCNAs 
into a (semi-)quantitative diagnostic measure: first the 
absolute log2-ratios for bins above or below the signifi-
cance limits were summed to give the overall CNI score; 
second, the number of significantly aberrant bins was 
counted and samples with ≥ 5 aberrant bins were deemed 
SCNA positive; and third, the CNI Score was divided by 
the number of significant bins resulting in the tumor-
cfDNA fraction score. This measure served as a proxy 
for the level of tumor-derived cfDNA, as the aberrant 
log2-ratios in samples with higher tumor-cfDNA levels 
are less diluted by normal cfDNA resulting in a higher 
tumor-cfDNA fraction score. Furthermore, the tumor-
cfDNA fraction score is independent of the amount and 
size of copy-number aberrations present in the individual 
tumor.

Infinium MethylationEPIC Array of tumor tissue
SCNAs detected in tumor bulk DNA by NGS were com-
pared to SCNAs acquired by EPIC array during neuro-
pathological routine diagnostic. The FFPE tumor tissue 
was cut in 4µm thin sections mounted on glass slides 
and H&E stained. Punch biopsies from tumor cell dens-
est areas were subjected to DNA isolation and bisulfite 
conversion. The DNA was hybridized onto the Human 

Table 1 Patient characteristics of all patients included in next‑
generation sequencing

Cancer (n = 12) Non cancer (n = 11)

General

 Median age in years (range) 55 (32–81) 51 (22–85)

 Gender women % (n) 33 (4) 55 (6)

Primary CNS tumors % (n) 75 (9) NA

 Glioma % (n) 50 (6)

 CNS‑DLBCL % (n) 8 (1)

 Meningeal melanocytoma 
% (n)

8 (1)

Secondary CNS tumors % (n) 25 (3) NA

 Secondary CNS lymphoma 
% (n)

17 (2)

 Brain Metastases % (n) 8 (1)

LMD % (n)

 MRI‑suspected % (n) 33 (4) 9 (1)

 CSF cytology positive % (n) 42 (5) 0 (0)

CSF SCNA positive % (n) 83 (10) 0 (0)
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Methylation EPIC array according to the manufacturer’s 
protocol. The idat files from EPIC array of 4 patients were 
uploaded onto the molecularneuropathology.org website 
for tumor classification and visualization of methylome-
based copy number alterations.

Statistical analysis and data visualization
Detailed information on the statistical analyses is indi-
cated in the figure legends or respective methods sec-
tions. Analyses were performed using JMP 16.2.0 and R 
(4.3.0). Illustrations were created with biorender.

Use of large language models
ChatGPT was used exclusively for language editing of 
the article. After using this tool, the authors reviewed 
and edited the content as needed and take full responsi-
bility for the content of the publication.

Results
Patient cohort and methodological feasibility
Extraction of cfDNA was conducted from 33 CSF sam-
ples obtained from 30 patients, including one patient 
with duplicate samples for technical control (revealing 
identical results) and two patients with serial CSF sam-
ples. While the CSF input volume varied from 0.8 to 
3  ml, successful cfDNA extraction was achieved in 26 
samples from 23 patients. Seven CSF samples (one con-
trol patient and six patients with histologically confirmed 
CNS tumors) did not yield sufficient cfDNA (> 3 ng) for 
NGS (Fig. 1, Table 1, Supplementary Table 1). Genomic 
coverage ranged from 0.19 × to 1.1x (Table 2). NGS-based 
cfDNA profiling enabled the detection of SCNAs, a hall-
mark of tumor-derived cfDNA, in CSF samples. This 
profiling also allowed for the comparison of SCNA pro-
files in cfDNA from CSF with those from matching tis-
sue samples. Additionally, we evaluated the diagnostic 

relevance of each SCNA profile detected in CSF cfDNA 
and tissue, incorporating criteria for essential and desir-
able SCNAs based on the current WHO classification of 
CNS tumors for the patients with primary brain tumor 
diagnoses (overview in Fig. 2A, Supplementary Table 1).

Sensitivity and specificity of ctDNA detection in CSF
Ten out of 12 CSF samples from CNS cancer patients 
scored SCNA-positive (83%) and all control samples 
from patients with benign diagnoses (n = 6) or unclear 
CNS lesions (n = 5) were SCNA-negative (Table  1, Sup-
plementary Fig.  1, Supplementary Table  1). SCNAs in 
CSF cfDNA were observed in seven out of nine patients 
with primary CNS tumors and in all three patients with 
secondary CNS tumors (Fig.  2, Table  3, Supplemen-
tary Fig. 1). SCNAs were detected in six out of 12 (50%) 
patients at the time of first diagnosis and in 6 out of 12 
(50%) patients during progressive diseases (PD) stages 
(Supplementary Fig.  2). Among the ten SCNA-positive 
tumor patient samples we observed a mean CNI score of 
58 (range 6 to 150), a mean count of aberrant bins of 185 
(range 51 to 421), and a mean tumor fraction score of the 
cfDNA of 0.34 (range 0.11–0.71) (Fig. 2, Table 4, Supple-
mentary Table 1).

Next, our aim was to investigate the potential impact 
of sampling and clinical variables on SCNA status, CNI 
score, aberrant bin count, and estimated tumor cfDNA 
fraction. Specifically, we compared the timing of CSF 
sample collection in relation to tissue sample collec-
tion, as well as the CSF collection timepoint in compari-
son to the disease stage (at the time of diagnosis, during 
PD, or during surveillance). The total count of abnormal 
genomic regions (aberrant bin count) and the CNI scores 
tended to be higher in CSF samples collected after tissue 
preservation, despite similar fractions of tumor cfDNA. 
However, there was also significant variation observed 
across the samples (Fig. 3).

Regarding the rates of detecting SCNAs per se in 
CSF, seven out of 12 (58%) were observed after tissue 
collection for tumor diagnosis, and five out of 12 (42%) 
were detected prior to tissue collection (Supplemen-
tary Fig. 2). Concerning the potential impact of disease 
progression, there was a tendency towards higher CNI 
scores and abnormal genomic region counts in patients 
with progressive tumors compared to those with initial 

Table 2 Sequencing metrics of CSF samples

Mean (min–max)

CSF cfDNA quantity mean in ng 182 (3 to 1394)

Mapped reads (% of total reads) 0.95 (0.69–0.98)

Coverage depth mean 0.5x (0.19–1.1)

Fig. 2 Somatic copy number aberrations in cell‑free DNA from cerebrospinal fluid of patients with CNS cancers. A Overview clinical diagnosis 
and SCNA parameters. CSF cfDNA SCNA positivity vs. negativity and comparison of SCNA profiles in CSF and corresponding tissue (shared SCNAs) 
are depicted. B Frequency of detection of somatic copy number aberrations (SCNAs) across various CNS cancer types. SCNA positive samples are 
shown in green, negative samples in red. C SCNA parameters (CNI score, aberrant bin count, tumor cfDNA fraction) across the tumor patients. D 
Circos plots showing the copy number profile of cfDNA from cerebrospinal fluid of three exemplarily tumor patients with a high or medium CNI 
score in contrast to a patient without SCNAs

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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diagnoses. However, these differences did not reach 
statistical significance in our relatively small cohort 
(Fig. 3).

SCNA profiling of CSF cfDNA augments the opportunities 
of CSF cytopathology
Moreover, we examined the correlation of NGS param-
eters with cytology confirmed LMD, defined by the 
detection of tumor cells in the CSF sample during 
routine cytopathological assessment. While SCNAs 
were detectable in CSF cfDNA from all five patients 
with cytology-confirmed LMD, we additionally identi-
fied SCNAs in the CSF cfDNA from five out of seven 
patients without cytology-confirmed LMD (Fig. 3, Sup-
plementary Fig.  2). The five patients with confirmed 
LMD demonstrated significantly higher CNI scores 
and fractions of tumor cfDNA compared to patients 
without LMD in cytology. Changes observed in routine 
CSF parameters, such as cell count and lactate levels, 
did not exhibit a significant correlation with the NGS 
parameters (Fig. 3).

Utility of SCNA profiling of cfDNA from CSF for diagnostic 
classification and disease monitoring of patients with CNS 
tumors
Ultimately, we assessed the effectiveness of our CSF 
LB approach using a recently introduced set of qual-
ity criteria tailored to assess the benefits of LB tools in 
patients with brain tumors. Our evaluation focused on 
key aspects, including: (i) establishing a diagnosis and/
or identifying diagnostically relevant genomic altera-
tions (including copy number alterations incorporated 
as essential or desirable criteria in the current WHO 
classification [11]), (ii) monitoring tumor response 
to therapy, and (iii) tracking tumor evolution [8]. To 
address these inquiries, we complemented NGS of 
matching tissue samples, allowing for a direct compari-
son of SCNA profiling of CSF cfDNA and tissue DNA. 
Tissue was available for seven tumor patients (patients 
2, 4, 5, 13, 15, 17, and 23), one patient with meningi-
tis and a history of ependymoma (patient 14), and one 
patient with IgG4-associated orbital inflammation 
(Figs. 1, 2A and 4, Supplementary Fig. 3).

Table 3 Patient characteristics of tumor patients with SCNA positive and SCNA negative cfDNA profiles in next‑generation 
sequencing

CSF SCNA positive cancer patients (n = 10) CSF SCNA negative 
cancer patients 
(n = 2)

Primary CNS tumors % (n) 70 (7) 100 (2)

 Glioma % (n) 50 (5) 50 (1)

 CNS‑DLBCL % (n) 20 (2) 0 (0)

 Meningeal melanocytoma % (n) 0 (0) 50 (1)

Secondary CNS tumors % (n) 30 (3) 0 (0)

 Secondary CNS lymphoma % (n) 20 (2) 0 (0)

 Brain Metastases % (n) 10 (1) 0 (0)

LMD % (n)

 MRI‑suspected % (n) 30 (3) 50 (1)

 CSF cytology positive % (n) 50 (5) 0 (0)

Table 4 SCNA characteristics of all tumor patients with SCNA positive cfDNA in next‑generation sequencing

CNI score mean (range) Aberrant bin count mean (range) Tumor cfDNA 
fraction score mean 
(range)

SCNA positive patients (n = 10) 61 (6–150) 191 (51–421) 0.35 (0.11–0.71)

Primary CNS tumors (n = 7) 52 (6–113) 187 (51–418) 0.33 (0.11–0.71)

 Glioma (n = 5) 65 (23–113) 241 (98–418) 0.30 (0.14–0.50)

 CNS‑DLBCL (n = 2) NA (6–36) NA (51–53) NA (0.11–0.71)

Secondary CNS tumors (n = 3) 81 (8–150) 200 (59–421) 0.40 (0.14–0.70)

 Secondary CNS lymphoma (n = 2) NA (8–85) NA (59–121) NA (0.14–0.70)

 Brain Metastases (n = 1) NA (150) NA (421) NA (0.36)
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First, we aimed to determine whether tissue SCNAs 
could be traced in cfDNA from CSF, given the essen-
tial value of SCNA profiling in neuro-oncology [11]. 
A concordance analysis, comparing SCNA profiles 
directly between CSF and tissue, was conducted on six 
tumor patients with matched tissue/CSF pairs exhibit-
ing SCNAs in their CSF cfDNA (patients 2 (two CSF 
samples), 4, 5, 13, 17, and 23). Shared SCNAs between 
CSF cfDNA and tumor tissue DNA were observed in all 
patients, as particularly notable in patients 4, 5, 17 and 23 
(Fig. 2A, Fig. 4A, Supplementary Fig. 3).

To refine the diagnostic utility of our approach, we 
assessed defined diagnostic genomic alterations, and 
thereby also considered the criteria of the current WHO 
classification of CNS tumors for essential and desirable 
SCNAs in particular brain tumor subtypes, as outlined 
with positive results in several patients (Supplementary 
Table 2).

Besides providing relevant molecular pathological 
information, our data suggests that tracing SCNAs in CSF 
samples offers an avenue for expediting and facilitating 

the diagnostic process in patients through a less invasive 
approach as especially evident in patients with CNS lym-
phomas (patients 4, 6, 13, 17), a CNS tumor for which 
nonsurgical treatment is inherently preferred (Fig.  4B, 
Supplementary Fig. 1).

Beyond that, SCNA profiling of CSF holds the poten-
tial for mapping tumor heterogeneity and tracking 
tumor evolution (Fig. 4B, Supplementary Fig. 3). In fact, 
the concordance analysis also unveiled distinct SCNAs 
exclusive to either CSF or tissue in all patients, albeit gen-
erally to a lesser extent than shared SCNAs between CSF 
and tissue (Fig.  4A, Supplementary Fig.  3). SCNA vari-
ations between CSF and tissue can be attributed either 
to spatial heterogeneity within a tissue sample or tumor 
evolution throughout the disease. Evolution of the SCNA 
profile could be traced in patient 2 with glioblastoma 
where copy number profiling of the tissue biopsy at first 
diagnosis in comparison to the CSF LBs at PD overspun 
a disease course of approximately 1.5 years including 
multimodal glioblastoma treatment. The two serial CSF 
LBs at PD collected within only one week did not reveal 
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as surveilling patients with a previous cancer diagnosis
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major differences compared with each other (Fig. 4). As 
an example for tracing stable disease (SD) over a longer 
period, serial CSF LBs of patient 19, with brain and lep-
tomeningeal metastases from lung adenocarcinoma, 
showed a stable CSF profile over a 10-month interval 
(Supplementary Fig. 1B). To assess the tool’s applicability 
in monitoring disease activity or recurrence after com-
plete remission, we sequenced CSF cfDNA from patients 
under surveillance due to a previous history of CNS can-
cer and uncertainty regarding the differentiation between 
tumor recurrence and other potential causes of clinical 
deterioration (patients 12 and 14): The CSF LB supported 
the recurrence of pleomorphic xanthoastrocytoma in 
patient 12 (Supplementary Fig.  3), whereas favoring the 
diagnosis of a postoperative infection over tumor recur-
rence in patient 14 after curative resection of posterior 
fossa ependymoma (Fig. 4, Supplementary Fig. 3).

Of note, SCNA differences between CSF and tissue can 
also be attributable to methodological aspects: Patient 
15, diagnosed with glioblastoma and displaying typical 
copy number alterations, had no detectable SCNAs in 
CSF cfDNA collected 1.5 weeks prior to surgical tissue 
resection. This suggests a deficiency of tumor-derived 
cfDNA at relevant levels in this CSF sample (Supplemen-
tary Fig. 3). This scenario highlights that a SCNA-nega-
tive CSF sample does not fully rules out the diagnosis of 
CNS cancer. Notably, in terms of the diagnostic value of 
SCNA-negativity, no SCNAs were detected in non-can-
cer CSF samples, as also evidenced by the matching tissue 
and CSF samples from a patient with confirmed histology 
of IgG4-associated orbital inflammation (Supplementary 
Fig. 3). From a technical perspective, it is noteworthy that 
the SCNA data obtained through methylation-based pro-
filing of tumor tissue from four glioma patients showed 
no significant disparities compared to SCNA profiling 
via NGS (Supplementary Fig. 4). Additionally, a technical 
replicate of independently processed CSF aliquots from 
patient 7 exhibited no SCNA deviations between the ali-
quots, as expected (Supplementary Table 1).

Discussion
Precise diagnostic classification and effective monitor-
ing of therapy response and resistance is crucial for 
improving the prognosis of patients with CNS can-
cer. CSF LBs demonstrate high sensitivity in detecting 
genomic alterations of tumor cfDNA [18]. CSF LBs are 
particularly beneficial when the affected CNS areas are 
functionally important, the patient’s overall condition 
is compromised, or the brain tumor type is not amena-
ble to surgical intervention. Such scenarios include CNS 
lymphomas per se, but also gliomas or brain metasta-
ses located in challenging brain regions, or when dis-
tinguishing non-neoplastic from potentially neoplastic 

CNS lesions. Further, CSF LBs allow for repeated sam-
pling to guide patient-centered clinical decision making. 
Here, we describe shallow NGS of CSF cfDNA as tool for 
the detection of diagnostically relevant SCNAs in brain 
tumor patients (Fig. 1).

The detection of SCNAs in cfDNA is highly specific 
for tumor-derived cfDNA, with no false positive SCNAs 
observed in the control patients without a cancer diagno-
sis in our cohort, aligning with findings from other stud-
ies in this field. As a hallmark of tumor-derived cfDNA, 
SCNAs were identified in the CSF cfDNA of the major-
ity (83%) of patients with CNS tumors (Fig. 2). Of note, 
SCNAs were also in cfDNA of tumor patients without 
cytopathological tumor cell detection in CSF (Fig. 3, Sup-
plementary Fig.  2) supporting that CSF cfDNA, regard-
less of cytopathology-confirmed tumor cells, can contain 
tumor-derived cfDNA [6]. In terms of further assessing 
key aspects of effectiveness of our LB tool [8], we were 
able to trace a substantial number of shared SCNAs 
between tissue and CSF (Figs. 2A, 4) as well as diagnos-
tic SCNAs [11] (Supplementary Table  2). Additionally, 
we identified prognostically relevant SCNAs like on the 
long arm of chromosome 6 in CNS lymphoma patients 
(Supplementary Fig.  1) [24] associated with an aggres-
sive clinical course [21]. Differences in SCNAs between 
tissue and CSF can also be attributed to tumor evolu-
tion as traced in the longitudinal biomaterial analyses 
throughout the disease course of patient 2 with glioblas-
toma (Fig.  4). Further, SCNA profiling of CSF cfDNA 
proved advantageous for surveillance of patients with 
prior history of CNS cancer and the need to distinguish 
tumor recurrence from other causes of clinical deteriora-
tion (e.g. patients 12, 14) (Supplementary Fig. 1). Taken 
together, our approach proved valuable in supporting or 
establishing diagnoses faster and less invasively in CNS 
tumor patients (Fig. 2A, Supplementary Table 1, Supple-
mentary Fig. 3).

In addition to assessing the mere SCNA profile, our 
approach offers the possibility to quantify chromosomal 
instability holding potential for correlation with out-
come parameters [19]. While we observed a wide range 
of SCNA dimensions in CSF cfDNA, as indicated by the 
CNI scores and the total count of abnormal genomic 
regions (aberrant bin count), there was a tendency 
towards higher CNI scores and aberrant bin counts in 
patients whose CSF was collected after tissue preserva-
tion compared to those collected prior to tissue preserva-
tion (Fig. 2). Here, it is important to note the possibility 
of tumor cfDNA carrying over into the CSF during sur-
gical tissue collection. However, the mere detection rate 
of SCNAs was independent of the timing of tissue col-
lection. Further, patients with PD stages showed a trend 
towards higher CNI scores and aberrant bin counts 
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compared to patients with initial diagnoses suggest-
ing a potential association of these parameters with the 
disease stage (Fig.  3). Of note, most of these analyses 
did not reach statistical significance and must be inter-
preted with caution. The limited cohort size prevents us 
from determining parameters such as frequency rates of 
SCNA positivity or a systematic comparison of SCNA 
patterns across different types of CNS cancer.

Of note, SCNA profiling relies on (i) the release of 
tumor cfDNA into the CSF and (ii) the presence of 
SCNAs in tumor-derived cfDNA. Consequently, the 
applicability of this LB approach has limitations in case of 
few or copy number-neutral genomic alterations. In case 
of low levels of tumor-derived cfDNA within the total 
quantity of cfDNA in a CSF sample, the detectability of 
SCNAs can reach its limits. Thus, although the detection 
of SCNAs is highly specific for tumor-derived cfDNA, 
the absence of SCNAs in CSF cfDNA does not conclu-
sively indicate that the tumor is SCNA-negative. Subtle 
alterations can fall below the level of detection and the 
LB may not capture tumor-derived SCNAs or their full 
spectrum as in patients 13 or 15 (Supplementary Fig. 3). 
To overcome this limitation, novel LB approaches aim 
to enhance the sensitivity of detecting cancer-related 
genomic alterations by combining low pass NGS pan-
cancer assays (for SCNA detection) with targeted panel-
based sequencing to additionally capture disease-specific 
gene fusions and mutations of cfDNA [25].

In summary, our findings support the utility of SCNA 
profiling of cfDNA from CSF in defined CNS cancers, 
despite the constraints of a retrospective exploratory 
study with a relatively small sample size. SCNA profiling 
of CSF cfDNA could have expedited the diagnostic pro-
cess and the initiation of tumor-specific therapies. This 
was particularly evident in cases lacking cytology con-
firmed LMD or those with inconclusive findings from 
stereotactic biopsies. Furthermore, it demonstrated its 
potential for minimally invasive mapping of tumor het-
erogeneity and tracking tumor evolution. However, like 
other promising pilot studies on emerging LB techniques 
[5–8, 26–28], our study faces the common limitation of 
lacking standardization, validation, and methodologi-
cal harmonization necessary for the successful integra-
tion into routine clinical practice. Key considerations 
include the technical and methodological applicability, 
resource-consciousness and economic feasibility. Thus, 
to fully comprehend the potential prognostic and predic-
tive value of SCNA profiling of CSF cfDNA, validation 
through larger prospective studies is warranted [5–8]. 
Standardized sequential CSF profiling at defined time 
points before, during, and after therapeutic interven-
tions, would enhance our understanding of the utility of 
cfDNA SCNA profiling for disease monitoring. Notably, 

the potential of CNI scoring of plasma LBs to predict 
responses to immunotherapy in non-CNS tumors [19] 
should be evaluated for brain tumor patients by CSF 
profiling. This is particularly relevant given the increas-
ing role of immunotherapeutic approaches in second-
ary [29], but also primary CNS tumors (as evidenced by 
several trials such as CheckMate 498 [30] and 548 [31], 
or advanced immunotherapies like the NOA-16 [32] 
or the CAR2BRAIN [33] trial) which underscore the 
need for reliable biomarkers for monitoring (immune) 
therapy responses and offering insights into resistance 
mechanisms.

Conclusions
Taken together, our study supports exploration of SCNA 
profiling of cfDNA from CSF of brain cancer patients. 
Further large-scale prospective trials, incorporating serial 
sampling, are necessary to fully decipher its translational 
value. Despite the challenges discussed, we maintain an 
optimistic outlook that emerging technologies [15, 16, 
25] will contribute to the improvement and applicability 
of novel diagnostic LB tools soon.
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