VERSATILE CHARACTER: THE PRODUCT CHARACTERISTICS

Duropal high pressure laminates (HPL) are hard-wearing, versatile, and available in many attractive designs. In order to get the best use from the product and ensure that its attractive appearance is retained, please observe the chemical, mechanical and physical properties of our Duropal high pressure laminates (HPL).

In terms of reaction to fire, protection against formaldehyde emission and surface processing are concerned, there are some minor differences between Duropal-HPL and Duropal-HPL-Solid. All other points apply to both high pressure laminates.

1. CHEMICAL CHARACTERISTICS

The surfaces of Duropal-HPL and Duropal-HPL-Solid are resistant to contact with most normal chemicals and substances. Cleaning products such as acetone and substances such as vinegar, coffee and blood will not stain the surface.

Nor will spillages of any of the following (listed here as examples) affect the surface provided they are wiped up promptly (e.g. within 10-15 minutes). This means the tops must be wiped with a wet cloth and rubbed dry within 10-15 minutes.

SUBSTANCE	CHEMICAL FORMULA	SUBSTANCE	CHEMICAL FORMULA
Antacid (more than 10%)	НСООН	Lacquers/paints and adhesives (chemically hardening)	
Aminosulphonic acid (to 10%)	NH ₂ SO ₃ H	Methylene blue	C ₁₆ H ₁₈ N ₃ CIS
Aniline dyes		Millon's reagent	OHg ₂ NH ₂ CI
Inorganic acids (to 10%)		Sodium hydrosulphate	NaHSO ₄
Arsenic acid (to 10%)	H ₃ AsO ₄	Sodium hypochlorite	NaOCI
Boric acid	H ₃ BO ₃	Sodium thiosulphate	Na ₂ S ₂ O ₃
Iron (II) chloride solution	FeCl ₂	Sodium hydroxide (more than 10%)	NaOH
Iron (III) chloride solution	FeCl ₃	Nylanders reagent	
Esbachs reagent		Oxalic acid	COOH x COOH
Fuchsin solution	C ₁₉ H ₁₉ N ₃ O	Phosphoric acid (to 10%)	H ₃ PO ₄
Hair dyes and bleaches		Picric acid	C ₆ H ₂ OH(NQ) ₃
lodine solution	J	Mercury dichromate	HgCr ₂ O ₂
Limescale remover		Nitric acid (to 10%)	HNO ₃
Potassium hydroxide (more than 10%)	КОН	Hydrochloric acid (to 10%)	HCI
Potassium chromate	K ₂ CrO ₄	Sulphuric acid (to 10%)	H ₂ SO ₄
Potassium dichromate	K ₂ Cr ₂ O ₇	Sulphurous acid (to 10%)	H ₂ SO ₃
Potassium hydrogen sulphate	KHSO ₄	Silver nitrate	AgNQ
Potassium iodide	КЈ	Mercury bichloride solution	HgCl
Potassium permanganate	KMnO ₄	Hydrochloric peroxide (3-30% perhydrol)	H ₂ O ₂
Methyl violet	C ₂₄ H ₂₈ N ₃ CI		

The following chemicals are examples of substances that will destroy a Duropal-HPL surface and must be removed immediately. The surface will very quickly become dull and rough.

CHEMICAL; EACH IN CONCENTRATION OVER APPROX. 10%	CHEMICAL FORMULA	CHEMICAL; EACH IN CONCENTRATION OVER APPROX. 10%	CHEMICAL FORMULA
Aminosulphic acid	NH ₂ SO ₃ H	Phosphoric acid	H ₃ PO ₄
Arsenic acid	H ₃ AsO ₄	Hydrochloric acid	HCI
Chromic sulphuric acid	$K_2Cr_2O_7 + H_2SO_4$	Sulphuric acid	H ₂ SO ₄
Hydrofluoric acid	HF	Hydrogen bromide	HBr
Nitrohydrochloric acid	HNO ₃ + HCI = 1 : 3		

Frequent exposure to the following aggressive gases will cause changes to the Duropal-HPL surface.

CHEMICAL	CHEMICAL FORMULA	CHEMICAL	CHEMICAL FORMULA
Bromine	Br ₂	Sulphur dioxide	SO ₂
Chlorine	Cl ₂	Acid vapours	
Nitrous gases	N _x O _y		