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Forward

This book is intended to be read by anyone who claims to be any of the
following: mathematician, educator of mathematics, STEM
professional, mathematics historian, university student or high school
student. It is for those who are serious about understanding
mathematics and especially calculus.

Engineers and STEM researchers who need to learn calculus rigorously
and quickly will find the New Calculus unbeatable.

Regardless of your background, you will understand and learn more
mathematics than you learned in all your school years.
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Chapter 1: A brief history of most relevant events

Before the Ancient Greeks, there was only a vague notion of the
number concept. People didn’t need or use numbers much at all. It was
easy to keep track of one’s livestock or gold bars, by allocating a stone
or a stick for each head of cattle or gold bar. Thus, if a theft were
suspected, an audit could easily be accomplished using a journal of
stones. This primitive method of counting resurfaced during the time of
Georg Cantor, when there was an attempt to abandon the rigorous
foundations laid by the Ancient Greeks. Unfortunately, mainstream
academics eventually succumbed to Cantor’s ridiculous ideas.

Cantor imagined (erroneously) that sets could be used in place of
numbers. Out of his absurd theories arose bijective cardinality and
consequently different levels of infinity. Cantor’s claim to fame was his
definition of what is a countable set, that is:

A set is countable if its members can be named in a systematic way.

Hence, a given set is also called countable if its members can be listed
in a systematic way.

While not Cantor’s exact definition, this is no doubt how Cantor
decided in his mind that the set of natural numbers is countable: its
members can be listed systematically using any radix system and every
member has a unique name. It should be obvious now why Cantor
didn’t choose another set such as the imaginary set of real numbers.
It’s not possible to name objects which don’t exist. We’ll learn more
about this in later chapters where it is revealed that no valid
construction of real numbers was ever produced.
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Set theory, which is influenced by thinkers like Ludwig Wittgenstein and
Bertrand Russell, is an attempt to measure without any actual concept
or clear understanding of measure at all, only a notion of measure
through containment. The very base object which is a set, is undefined
and the approach is one where an object is determined to be a set if it
meets the requirements (beliefs is a more appropriate noun) stated in
the Zermelo-Fraenkel (ZF) axioms. In fact, till this day, mainstream
academics do not agree on a common definition of mathematics even
among themselves, which is the abstract science of measure and
number.

According to mainstream academia, measure in its simplest form is
defined as a cardinal number and more complex measure results from
set unions or set mappings. The only required criteria is that elements
or members are recognizably distinct from each other. There is no
formal definition of set or element and the two are used
interchangeably. In fact, the ZF axioms are stated in terms of a
membership relation denoted by ∈. This too is circular because
membership requires that the parent object is already defined.

These ideas led to many unresolved paradoxes and contradictions that
resulted in the Zermelo-Fraenkel (ZF) axioms which were unfortunately
ordained the “New Foundations”, as a result of the misguided ideas of
the Bourbaki group in France, circa 1938. Cantor was without any doubt
the father of all mathematical cranks.

Throughout the centuries, zero progress was made in understanding
the concept of number, even though many new number properties
were realized, especially the study of prime numbers. As a result of
prevailing academics’ inability to grasp what Euclid had attempted to
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write down in the Elements, the notions of axioms and postulates were
established by decree rather than erudition. I suppose if one can’t
explain a concept, then one can always declare it to be an axiom from
which to form new knowledge.

There was never a need for new foundations of mathematics because
everything a mathematician needs is obtained from the Elements of
Euclid.

In the chapters to come, we’ll learn precisely how numbers were
derived perfectly by the Ancient Greeks.

Rene Descartes restarted the age of mathematics enlightenment by
returning to the knowledge of Ancient Greece. Descartes realised a
Cartesian coordinate system which replaced the complicated conic
coordinate system of the Greeks and made it possible for many to learn
mathematics, something that would otherwise have remained out of
reach for most.

Newton and Leibniz, the so-called fathers of calculus, struggled to find a
rigorous method of determining the slope of a line that is tangent to a
non-linear curve. They both failed and although numerous attempts
were made that culminated in the flawed Cauchy-Weierstrass epsilon-
delta limit theory with its numerous error prone inequalities and real
analysis, a rigorous formulation of calculus was not realised until the
beginning of the last half of the twentieth century, when I discovered it
in the New Calculus.

Neither Newton or Leibniz wasted his time trying to find the slope of a
straight line that is tangent to another straight line (which is defined
circularly in mainstream calculus), because they knew how to find the
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slope of any straight line either as an angle (𝜃 ) or a ratio (𝑡𝑎𝑛 𝜃 ).
Today’s ignorant academics advocate the ridiculous idea of straight
lines being tangent to other straight lines. It’s a very good thing the
fathers of calculus thought of tangent lines in the way they did, for who
knows if they could have realised calculus as it developed in the
misguided mainstream formulation that followed. What other
justification could there have been for the finite difference quotient𝑓 𝑥+ℎ −𝑓(𝑥)ℎ and the fact that no finite difference quotient 𝑓 𝑥+ℎ𝑖 −𝑓(𝑥)ℎ𝑖
exists which equals the derivative 𝑓′(𝑥)? The so-called “big idea” itself,
that is, the limit, uses this quotient. If not for the tangent line as
understood by the Ancient Greeks, then what else could have been the
reason? What makes secant lines special about a point? - The fact that
their slopes approach that of the tangent line.

Except for the New Calculus, there has been zero progress in
mainstream calculus for more than 150 years.

Archimedes is often hailed by the mainstream as the first to realise
integral calculus. The reasons given are not convincing because
Archimedes never recognized any numbers besides the rational
numbers. In order to see the truth of this claim, one need look no
further than propositions 3 and 4 (On Spirals, The Works of
Archimedes) to understand the actual Archimedean property, which in
fact has nothing to do with real numbers. The correct statement of the
property is:

Given any magnitude 𝑥, whether commensurate or incommensurate
with any other magnitude, there exist two rational numbers 𝑚 and 𝑛,
with 𝑚 < 𝑛, such that 𝑚 < 𝑥 < 𝑛.
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There are absurd notions in the mainstream thought, that Archimedes
anticipated limits in his method of exhaustion, but the facts tell a
different story. His method always involved the use of his property and
an argument by contradiction to determine the measure of an area or a
volume. The argument typically involves the comparison of two objects,
for example 𝑝 and 𝑞. Assume 𝑝 < 𝑞 and reach a contradiction. Then
assume 𝑝 > 𝑞 and once again reach a contradiction in which case 𝑝
must be equal to 𝑞. Some might say this is similar to the squeeze
theorem or the limit of a function, but Archimedes didn’t deal at all
with functions as we know them today. In fact, neither a circle nor a
sphere is originally defined as a function (mapping) at all.

Calculus was later developed on the building blocks of functions and
numbers, but functions are described by formulas and not only by
numbers. For example, the area of any circle is described by a function𝐴(𝑟) = 𝜋𝑟2 which is always a parabola. The algebra hides the fact that𝜋 is a symbol for a constant size and decidedly not a number. 𝜋 is
never used as a number in algebra, only as a symbol denoting a
(rational) number or a rational number approximation, because there is
no measure of the constant ratio (𝜋 is not commensurate with any
other magnitude) known as 𝑐:𝑑 where 𝑐 denotes circumference and 𝑑
denotes diameter. In all cases, 𝜋 acts like an unknown in algebra. For
example,2 × 𝑥 × 3 = 6 × 𝑥 and 3 × 𝜋 × 2 = 6 × 𝜋
are equivalent in algebra, for both state that 6 = 2 × 3 or 6 =  3 × 2 or2 = 6 ÷ 3 or 3 = 6 ÷ 2, and the size/magnitude known as 𝑥 or 𝜋
plays no role whatsoever. Geometrically, exact arithmetic involving any
ratios of magnitudes is possible regardless of magnitude (See Appendix
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B which explains how you got arithmetic from geometry). The four
basic operations of arithmetic (difference, sum, quotient and product)
come to us from the geometric arithmetic of ratios where no numbers
are used at all. The diagram that follows explains these facts. By
choosing one side (not hypotenuse) of either right-angled triangle to be
the unit, division and multiplication of any magnitude is well defined by
moving either of the green points horizontally and noting that a circle
always passes through all three points shown (green and red).

By using a circle with similar triangles as shown, exact division and
multiplication is possible assuming one of the triangle sides acts as a
unit.

Thus, geometrically these operations are very well defined for any
magnitude. The astute reader will also notice that the above diagram is
an ancient calculator whereby the four basic operations of arithmetic
can be performed to 100% accuracy without any knowledge of number
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or mathematics, save a few constructios using compass and straight
edge.

In algebra however, the story is quite different. For starters, the
magnitudes have to be given names, that is, they need to be measured.
In the sample diagram there are the measures 1, 2, 3 and 6 where the
black line segment is chosen to be the unit.

Next, the operations of division and multiplication need to be defined,
that is, what does 6 ÷ 3, etc, actually mean? This and more to be
explained in How we got algebra.

Before Newton and Leibniz, many efforts were made to find ways of
determining tangent line slopes, but all of them failed. One method
that was more rigorous than Newton’s method, was Descartes’ method
of constructing a circle that is tangent to a given curve. However, it is
only possible to use in very simple cases.

Fermat’s adequality method was absolute rot because it uses exactly
the same ideas as modern calculus vis a vis the limit of a difference
quotient. The method may look different in appearance but the
underlying mechanics are the same.

There have been numerous other attempts to formulate a calculus
without the use of limits, but all use the limit concept, if only indirectly.

The only rigorous formulation is the New Calculus which uses no ill-
formed concepts such as infinity, infinitesimals and limit theory. One
can write many books on calculus and its development, but no book

https://www.academia.edu/99833518/Why_is_a_circle_so_important_to_arithmetic_operations
https://www.academia.edu/99833518/Why_is_a_circle_so_important_to_arithmetic_operations
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ever written contains the well-formed knowledge you will realise in this
book.
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Chapter 2: What it means for a concept to be well defined

Never in the history of academia has anything been published on what
it means for a concept to be well defined, never mind the requirements
or a systematic method for determining well-formedness.

This is evident when one looks at all the paradoxes and contradictions
that arise in theory - especially such as first order logic, axioms, etc.
One needs only to investigate the bogus concept of infinity which
cannot be reified in any way, shape or form to see how it has infected
all mathematics.

In this chapter, I will show you a simple method of how you can
determine whether a concept (A better word for concept in this
context, is a noumenon, that is, a well-formed concept that exists
independently of the human mind or any other mind) is well formed or
not, in just four simple steps.

Determining if a concept is well formed or not:

Here are my four essential requirements for any concept to be well
defined:

In order to be well defined, a concept

1. Must be reifiable (R) either intangibly or tangibly.

2. Must be defined in terms of attributes (A) which it possesses, not
those it lacks.

3. Must not lead to any logical contradictions (C).



13

4. Must exist in a perfect Platonic form. What this means, is that it
exists independently (I) of the human mind or any other mind, as a
noumenon of course.

The method is easy to remember using the acronym RACI.

RACI: Reifiable - Attributes - Contradictions - Independence

A simple proof that any concept is well formed, can be confirmed if an
alien from another world realises the concept in the same way. For
example, the attempted measurement of a circle's circumference using
its diameter, must be realised by an alien in exactly the same way. 𝜋
cannot be realised in any other way. Hence it is a perfect concept or
noumenon as explained shortly.

Reification:

If you can't reify a concept, then it may possibly not exist outside your
mind. If a group of mainstream academics get together and claim an
infinite sum is possible, even among themselves, they do not think of it
the same way. The fallacious idea that 0.999… and 1 are both
representations of 1, is a fine example. Some academics think that it is
actually possible to sum the series: 0.9 + 0.09 + 0.009 + ...
But let’s not go too far, no mainstream academic even understands
what mathematics is all about any longer.

Others (such as Rudin, author of ubiquitous mainstream Real Analysis
text book called Principles of Mathematical Analysis) realise that only a
limit is possible. Still, others believe that it's a good idea to give a
sequence a value in terms of its limit, even when the limit is unknown.

To reify, means to produce an instance of the concept, so that someone
who knows nothing about it, can understand it exactly the same way as
any another. Even though the 0.999... fallacy has been around for so
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many decades, ask yourself how it is that so many students and even
educators have different views on it, with most forums split almost
evenly among those who acknowledge the fallacy and those who
don't. The ill-formed concept 𝑆 = 𝐿𝑖𝑚 𝑆, is always a problem for
students because it is derived from an ill-formed definition by Euler,
who in his Elements of Algebra, defined an infinite sum 𝑆, to be equal
to its limit (𝐿𝑖𝑚 𝑆), provided of course, the infinite sum converges.

To accept that 0.333... = 13, that is,0.333… = 13 = lim𝑛→∞ 13  1 − 110𝑛
one first has to believe that an 𝑛 exists such that 110𝑛 = 0. The very
thing is impossible, not to mention absurd! Leonhard Euler was one
particular mathematics academic who believed that such an 𝑛 is
possible. Moreover, the number 13 has no measure in base 10 or what is

commonly called decimal.

Theatrical (not theoretical physicists, because those went extinct
shortly after Einstein) physicists took this idea to a whole new level
where convergence is no longer relevant. In fact, the foundation of
String Theory rests on the delusion that1 + 2 + 3 + 4 + … =  − 112
You can reify a concept without someone else being able to understand
it for many other reasons; some include intelligence, ignorance, etc.
However, I am talking about all things being equal, in which case the
concept can be acknowledged as having been reified.

If you can't get past reification, then your concept is no doubt
nonsense. Some examples are:

https://www.academia.edu/39981684/Proof_of_the_most_important_Number_theorem_that_mainstream_mathematics_academics_never_learned
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Irrational numbers.

Infinitesimals.

Limits, when in fact, there is no valid construction of "real" numbers.

Infinity.

Einstein's theories.

Hawking's theories.

Definitions that are self-referential.

Attributes:

If a concept is not defined in terms of attributes it possesses, then you
may as well be talking about innumerably many other concepts. For
example, to define an irrational number as a number that is not rational
is clearly nonsense, because in order to be rational, there must be a
numerator/antecedent and denominator/consequent, both which are
themselves already established numbers. If these are not numbers,
then a gorilla and banana are also irrational numbers because neither
can be expressed as a ratio of numbers.

Thus, there is endless ambiguity. Attributes are the most important
second step after reification. An attribute describes the boundaries or
limits, the extent of the instantiated object from the concept.

Mathematicians are like artists, the objects arising from concepts in a
mathematician's mind are only as appealing as they are well defined.

Clearly, concepts are unusable if they cannot be well defined. A good
example is 0.999... - it has no use and nothing worthwhile can be done
with such an ill-formed definition, that is, 𝑆 =  𝐿𝑖𝑚 𝑆. This is what I call
the Eulerian Blunder, because it was Euler who defined 𝑆 =  𝐿𝑖𝑚 𝑆.

Contradictions:

https://www.academia.edu/45001199/Mainstream_mathematics_professors_are_incorrigibly_stupid_creatures_who_cannot_be_corrected
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Once a concept has been reified and defined (there are limitations to
being well defined and this is why one needs to have checks for
contradictions, until the concept becomes axiomatic over a long period
of vetting) in terms of attributes it possesses, it has to be vetted. This is
done by always verifying that any results stemming from its use do not
produce logical contradictions.

Independence:

Finally, the last criterion which is sufficient for a well-formed concept, is
that it must exist outside of the human mind or any other mind. For
example, if aliens realise the incommensurable constant 𝜋, they will
realise it in the only logical way: the attempted measure of a circle’s
circumference magnitude using the diameter magnitude as a unit.

Perfect concepts or noumena (singular is noumenon), exist whether life
exists or not. That is what the Greeks discovered when they studied
geometry. The concepts of geometry are all without any exception
perfect concepts (Platonic).

Not even "God" can measure the constants (not numbers!) 𝜋 and 2,
because neither of these concepts require anyone to think of them.
They have existed inanimately as perfect concepts, in past perpetuity
and continue to exist indefinitely. Like the geometry of the Ancient
Greeks, these noumena (perfect knowledge) exist independently of the
human mind or any other mind.

If the concept you realise meets all four of these requirements, then
you can be assured that it is a well-formed concept or a noumenon.
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Chapter 3: Mainstream misconceptions about mathematics

The misconceptions in mainstream mathematics are too numerous to
discuss. In this chapter, we’ll look at some of the most common.

The most serious misconception is that of numbers. Before me, there
was no definition of number, only vague ideas of what is meant by the
concept of number. This misconception has its roots in the failure of
academics to understand the Elements of Euclid and what Euclid
attempted to write down in a perfect way. In a subsequent chapter, the
concept of numbers and how we got numbers will be discussed in great
detail.

The next major misconception is that Euclid’s five requirements are
axioms or postulates. In the following chapter, we’ll see how all five
requirements are derived systematically from nothing.

However, the failure of mainstream academics to comprehend the
concept of number is due partly to this misconception, because number
is derived from the geometry that one realises from these five
requirements. For over 2300 years no academic before me was able to
realise these facts.

Since number is the building block of mathematics, it’s no surprise that
the ideas of the past few hundred years are a compendium of gibberish
that has resulted in the chaos one finds in mainstream mathematics
which is no longer a science of measure and number, but mythology.

Behind all the ideas of mathematics lies Platonic philosophy and the
mathematics of Ancient Greece which developed directly from it. The
main concepts one deals with in geometry are location and distance –
the very concepts that are discovered from pondering an empty

https://www.academia.edu/45567545/There_are_no_postulates_or_axioms_in_Greek_mathematics
https://www.academia.edu/45567545/There_are_no_postulates_or_axioms_in_Greek_mathematics
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universe. To plot a point, that is, “.”, and call it such, is only a
visualisation of the location idea.

. is not a point.

____ is not a line.

o is not a circle.

The objects as drawn above, are mere visualisations or instantiations of
the perfect ideas representing the geometric objects known as location
and path. Location is the concept realised by asking the question
“Where?” and path is the concept realised by asking the question “How
do I go from one location to another?

For example, a line is one of innumerably many distances that are
possible between any two locations or points in the universe. A straight
line is that unique shortest distance between any two locations. A path
is thus a systematic way of moving between locations.

Therefore, the most important attribute of a line is its length or the
distance it covers. A line never consists of points because in reality,
points are like flags or road signs which are not part of a road. A point
indicates a distance along a line, but is not part of a line. This fact is true
of any geometric object. The triangle is the shortest distance joining
any three distinct locations in the universe, the quadrilateral is the
shortest distance joining any four distinct locations in the universe and
the circle is the shortest distance joining all the locations equidistant
from a given centre in a plane.
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The second most important concept in mathematics is that of
arithmetic mean or more correctly named level term or level number or
level magnitude. Every number is not only a (the adjective rational
being redundant because number implies rationality) number, but also
an arithmetic mean or level number. The misplaced mainstream ideas
of area and volume are a result of failing to understand this vital
concept. For example, no definite integral would be possible without an
arithmetic mean. We’ll see in a later chapter how the mean value
theorem is proved using the fact that it describes exactly an arithmetic
mean. I was the first in human history to realise this fact.

It therefore behooves us to understand this basic concept of arithmetic
mean which permeates all of mathematics and science. We deal with
this concept in detail in a chapter dedicated entirely to its explanation.

Had the arithmetic mean been understood correctly, area would have
been defined as the product of two arithmetic means and volume the
product of three arithmetic means.

Without the arithmetic mean which is a ratio of special fractions called
natural numbers in the vernacular, none of the following would ever
have been realised:

● Slope or gradient

● Finite difference

● Ratio

● Probability

● Derivative

● Integral
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etc.

Thus, number and arithmetic mean are the two most important
concepts in mathematics. A good understanding is not possible without
a sound knowledge of geometry.

Infinite series

There is no such thing as an infinite series – neither potential nor

actual. By writing 12 + 14 + 18 + … + 12𝑛  , we mean a partial sum which may

or may not necessarily converge. You’ll hear ignorant academics talk
about the Cauchy criterion for infinite series; in fact it is a misnomer. A
logical way to state it would be as follows:

Cauchy criterion for partial sum:

A series ∑𝑛𝑘=1 𝑎𝑘 converges if ∀ 𝜀 > 0, ∃ 𝑛∈𝑁 such that for any𝑛 > 𝑚, ∑𝑛𝑘=𝑚+1 𝑎𝑘 < 𝜀.

The above statement has nothing to do with infinity because infinity
does not exist in any form or shape and cannot be reified, which means
it is an ill-formed concept.

Observe that ∑𝑛𝑘=𝑚+1 𝑎𝑘 is the tail part of the series. In order to talk

about an infinite sum, we must have no tail part left and this is the
reason why we use 𝜀 > 0 and not 𝜀 = 0, because the latter requires a
super task which is impossible.

As a student, one is expected to prove such a statement using the
partial sum of the series or some other method. However, to see why
this requirement works is easy with an example. Consider the series:
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1 + 12 + 13 + 14 + …
Such a series can be shown to diverge using the comparison test. But
without having to learn convergence theory, what it means is that you
can choose an 𝜀 which you assume to be greater than any given tail
part and then conclude that your assumption is incorrect by proof. The
important thing to remember is that no proof contains anything about
infinity. All proofs are inference based and are finite processes which
have nothing to do with infinity.

Unfortunately, ignorant mainstream academics, define the sum of a
convergent series as being equal to the limit of the series:

The sum is defined as the limit of its partial sums:𝑆 =  𝑆𝑛  =  ∑𝑛𝑘=1 𝑎𝑘 =  ∑∞𝑘=1 𝑎𝑘  𝑆 is the sum and ∑𝑛𝑘=1 𝑎𝑘 is the limit in which the infinite series∑∞𝑘=1 𝑎𝑘 itself is assumed. What most mainstream academics don’t

understand is that the infinite series is not the limit.

For example, given 48 + 28 + 18 = 78 means the sum 78 is equal to the series48 + 28 + 18. However, 48 + 28 + 18 + … = 1 does not mean 1 is equal to the

series 48 + 28 + 18 + …, because such a series is not possible. In fact, the

limit does not care if the terms are all there or even there at all. The
limit also does not care if all the partial sums are possible or not.

Such dysfunctional thinking started with Isaac Newton who
unfortunately chose to call his partial sums “infinite series”.
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An infinite series is equivalent to a series with a general term and
possibly a sum to 𝑛 terms. It is represented by a partial sum followed by
an ellipsis. There is nothing infinite about it.

An infinite series sum is equivalent to the limit of a convergent partial
sum. There is nothing infinite about it. It’s meaningless to talk about1 + 2 + 3 + 4 + … because such a sum has no limit unless you are a
theatrical physicist (fake theoretical physicist).
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Chapter 4: There are no axioms or postulates in mathematics

The first Book of Euclid’s Elements is the least understood of all thirteen
books. Appearing in Book 1 straight after the definitions, we have five
requirements (Aιτήματα: (h)ey-tea-ma-ta) which are interpreted as
postulates by the mainstream academics of the last two thousand
years. The first requirement contains the Ancient Greek word Ηιτησθω
((h)e-tis-tho) whose meaning is uncertain. Sir Thomas Heath translated
this word Ηιτησθω as “Let it have been postulated”. The modern Greek
word υποθέτω ((h)e-poe-the-to), means to assume or hypothesise or
even guess. However, there is no obvious connection between the
ancient and the modern words.

The word Ηιτησθω is used only once in all thirteen books and its
meaning is unclear. It is doubtful that Euclid hypothesised anything
because the whole idea of the Elements was to write down the
foundations of mathematics in a systematic and coherent way. The
base concepts such as point, line, circle, etc., were clearly understood
by the Ancient Greek scholars. There was no need for Euclid to derive
all of these from nothing, however it certainly would have helped.

A postulate or axiom today is simply a definition that has been vetted
over time. While a definition cannot be described as right or wrong, it
can be well formed or ill formed. Thus, by calling a definition ‘right’ or
‘good’, we mean it is well formed as per the guidelines described in
chapter two.

The words postulate and axiom were not realised in Euclid’s time,
therefore it is preposterous to assume that Euclid meant ‘axiom’ and
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not ‘requirement’ or ‘claim’. In many instances, Euclid omitted proofs
by writing “I say, …” and then stating a result or theorem. There are no
axioms or postulates in sound mathematics. It’s ironic that an advanced
automation engine such as ChatGPT can comprehend these facts, but
not a professor of mathematics. Such a shame!

Book 5, Proposition 12 forms the foundation of all fraction (numbers),
arithmetic and algebra. It can be easily demonstrated using similar
triangles and one can see how this is done in appendix B.

If Newton understood this proposition, you probably wouldn’t be
reading this, because the derivative is easily defined using the property
of this proposition as demonstrated in the New Calculus, that is,𝑓′ 𝑥 = 𝑓 𝑥+𝑛 −𝑓(𝑥−𝑚)𝑚+𝑛
where 𝑚 and 𝑛 are horizontal distances from the point of tangency(𝑥,𝑓 𝑥 ) to the endpoints of a secant line that is parallel to the tangent
line at the same point and 𝑥 − 𝑚 < 𝑥 < 𝑥 + 𝑛 .
But let’s not get ahead of ourselves. To say that the Ancient Greeks
were intelligent beyond belief, is an understatement. Often, they would
omit more than half of a given sentence when the meaning and
inference were clear from context. In certain instances, even the
adjectives used to disambiguate, were dropped as qualifiers. There are
many examples in the Elements. These language rudiments of Ancient
Greek can be discussed in lengthy volumes, but that is not the purpose
of this book.

The five requirements (not postulates or axioms) can be systematically
derived from nothing, that is, as well-formed concepts. There is no
need to accept anything on faith and no need to call any well-formed

https://www.academia.edu/45567545/There_are_no_postulates_or_axioms_in_Greek_mathematics
https://www.academia.edu/45567545/There_are_no_postulates_or_axioms_in_Greek_mathematics
https://www.academia.edu/99240694/Lesson_1_Euclids_5_requirements_systematically_derived_from_nothing_no_initial_asumptions_or_axioms_or_self_evident_truths
https://www.academia.edu/69488136/Theory_of_fractions_from_Book_5_of_Elements_for_Dummies
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concept an “axiom”. Contrary to mainstream academic thought, the
foundation object in geometry, which is the ‘point’, is a very well-
defined concept. A point is simply the idea of location or place. It arises
instantly when the question “Where?” is asked. In a void universe,
location is impossible to reify. There is no frame of reference or a
means of describing (using coordinates) any given location exactly.

The Greeks overcome this by using a conic coordinate system whereby
any location or conic curve can be described in space using the cone.
For example, if we are observing a cone and the apex is on top with
reference to us standing upright, then a random parabola is given by a
cone rotation, distance from cone apex to disk on which parabola apex
rests and distance between cone apex and parabola apex. A particular
point would be described by the intersection of the geometric objects
and those cone geometric objects acting as locators on the cone itself.

But to arrive at the cone, it is first necessary to produce the objects
from which the cone is constructed, that is, a point, line and circle.

The locators (lines and circle) for the black point which is the parabola
apex are indicated in red in the diagram that follows:
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The clarity of Ancient Greek thought has been unmatched by any who
came before or after them. In the history of mathematics, no such
clarity has been realised in the last 2300 years.

Preliminary notions:

It is imperative first to understand that noumena (or well-formed
concepts) exist independently of the human mind or any other mind. In
fact, these noumena do not even require a Creator or God for those of
you who might be religious. A noumenon (first coined by Immanuel
Kant) is a perfect concept that exists inanimately and requires no prior
existence or thought. To start with an example:

Consider that the symptom of the incommensurable magnitude known
as the constant 𝜋 exists, whether the Ancient Greeks thought of it or
not. 𝜋 is a noumenon, because it is a well-formed idea or concept that
arises when an attempt is made at measuring a circle's circumference
using its diameter.

Whoa! You may exclaim, but where did points, lines and circles come
from? All geometry which exists independent of any mind, is based on
the base geometric object called a point.

What is the point?

A point is simply an idea of location or place. It asks the question
"Where?".

The period or dot that is normally used to represent a point, that is, '.',
is only a visualisation or instantiation of the noumenon. The next logical
idea that arises, is the relation of one point to another, that is, how to
get from one location to another. It begs the question "How to get
there?". In other words, what are the directions. A rudimentary
definition would be to posit two locations: ‘here’ and ‘not here’. Motion
can be defined as the change in location.
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A systematic approach.

At this stage, we can't give precise directions yet. But we do observe
that between any two locations/points, there are innumerably
many paths. We also observe that any given path describes a collection
of directions from one point to the other. So, a path describes the
process or means of moving from one point to another. Naturally, it
involves at least one or more directions, that is, a change in direction is
possible. If we think of two individuals as points and a third person
moving from one individual to the other without any change in
direction, we arrive at the idea of a shortest distance. From this, we can
formulate our second geometric object called the straight line:

A straight line describes a path between one point and another, such
that the direction remains unchanged.

Or a path consists of directions and the path with the least directions (a
primitive tally using a one to one correspondence between the
different path directions) must be the shortest one, that is, the straight
line.

Direction is well defined: It is the "How do I get there?" concept.

Definition of direction: The orientation of a given object that moves
along a path or course.

Orientation can initially be defined very simply as facing toward or
facing away from a given object which is used as a reference point.

Pause to think about the definition of straight line. Does it require
acceptance of any prior beliefs (axioms)? Does it require any vague or
mystical dogmas? The answer is no. Therefore, we are able to define a
straight line perfectly with only two points, that is, a straight line is the
shortest path or distance between two points. Clearly, any change in
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direction between the two points whilst traversing from one to the
other, will result in a distance that is longer.

To see the general logic behind this principle, consider any path, and
then observe that any deviation from the path will result in a longer
path. See? It’s very easy to define. This idea works on all surfaces. For
example, you may have heard the expression "As the crow flies" - this
actually means the shortest distance or the "most direct" distance,
even though "most direct" is a redundancy where the meaning of
direction is concerned and in the case of the crow, the shortest
distance is a geodesic. We simply say the direction resulting in the
shortest path, that is, no change or deviation from a given course.

From the geometric object called the straight line, it is easy
to systematically derive all the remaining so-called "postulates"
(actually requirements).

The second requirement states that a straight line can be extended
indefinitely (as near or far as desired) in either direction. The definition
and proof of this requirement is amazingly simple. All one has to do, to
prove the second requirement, is to consider a portion of any given
straight line, and since we know that a straight line exists between any
two given points from the first requirement, we are done.

First, we define a complete path as that path which starts at one point
and ends up at the same point after it has traversed other points. This
path describes a distance between the points since points have no size.

The third requirement is stated as follows:

A circle is that shortest complete path from which the distances to a
given point called a centre, are all described by the same straight line
and a straight line (*) from one point on a circle, if extended toward the
centre, will meet the circle path again.
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Consider that all the paths on a sphere’s surface would be circles if the
word shortest and the last qualification (*) were omitted. In
astronomy, any such path is called a great circle. In the following
diagram, any point on the red path shown on the surface is the same
distance from the circle centre.

From this, we can immediately define a plane as the indefinite area
spanned by a circle of increasing radius (size in area).

In only a few pages, we have already derived the first three
requirements from nothing. We can now also define a sphere’s surface
as that geometric object which describes all circles with the same
radius. Furthermore, we can define a sphere as the solid created from
the encompassed space (volume) spanned by a rotating circle.

The fourth requirement states that all right angles are equal. Before we
can prove this fact, we first have to define what an angle is and several
other geometric objects.

An angle is formed at the intersection of two lines which is called
a vertex.
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For any angle to be measured, the vertex must coincide with the centre
of any circle and one of the lines must coincide with a diameter, which
is a line segment through the circle centre whose endpoints lie on the
circle path.

A ratio of magnitudes is literally the comparison of any two given
magnitudes. A magnitude can be length, mass, area, volume or any
other scalar quantity. Since we are dealing with line segments, it
follows that given any two line segments AB and CD, the ratio AB : CD is
the comparison of the lengths of AB and CD. AB is called the antecedent
and CD is called the consequent.

Bear in mind that at this stage we have no numbers yet. Thus, length is
just some given magnitude or quantity or size. Choose whichever word
you like best, because they all mean the same thing: the concept of
size, dimension or extent.

An arc is any length portion of the circle path also known as the
periphery or circumference.

The measure of an angle is defined as a ratio of magnitudes, where the
antecedent is the length of a circle arc subtended by the angle, to the
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consequent which is its radius length, where the radius is the straight
line from the centre to any part of the circle path. The vertex is located
at the centre of any circle, so that the angle has a corresponding arc on
the circle.

Definition:

A right angle is realised by observing that four equal arcs correspond to
four angles in any given circle.

Proof:

Given that any diameter, a line through the centre, partitions the
circumference of a circle into exactly two equal paths or parts by
the property of symmetry (*), we know that any diameter subtends an
arc that is half the circumference. By compass and straightedge
construction, we can show that a bisector of the diameter can be
constructed at the centre of any circle. A bisector by definition divides
the diameter into two equal parts called radii. Such a bisector further
also divides the half circle circumference into two equal parts. Note
that the arcs so formed on either side of such a bisector, are equal by
symmetry, thus we call each of these angles in the half circle right
angles. Moreover, we call the bisector line a perpendicular to the
diameter, because it forms two right angles whose vertices are at the
centre – one on either side of the diameter.
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(*) Symmetry is the property or attribute of being made up of exactly
the same paths, lines or parts in general.

Before we can get to the fifth and last requirement, we need to define
parallel lines.

So, we now have defined the concepts of centre, vertex, angle, arc,
ratio, right angle, radius, diameter, arc, bisector, perpendicular and
introduced the notion of symmetry, that is, the quality of being made
up of exactly similar paths or parts.

A transversal line is a line that intersects (crosses) two different lines.
The lines being intersected, may themselves intersect each other
without respect to the transversal. All the lines in the figure below are
transversal lines.

Parallel lines are chords or lines that are subtended on equal arcs
between the chord and the diameter, and are said to be parallel to the
diameter. In the figure that follows, the green lines are parallel and the
blue arcs equal.
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Henceforth, I will be using the established fact that two diameters are
perpendicular to each other and whose point of intersection is the
circle centre. In the diagram below, green and blue diameters are
perpendicular because there are four equal arcs.

A chord that rests on equal arcs from a given diameter is parallel to the
diameter which it does not intersect and perpendicular to the diameter
which it does intersect. Either of the diameters can serve the function
of transversal.

Cointerior angles lie between the two lines (chord and a diameter) on
the same side of the transversal.

An alternate angle always lies between the parallel lines (one is the
chord and the other is the diameter) and is equal to the cointerior angle
located at the other parallel line (diameter) on the opposite side of the
transversal.

Proof that sum of cointerior angles is two right angles:

Given that there is only one diameter/transversal that is perpendicular
to the other diameter, it follows that a parallel chord (line) will also
intersect the transversal (diameter) at right angles.

Therefore, the sum of angles formed where a transversal (diameter)
cuts two parallel lines (chord and perpendicular diameter) is two right
angles, because the parallel line (chord) is straight and by symmetry,
the alternate angles are equal. Hence the proof is complete.
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All that remains to show, is that lines (chord and diameter) are parallel,
provided the sum of two cointerior angles is equal to two right angles.

Proof:

If we take any other diameter as a transversal, one that is not
perpendicular to the chord or remaining diameter, then we see that the
alternate angles are equal by symmetry about the transversal.

Hence, the sum of two cointerior angles is always two right angles
regardless of how the transversal cuts the parallel lines.

One more thing to do before we look at requirement 5, that is, we need
to define a triangle and establish a theorem regarding the sum of its
angles. A triangle in a plane can be defined as the shortest distance
joining three distinct points. We can let two of these points lie on one
parallel line and the other on the remaining parallel line.

We can prove that the sum of the angles in a triangle is two right
angles.

Proof:
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This is easily proved using alternate angles and transitivity of equality.
The property known as transitivity of equality states that if 𝑝 =  𝑞 and𝑞 =  𝑠, then 𝑝 =  𝑠.

Let the lone angle with vertex A on the parallel line be denoted by x and
the other two angles with vertices B and C respectively on the
remaining parallel line be denoted by y and z. Then AB and AC are
transversals, and so the alternate angles that are supplementary (**) to
x are equal to the corresponding alternate angles on the other parallel
line, that is, the angles that are supplementary to y and z.

Since the triangle consists of all the angles that are supplementary on
the parallel line where the lone angle is located, it follows that their
sum must be two right angles.

(**) Supplementary angles are angles with the same vertex such that
their sum is two right angles.

Measure of an angle:

I defined ratio as the comparison of two magnitudes. From this I define
the measure of an angle as the ratio of its arc length to the given radius,
that is,

arc length : radius

The measure of an angle is not necessary to complete the requirements
since angles are considered as a factor or multiple of the magnitude
already defined as a right angle, but is included here for good measure.

The measure of an angle is given the dimension radian, because it is a
product of some magnitude and 2𝜋.
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Measure =   2𝑘𝜋𝑟𝑟  =  2𝑘𝜋 where 𝑘 is a magnitude. One radian is the

measure of that angle whose arc length equals to the length of the
radius.

Now we are ready to state the fifth and last requirement in very simple
language:

The sum of cointerior angles on the same side of a transversal is
constant.

What this means, is that it does not matter if the lines are parallel or
not, and it also does not matter how the transversal cuts the lines. This
is the essence of requirement 5, not the statement of the parallel
postulate, you may have heard repeated over and over again by
mainstream academics.

Proof:

If the lines are parallel, then we are done, since we already know that
the cointerior angles have a sum of two right angles.

If the lines are not parallel, then we know that a triangle is formed on
the side of the transversal where they (non-parallel lines) meet. Given
that the angle where the lines meet does not change, it follows that the
sum of the remaining angles is constant on either side of the
transversal. Q.E.D.

The fifth requirement is stated in the Elements in terms of only the
cointerior angles on one side of the transversal, the side where the
lines intersect, that is, the sum of the cointerior angles is less than two
right angles. But this is obvious from the proof that the sum of triangles
is equal to two right angles. The way I have stated the requirement
addresses the sum of cointerior angles being constant on either side of
the transversal.
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I have painstakingly shown you in just a few pages how you can
systematically derive all of the requirements from nothing by
constructing all the 5 requirements, beginning with the point. It should
be clear that there are no axioms or postulates in Greek mathematics.

The next step is the derivation of the abstract concept known as
number.
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Chapter 5: How we got numbers

In this chapter, I'll show you how to derive the concept of number from
nothing, as it should have been derived. In order to do this, I build on
the brilliance of the Ancient Greeks whose clarity of thought was
unmatched by any who came before or after them.

After Euclid and before me, not a single mathematics academic, ever
understood what is a number. The fact that academics called the
requirements axioms or postulates is proof of this, because in order to
derive numbers, these requirements must have been established.
Mainstream academics failed dismally to understand what Euclid was
attempting to write down – the perfect derivation of numbers. The
Chat bot ChatGPT can actually understand the derivation but once
again, mainstream mathematics professors are too stupid.

First, let me begin by saying that the foundations of mathematics have
nothing to do with set theory or Georg Cantor, whom I am convinced
made a grave blunder in mathematical research and student education.
Cantor was unable to have a clear understanding of number and
associated properties such as arithmetic using the binary operations.
His work, I would argue, should have been taken into more scrutiny
before being taught and used as a viable construct of research.

Secondly, well-formed concepts exist as noumena, independently of
the human mind or any other mind. This truth was explained by the
world's greatest philosopher - Plato. Platonism is the theory that
ideas/concepts or other abstract objects are objective, timeless
entities, independent of the physical world and of the symbols used to
represent them.

Thirdly, a well-defined concept is imperative in mathematics or any
discipline. It is a very dangerous thing to rely on one’s intuition. Many
academics such as set theorists, topology majors and teachers of real

https://www.academia.edu/44820487/Discovering_the_concept_of_number_a_personal_journey
https://www.academia.edu/44820487/Discovering_the_concept_of_number_a_personal_journey
https://www.academia.edu/99769513/Lesson_2_The_concept_of_number
https://www.academia.edu/78740399/Georg_Cantor_the_father_of_all_mainstream_mathematical_cranks
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analysis, are guilty of relying on their intuitions which arise from ideas
that are ill-formed.

Unless a concept can be reified, either intangibly or tangibly, you may
as well dismiss it as junk knowledge. Anything you build from it, will
eventually be filled with paradoxes and contradictions, only to become
so complex, one can only wonder if such knowledge should be passed
onto future generations.

To understand numbers, one must start with Euclid. It might surprise
you that measurement came before numbers. How so? Well, the
Greeks started off with the concept of magnitude.

A magnitude is the idea of size, dimension or extent. (Elements, Bk. V,
Definition 1)

A magnitude is decidedly not a number. It can be a length, mass,
volume or any other measurable size, dimension or extent.

The Greeks used line segment lengths usually denoted as 𝐴𝐵, 𝐶𝐷, et
cetera. For this to be accomplished, it was necessary to have the 5
requirements in place already.

We begin to consider any two magnitudes by comparing the same. This
comparison is denoted by a ratio of magnitudes which came long
before numbers or ratios of numbers. Given line segments 𝐴𝐵 and 𝐶𝐷,
we write 𝐴𝐵 :𝐶𝐷 which literally means 𝐴𝐵 compared with 𝐶𝐷. Since
neither magnitude is a number, we can only perform qualitative
measurement or trichotomy, that is, if we can tell visually (qualitatively)
that 𝐴𝐵 is not equal to 𝐶𝐷, then we can go a step further to conclude
which line segment is longer or shorter. That's all we can do if we stop
here. For example, we can't tell what the difference (the most primitive
arithmetic operator) is in any more precise terms.

Much later, the idea of fraction was born from ratio, that is, if 𝑝 and 𝑞
are magnitudes, then 𝑝 :𝑞 means that 𝑝 is always measured by the
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magnitude 𝑞 following the colon. A new representation was designed
for the measure that describes a number, that is 𝑝𝑞 which does not

mean “𝑝 divided by 𝑞”, but rather “ 𝑝 is measured by 𝑞”.𝐴𝐵 : 𝐶𝐷 is called a ratio of magnitudes. The idea of unit was discovered
when the Greeks compared two magnitudes of the same size, that is,𝐴𝐵 : 𝐴𝐵. The outcome of such a comparison is equality or zero
difference. To find out how different are other magnitudes from 𝐴𝐵,
we can designate 𝐴𝐵 to be the standard or unit of measurement.
Hence the abstraction of the unit was discovered. Note that the size of𝐴𝐵 is immaterial.

In the case of magnitudes such as constants 𝜋 and 2, the unit is not
required, because measurement takes place with the diameter of a
circle and the leg of a right-angled isosceles triangle respectively. Circles
with diameters are symptoms of 𝜋, just as right-angled isosceles
triangles are symptoms of 2. It is impossible to measure any
magnitude, given only its symptoms.

A number is a name given to a measure that describes a ratio of
magnitudes.

Provided any two magnitudes are commensurate with 𝐴𝐵, these can
now be quantitatively measured, that is, we can tell the difference (if
any) exactly in terms of units. As you can see, the discovery of the unit
was a quantum leap in the efforts to measure more precisely. After
arithmetic and algebra were established in Book V of the Elements
using magnitudes in geometry, the ideas were extended in Book VII
Definition 1, to numbers through the abstract unit.

This knowledge led to the ideas of multiples and factors. Given a unit𝐴𝐵, a multiple of 𝐴𝐵 is measured exactly by 𝐴𝐵 and 𝐴𝐵 is called a
factor of that multiple. From what you've read so far, it becomes clear
that we can construct the natural numbers from any given unit.

https://www.academia.edu/99881067/Ancient_Greek_Construction_workers_could_perform_all_four_basic_arithmetic_operations_with_any_magnitude_to_100_accuracy_and_no_knowledge_of_numbers_or_mathematics
https://www.academia.edu/99881067/Ancient_Greek_Construction_workers_could_perform_all_four_basic_arithmetic_operations_with_any_magnitude_to_100_accuracy_and_no_knowledge_of_numbers_or_mathematics
https://www.academia.edu/99881067/Ancient_Greek_Construction_workers_could_perform_all_four_basic_arithmetic_operations_with_any_magnitude_to_100_accuracy_and_no_knowledge_of_numbers_or_mathematics
https://www.youtube.com/watch?v=KIBd6a4cZXY
https://www.youtube.com/watch?v=KIBd6a4cZXY
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What this means is that provided the magnitude is a multiple of a unit,
we can define the natural numbers as ratios of such a multiple to the
unit. I bet you never imagined that ratios came before the natural
numbers! In contrast, modern mathematics states that natural
numbers are considered the starting point. We can name these
numbers by assigning symbols as we please, for example a, b, c or 1, 2,
3 and so on (Elements, Bk. VII).

But what happens if a magnitude is part of a unit? We let those equal
parts of the unit be units, and the measurement of the unit by those
equal parts of a magnitude, to be the number, that is, a fraction and
thereby arrive at a representation for the magnitude. All numbers are
fractions.

The key to this approach is to divide the unit into the right amount of
equal parts and the answer is simply that natural number, which results
in the measurement of those equal parts. That number is the
antecedent part of the fraction or the numerator as commonly referred
to in today's lingo. The consequent part is the number of equal parts in
the unit or the denominator.

From the natural numbers, we define fractions as a ratio of natural
numbers.

Example: 2 : 3 or 3 : 2 or 22 : 7, etc. For the ratio 𝑚 : 𝑛, we call 𝑚
the antecedent part, and 𝑛 the consequent part. If the antecedent is
less than the consequent, then we have a proper fraction, that is, a
number 𝑥 such that |𝑥| < 1 (𝑥 lies between − 1 and 1), otherwise we
have an improper fraction. All numbers are by definition fractions.

One ought to bear in mind that the abstract unit is dimensionless, not
like the units one finds in a table of standard units or a table of
physical measures. Furthermore, the physical unit is not the same as
the abstract unit even though it inherits all its properties therefrom.
Rather, the abstract unit is used to generate all the rational numbers

https://www.academia.edu/89794682/Understanding_the_concept_of_number_in_just_2_pages
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(fractions). The word rational is redundant in front of the word number
because to be a number implies rationality. The abstract unit starts off
as a qualitative comparison of equal magnitudes. The abstract
magnitude 𝑢 is chosen randomly as a standard measure. So 𝑢 : 𝑢 is the
unit. Then the natural numbers are formed as multiples of the unit, that
is, 𝑘 : 𝑢 where 𝑘 is a multiple of the unit. Next, the rational numbers are
from ratios of ratios where the consequent ratio is always 𝑢 : 𝑢. Rather
than write 𝑘 : 𝑢 : 𝑢 : 𝑢, we simply write 𝑘.

Also, if 𝑚 : 𝑢 and 𝑛 : 𝑢 are two multiples of the unit, then 𝑚:𝑢 :𝑛:𝑢 is
called a fractional ratio of magnitudes. Now, we want to deal only with
numbers and since we know the unit, we omit the 𝑢 and write 𝑚:𝑛 or𝑛:𝑚.

So how do we differentiate a ratio from a fraction? We introduce the
vinculum symbol - that horizontal line which separates the numerator
from the denominator, eg. 𝑚𝑛 or 𝑛𝑚. Thus, we write 23 or 32. The vinculum(−) does not mean division, because we are defining the new symbols
of fractions. Any division used has already taken place in the prior
processes. Geometrically, it's very easy to divide any line segment into
any number of equal parts. Algebraically, this is a different story - enter
the obelus or division symbol, ÷, which denotes repeated subtraction
(numerator minus denominator) if the numerator is greater than the
denominator and terminates once the remainder is less than the
denominator.

If _ : _ _ is a ratio, then its measure, that is, measure ( _ : _ _ ) = 12.

Contrary to popular academic misconception, nothing happens when
the numerator is less than the denominator, example: 1 ÷ 3 = 13. All

that happens in algebra, is that the obelus dots are discarded, the 1
goes to the top of the vinculum and the 3 goes to the bottom of the
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vinculum. In other words, nothing happens in algebra. The vinculum
does not mean division (as per the obelus binary operator ÷) when the
numerator is less than the denominator. In fact, it needn't mean
division vice-versa either, but then the operations of arithmetic on
fractions become slightly more complex.

Division (ala obelus) is repeated subtraction and applies only when the
first operand is greater than the second, that is, given 𝑝𝑞, 𝑝 must be

equal or greater than 𝑞.

For example, in order to convince me that 1 ÷ 3 equals to 13 using

algebra, you would need to use the same process of repeated
subtraction. The fact is that you can't, because there is only a
remainder, that is, the numerator is already smaller than the
denominator, so no subtraction takes place at all, i.e. no division à la
obelus.

The truth of these facts is once again confirmed by realising that most
academics have never understood division or even polynomial division,
except by rote fashion. They also forget that any binary arithmetic
operation is finite and cannot continue indefinitely.

The derivation of the rational numbers is complete. Notice that I made
no reference to beliefs that are the essence of axioms and postulates.
There are no axioms or postulates in mathematics.

Any magnitude that can't be measured by the unit or another
magnitude other than itself, is called an incommensurable magnitude,
not an irrational number as defined by mainstream academia. A
magnitude is not a number!

There was no accident when Euclid defined a magnitude in Book V and
number in Book VII, that is, an incommensurable magnitude (or
magnitude that is incommensurate with any other magnitude) has no
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common measure with any other magnitude. As such, it cannot be
called a number, because it can never be measured or described exactly
by any other magnitude or established number. Examples are the
constants 𝜋, 𝑒, 2, etc. These magnitudes are called incommensurable.
Euclid called these irrational magnitudes, not irrational numbers
(Elements Bk. X)

A number is the measure of a ratio.𝜋 is a constant that is discovered from a ratio of magnitudes which has
no common measure with any other ratio:

circle periphery : diameter

Through the Pythagorean theorem, we discover that 2 is also not a
number.

But you may say, how is it that we can well define a square with area of2 square units? The fact is that both 2 and 2 are magnitudes. It is
possible to perform all arithmetic operations using magnitudes in
geometry without any use of numbers.

One of the greatest mathematicians called Gauss agreed with me:...3 is not as close to the true value of 𝜋 as is 3.14, and 3.14159 is still
closer. By adding additional places to the right of the decimal, it is
possible to approximate the true value of 𝜋 as closely as one likes. But
Gauss insisted that one could not assume all the terms of the decimal
expansion to be given to determine 𝜋 exactly. To do so would involve
an infinite number of terms, and thus comprise an actually infinite set
of numbers, which Gauss refused to allow in rigorous mathematics
[Dauben 1977, 861.]

What Gauss was also saying here that is not immediately clear to most,
is that there is no such thing as an infinite set.
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One can only approximately describe incommensurable magnitudes. It
has been proved that there is no valid construction of irrational
numbers, hence no real numbers too. Neither classes of equivalent
Cauchy sequences nor Dedekind Cuts are valid constructions.

To begin, one should realise that any magnitude that cannot be
measured exactly in terms of rational numbers, is not a number of any
kind. It is the measure of a magnitude that results in a number. Not the
partial measure of a magnitude, or even a point in the ‘real’ number
line as Dedekind imagined which supposedly corresponds to a real
number.

As an exercise, find the measure of the following ratios:

_ _ _ : _ _ _ _ = ?

_ _ : _ _ _ _ _ = ?

_ _ _ : _ = ?

What does it mean to reify a point on the number line?

Consider that all rational numbers can be constructed from a chosen
magnitude which is normally called the 'unit'. Suppose we choose ____
(four underscores) as the standard unit. It's not necessary to use line
segments. One could also use areas, masses, volumes or any other
magnitude, but line segments are simple and that's why they are the
easiest to use!

How do we reify the origin (zero) on a number line?

We simply place the units adjacently, that is, |____|____, where the
vertical line is actually invisible and represents the marker or point. It
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takes up no space at all; just as well, because points have no size and
we would run into contradictions otherwise. Thus, we can calibrate the
first part of our number line with the symbol 0 meaning no magnitude.
The first vertical line represents 0. The second vertical line represents
the unit or 1. So, to reify the number two, we draw |____|____|____
and the third vertical line represents 2. Please note that on an actual
number line, there are no spaces between the vertical lines and the line
segments. In fact, the vertical bars take up no space whatsoever - they
are the points or markers.

We can easily represent any rational number on the number line in the
same way. For example, to represent 34 , we simply place four equal line

segments (magnitudes) adjacently and call the sum of them all a unit.
That is, |____|____|____|____| so that the second vertical line
represents 14, the third represents 24 and the fourth vertical line

represents 34.

So, to reify a point involves accomplishing all of the following:

a. Constructing the line segments

b. Assigning the markers (as in calibration)

c. Providing a measure for each marker

We've looked at (a) and (b), but we still need to understand what is the
meaning of (c).

A number is the measure of a magnitude.

Symbols are not numbers, but objects used in representing numbers. In
the previous examples, we call the unit by '1'. Consequently, we call
two units placed adjacently by '2' and so forth. Given that ____ is the
unit, we can represent 2 and 12 respectively as follows:

https://www.youtube.com/watch?v=89ijBoBcKRU
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21 = |____|____| : |____|12 = |____| : |____|____|

In each case, the abstract magnitude we imagine is well defined in
terms of the given unit. Therefore, (c) requires that any given
magnitude be expressible in terms of the chosen unit, that is, there
exists a number that describes its measure in terms of the unit. On the
number line, the measures are used to qualify the markers or points.

So, reification is a 3-step process. As long as we have our chosen unit
and can represent all magnitudes in terms thereof, we can calibrate our
number line with any chosen unit.

What about those magnitudes that refuse to be measured by the
unit?

Consider that 2 is such an (incommensurable) magnitude. For
starters, there is no unit we can choose to measure the hypotenuse of a
right-angled isosceles triangle.

We realise the symptom of 2 from a right-angled isosceles triangle
just as we realise the symptom of 𝜋 from any circle circumference
whose measure is attempted by the circle diameter.

We can never reify 2 or 𝜋 on the number line, therefore it is
impossible to calibrate any number line with a marker and a number
that describes the measure of these incommensurable magnitudes. The
symbols 2 and 𝜋 are decidedly not measurements! They denote
magnitudes or more accurately constants whose measure is not
possible.

Mainstream academics are misinformed in their thinking that a Taylor
series describes 𝜋 or 2, for no matter how many digits are produced,
the result is never representative of any incommensurable magnitude.
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In fact, there are innumerably many other numbers with the same first𝑛 digits as 𝜋 or 2.

Dedekind’s claim to fame is that he could describe any
incommensurable magnitude (erroneously called ‘irrational’ number)
by two sets of rational numbers. Consider the following:𝐷 = {𝑑∈𝑄:𝑑2 < 2  ˅  𝑑 < 0} or 𝐷 = {𝑑∈𝑄:𝑑 < 2  }𝑈 = {𝑢∈𝑄:𝑢 > 2  }
Dedekind claimed foolishly that 2 = {𝐷,𝑈} .

But in what way does Dedekind describe the incommensurable
magnitude 2 ? Does he describe it exactly in terms of rational
numbers? Can 2 be measured using the definition 2 = {𝐷,𝑈} ?

The following questions arise immediately in the mind of an astute
reader:

1. The lower set 𝐷 has no least upper bound that is recognised,
except as 2. How can one write (or measure in a radix system
such as base 10) 2 as a finite sum of known numbers, that is,
rational numbers?

2. The upper set 𝑈 has no greatest lower bound that is recognised,
except as 2. How can one write 2 as a finite sum of known
numbers, that is, rational numbers?

3. Is it a good idea to claim that 2 corresponds to a point on the
‘real’ number line, when we know that such a point cannot be
reified. That is, while it is possible to mark off 2 geometrically,
the invisible marker (point) cannot be associated with any known
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number, except the symbol 2. But as yet, 2 has not been
shown to be a number of any kind.

We’ve already learned that 2 cannot be reified on any number line.

It is easily seen that 2 is really all that Dedekind had to describe the
incommensurable magnitude, that is, given by the hypotenuse of a
right-angled isosceles triangle whose equal legs are of length 1 unit.
The two sets (− ∞, 2) and ( 2,∞) tell one absolutely nothing about2.

Rather than deal with the entire number line, in the following example,
I choose without any loss of generality, only the interval (0,1) to
attempt my definition of ‘irrational’ number using Dedekind’s idea of a
cut. In the example, I try to find a unique partition of the number line

such that 22 is well defined. Observe that 0 < 22 < 1.

Let’s begin by arranging all the rational numbers with denominators not
greater than 6 in the interval [0,1] in ascending order:𝑅6 = 0, 16 , 15 , 14 , 13 , 25 , 12 , 35 , 23 , 34 , 45 , 56 ,1
The elements of 𝑅6 are irreducible fractions. Supposedly, we can

sandwich an arbitrary ‘irrational’ number, say 22 , in the interval [0,1]
between two neighbouring elements of 𝑅6, that is, between the

elements 23 and 34 .

For example, 22 is between 23 and 34 : 23 < 22 < 34 .
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So, the ‘irrational’ number 22 divides 𝑅6 into 𝑆6(9) and 𝐿6(9) as

follows: 𝑆6(9) = 0, 16 , 15 , 14 , 13 , 25 , 12 , 35 , 23𝐿6(9) = 34 , 45 , 56 ,1
23 is the ninth element of 𝑅6. The set 𝑆6(9) contains all the elements

less than 22 and set 𝐿6(9) contains all the elements greater than 22 .

Using the previous example, we can generalise it as follows:𝑅𝑛 = 0,𝑄2 ,…,𝑄𝑚 ,𝑄𝑚+1 ,…1
with 𝑆𝑛(𝑚) = 0,𝑄2 ,…,𝑄𝑚
and 𝐿𝑛(𝑚) = 𝑄𝑚+1 ,…1
Thus, the cut can be written as: 𝑆𝑛 𝑚 ,𝐿𝑛 𝑚 .

As 𝑛 increases, the cut presumably approaches some ‘irrational’ (or
‘real’) number 𝑘:𝑙𝑖𝑚𝑛→∞ 𝑆𝑛 𝑚 ,𝐿𝑛 𝑚 = 𝑘 [D]

Notice that there are an innumerable number of partitions (Dedekind
cuts) that sandwich the ‘irrational’ number 𝑘. Since 𝑛 can never be
infinite, there is no unique cut.
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Furthermore, a cut does not define an ‘irrational’ number, because no
finite 𝑚 can be found such that [D] is unique.

And if no finite 𝑚 can be found, then which of the innumerable
‘irrational’ numbers is 𝑘?𝑚 is not infinite, it is defined as an integer in definition [D] which is the
definition!

To convince yourself these claims are true, find 𝑅7 as an exercise, then

find 𝑚 for 𝑆7 𝑚 ,𝐿7 𝑚 .

For the same reason, a Cauchy sequence does not define a real
number, because from the lower set of a D. Cut, one can obtain
innumerably many equivalent Cauchy sequences exhibiting the same
logic flaws as Dedekind cuts.

Let’s take the cut 2,3 ∪ [3,4] or − ∞,3 ∪ [3,∞).

These are equivalent without any loss of generality since the point
referenced remains unchanged.

The main objection from mainstream academics is to this definition.
Ironically, it simplifies Dedekind’s definition and nothing is lost. But let’s
see how to find a Cauchy sequence.

Choose the general term to be𝑆𝑛 = 𝑆𝑛−1 + 12𝑛−1
Let 𝑆1 = 2
Then
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So, the Cauchy sequence extracted from the lower set is𝑎1 = 2.5;2.75;2.875;…
It's very easy to verify that the limit of this sequence is 3 and we are
done.

By using the following definition, one can extract innumerably many
other Cauchy sequences which converge to 3 also:𝑆𝑛 = 𝑆𝑛−1 + 1𝑟𝑛−1
where 𝑟 > 1,  𝑛,  𝑟 are natural numbers and [𝑎𝑟] is a Cauchy sequence.

To further convince yourself that D. Cuts are nonsense, try to use the
above method in a similar way for the cut 3,𝜋 ∪ 𝜋, 4 .
If you are astute, then you will notice that you would need a distance
that converges to |𝜋 − 3|, but this difference is assumed to be possible
in the very definition of the number being attempted. Do you think
circularity in any definition adds to its well-formedness?

The gist of this comment is that if you have two numbers that are
close to each other, there is no unique way of representing the D. Cuts
as proved in my example. That is, both cuts would have an
indeterminate𝑚 and span the same interval.
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Objections:

"You aren't using the definition!"

Oh yes, I am! However, I am not bound by any malformed definition.

"A cut is a partition of rational numbers into two non-empty sets 𝐴 and𝐵, such that all elements of 𝐴 are less than all elements of 𝐵, and 𝐴
contains no greatest element."

A cut [3,𝜋) ∪ 𝜋, 4 is a partition of rational numbers into two non-
empty sets 𝐴 = [3,𝜋) and 𝐵 = [𝜋, 4] such that all elements of 𝐴 are less
than all elements of 𝐵, and 𝐴 contains no greatest element.

Since [3,4] is a subset of the rational numbers, whatever applies to it,
will also apply to − ∞, 𝜋 ∪ 𝜋, ∞ .
If anyone claims that a radix representation is equal to a given number
in a certain base, then one must provide an equivalent fraction in that
base.

For example, 14 = 210 + 5100 = 25100 [expressed in base 10]

So if you claim that 13  =  0.3333..., then you must provide an equivalent

fraction in base 10 as demonstrated with 14 . Same for 0.999... whatever

this means.

If you can't provide an equivalent fraction, then the radix
representation does not represent that fraction.
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Mainstream academics do not understand that you can't have three
different rules for numbers. They claim:

number = Limit of equivalent Cauchy sequences

RULE 1.

In the case of 14, the limit is the sum.

RULE 2.

In the case of 13, the limit is not the sum.

RULE 3.

However, in the case of 𝜋 and 2, no one has a clue what the limit is,
except that it's some symbol or its partial sums can be approximated by
some formula.

Rule 3 is particularly amusing, because it assumes the completed
infinite radix representation (commonly known by the gibberish
“infinite decimal expansion”) is possible. Modern academics, in the
spirit of Euler, define numbers by this myth.

Interesting to note, is that if one accepts the infinite unique
representation, then whatever is the limit, it is not equal to the
completed infinite representation, because if it were, then guess what?
All "irrational numbers" would be rational numbers.

In conclusion, the objects you think of as ‘irrational’ numbers cannot be
defined as Dedekind cuts. In fact, Dedekind cuts really attempt a
definition via use of a function. But associating the value of a function
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with a particular cut does not make it a number! For example, I could
define the incommensurable magnitude 𝑒 as follows:𝐷 = {𝑑∈𝑄: 1 + 𝑑 1𝑑 < 𝑒  ∀  𝑑 > 0}𝑈 = {𝑢∈𝑄: 1 + 𝑑 1𝑑 > 𝑒  ∀ 𝑑 < 0}
where 𝑓 𝑑 = 1 + 𝑑 1𝑑 and 𝑓 0 = 𝑒. So, while 𝑓(0) corresponds to 𝑒,
it is not a measurement of the incommensurable magnitude 𝑒.

For the same reasons, an equivalence class of Cauchy sequences does
not define an ‘irrational’ or ‘real’ number. In fact, the Cauchy definition
is far worse, because it is circular and presumes the existence of an
‘irrational’ number.

Did Dedekind discover anything new at all? The surprising answer to
this, is that he took the idea straight from Archimedes (see proposition3 and 4, On Spirals), who used it to approximate 𝜋. Much later,
Riemann committed some plagiarism of his own by usurping the same
ideas of Archimedes in his formulation of the definite integral.

All arithmetic operations are defined geometrically.

Long before numbers, the operations of arithmetic were all defined
geometrically using the symmetrical geometric object known as the
circle. These operations are all different types of measurement.

A difference (−) is that measure by which two magnitudes can be
made the same.

https://www.academia.edu/99833518/Why_is_a_circle_so_important_to_arithmetic_operations
https://www.academia.edu/99833518/Why_is_a_circle_so_important_to_arithmetic_operations
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To compare any magnitudes quantitatively in order to determine the
difference, the numbersmust be expressed in terms of the abstract
unit 1.

Finding the difference of numbers composed of multitudes of units is
straight forward:

If the numbers are 4/1 and 7/1, the difference which can make these
the same is 3/1:7 −   3  =  4 and 4 − (− 3)  =  7
If the numbers are 53   or 106 and 72   or 216 , then we still find the

difference by comparing numbers that are expressed in terms of units,
that is, 10 and 21.

The difference is therefore 116 .216  −  116   = 106 106  − − 116 = 216
because 72 = 7+7+72+2+2 = 216 and 53 = 5+53+3 = 106
Equivalent fractions are derived in Euclid’s Elements using similar
triangles and the fact that if 𝑝𝑞 = 𝑟𝑡, then𝑝𝑞 = 𝑝+𝑟𝑞+𝑡 = 𝑟𝑡.
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A sum (+) is that measure by which two differences (magnitudes) are
considered as one. Another way of seeing this, is that the two
magnitudes are both required to measure the sum.

For example, the sum of 106 and 116 :106  − − 116 = 216
Adding a number to another means removing the need for it. Hence, −116 is what is needed with 106 to measure 216 . Taking the sum therefore

removes the need:

106 + 116 = 216
Thus, between positive numbers, the arithmetic operator of sum (+) is
still a difference.

A quotient (/) is that measure which is realised by using differences
(magnitudes) composed of whole units. In realising a measure, the
unit is typically used. However, the unit which is also a divisor, can be
of different lengths. Return to this paragraph after you have
completed reading the chapter to acquire a better understanding. A
quotient is simply a ratio of magnitudes.

Every number is by definition a quotient.

However, the obelus or division operator (÷), is that measure which
applies only to cases where the numerator is greater than the
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denominator. For example, 𝑝 ÷ 𝑞 = 𝑝𝑞 regardless of the size of 𝑝 and 𝑞.

However, if 𝑝 < 𝑞, then nothing happens in algebra because the division
operator is a finite process. Moreover, 𝑝𝑞 is a number or quotient, and

no division is pending. In cases where 𝑝𝑞 is not in irreducible form, the

cancellation process has nothing to do with division but everything to
do with proportion.

Consider the number 2012. It is not in irreducible form, but can be

reduced by the proportion theorem of Euclid. Since 53 is in proportion to2012, it is true that

2012 = 20−5−5−512−3−3−3 = 535 and 3 are relatively prime to each other even though they are prime
numbers, hence 53 cannot be reduced further, except perhaps into a

sum of units and parts of a unit, that is, 1 + 23.

Since the division operator is a measure, it can be used to represent

numbers in a given radix system. For example, 14 in base 10, is

represented by 0.25 which follows from a finite division:0.25 = 25 ÷ 100 = 25100 = 25−1(𝑡𝑤𝑒𝑛𝑡𝑦 𝑓𝑜𝑢𝑟 𝑡𝑖𝑚𝑒𝑠)100−4(𝑡𝑤𝑒𝑛𝑡𝑦 𝑓𝑜𝑢𝑟 𝑡𝑖𝑚𝑒𝑠) = 14
Because 25100  is proportional to 14.

To find 14 in base 10:14 × 1010 = 104 × 110 = 2 + 12 × 110 = 2 × 110 + 12 × 10100
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Any radix system 𝑟 requires that a given number 𝑝𝑞 is measured using

only the coefficients (𝑐𝑖   𝑎𝑛𝑑  𝑓𝑖) and factors 𝑟𝑛   𝑎𝑛𝑑 1𝑟𝑛 in the

polynomial𝑝𝑞  =   … + 𝑐𝑛𝑟𝑛 + 𝑐𝑛−1𝑟𝑛−1 + …𝑐1𝑟 + 𝑐0   . 𝑓1𝑟 + 𝑓2𝑟2 + 𝑓3𝑟3 + …
Thus, given 𝑟 = 10, it follows that 14 = 0 + 210 + 5100 or simply 0.25
In order for 𝑝𝑞 to be represented in radix system 𝑟, the prime factors
of 𝑞 must all be prime factors of 𝑟 also.
The above is an important number theorem ignored by the BIG STUPID
(mainstream academics).

Note that 13 cannot be represented in base 10.

To summarise, the division operator (÷) is a repeating subtraction
process terminating when the remainder is less than the difference
(divisor).

Example: 18  ÷   5 =   ?
i. 18 − 5 = 13
ii. 13 − 5 = 8
iii. 8 − 5 = 3
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So, 3 × 5 and 35 × 5 (three fifths of 5) are required to measure 18.

That is, 5 alone cannot measure 18. And so, the division result is 5 + 35.

In this process, 5 acts as the measuring “unit”. Also note that the
process stops once the remainder (3) is less than the measuring unit
(also known as divisor 5 in the example).

A product (×) is that measure which is realised by using differences
(magnitudes) composed of one or more equal parts of the unit. In all
cases, the operands of a product both measure the product
individually. For example, 3 × 2 = 6means that 6 is measured by 3
and 6 is also measured by 2. Return to this paragraph once you have
completed reading the chapter to gain a better understanding. A
product is simply a measure using a reciprocal quotient.

The product 21 × 31 can be determined in one of two ways.

21 ÷ 13   = 2113  =  21 + 21 + 2113 + 13 + 13  =  61 because
2113 is proportional to itself.

OR

31 ÷ 12   = 3112  =  31 + 3112 + 12  =  61 because
3112 is proportional to itself.

Note that in every case, the operation is done in units and the most
primitive operator is the difference operator. Now is the time to study
Appendix B.

https://www.academia.edu/69488136/Theory_of_fractions_from_Book_5_of_Elements_for_Dummies
https://www.academia.edu/69488136/Theory_of_fractions_from_Book_5_of_Elements_for_Dummies
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Derivation of arithmetic operators.

The Elements of Euclid is least understood with respect to the
description of the derivation of number from the measure of
magnitude (size).

But even more mysterious to mainstream academics is which operator
came first, that is, which of the four basic arithmetic operators is the
most primitive from which all the others can be derived.

If your intuition tells you that addition is the most primitive, then you
are wrong. There is no way to derive the operation of subtraction from
addition. In fact, the most primitive operator is the difference or
subtraction operator.

In the expression 𝑝𝑑 − 𝑞𝑑, the difference operator is −
The expression is evaluated by simply taking the difference of 𝑝 and 𝑞
over 𝑑, where 𝑝,  𝑞 and 𝑑 are all integers.

We can derive the addition operator as follows:𝑝𝑑 − − 𝑞𝑑 where − − is denoted by +
The expression 𝑝𝑑 + 𝑞𝑑 is evaluated by taking the sum of 𝑝 and 𝑞.

Now that this is in place, we can subtract and add fractions with
different denominators.

To evaluate the expression 𝑝𝑟 − 𝑞𝑠 , we need to find equivalent fractions

whose denominators are the same.
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The solution is simple. We simply add 𝑝𝑟 to itself 𝑠 − 1 times and we

also add 𝑞𝑠 to itself 𝑟 − 1 times. Let’s see an example.23   −  35  =  2+2+2+2+23+3+3+3+3   −  3+3+35+5+5 = 1015   − 915  =  115
Addition works the same way:23  +  35  =  2+2+2+2+23+3+3+3+3  +  3+3+35+5+5 = 1015  + 915  =  1915
Now we’ve seen that we can do arithmetic involving differences and
sums. So, what is the next operator that we derive?

Division is derived from the previous two operators of difference and
sum as follows:

𝑝𝑞 ÷ 𝑟𝑠 =  𝑝𝑞𝑟𝑠
If 𝑝𝑞 <  𝑟𝑠 , there is nothing left to do. For example,

11 ÷ 31 = 1131 = 13 because 1 < 3.

If however 𝑝𝑞 > 𝑟𝑠, then we use 𝑟𝑠 to measure 𝑝𝑞 by repeated subtraction,

stopping only when the remainder is less than 𝑟𝑠.
Let’s see a simple example.10 ÷ 4
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I will omit the denominators which are 1. That is, the above is actually
equivalent to101  ÷  41
So, 10 − 4 − 4 = 2, that is, 104 = 2 remainder 2. Since 2 < 4, we write2 + 24 or simply 2 24 .

If the denominators are 1 as in the previous slide, the process of
division is simple.

What about 23  ÷ 45 ?

Well, 23  ÷ 45 =  2345  =   2+2+2+2+23+3+3+3+34+4+45+5+5   =   10151215  =  1012
1012 is not in its irreducible form, but this is not a problem once we

derive multiplication which is the last of the four basic arithmetic
operators.

Now, we can derive multiplication from division as follows:𝑝𝑞 × 𝑟𝑠  =  𝑝𝑞   ÷   1𝑟𝑠  OR 𝑝𝑞 ×  𝑟𝑠 = 𝑟𝑠  ÷  1𝑝𝑞
Both division expressions must be defined and result in the same value.

Example:

21 × 31 = 21  ÷  13 = 2113 =  2+2+21+1+113  = 6313 = 61 = 6
The same product/multiplication can be accomplished as follows:
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21 × 31 = 31  ÷  12 = 3112 =  3+31+112  = 6212 = 61 = 6
You might be wondering how one gets from

6212 to 61 . Well, the

denominators are the same, which means the measure is common to
both fractions, that is, both are measured in halves or a unit of two
equal parts.

If we write 61, this is the same as
6111 , hence we can drop the

denominators if they are the same. For example, when we write 2 ÷ 3,

we really mean
2131 since 2 ÷ 3 = 23 or equivalently 21 ÷ 31 = 2131 by the

definition of division.

Now that we have derived all the four basic arithmetic operations, we
are ready to discuss other forms.

In a previous slide, we saw a division example that produced a quotient

of 1012. To reduce such a quotient, we once again need a proportional

fraction, that is, one which can be obtained by finding common factors.

We see that the highest common factor of 10 and 12 is 2 and we can
find this using the Euclidean algorithm which is described in Book 7.

The Euclidean algorithm is a repeated measure where we try to
measure the larger number (12) with the smaller (10).12 = 10 1 + 210 = 2 5 + 0
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We place the larger number 12 on the left and express it in terms of
the smaller number on the right. It turns out that the largest number
that can measure both 10 and 12 is 2.

So, 1012 = 5×26×2 = 512612
= 56 because the denominator 12 measures both the

fractions. 56 cannot be further reduced because the highest integer

factor that divides ormeasures both, is 1.
Let’s find the greatest factor that measures 12 and 32.

1. 32 = 12 2 + 812 = 8 1 + 48 = 4 2 + 0
So highest common factor is 4.

Let’s find the greatest factor that measures 111 and 421.

2. 421 = 111 3 + 88111 = 88 1 + 23



6688 = 23 3 + 1923 = 19 1 + 419 = 4 4 + 34 = 3 1 + 13 = 1 3 + 0
So highest common factor is 1. The remaining number theorems in
Euclid’s Elements include prime numbers and many other interesting
facts which require a separate course of study.
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Chapter 6: How we got algebra

The Ancient Greeks used many equations even though they didn’t use
the same symbols of modern algebra. For example, one well known
equation is the result of the Pythagorean theorem: 𝑎2 = 𝑏2 + 𝑐2.

Algebra is established in Book V of Euclid’s Elements from which all
arithmetic operations are derived using only magnitudes (not
numbers!). Book V also covers the theory of proportional ratios and
numbers.

Some other well-known equations:𝑝 = ℎ × 𝑤 (Generic planar area known as a plane number)𝑠 = ℎ × 𝑤 × 𝑏 (Generic cubic volume known as a solid number)𝜋 = 𝑐2𝑟 (The circle constant)𝐴 = 𝜋𝑟2 (Area of circle)𝑦 = 𝑥2 (Equation of parabola)

The equations of all the conics and many trigonometric identities were
known too.

Before algebra could be realised, it was imperative that a means was
possible to denote magnitudes or sizes, whether or not describable by a
number. The best approach was through the use of numbers and
symbols.

Algebra was developed in order to communicate the ideas of geometry
without having to refer to diagrams (visualisations or instantiations) all
the time

https://www.academia.edu/94212351/The_True_Story_of_How_we_got_Algebra
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It is clear that in algebra both numbers and symbols (for
incommensurable magnitudes) are treated the same. There is no
difference between how 𝑥 and 𝜋 are treated, and these are for all
intents and purposes unknowns.

The four basic arithmetic operations that are used by equations in
algebra are described in Book 5, Proposition 12 of the Elements. This
proposition deals with magnitudes, but the results are applied also to
numbers that are the measure of magnitudes.

Zero is not a number, never mind a rational number. If you try to
express 0 as a rational number, then you must express it using other
numbers, not zero itself. There is no 𝑝𝑞 with 𝑝 and 𝑞 not equal to 0 such

that 0 = 𝑝𝑞. On the other hand, there is no 𝑘 such that 0 × 𝑘 = 1.

Hence, the measure of zero using any 𝑘 equal partitions of the unit,

that is, 1𝑘 , is simply not possible. However, this is true for every other

(rational) number. The Ancient Greeks rejected zero because it is not a
magnitude, but a symbol for no magnitude or a non-magnitude. The
inclusion of a zero magnitude would render most of the propositions
in Book V invalid. Zero means ‘no number’.

While useful as a placeholder, zero is decidedly not a number. In fact, it
is not even required at all in mathematics, but it is useful for
disambiguation in representation. Unfortunately, due to ignorant
mainstream academics, the myth that zero is a number is now firmly
entrenched in mainstream mathematics academia.

For example, consider the base ten radix system or decimal system
represented as a template:

https://www.academia.edu/94491990/Zero_means_No_Number_
https://www.academia.edu/88084003/Mainstream_ignorance_and_stupidity_featuring_deceased_James_Stewart_and_his_calculus_publications
https://www.academia.edu/88084003/Mainstream_ignorance_and_stupidity_featuring_deceased_James_Stewart_and_his_calculus_publications


69…𝑇ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠   𝐻𝑢𝑛𝑑𝑟𝑒𝑑𝑠   𝑇𝑒𝑛𝑠   𝑈𝑛𝑖𝑡𝑠  .  𝑇𝑒𝑛𝑡ℎ𝑠  𝐻𝑢𝑛𝑑𝑟𝑒𝑑𝑡ℎ𝑠   𝑇ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑡ℎ𝑠…
We can represent a rational number in a finite and unique way using
only the digits 1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 9, any 𝑝𝑞 with 𝑝 and 𝑞 integers if the prime

factors of 𝑞 are also factors of ten. To represent ten, we simply place
the digit 1 in the Tens column of the template. Nothing else is required.

To represent 14 , we place 2 in the Tenths column and 5 in the

Hundredths column. We cannot represent 13 in base ten, because 3 is

not a prime factor of ten. Similarly, we cannot represent 418 in base ten,

because ten does not contain all the prime factors of 18. Therefore, the
only fractions that can be represented in base ten are those whose
denominator contains only the prime factors 2 and 5.

Without the template, if we simply wrote 1, the meaning would not be
clear. Is it one, ten, one hundred, one tenth, one hundredth, etc? So
adding the correct number of zeroes removes the ambiguity. Writing0.003 means three thousandths and not 300, 30, 3, 310  , 3100  , 310000  and

so on.

Therefore, 0 is not required at all in mathematics, but it is extremely
useful as a place-holder, for disambiguation and also in describing the
properties of equations, such as roots.

To qualify as a number, a given number 𝑝𝑞 must have the property that 1
can be divided into 𝑞 equal parts. Only the rational numbers qualify as
numbers.
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Therefore 0 is not a rational number. It’s not a number at all. Zero
measures nothing except perhaps itself in an absurd way. There is
nothing remarkable about anything measuring itself as we can only
understand the measure of a given magnitude by using other
magnitudes, such as a standard magnitude that is called a unit.

Zero is neither positive nor negative, for to be either, there must exist a
unique additive inverse, but zero is its own additive inverse which is
absurd. In any case, the additive inverse requires that a given number
has a sign. The sign of zero cannot be both negative and positive.

In algebra, one has to remember that “arithmetic” with zero must be
impotent, that is, it cannot change the value or sense of the equation or
render it undefined. For example:

Let 𝑎 = 𝑏𝑎2 = 𝑎𝑏𝑎2 − 𝑏2 = 𝑎𝑏 − 𝑏2𝑎 − 𝑏 𝑎 + 𝑏 = 𝑏(𝑎 − 𝑏)𝑎 + 𝑏 = 𝑏2𝑏 = 𝑏 ∴ 2 = 1
The factor 𝑎 − 𝑏 is equal to zero and division or any arithmetic by a non-
number is not possible.
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We can see that addition and subtraction by 0 never affects an
equation. However, multiplication and division will inevitably change
the sense and value of the equation.𝑎 = 𝑎𝑎 + 0 = 𝑎 + 0𝑎 − 0 = 𝑎 − 0𝑎 × 0 = 𝑎 × 0 → 0 = 0 which is not the same as 𝑎 = 𝑎.

Here, the sense of the equation relates 𝑎 to 𝑎. Multiplication by 0,
relates 0 to 0 and changes the value of both sides, thus the sense and
value are altered.𝑎 ÷ 0 = 𝑎 × 10 = 𝑎0 which is meaningless. Therefore, 0 is safe to use, as

long as it doesn’t change the sense and value of the equation. What is
meant by sense and value? Sense describes the relationship between
two sides of an equation and value tells one the measure of either side
of the equation.

In the example 𝑎2 = 𝑎𝑏,   𝑎2 is related to 𝑎𝑏 for any value – this is the
sense of the equation. If the equation is manipulated incorrectly as
shown, this relationship is destroyed, that is, 2𝑏 = 𝑏 or 2𝑎 = 𝑎. The
value describes the size of 𝑎2 or 𝑎𝑏 or 𝑏2.

Thus, whilst 0 is immensely useful, it brings along its own bag of snares
because it does not behave as do all numbers. How can it? It’s not a
number.

The main idea of equations is to remember that whatever operation is
performed on either side, it must not affect the value of either side.
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Also, it must not affect the sense, that is, the relationship must remain
intact (unchanged), which is only possible if the operation is carried out
on both sides.

The magnitude 𝑒.
This magnitude can be realised as the distance of the straight green line
between the origin and the red point as shown in the illustration that
follows:

The function 𝑒 is easily derived from a binomial.𝑓 𝑥,𝑛 = 1 + 𝑥𝑛 1𝑛 = 1 + 1𝑛  1 𝑥𝑛 + 1𝑛  2 𝑥𝑛 2 + …
1𝑛  1 = 1𝑛!1! 1𝑛−1 ! = 1𝑛 1𝑛−1 !1𝑛−1 ! = 1𝑛
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1𝑛  2 = 1𝑛!2! 1𝑛−2 ! = 1𝑛 1𝑛−1 1𝑛−2 !2! 1𝑛−2 ! = 1𝑛 1−𝑛𝑛2! = 1−𝑛𝑛22! = 1𝑛2−1𝑛2!
So,

𝑓 𝑥,𝑛 = 1 + 𝑥𝑛 1𝑛 = 1 + 1𝑛𝑥𝑛 + 1𝑛2−1𝑛2! 𝑥𝑛 2 + …
𝑓 𝑥,𝑛 = 1 + 𝑥𝑛 1𝑛 = 1 + 𝑥 + 1−𝑛2! 𝑥2 + …𝑓 𝑥,𝑛 = 1 + 𝑥𝑛 1𝑛 = 1 + 𝑥 + 𝑥22! − 𝑥2𝑛2! + …∴ 𝑓 𝑥,0 = 1 + 𝑥 + 𝑥22! + …
But 𝑒𝑥 = 𝑓(𝑥,0) and so𝑒𝑥 = 1 + 𝑥 + 𝑥22! + 𝑥33! + …
From the previous function, we see that 𝑒 is well defined by𝑒 = 𝑒1 = 𝑓(1,0).

Contrary to mainstream thought, there is no hole in the function 𝑓 at
the red point (0,𝑒) and it’s also easy to see that 𝑒0 = 1 = 𝑓(0,0).

A difference (−) is that measure by which two magnitudes can be made
the same.

To compare any magnitudes quantitatively in order to determine the
difference, the numbersmust be expressed in terms of the abstract
unit 1.
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Finding the difference of numbers composed of multitudes of units is
straight forward:

If the numbers are 4/1 and 7/1, the difference which can make these
the same is 3/1:7 −   3  =  4 and 4 − (− 3)  =  7
If the numbers are 53   𝑜𝑟 106 and 72   𝑜𝑟 216 , then we still find the

difference by comparing numbers that are expressed in terms of units,
that is, 10 and 21.

The difference is therefore 116 .216  −  116   = 106 106  − − 116 = 216
because 72 = 7+7+72+2+2 = 216 and 53 = 5+53+3 = 106
Equivalent fractions are proved in Euclid’s Elements using similar
triangles and the fact that if 𝑝𝑞 = 𝑟𝑡, then𝑝𝑞 = 𝑝+𝑟𝑞+𝑡 = 𝑟𝑡.
Use similar triangles to convince yourself these claims are true.

A sum (+) is that measure by which two differences (magnitudes) are
considered as one.

For example, the sum of 106 and 116 :106  − − 116 = 216
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Adding a number to another means removing the need for it. Hence, −116 is what is needed with 106 to measure 216 . Taking the sum therefore

removes the need:

106 + 116 = 216
Thus, between positive numbers, the arithmetic operator of sum (+) is
still a difference.

A quotient (/) is that measure which is realised by using differences
(magnitudes) composed of whole units.

Every number is by definition a quotient.

However, the obelus or division operator (÷), is that measure which
applies only to cases where the numerator is greater than the
denominator. For example, 𝑝 ÷ 𝑞 = 𝑝𝑞 regardless of the size of 𝑝 and 𝑞.

However, if 𝑝 < 𝑞, then nothing happens in algebra because the division
operator is a finite process. Moreover, 𝑝𝑞 is a number or quotient, and

no division is pending. In cases where 𝑝𝑞 is not in irreducible form, the

cancellation process has nothing to do with division but everything to
do with proportion.

Consider the number 2012. It is not in irreducible form, but can be

reduced by the proportion theorem of Euclid. Since 53 is in proportion to2012, it is true that2012 = 20−5−5−512−3−3−3 = 53
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numbers, hence 53 cannot be reduced further, except perhaps into a

sum of units and parts of a unit, that is, 1 + 23.

In order for 𝑝𝑞 to be represented in radix system 𝑟, the prime factors
of 𝑞 must all be prime factors of 𝑟 also.
The above is an important number theorem ignored by the BIG STUPID
(mainstream academics).

Note that 13 cannot be represented in base 10.

To summarise, the division operator (÷) is a repeating subtraction
process terminating when the remainder is less than the difference
(divisor).

Example: 18  ÷   5 =   ?
i. 18 − 5 = 13
ii. 13 − 5 = 8
iii. 8 − 5 = 3

So, 3 × 5 and 35 × 5 (three fifths of 5) are required to measure 18.

That is, 5 alone cannot measure 18. And so, the division result is 5 + 35.

In this process, 5 acts as the measuring “unit”. Also note that the
process stops once the remainder (3) is less than the measuring unit
(also known as divisor 5 in the example).

A product (×) is that measure which is realized by using differences
(magnitudes) composed of one or more equal parts of the unit.
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The product 21 × 31 can be determined in one of two ways.

21 ÷ 13   = 2113  =  21 + 21 + 2113 + 13 + 13  =  61 because
2113 is proportional to itself.

OR

31 ÷ 12   = 3112  =  31 + 3112 + 12  =  61 because
3112 is proportional to itself.

Note that in every case, the operation is done in units and the most
primitive operator is the difference operator.
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Chapter 7: The arithmetic mean

For as long as I can remember, educators have been calculating class
averages also known as arithmetic means. A class average is generally
the arithmetic mean of all the students' scores. I have never
understood how a class average can tell anyone anything that is reliable
or useful from any perspective. "Whoa!" you may say. Well, let's see
exactly what the arithmetic mean tells us.

Suppose that a class average is 90%, then all this tells one, is the
following:

If the students shared their marks, so that each student scored the
same, then each student would have a score of 90%.

But can students ever share their marks? Of course not. This is
ridiculous. Someone asked the following question on that internet site
called Quora:

If my class average in biology is 90 and if I get 85, then does this mean I
am below average in biology? Does this mean that I'm bad or below
average in biology?

In fact, a class average tells one nothing about the students' abilities or
how well they performed.

Suppose in a class of ten students, the following scores are obtained:80, 80, 80, 85, 90, 95, 95, 95, 100, 100 for a total of 900
Clearly, the student who obtained 85%, is better than thirty percent of
his class.

No educator I have ever met, has understood that an arithmetic mean
makes sense only when redistribution also makes sense. In such cases,
there is no need to check for data outliers or other data anomalies
because the inference is clear and correct. The word mean implies

https://www.academia.edu/97447684/Trying_to_teach_ChatGPT_the_concept_of_Arithmetic_Mean


79

middle but ironically the arithmetic mean has nothing to do with the
middle of anything!

For example, it is silly to calculate the arithmetic mean of the heights of
a group of people. What does this mean? Can you chop off parts of
each individual and redistribute them so that all in the group are of the
same height? Preposterous! In such a scenario, the only useful
information would be the range of heights.

You might be tempted to think that the class average helps you as an
educator to determine the progress of your students. You would be
wrong!

Consider the following scores in a class of ten students:30, 30, 30, 30, 30, 30, 30, 90, 100, 100 for a total of 500
An ignorant inference is that students are all performing at the average
mark because the class average is 50%, but 70% of the students
scored below the average!

An arithmetic mean leads to correct inference, if and only if,
redistribution makes sense.

Definition of Arithmetic Mean:

Given any set of numbers or magnitudes, the arithmetic mean indicates
the value that each number would have, if all the numbers in the set
were made to be equal through a process of redistribution.
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Suppose that numbers are represented by blocks as in the following
diagram:

It’s easy to see that if the green block is moved from pile 3 to pile 1,
then all three piles will be level and equal:

The arithmetic mean is clearly given by: 1+2+33 = 63 = 2. As you’ll see

later, it turns out this process of redistribution used in determining the
arithmetic mean, is precisely what happens when you use integral
calculus to determine the area between a curve and some axis! We’ll
see examples of this later.
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Chapter 8: The lack of rigour in mainstream calculus and its flaws

In her book, The Origins of Cauchy’s Rigorous Calculus, Judith Grabiner
starts the preface with:

“Augustin-Louis Cauchy gave the first reasonably successful rigorous
foundation for calculus. Beginning with a precise definition of limit, he
initiated the nineteenth century theories of convergence, continuity,
derivative, and integral.”

Neither Cauchy nor anyone else ever provided a rigorous formulation of
calculus before I produced the first and only rigorous formulation in
human history. The problems with calculus had nothing to do with a
precise definition of limit, because neither the derivative or integral
require the limit concept or related theory as has been proved in the
New Calculus and to be demonstrated in the chapters to come.

The misguided and deceptive story of rigour began with Cauchy’s
definitions. Cauchy used questionable or ill-formed terminology such as
finite value, infinity, infinitesimal, limit, infinitely small and decreasing
indefinitely.

Cauchy’s definition of limit:

When the values successively attributed to the same variable approach
indefinitely a fixed value, eventually differing from it by as little as one
could wish, that fixed value is called the limit of all the others.

The fact that a value of a difference quotient or some partial sum of a
sequence is a magnitude, is proved by convergence without even
knowing anything about the limit which is the value being investigated.
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However, the measure of the value, may not even be possible, except
perhaps as a recognisable symbol, that is, the constants 𝜋,  𝑒 or 2.
It’s certainly untrue that one can make it differ by as little as one could
wish, because if one wishes no difference, then this is not possible in
the case of a magnitude that is incommensurate with any other such as𝜋,  𝑒 or 2.

The famous mathematics historian Carl Boyer had this to say:

"Cauchy had stated in his Cours d'analyse that irrational numbers are
to be regarded as the limits of sequences of rational numbers. Since a
limit is defined as a number to which the terms of the sequence
approach in such a way that ultimately the difference between this
number and the terms of the sequence can be made less than any
given number, the existence of the irrational number depends, in the
definition of limit, upon the known existence, and hence the prior
definition, of the very quantity whose definition is being attempted.

That is, one cannot define the number 2 as the limit of the sequence
1, 1.4, 1.41,1.414, ... because to prove that this sequence has a limit
one must assume, in view of the definitions of limits and convergence,
the existence of this number as previously demonstrated or defined.
Cauchy appears not to have noticed the circularity of the reasoning in
this connection, but tacitly assumed that every sequence converging
within itself has a limit."

The History of Calculus and its Conceptual Development'
(Page. 281) Carl B. Boyer

Boyer realised the circularity of Cauchy’s arguments. Oddly
enough, no one else in the mainstream seemed to notice.
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Cauchy’s definition of infinitesimal:

When the successive absolute values of a variable decrease indefinitely
in such a way as to become less than any given quantity, that variable
becomes what is called an infinitesimal. Such a variable has zero for its
limit.

As far as Cauchy was concerned, an infinitesimal is actually a variable
expression, rather than an actual number, which becomes very small.
So small in fact, that it is less than any given quantity which is greater
than 0. To believe this, you need faith that there is a number that
immediately succeeds 0 and is less than every other number. The
singular is plainly absurd, but mainstream academics such as Abraham
Robinson have “succeeded” in creating special subsets (called ultra-
filters) of the interval (0,1) in which only infinitesimals can reside. To
ask where the infinitesimal numbers begin and end is heresy, and one
can be excommunicated from the Church of Academia (mainstream
academia).

The infinitesimal, like its older sibling infinity, is clearly and provably a
rubbish concept, which has no place in mathematics or any other field
of rational thought. Some of Cauchy’s colleagues and compatriots knew
this and the struggle for rigour continued.

Cauchy’s definition of continuity:

Let 𝑓(𝑥) be a function of a variable 𝑥, and let us suppose that, for every
value of 𝑥 between two given limits, this function always has a unique
and finite value. If, beginning from one value of 𝑥 lying between these
limits, we assign to the variable 𝑥 an infinitely small increment ℎ, the
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function itself increases by the difference 𝑓(𝑥 + ℎ) − 𝑓(𝑥), which
depends simultaneously on the new variable ℎ and on the value of 𝑥.
Given this, the function 𝑓(𝑥) will be a continuous function of this
variable within the two limits assigned to the variable 𝑥 if, for every
value of 𝑥 between these limits, the absolute value of the difference𝑓(𝑥 + ℎ) − 𝑓(𝑥) decreases indefinitely with that of ℎ. In other words,
the function 𝑓(𝑥) will remain continuous with respect to 𝑥 between the
given limits if, between these limits, an infinitely small increment of the
variable always produces an infinitely small increment of the function
itself.

Note that ℎ in the above definition is the same as 𝛿 in the FOL (first
order logic) “veri-finition” that follows.

Cauchy’s continuity definition was restated in symbols as follows by
Weierstrass:∀𝜀, ∃𝛿:∀𝑥 (  𝑥 − 𝑐 < 𝛿 ⇒ 𝑓 𝑥 − 𝐿 < 𝜀  )
where 𝐿 is the limit at the point 𝑐.

If 𝐿 is not a rational number, then 𝐿 is denoted by some symbol (in this
case by 𝐿 itself!) and the difference 𝑓 𝑥 − 𝐿 cannot be 0 for any
imagined 𝑓(𝑥). However, it is required in the modern definition that𝑓 𝑐 = 𝐿, in addition to ∀𝜀, ∃𝛿:∀𝑥 (  𝑥 − 𝑐 < 𝛿 ⇒ 𝑓 𝑥 − 𝐿 < 𝜀  ).

In fact, the first order logic statement∀𝜀, ∃𝛿:∀𝑥 (  𝑥 − 𝑐 < 𝛿 ⇒ 𝑓 𝑥 − 𝐿 < 𝜀  )
takes care of this requirement, because no condition is placed on either𝜀 or 𝛿 with respect to being greater than 0.
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The web of ignorance becomes more intricate when Weierstrass
defines a limit formally:∀𝜀 > 0,  ∃𝛿 > 0:∀𝑥 ( 0 <  𝑥 − 𝑐 < 𝛿 ⇒   0 < 𝑓 𝑥 − 𝐿 < 𝜀  )
Let’s see an example of how mainstream academics use this so-called
“rigorous definition”. Consider the function 𝑓 𝑥 = 2𝑥 + 1. We are
required to verify that 𝑓(𝑥) has the limit 5 when 𝑥 = 2. So, we start
with the distance between some arbitrary 𝑦 ordinate and 5 as follows:  |2𝑥 + 1 − 5| < 𝜀→    |2𝑥 − 4| < 𝜀→  2|𝑥 − 2| < 𝜀→    𝑥 − 2 < 𝜀2  →  − 𝜀2 < 𝑥 − 2 < 𝜀2
So, any 𝛿 = 𝜀2 will do. Now your professor plays the “epsilon-delta”

game with you. It goes something like this: Give me any 𝜀 and I will
find you a 𝛿 that works for it. The wary student now picks 𝜀 = 1. Thus,𝛿 = 12.

And so, 𝑥 − 2 < 12 →   2 𝑥 − 2 < 1 →   2𝑥 − 4 < 1→ 2𝑥 + 1 − 5 < 1
Then,𝑥 − 2 < 12 →  2𝑥 + 1 − 5 < 1
which is what we wished to prove. The astute reader will notice that
this process not only assumes that the function 𝑓(𝑥) is defined (hence
continuous!) on the interval (1,3), but the alleged “proof” uses the
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concept of infinity to show that one can get closer to the limit
indefinitely, but never actually arrive at the limit. Therefore, the ill-
formed concept of infinity is still being used contrary to the raucous
objections of those in mainstream academia.

These facts are the main reason Weierstrass needed 𝜀 > 0 and 𝛿 > 0.
Firstly, because we can’t make 𝜀 as small as we please, that is, it can’t
be 0, secondly, the function may not be defined at the limit when 𝑥 = 𝑐
and thirdly, the function may not be defined at some 𝑥 = 𝑘 in the given

interval 𝑚 < 𝑘 < 𝑛. That is, given 𝑥 × 𝑥−𝑘𝑥−𝑘 , it is true that 𝑓(𝑥) is no

longer defined at 𝑘, and 𝑐 could be anywhere in the interval (𝑚,𝑛).

Thus, we can’t say that given any 𝜀 that 𝛿 will be within |𝑥 − 𝑐| distance
of 𝑐, where 𝜀 is within |𝑓(𝑥) − 𝐿| of 𝐿, simply because it is not possible
to check every distance in the interval (𝑚,𝑛).

That 𝑥 − 2 < 12 →  2𝑥 + 1 − 5 < 1 is a consequence of the fact that𝑓 𝑥 = 2𝑥 + 1 is continuous on (1,3) and continuity must be assumed.
There is no certainty that 𝑓 is continuous on the given interval, that is,
the very definition of continuity is circular, for it assumes itself!

Therefore, despite all the efforts of mainstream academia to discard
infinity and infinitesimals, both concepts are needed and used
indirectly in showing that if 𝜀 is within |𝑓(𝑥) − 𝐿| distance of 𝐿, then 𝛿
will be within |𝑥 − 𝑐| distance of 𝑐.
Modern academics needed holes in functions in order to justify their
derivative definition: 𝑓′ 𝑥 = 𝑓 𝑥 + 𝛿 − 𝑓(𝑥)𝛿  
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Since the application of this definition results in:∀𝜀 > 0,  ∃𝛿 > 0:∀𝑥 ( 0 <  𝑥 − 𝑐 < 𝛿 ⇒   0 < 𝛥𝑓 𝑐,𝛿 − 𝐿 < 𝜀  )
where 𝛥𝑓 𝑐,𝛿 = 𝑓 𝑐+𝛿 −𝑓(𝑐)𝛿 , mainstream academics erroneously think

they are safe from having assumed that 𝐿 is in fact the limit or the
required derivative 𝑓′(𝑐). One academic called Professor Wolfgang
Mueckenheim thinks that the Cauchy criterion rigourises calculus, but
this is obviously false because verifying a sequence converges to some
limit 𝐿, does not tell us how to find 𝐿 in a systematic way, as is the case
with the derivative definition in terms of limits.

The Weierstrass definition is obviously flawed for many reasons, but
the one that stands out most is the fact that 𝐿 which is equal to 𝑓′(𝑐) is
being used in its own verifinition. Weierstrass’s definition is really a
verifinition, not an actual definition.

A verifinition is a definition that is used to prove that a given guess, in
this case 𝐿, is in fact the derivative. One must wonder at this stage what
exactly did Cauchy and Weierstrass do which made calculus rigorous?
They still lacked any sound method to find 𝐿. The ubiquitous first
principles method (FPM) is an outright sham and fraudulent too.

FPM not only uses a spurious method, but contradicts itself in every
way. The 𝛿 in 𝑓′ 𝑥 = 𝑓 𝑥+𝛿 −𝑓(𝑥)𝛿  which is the FPM, cannot be equal to0 at any time, but to arrive at the guess 𝐿, one must set 𝛿 = 0.

Let’s see how this buffoonery “works”:

Let 𝛥𝑓(𝑥,𝛿) be the difference quotient defined as follows:𝛥𝑓 𝑥,𝛿 = 𝑓 𝑥 + 𝛿 − 𝑓(𝑥)𝛿
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which reduces to 𝛥𝑓 𝑥 = 𝑓′ 𝑥 + 𝑄(𝑥,𝛿) and 𝑄(𝑥,𝛿) is some
expression in any combination of 𝑥 and 𝛿.

Then,𝑓′ 𝑥 = 𝑓 𝑥 + 𝛿 − 𝑓(𝑥)𝛿  = lim𝛿→0 𝛥𝑓 𝑥,𝛿 = 𝑓′ 𝑥 + 𝑄(𝑥,𝛿)
Now in order for 𝑓′(𝑥) to equal to 𝑓′ 𝑥 + 𝑄(𝑥,𝛿), it is required that𝑄 𝑥,𝛿 = 0, but this is possible only if 𝛿 = 0, that is,𝑓′ 𝑥 = 𝑓 𝑥 + 𝛿 − 𝑓(𝑥)𝛿  = 𝛥𝑓 𝑥,0 = 𝑓 𝑥 + 0 − 𝑓(𝑥)0 = 00= 𝑓′ 𝑥 + 0
Any astute reader will immediately see that the FPM is a kludge that
was contrived by Cauchy and sold to the mainstream by Weierstrass.

Thus, we can conclude there is no systematic way of finding the
derivative in mainstream calculus. One must use the kludgy FPM.

This illogical thinking and ill-formed reasoning didn’t stop with the
derivative, but was carried through to the definition of the integral also.
In particular, the Riemann integral is a kludge of the same kind.

There are many different forms of the Riemann integral, but essentially
they are all equivalent to the following definition in terms of the
product of two arithmetic means:𝑏

𝑎 𝑓 𝑥 𝑑𝑥 =𝑛−1
𝑖=0 𝑓 𝑎 + 𝑏 − 𝑎 𝑖𝑛 × 𝑏 − 𝑎𝑛   

The same definition can be rewritten as:
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𝑏
𝑎 𝑓 𝑥 𝑑𝑥 = 𝑏

𝑖=𝑎 𝑓 𝑥𝑖 + 𝑖𝛿  × 𝛿
where 𝛿 = 𝑏−𝑎𝑛 and 𝑥1 = 𝑎,  𝑥𝑘 = 𝑎 + 𝑘𝛿, etc.

The actual integral sum is thus a function of two variables expressed as
follows:

𝑆𝑢𝑚 𝑥,𝛿 = 𝑏
𝑎 𝑓 𝑥 𝑑𝑥 + 𝑅(𝑥,𝛿)

where 𝑅(𝑥,𝛿) is the remainder or error as the partial sums∑𝑏𝑖=𝑎 𝑓 𝑥 𝑖 + 𝑖𝛿 × 𝛿 approach the actual 𝑆𝑢𝑚(𝑥,0):
𝑆𝑢𝑚 𝑥,𝛿 = 𝑏

𝑎 𝑓 𝑥 𝑑𝑥 = 𝑏
𝑖=𝑎 𝑓 𝑥𝑖 + 𝑖𝛿 × 𝛿 

Therefore,

𝑆𝑢𝑚 𝑥,0 =∫𝑏𝑎 𝑓 𝑥 𝑑𝑥 =∑𝑏𝑖=𝑎 𝑓 𝑥 𝑖 + 𝑖0 × 0 = 0
And once again, the actual sum is not possible, but must be imagined as
some limit which can be proven to exist using convergence. Yet the very
limit is possible through the knowledge of the Mean Value Theorem,
provided the function 𝑓 has a primitive or antecedent function. If not,
then the method results in numeric integration and is never exact,
unless the limit is known to be a rational number or a recognisable
magnitude such as the constants 𝜋,  𝑒,  2, etc.

https://www.academia.edu/81300370/Mainstream_mathematics_academics_are_arrogant_and_incorrigible_ignoramuses_The_mean_value_theorem_IS_the_fundamental_theorem_of_calculus
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FOL (first order logic) verifinition described earlier, requires 𝛿 > 0. The
mean value theorem is the product of two arithmetic means and the
fundamental theorem of calculus is derived in one step.

Piecewise functions?

Mainstream academics barely understand their own ill-formed
theories. For example, a function is defined as follows:

In mathematics, a function is a relation between a set of inputs and a
set of permissible outputs with the property that each input is related to
exactly one output.

Ignoring the fact that a set is an ill-formed concept without any
definition, the above statement would rule out the ill-formed concept
of “piecewise function”, because a piecewise function contains more
than one set. A function with a discontinuity is not considered to be a
piecewise function. Calculus does not generally apply to functions that
have discontinuities or are not smooth over a given interval.

Holes and more holes.

It is important in mainstream calculus that a hole can be produced at
any point of a function. Given any function 𝑓(𝑥), it is believed by the
ignorant mainstream, that one can undefine 𝑓(𝑥) at 𝑥 = 𝑘, simply by
creating a “new” function by the following operation:new_function = 𝑓 𝑥 × 𝑥−𝑘𝑥−𝑘



91

The reason for holes as explained earlier, is so that the Weierstrass limit
verifinition cannot be faulted, that is, a limit exists without the function
necessarily being defined at the limit. It is a myth that any function has
a limit at a given point without being continuous also at that point.
The limit veri-finition of Weierstrass is exactly the same as the Cauchy
continuity definition with only one extra condition added to allow for a
function to be undefined at the limit point, that is, a hole or
discontinuity.

Multiplying any function by 1 does not change the function rule which
is based on one set relation, not many as erroneously believed by
mainstreamers. More absurd is how mainstream academics can
proceed to multiply by 1 and then find it unacceptable to divide by 1,
thus arriving back at the original 𝑓(𝑥). It seems that once the new
function is obtained, reducing the function as one would a fraction
through cancellation of factors, is a cardinal sin. It should be clear now
that this fraudulent activity was meant to facilitate Cauchy’s “rigorous”
calculus.

These misguided ideas have infected mainstream calculus to such an
extent, that students have to learn nonsense like 𝑙𝑖𝑚 𝑥→0 𝑥 𝑥 = 1 when in

actual fact, the expression 𝑠𝑖𝑛 𝑥 𝑥 is derived by multiplying the following

function 𝑓(𝑥) by 𝑥𝑥:𝑓 𝑥 = 1 − 𝑥23! + 𝑥45! − 𝑥67! + …𝑠𝑖𝑛 𝑥 𝑥 = 𝑓 𝑥 × 𝑥𝑥 whence it’s clear that 𝑓 0 = 1 and so 1 = 𝑠𝑖𝑛 0 0 .
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Last but not least, it gives incompetent mainstream calculus teachers
more impetus to design meaningless exam questions involving limits
and derivatives on piecewise functions.

Before we learn about the New Calculus definition of integral, let’s first
understand what the mean value theorem says!

Fixing the broken mainstream formulation of calculus.

The following is a special update from my unpublished work called
What you had to know in mathematics but your educators could not tell
you.

The update is included to complete the claims made previously, that is,
no ill-formed concepts such as infinity, infinitesimals or limit theory are
required in calculus and geometry is the only reason calculus actually
works.

The theory of limits is deeply flawed for several reasons, the most
important being that there is no valid construction of real numbers.
Neither classes of equivalent converging sequences (Cauchy) nor
Dedekind Cuts are valid constructions.

The New Calculus is the first and only rigorous formulation of calculus
in human history and excludes all ill-formed concepts such as infinity,
infinitesimals and limit theory. It is based entirely on sound geometry.

I shall demonstrate how you can formulate your mainstream calculus
using a strictly geometric approach, albeit not as efficient as the New
Calculus, which is simple to learn, elegant and powerful.

https://www.academia.edu/62358358/My_historic_geometric_theorem_of_January_2020
https://www.academia.edu/45471258/Is_the_real_number_line_real
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Let’s see how we can find the derivative of a function without the use
of limit theory.

𝑓 𝑥+ℎ −𝑓(𝑥)ℎ = 𝑓′ 𝑥 + 𝑄(𝑥,ℎ) is the slope formula.𝑓 𝑥+ℎ −𝑓(𝑥)ℎ is the slope of a non-parallel secant line.𝑓′ 𝑥 is the slope of the tangent line at 𝒙.𝑄(𝑥,ℎ) is the difference in slope between𝑓 𝑥+ℎ −𝑓(𝑥)ℎ and 𝑓′ 𝑥 .

The slope formula is expressed as 𝑟𝑖𝑠𝑒𝑟𝑢𝑛.

𝑓 𝑥+ℎ −𝑓(𝑥)ℎ = 𝑓′ 𝑥 + 𝑄(𝑥,ℎ)𝑥𝑛+ 𝑛 1 𝑥𝑛−1ℎ+ 𝑛 2 𝑥𝑛−2ℎ2+…+ℎ𝑛 −𝑥𝑛ℎ = 𝑓′ 𝑥 + 𝑄(𝑥,ℎ)
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Now subtract 𝑄(𝑥,ℎ) from both sides where𝑄 𝑥,ℎ = 𝑛 2 𝑥𝑛−2ℎ + … + ℎ𝑛−1
Thus,𝑛 1 𝑥𝑛−1 = 𝑓′ 𝑥
Or 𝑓′ 𝑥 =  𝑛𝑥𝑛−1 since 𝑛 = 𝑛 1 
Let’s see a simple example with actual numbers to see how it works.
Suppose that 𝑓 𝑥 = 𝑥3, 𝑥 = 1 and ℎ = 2.

From the slope function 𝑓 𝑥+ℎ −𝑓(𝑥)ℎ we have:(1+2)3−132 = 13 = 3(1)2 + 3(1)(2) + 22 = 3 + 6 + 4
↔ 13 = 3 + 10
Subtract 𝑄 1,2 = 10 from both sides of the above and you have 3 = 3
as required. Notice that regardless of what value is chosen for ℎ, the
derivative is found after subtracting 𝑄 𝑥,ℎ from both sides.

As you can see, finding a derivative is entirely based on sound
geometry without the need for the flawed theory of limits!
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In your flawed mainstream formulation of calculus, you need 𝑄 𝑥,ℎ
to be equal to 0. However, 𝑄 𝑥,ℎ is never equal to 0 because then
the slope or finite difference is indeterminate, that is, it takes the

form 00.

To establish the definite integral using this new approach is much
harder because it is not as optimal as the New Calculus, that is, one
has to include the extraneous term or expression 𝑄 𝑥,ℎ that results
from using a non-parallel secant line in the fixed mainstream
derivative definition as shown earlier.

First note that any area is in actual fact a product of two arithmetic
means. For example, a rectangular area is the product of its sides,
which are arithmetic means of all the vertical line lengths and
horizontal line lengths in the rectangle respectively.

To calculate an irregular bounded area between a curve and the 𝑥-axis,
we need to determine the arithmetic mean of all the 𝑦-ordinates of the
function in the interval and then multiply it by the interval width, so as
to find the area – just as we would for a rectangle.

Let’s see how we can find the definite integral of a function without the
use of limit theory, in other words, the fundamental theorem of
calculus which is directly obtained from the mean value theorem.

https://www.academia.edu/100452360/Teaching_ChatGPT_the_Fundamental_Theorem_of_Calculus_using_the_Mean_Value_Theorem
https://www.academia.edu/100452360/Teaching_ChatGPT_the_Fundamental_Theorem_of_Calculus_using_the_Mean_Value_Theorem
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You probably have never learned this before, so I’ll quickly show you
why it’s true and explain it thoroughly in the following chapters.

From the mean value theorem:

𝑓 𝑥+ℎ −𝑓(𝑥)ℎ = 𝑓′(𝑐)
We obtain the fundamental theorem of calculus:𝑓 𝑥 + ℎ − 𝑓 𝑥 = 𝑓′ 𝑐 × ℎ =  ∫𝑥+ℎ𝑥 𝑓′ 𝑥 𝑑𝑥
The mean value theorem which is about an arithmetic mean, i.e. 𝑓′(𝑐)
is easy to prove and you will see how it is done in the following proof.

We begin with an interval (𝑥, 𝑥 + ℎ) divided into 𝑛 equal parts as
follows:

𝑥 𝑥 + ℎ𝑛 𝑥 + 2ℎ𝑛      …     𝑥 + 𝑛−1 ℎ𝑛     𝑥 + ℎ
To find the arithmetic mean of all the 𝑦 ordinates of 𝑓′(𝑥), we observe
the following:
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𝑓′ 𝑥 + 𝑄 𝑥, ℎ𝑛 = 𝑓 𝑥+ℎ𝑛 −𝑓(𝑥)ℎ𝑛𝑓′ 𝑥 + ℎ𝑛 + 𝑄 𝑥 + ℎ𝑛 , ℎ𝑛 = 𝑓 𝑥+2ℎ𝑛 −𝑓 𝑥+ℎ𝑛ℎ𝑛
...𝑓′ 𝑥 + (𝑛−1)ℎ𝑛 + 𝑄 𝑥 + (𝑛−1)ℎ𝑛 , ℎ𝑛 = 𝑓 𝑥+(𝑛−1)ℎ𝑛 +ℎ𝑛 −𝑓 𝑥+(𝑛−1)ℎ𝑛ℎ𝑛
Note that the right hand side sum telescopes, and all the purple terms

cancel out to give 𝑓 𝑥+ℎ −𝑓(𝑥)ℎ𝑛 .

Thus, summing the left hand side and the right hand side, we get:

∑𝑛−1𝑖=0 𝑓′ 𝑥 + ℎ𝑖𝑛  +  𝑄 𝑥 + ℎ𝑖𝑛 ,   ℎ𝑛  = 𝑓 𝑥+ℎ −𝑓(𝑥)ℎ𝑛  
Let 𝑄(𝑥,ℎ) =∑𝑛−1𝑖=0  𝑄 𝑥 + ℎ𝑖𝑛 ,   ℎ𝑛  
∑𝑛−1𝑖=0 𝑓′ 𝑥 + ℎ𝑖𝑛  + 𝑄(𝑥,ℎ) = 𝑓 𝑥+ℎ −𝑓(𝑥)ℎ𝑛  
Dividing by 𝑛 gives the arithmetic mean:
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1𝑛 ×∑𝑛−1𝑖=0 𝑓′ 𝑥 + ℎ𝑖𝑛  + 𝑄(𝑥,ℎ)𝑛  = 𝑓 𝑥+ℎ −𝑓(𝑥)ℎ  
Now we multiply by ℎ to get the area:

[PC] ℎ𝑛 ×∑𝑛−1𝑖=0 𝑓′ 𝑥 + ℎ𝑖𝑛 + ℎ∙𝑄(𝑥,ℎ)𝑛  =  𝑓 𝑥 + ℎ − 𝑓(𝑥) 
OR

[MC] ℎ𝑛 ×∑𝑛−1𝑖=0 𝑓′ 𝑥 + ℎ𝑖𝑛  =  𝑓 𝑥 + ℎ − 𝑓(𝑥) − ℎ∙𝑄(𝑥,ℎ)𝑛
The above result [PC] is the fundamental theorem of calculus. Note
that the result is obtained by a FINITE number of steps, that is, any
integer value of 𝑛 > 0 will be sufficient to find the integral.

One might ask why we need to subtract ℎ∙𝑄(𝑥,ℎ)𝑛 from𝑓 𝑥 + ℎ − 𝑓(𝑥). The reason for this is immediately obvious from the
first geometric identity:𝑓 𝑥+ℎ −𝑓(𝑥)ℎ = 𝑓′ 𝑥 + 𝑄(𝑥,ℎ)
If we want the arithmetic mean of all the 𝑦-ordinates of the function𝑓′(𝑥), then we must determine the arithmetic mean in terms of𝑓 𝑥 + ℎ − 𝑓 𝑥 − ℎ∙𝑄(𝑥,ℎ)𝑛 , otherwise we are not considering 𝑓′(𝑥), but

the slopes of non-parallel secant lines given by 𝑓 𝑥+ℎ −𝑓(𝑥)ℎ . Hence, we

use [MC] to find the area.
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Let’s see an example of [MC] where  𝑓 𝑥 = 𝑥2, ℎ = 2,𝑛 = 1 and we need the area from 𝑥 = 1 to 𝑥 = 3.

2 × 𝑓′ 1 + 2(0)1 =  𝑓 3 − 𝑓(1) − 2∙21
→   2 × 2 =  9 − 1 − 4→  4 =  4
Let’s see yet another example of [MC] where  𝑓 𝑥 = 𝑥2, ℎ = 2, 𝑛 = 2
and we need the area from 𝑥 = 1 to 𝑥 = 3.

1 × 𝑓′ 1 + 𝑓′(2) =  𝑓 3 − 𝑓(1) − (1 + 1)
→   2 + 4 =  9 − 1 − 2→   6 =  6
As a final example consider  𝑓 𝑥 = 𝑥3, ℎ = 2, 𝑛 = 3 and we need the
area from 𝑥 = 1 to 𝑥 = 3.
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ℎ𝑛 ×𝑛−1
𝑖=0 𝑓′ 𝑥 + ℎ𝑖𝑛  + ℎ∙𝑄(𝑥,ℎ)𝑛 =  𝑓 𝑥 + ℎ − 𝑓(𝑥) 

23 × 𝑓′ 1 + 𝑓′ 53 + 𝑓′ 73 +  2∙ 3(1) 23 +3 53 23 +3 73 23 +3 23 2
3

=  𝑓 3 − 𝑓(1) 
23 × 93 + 253 + 493 + 20427 =  27 − 1
23 × 833 + 20427 =  26
1669 + 20427 =  26
49827 + 20427 =  26 ↔   70227 =  26
This process is far simpler in the New Calculus, because parallel secant
lines (as opposed to non-parallel secant lines ala Newton and Leibniz)
are used and there is no extraneous term or expression 𝑄 𝑥,ℎ that led
to the behemoth known as the theory of limits. Limit theory is not
required for either the derivative or integral.
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I have generously revealed this rigorous knowledge based only on
sound geometry to the world’s thousands of ignorant mathematics
professors and teachers in the hope that they will cease peddling their
idiocies to aspiring young mathematicians.

Now that you have seen how your mainstream calculus can be fixed,
let’s study the proof of the mean value theorem – the most important
theorem in calculus from which all the others are derived. We’ll see a
proof using the flawed mainstream formulation and a constructive
proof using the New Calculus later.
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Chapter 9: The Mean Value Theorem

The purpose of this chapter is to explain why the mean value theorem
works, in a systematic way using the flawed apparatus available in
mainstream calculus with a patch (positional derivative explained at the
end of this chapter) which I conceived to make this possible. The proof
using the New Calculus requires no patch.

Statement: If 𝑓 is continuous on the closed interval [𝑥,𝑥 + 𝜔] where𝑥 < 𝑥 + 𝜔, and smooth on the open interval (𝑥,𝑥 + 𝜔), then there
exists a point 𝑐 in (𝑥,𝑥 + 𝜔) such that

𝑓′ 𝑐 = 𝑓 𝑥+𝜔 −𝑓(𝑥)𝜔 [MVT]

Preliminary: Some well-formed definitions

A function is continuous over a given interval if there are no disjoint
paths in that interval or if it is defined (*) everywhere in that interval. A
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path is a distance between two points which can be systematically
described.

A tangent line is a finite straight line, such that it meets a curve in only
one point, extends to both sides of the point and crosses the curve
nowhere.

A function is smooth over a given interval if it is continuous over that
interval AND only one tangent line is possible at any point in the
interval. Inflection points are excluded because no tangent line is
possible at points of inflection, only half-tangent lines.

(*) Since real numbers do not exist because there is no valid
construction of the same, you are required to think in terms only of
length magnitudes whose measure may be possible or not. Thus, the
function is defined everywhere in terms of length magnitudes, provided
there are no disjoint paths. Essentially a function path is described by a
distance or length magnitude.

We can think of the 𝑥 coordinate magnitudes as 𝑥 + 𝑘𝜔𝑛 where 𝜔 is the

interval width, 𝑘 is a rational number denoting the index of the 𝑥
ordinate and 𝑛 the number of equal subdivisions or partitions of the

interval. Hence the 𝑦 coordinates are then given by 𝑓 𝑥 + 𝑘𝜔𝑛 . But, you

may say, not all the ordinates are addressed this way. Well, you will see
that this does not matter as we demonstrate the proof which involves a
reducible or telescoping sum.
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Define the derivative as follows:𝑓′ 𝑥 = 𝑓 𝑥+𝜔𝑛 −𝑓(𝑥)𝜔𝑛  [ND]

where 𝜔 is the interval width between 𝑥 and 𝑥 + 𝜔, and 𝜔𝑛 is the width

of each equal partition in (𝑥,𝑥 + 𝜔). This isn’t much different from the
mainstream definition which is obtained by inverting the limit sense,
that is, let ℎ = 𝜔𝑛 so that as 𝑛 → ∞, it follows that ℎ → 0.Then replace

with ℎ in [ND] to get the ubiquitous form:𝑓′ 𝑥 = 𝑓 𝑥 + ℎ − 𝑓(𝑥)ℎ  
Using the new definition [ND], we can define any of the positional

derivatives at a point 𝑥,𝑥 + 𝑘𝜔𝑛 as follows:

𝑓′ 𝑥 + 𝑘𝜔𝑛 =  𝑓 𝑥+(𝑘+1)𝜔𝑛 −𝑓 𝑥+𝑘𝜔𝑛𝜔𝑛  [PD]

Now assume that the LHS of [MVT], that is, 𝑓′ 𝑐 , is an arithmetic
mean of ALL (**) the (“infinitely many”) ordinates of 𝑓′ in the interval(𝑥,𝑥 + 𝜔), then

𝑓′ 𝑐 = 1𝑛𝑛−1
𝑘=0 𝑓′ 𝑥 + 𝑘𝜔𝑛  

(**) You can verify this statement with actual examples. Try 𝑓′ 𝑥 =2𝑥 for an area enclosed between the curve and the 𝑥 axis on interval(0;2). Note that the area must lie entirely above the axis or entirely
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below the axis. It makes no sense to find the arithmetic mean of both
positive and negative distances at the same time.

So,𝑓′ 𝑐 = 1𝑛∑𝑛−1𝑘=0 𝑓′ 𝑥 + 𝑘𝜔𝑛  
And1𝑛∑𝑛−1𝑘=0 𝑓′ 𝑥 + 𝑘𝜔𝑛  =𝑙𝑖𝑚𝑛→∞ 1𝑛 𝑓′ 𝑥 + 𝑓′ 𝑥 + 𝜔𝑛 + 𝑓′ 𝑥 + 2𝜔𝑛 +… + 𝑓′ 𝑥 + (𝑛−2)𝜔𝑛 + 𝑓′ 𝑥 + (𝑛−1)𝜔𝑛  [SD]

Now replacing each positional derivative in [SD] with its expanded form
[PD]: 𝟏𝒏𝒏−𝟏

𝒌=𝟎 𝒇′ 𝒙 + 𝒌𝝎𝒏  
= 𝒍𝒊𝒎𝒏→∞ 𝟏𝒏 𝒍𝒊𝒎𝒏→∞ 𝒏𝝎 𝒇 𝒙 + 𝝎𝒏 − 𝒇 𝒙 + 𝒇 𝒙 + 𝟐𝝎𝒏 − 𝒇 𝒙 + 𝝎𝒏+ 𝒇 𝒙 + 𝟑𝝎𝒏 − 𝒇 𝒙 + 𝟐𝝎𝒏 + … + 𝒇 𝒙 + 𝒏 − 𝟏 𝝎𝒏− 𝒇 𝒙 + 𝒏 − 𝟐 𝝎𝒏 + 𝒇 𝒙 + 𝒘 − 𝒇 𝒙 + 𝒏 − 𝟏 𝝎𝒏1𝑛𝑛−1

𝑘=0 𝑓′ 𝑥 + 𝑘𝜔𝑛  = 𝑙𝑖𝑚𝑛→∞ 1𝑛 𝑙𝑖𝑚𝑛→∞ 𝑛𝜔 𝑓 𝑥 + 𝜔 − 𝑓(𝑥)
= 𝑓 𝑥 + 𝜔 − 𝑓(𝑥)𝜔 = 𝑓′(𝑐)
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And this is what was expected. Replacing 𝑥 by 𝑎 and letting 𝜔 = 𝑏 − 𝑎,
we have the ubiquitous form:𝑓′ 𝑐 = 𝑓 𝑏 −𝑓(𝑎)𝑏−𝑎
The fundamental theorem of calculus is derived in one step from the
mean value theorem: 𝑓′ 𝑐 = 1𝑏−𝑎  ∫𝑏𝑎 𝑓′ 𝑥  𝑑𝑥
Since area is well defined by me as the product of two arithmetic
means, we have: 𝐴𝑟𝑒𝑎 = 𝑓′ 𝑐 × (𝑏 − 𝑎)
where 𝑓′(𝑐) is the arithmetic mean of all the vertical line lengths of𝑓′(𝑥) in the interval (𝑎,𝑏) and 𝑏 − 𝑎 is the arithmetic mean of all the
horizontal line lengths or just the interval width. This is why we call the
process of finding areas through definite integration ‘quadrature’ – we
essentially normalise the irregular area so that it is a quadrilateral when
we can calculate the area as a plane number (Euclid’s Elements: Book
VII, Definition 16).

The horizontal side length is the arithmetic mean of the infinitely many

horizontal line lengths in a parallelogram. The vertical side length is the

arithmetic mean of the infinitely many vertical line lengths in a

parallelogram. See below:
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The horizontal line length arithmetic mean is given by 𝑘𝑤𝑘 = 𝑤 where 𝑤
is the length of each horizontal line. Similarly, the vertical line length

arithmetic mean is given by 𝑘ℎ𝑘 where ℎ is the height of each vertical

line. It is immediately evident that 𝑤 and ℎ are both arithmetic means

of the infinitely many horizontal and vertical line lengths respectively.

Area is defined as the product of these arithmetic means, that is, 𝐴 =𝑤 × ℎ. Euclid would have done well had he defined the area this way.

Thus, 𝐴𝑟𝑒𝑎 = 𝑓 𝑏 −𝑓(𝑎)𝑏−𝑎 × 𝑏 − 𝑎 = 𝑓 𝑏 − 𝑓(𝑎)
And so ∫𝑏𝑎 𝑓′ 𝑐  𝑑𝑥 = 𝑓 𝑏 − 𝑓(𝑎) which is known ubiquitously as the
fundamental theorem of calculus. Several flavours of the mean value
theorem have been realised:

● Fundamental theorem of calculus
● The Average Value theorem
● The Mean Value theorem for integrals
● The Second Mean Value theorem for integrals
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These are all different forms of the same Mean Value Theorem.

Academics before me never realised these facts, nor has any such
information ever been published by anyone else.

The mainstream statement of the mean value theorem is an
unremarkable fact about a continuous and smooth curve over a given
interval. Over 2000 years ago, mathematicians knew that a line
(secant) through any point could be constructed parallel to another line
(tangent).

The remarkable fact is that no matter what interval or number of
ordinates are considered, the arithmetic mean will always lie in the
interval, even if the function is not continuous or smooth.

A parallel secant line is possible for a given tangent line so that𝑓′ 𝑐 = 𝑓 𝑏 −𝑓(𝑎)𝑏−𝑎 . This is a fact of any curve having the property of

smoothness. Smoothness implies continuity but the converse is not
true. Therefore, it makes no sense to consider the use of calculus in
cases where the function is not smooth, e.g. 𝑦 = |𝑥| is not smooth at𝑥 = 0.

More absurd is the consideration of functions where there is a known
discontinuity. The mean value theorem as stated by mainstream
academics will not apply when there are discontinuities. However,
there are examples where the mean value theorem applies even with
the mainstream conditions absent. We’ll see a couple of examples
soon.

https://www.academia.edu/81300370/Mainstream_mathematics_academics_are_arrogant_and_incorrigible_ignoramuses_The_mean_value_theorem_IS_the_fundamental_theorem_of_calculus
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The correct statement of Mean Value Theorem:

Suppose that an arithmetic mean of all the 𝑦 ordinate lengths is
possible for 𝑓(𝑥) on the open interval (𝑎,𝑏). Then there is a number 𝑐
such that 𝑓′ 𝑐 = 𝑓 𝑏 −𝑓(𝑎)𝑏−𝑎
The only time this is impossible is when there is a discontinuity and no
convergence in terms of area or volume (for example, Gabriel’s Horn).

The correct way to teach the mean value theorem from which the
fundamental theorem is derived in one step is outlined in my article.

Example 1: A function is continuous but not differentiable and yet the
Mean Value Theorem still applies in its correct form:

https://www.academia.edu/45154026/Teaching_the_fundamental_theorem_of_calculus
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Example 2: A function is neither continuous nor differentiable, and yet
the Mean Value Theorem still applies in its correct form:

Moreover, the red shading in the diagram that follows, shows half the
total area which is equal to 2 and is the product of the arithmetic
means 1 and 2, where 1 is the arithmetic mean of all the vertical line
lengths of the dotted green curve between 𝑥 = 3 and 𝑥 = 5.
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Mainstream confusion does not cease here, as there are many other
absurd ideas.

The Positional Derivative.

I developed this concept to prove the mean value theorem
constructively using the machinery of mainstream calculus. None of the
following is used in the New Calculus, which is the first and only
rigorous formulation of calculus in human history.

Explanation:

In any given interval, the number of ordinates are innumerable and
most cannot be described by any number. The idea of indivisibles was
conceived (but not used) by Archimedes and then referenced by
Cavalieri many centuries later. Cavalieri didn’t do much with the idea.

To prove the mean value theorem using mainstream calculus, one
needs machinery that can emulate every ordinate in a given finite
interval. An indivisible ordinate 𝑖 in the interval [𝑥 ;𝑥 + 𝜔] can be

represented symbolically as follows: 𝑖 = 𝑥 + 𝜔𝑘𝑛  .
Theoretically the sum of all the ordinates 𝑓(𝑖) can be given as:∞

𝑖=1 𝑓(𝑖)
Furthermore, the theoretical mean required for quadrature or cubature
is given by: ∑∞𝑖=1 𝑓(𝑖)∞
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Naturally, such a mean in its given form is not possible to determine
because infinity is not only not a number, but a junk concept.

Mainstream calculus unsuccessfully defines integrals in terms of
infinitely small rectangular areas, but this leads to a contradiction,
because if a limit is to be realised, then intuitively, each area must
become 0 in the Riemannian definition.

The definition of a positional derivative is as follows:

𝑓′ 𝑥 + 𝑘𝜔𝑛  = 𝑓 𝑥 + (𝑘 + 1)𝜔𝑛 − 𝑓 𝑥 + 𝑘𝜔𝑛𝜔𝑛  
The truth of this definition can be demonstrated with concrete
examples even though every derivative is strictly symbolic.

To simplify the explanation, let 𝑘𝜔 = 𝑚 and 𝑛 = 𝑝.

Then,

𝑓′ 𝑥 + 𝑚𝑝  = 𝑓 𝑥 + 𝑚𝑝 + 𝜔𝑛 − 𝑓 𝑥 + 𝑚𝑝𝜔𝑛  
As an example, let’s consider the function 𝑓 𝑥 = 𝑥2.

2 𝑥 + 𝑚𝑝  = 𝑥+𝑚𝑝 +𝜔𝑛 2− 𝑥+𝑚𝑝 2𝜔𝑛  
2 𝑥 + 𝑚𝑝  = 𝑥2+2𝑚𝑝 𝑥+𝑚2𝑝2 +2𝜔𝑛 𝑥+2𝑚𝜔𝑝𝑛 +𝜔2𝑛2 − 𝑥2+2𝑚𝑝 𝑥+𝜔2𝑛2𝜔𝑛  
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This reduces to: 2 𝑥 + 𝑚𝑝  =   2𝑥 + 2𝑚𝑝 + 𝜔𝑛  
Now taking the limit as 𝑛 → ∞ on the right hand side, we have:2 𝑥 + 𝑚𝑝  =   2𝑥 + 2𝑚𝑝  
Replacing 𝑚 with 𝑘𝜔 and 𝑝 with 𝑛, we have the expected result:2 𝑥 + 𝑘𝜔𝑛  =   2𝑥 + 2𝑘𝜔𝑛  
One can write many books on the flaws in mainstream mathematics
theory, but what purpose would it serve? More interesting are the
ideas that led to the New Calculus, the first and only rigorous
formulation in human history. In the next chapter, we learn some of
these ideas.
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Chapter 10: The ideas that led to the discovery of the New Calculus

I was around 13 or 14 years old when I began to teach myself calculus. I
read many calculus books and first used the book called Teach yourself
calculus by P Abbott (1955) to learn the basic ideas. I completed all the
exercises at the end of each chapter in less than one week. According
to my teachers, I already knew more than they and all that was covered
in a full semester course of calculus in the first year of university. That
said, I knew that I did not understand calculus, even though I could
evaluate line integrals, determine double integrals using Green's
theorem and use Taylor's multi-variable expansion series.

I imagined that eventually a more knowledgeable professor of
mathematics would be able to explain how the fundamental theorem
came to be, let's call it a missing link. It was clear to me that all roads
led to the MVT (mean value theorem), but how, I had no clue.

In desperation I turned to the Britannica Encyclopaedia which was
renowned for accuracy. Was I disappointed! Everything I had learned
was stated differently and so it was equivalent to relearning everything
I already knew in different terms, and then still had to figure out what I
did not understand.

When the Britannica stated "It can be easily shown...", what this meant
was several pages of proof and concepts that were not clearly
explained. I grew used to the Britannica and my knowledge increased
as I realised different perspectives which I had not known from
previous study.
After learning of Newton's interpolation polynomial and LaGrange's
polynomial, I still had no idea what calculus is all about or even how
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they (Newton and Leibniz) arrived at the knowledge of the fundamental
theorem. I so badly wanted to know.

A Greek engineer who was a family friend, informed me that I could
probably learn more if I knew Latin and was able to acquire a copy of
Newton's famous De Analysi. There was a slim chance of that
happening then, as the library in my poverty-stricken area was poorly
stocked, with the exception of the only set of Encyclopaedia Britannica
that was meant to be shared by all who lived there. I started to teach
myself Latin from a self-help book, but it was years before I laid eyes on
De Analysi.

The time came and I was able to study De Analysi. I had also been to
university and spoken to many mathematics professors whom I found
to be a bunch of highly ignorant academics. It eventually occurred to
me that Newton knew nothing more than what I had already learned.

To be certain, I had gained many perspectives, but Newton made
mistakes and his theory was based on several precarious concepts. He
was no longer a giant in my eyes. In fact, he was starting to become
rather small. Leibniz's work is not in the same league as Newton's, even
though Leibniz tried to well define the derivative. Had he known the
New Calculus, he might have succeeded.

I soon realised that both Newton and Leibniz, and in fact every
academic since, has never understood the mean value theorem or was
able to prove it constructively. I was the first ever to provide a
constructive proof using the flawed apparatus of the mainstream
calculus (with a patch I created called the positional derivative) and the
New Calculus, the first and only rigorous formulation of calculus in
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human history.

Thus, I was back where I had begun at the age of 14 - no one else knew
how the fundamental theorem came to be. Many years later, I became
aware that all the academics who came before me had no clue and that
the masters of calculus (Newton and Leibniz) had discovered it
empirically. Just for the record, I did no such thing with the New
Calculus - it is a rigorous, systematic and flawless formulation. There
was no experimentation, no guessing, no ill-formed concepts.

So an intensive effort began to make the connection, by finding the
missing link. The missing link is the formula that directly connects the
finite difference and the derivative to the integral. As stated earlier, the
fundamental theorem gives one a clue, but most did not realise that
the correct statement should be:

𝑓 𝑥 + 𝑤 − 𝑓 𝑥 = 𝑥+𝑤
𝑥 𝑓′ 𝑥 𝑑𝑥

That theorem is derived in one step from the mean value theorem as
explained in an earlier chapter.

There are some academics who now call the fundamental theorem of
calculus, the net change theorem which states that the integral of an
acceleration function is given by the change in velocity, that is,𝑣 𝑏 − 𝑣 𝑎 =  ∫𝑏𝑎 𝑎 𝑡 𝑑𝑡 
To fully understand the fundamental theorem, one is required to have a
profound understanding of the MVT, for it is derived directly from the
MVT in one step. No one realised this fact before me because the real
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meaning of the mean value theorem (MVT) is that it represents an
arithmetic mean.

You might be surprised at what I came up with. Before my finite
difference formulas, there was no direct link between Newton's
interpolation polynomial (divided finite differences), Cauchy's
derivative (his limit definition) and Leibniz's integral (elongated es).

Given a function 𝑓 and its derivative 𝑓′ , the 𝑝𝑡ℎ finite difference can
be calculated using my general finite difference formula in either of two
forms as follows:

In terms only of derivatives:

𝛥𝑝 𝑥 = 𝑝𝑛 𝜔𝑝−1 𝑛−1
𝑠=0

𝑝−1
𝑞=0 𝑝 − 1 𝑞 − 1 𝑝−1+𝑞  𝑓′ 𝑥+ 𝑞+1 𝜔𝑠𝑛  

In terms of derivatives and integrals:

𝛥𝑝 𝑥 = 1𝜔𝑝  𝑝−1
𝑞=0 − 1 𝑝−1+𝑞 𝑥+ 𝑞+1 𝜔

𝑥+𝑞𝜔 𝑓′ 𝑥 𝑑𝑥
I had established the missing link, but the fundamental theorem of
calculus was still without reach in terms of understanding. Most
professors could not understand my formulas and many decades later,
a Chinese researcher on ResearchGate internet site, came up with
something similar, but not quite the same or even close to the accuracy
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of my formulas.

Believe it or not, even with the missing link no longer missing, the
fundamental theorem cannot be understood without the knowledge of
my New Calculus. One requires a deep and profound understanding of
the mean value theorem. I carefully studied the "proofs" of the MVT -
all of them a shameful joke that is testimony to the ignorance,
arrogance, stupidity and incompetence of academics who came before
me.

So, I set out to prove it using the tools of analysis. The average sum
theorem was discovered long before.

Here is my average sum theorem which I discovered 30 years ago:

For a function 𝑓 differentiable over an interval (𝑥;𝑥 + 𝜔) , the following
identity is true:

𝑓 𝑥 =  𝑙𝑖𝑚𝑛→∞ 1𝑛𝑛−1
𝑘=0 𝑓 𝑥 + 𝜔𝑘𝑛𝑝

where 𝑝 > 1 and 𝑝∈𝑁.

If 𝑝 = 1, then the right hand side of the identity becomes the right (or
left) hand side of the mean value formula from which we derive the
fundamental theorem of calculus and the definition of an integral.
If 𝑝 > 1, the identity defines the function value at a given point, that is,𝑓(𝑥).
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A lot had fallen into place, but the final piece of the puzzle was found
only after I went back to the basic definitions of area, volume, etc. To
fully grasp the MVT, one has to understand that area is in fact the
product of two arithmetic means. Similarly, volume is the product of
three arithmetic means.

For the first time in my life's journey and in the history of humanity, the
mean value theorem was understood in all its glory. The New Calculus
was born from this epiphany.
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Chapter 11: The New Calculus derivative definition

The derivative in the New Calculus is the slope of a tangent line that is
defined as follows: 𝑓′ 𝑥 = 𝑓 𝑥 + 𝑛 − 𝑓(𝑥 − 𝑚)𝑚 + 𝑛
where 𝑚 and 𝑛 are horizontal distances from the point of tangency(𝑥,𝑓 𝑥 ) to the endpoints of a secant line that is parallel to the tangent
line at the same point and 𝑥 − 𝑚 < 𝑥 < 𝑥 + 𝑛 .
The following diagram explains:

The definition can also be written as follows𝑓′ 𝑥 = 𝑓 𝑥 + 𝑛 − 𝑓(𝑥 − 𝑚)𝑚 + 𝑛 = 𝑓′ 𝑥 + 𝑄(𝑥,𝑚,𝑛)
where 𝑄 𝑥,𝑚,𝑛 = 0. The expression 𝑄(𝑥,𝑚,𝑛) is obtained if every
factor 𝑚 + 𝑛 is cancelled from the numerator and denominator of the
finite difference quotient:
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may not contain 𝑥. It is easy to prove that 𝑚 + 𝑛 is a “real” factor of
every term in the numerator. From the definition,𝑓′ 𝑥 × 𝑚 + 𝑛 = 𝑓 𝑥 + 𝑛 − 𝑓(𝑥 − 𝑚)𝑚 + 𝑛 is a factor of the left hand side, therefore it is also a factor of the
right hand side.

Proof:

If we divide the left hand side by 𝑚 + 𝑛, the result is 𝑓′(𝑥). But 𝑓 𝑥 +𝑛 − 𝑓 𝑥 − 𝑚 is not equal to 𝑓′(𝑥). Algebra tells us that the right hand
side must equal to the left hand side, which is only possible if 𝑚 + 𝑛 is a
factor. Q.E.D

From the point of tangency, it is possible to construct any number of
similar triangles whose one side is a parallel secant line. This fact is true
for any function that is continuous and smooth. The only exception is if
the given point is a point of inflection, in which case a tangent line is
not possible and hence a derivative is meaningless. A derivative is the
slope of a special kind of straight line: one that is tangent to another
curve. No straight line can be tangent to another straight line.

In the diagram that follows, two similar triangles are shown, but
innumerably many such triangles are possible.
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From the diagram it is easy to see that the slope of any tangent line is
given by the slope of any parallel secant line:𝑟𝑖𝑠𝑒𝑟𝑢𝑛 = 𝑟𝑖𝑠𝑒𝑟𝑢𝑛 = 𝑟𝑖𝑠𝑒 + 𝑟𝑖𝑠𝑒𝑟𝑢𝑛 + 𝑟𝑢𝑛 = 𝑓 𝑥 + 𝑛 − 𝑓(𝑥 − 𝑚)𝑚 + 𝑛
Different values for 𝑚 and 𝑛 are possible, given that every parallel
secant line has a unique (𝑚,𝑛) pair.

It is impossible for any parallel secant line’s slope to be defined by a(0,0) pair, hence 𝑚 + 𝑛 is never equal to 0. However, given that𝑓′ 𝑥 = 𝑓′ 𝑥 + 𝑄(𝑥,𝑚,𝑛) and every term in 𝑄(𝑥,𝑚,𝑛) has either 𝑚 or𝑛 or both, setting 𝑚 = 𝑛 = 0 is equivalent to the value of 𝑄(𝑥,𝑚,𝑛),
which is of course always 0.

Objections by mainstream academics:
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1. How do you know if a parallel secant line to any given tangent line is
possible?

We can safely assume that there are innumerably many secant lines
that are parallel to the tangent line and also innumerably many secant
lines that are not parallel to the tangent line. That there are
innumerably many parallel secant lines was proved by Euclid over 2300
years ago.

2. Why can’t we use the same approach in mainstream calculus?

Since the tangent line slope 𝑓′ 𝑥 + 𝑄(𝑥,ℎ) does not depend on ℎ, the
sum of all the terms in ℎ must be zero, because the expression 𝑓′(𝑥) +ℎ must be equal to 𝑓′(𝑥), the slope of the tangent line. This is only
possible if ℎ =  0.

In the New Calculus, we know that the parallel secant lines have the
same slope, but none of the secant lines in the mainstream calculus
ever have the same slope. So, the statement

“𝑓′(𝑥) + ℎ must be equal to 𝑓′(𝑥), the slope of the tangent line“,

is clearly untrue. 𝑓′(𝑥) + ℎ is never equal to the slope of the tangent
line, unless ℎ = 0, which in the words of Anders Kaesorg (MIT graduate)
is ‘absolutely not allowed’ (sic). Read about my Quora debate with
Anders Kaesorg of MIT online.

3. But doesn’t the New Calculus method still use limits?

No, because those parallel secant lines are fixed and nothing
approaches anything else. It is impossible for a parallel secant line ever
to coincide with the tangent line, for if hypothetically it did so, then the
secant line would degenerate into a point which cannot have a slope,
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that is, there is no (𝑚,𝑛) pair (0,0) which can be used in the definition
of the parallel line’s slope. For this reason, there is never division by 0
because the difference quotient 𝑓 𝑥+𝑛 −𝑓(𝑥−𝑚)𝑚+𝑛 is valid only if 𝑚 + 𝑛 > 0.

4. How do you know there is a term without 𝑚 or 𝑛 in it?

For two reasons:

i. 𝑓′(𝑥) does not depend on 𝑚 or 𝑛.
ii. It is easily proved that 𝑚 + 𝑛 is a factor of every term in the

numerator:

From 𝑓′ 𝑥 × (𝑚 + 𝑛) = 𝑓(𝑥 + 𝑛) − 𝑓(𝑥 − 𝑚), it follows that 𝑚 + 𝑛 is
a factor of the LHS which is a product of two factors 𝑓′(𝑥) and𝑚 + 𝑛. 𝑓′ 𝑥 × (𝑚 + 𝑛) is measured by 𝑚 + 𝑛 exactly 𝑓′(𝑥) times.
Since 𝑚 + 𝑛 is a factor of the left hand side (LHS), it follows that 𝑚 + 𝑛
must also be a factor of the right hand side (RHS), that is, the RHS is
also a product of two factors. Hence, 𝑚 + 𝑛 is a factor of the expression𝑓(𝑥 + 𝑛) − 𝑓(𝑥 − 𝑚), that is, 𝑚 + 𝑛 measures 𝑓(𝑥 + 𝑛) − 𝑓(𝑥 − 𝑚)
exactly 𝑓′(𝑥) times also. This means that if we divide 𝑓(𝑥 + 𝑛) − 𝑓(𝑥 −𝑚) by 𝑚 + 𝑛, the expression so obtained must be equal to 𝑓′(𝑥). This
is only possible if the sum of all the terms in 𝑚 and 𝑛 are 0. The
equation formed by setting these terms to 0 in the New Calculus is
called the auxiliary equation which is denoted by 𝑄 𝑥,𝑚,𝑛 = 0, and is
the first powerful feature new students learn about which is not
possible in the mainstream calculus.

5. Why is it the case that setting all the terms in 𝑚 and 𝑛 to 0 is
equivalent to obtaining the derivative 𝑓′(𝑥)?
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Because 𝑄(𝑥,𝑚,𝑛) is always 0, no matter which (𝑚,𝑛) a parallel
secant line pair is being used.

The New Calculus derivative works for every continuous and smooth
function.

Example: Find the general derivative of 𝑓 𝑥 = 𝑥3.

Solution:𝑓′ 𝑥 = 𝑥3+3𝑥2𝑛+3𝑥𝑛2+𝑛3−𝑥3+3𝑥2𝑚−3𝑥𝑚2+𝑚3𝑚+𝑛𝑓′ 𝑥 = 3𝑥2 𝑚+𝑛 +3𝑥(𝑛−𝑚)(𝑚+𝑛)+(𝑚2−𝑚𝑛+𝑛2)(𝑚+𝑛)𝑚+𝑛𝑓′ 𝑥 = 3𝑥2 + 𝑄(𝑥,𝑚,𝑛) = 3𝑥2 + 3𝑥 𝑛 − 𝑚 + 𝑚2 − 𝑚𝑛 + 𝑛2𝑄 𝑥,𝑚,𝑛 = 0 = 3𝑥 𝑛 − 𝑚 + 𝑚2 − 𝑚𝑛 + 𝑛2𝑄 𝑥,𝑚,𝑛 = 0 and is known as the auxiliary equation in the New
Calculus. Given 𝑥 and either of 𝑚 or 𝑛, one can find the remaining
value. More generally, given any two, one can find the remaining third.

By completing the square, we can express 𝑚 in terms of 𝑥 and 𝑛, or we
can express 𝑛 in terms of 𝑥 and 𝑚:𝑚2 − 3𝑥 + 𝑛 𝑚 + 3𝑥𝑛 + 𝑛2 = 0
implies

𝑚 𝑥,𝑛 = 3𝑥+𝑛± 3𝑥+𝑛 2−4(3𝑥𝑛+𝑛2)2
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and𝑛2 + (3𝑥 − 𝑚)𝑛 − 3𝑥𝑚 + 𝑚2 = 0
implies

𝑛 𝑥,𝑚 = 3𝑥−𝑚± 3𝑥−𝑚 2−4(𝑚2−3𝑥𝑚)2
There are many uses of the auxiliary equation and to discuss these
would require a book dedicated to this topic alone.

Rather than go through many simple examples, let’s take a look at the
derivative of 𝑠𝑖𝑛 𝑥 and verify the New Calculus definition is valid by
finding an (𝑚 ;𝑛) pair for the angle of 𝜋3 radians. We’ll also find an

auxiliary equation.

Solution:

There are many ways to do this, but the easiest is to use the fact that
Newton derived the sine and cosine partial sum series in De Analysi
without calculus to get:𝑠𝑖𝑛 𝑥 = 𝑥 − 𝑥33! + 𝑥55! − …
and𝑐𝑜𝑠 𝑥 = 1 − 𝑥22! + 𝑥44! − … 
where 𝑥 is expressed in radians. These partial sum series cannot be
used if 𝑥 is in degrees, until 𝑥 degrees are first converted to radians.

So,
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𝑓′ 𝑥 =  𝑥+𝑛−(𝑥+𝑛)33! +(𝑥+𝑛)55! −… − 𝑥−𝑚−(𝑥−𝑚)33! +(𝑥−𝑚)55! −… 𝑚+𝑛
𝑓′ 𝑥 =  𝑚+𝑛−𝑥2 𝑚+𝑛2! +𝑥4 𝑚+𝑛4! −𝑥6 𝑚+𝑛6! +…+𝑄(𝑥,𝑚,𝑛)(𝑚+𝑛) 𝑚+𝑛𝑓′ 𝑥 = 1 − 𝑥22! + 𝑥44! − 𝑥66! + … + 𝑄(𝑥,𝑚,𝑛) 
Since, 𝑄 𝑥,𝑚,𝑛 = 0, we have 𝑓′ 𝑥 = 1 − 𝑥22! + 𝑥44! − 𝑥66! + … = 𝑐𝑜𝑠 𝑥 
We can determine the auxiliary equation as follows:𝑐𝑜𝑠 𝑥 = 𝑠𝑖𝑛 𝑥+𝑛  −𝑠𝑖𝑛(𝑥−𝑚)𝑚+𝑛 + 𝑄(𝑥,𝑚,𝑛)→ 𝑄 𝑥,𝑚,𝑛 = 𝑐𝑜𝑠 𝑥 − 𝑠𝑖𝑛 𝑥+𝑛  −𝑠𝑖𝑛 𝑥−𝑚  𝑚+𝑛 = 0 → 𝑐𝑜𝑠 𝑥 = 𝑠𝑖𝑛 𝑥+𝑛  −𝑠𝑖𝑛 𝑥−𝑚  𝑚+𝑛  → 𝑥 + 𝑛𝑐𝑜𝑠 𝑥 = 𝑠𝑖𝑛 𝑥 + 𝑛  − 𝑠𝑖𝑛 𝑥 − 𝑚   → 𝑠𝑖𝑛 𝑥+𝑛  −𝑠𝑖𝑛 𝑥−𝑚 −𝑚𝑐𝑜𝑠 𝑥 𝑛𝑐𝑜𝑠 𝑥  
Therefore, if we know any two of 𝑥, 𝑚 and 𝑛, then we can always find
the third.

Suppose 𝑥 = 𝜋3 = 60° and 𝑚 = 0.1.

To find 𝑛 = 0.098109 is trivial, and can be done using any iterative
method. Thus, the (𝑚 ; 𝑛) pair found is (0.098109 ; 0.1). This can be
checked by the definition:𝑐𝑜𝑠 𝜋3  = 𝑠𝑖𝑛 𝜋3+0.098109  −𝑠𝑖𝑛 𝜋3−0.10.098109+0.1 = 12
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It’s not possible to do any of these things using the flawed mainstream
formulation of calculus.

It is hard to imagine anyone not knowing how to write computer
programs in this day and age. The following simple C program uses the
root approximation method to calculate 𝑛 given 𝑥 and 𝑚:

#include <stdio.h>

#include <math.h>

#define e 2.7182818284590452353602874713527

#define pi 3.1415926535897932384626433832795

double f(double x, double m, double init_n)

{

double r=init_n, t=0, t1=0, n;

do {n=r;

t = ( sin(x+n)-sin(x-m)-m*cos(x) ) / (n*cos(x)) - 1;

t1= (-(1/cos(x))*(sin(m-x)+sin(n+x))+m+n*cos(n+x)/cos(x))/(n*n);

r=n-t/t1;

} while ( fabs(r-n) > 0.00001 );

return r;

}

int main()

{
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\\ Function is called with angle, m and an initial value for n

double res=f((double) (pi/3), (double) 0.1, (double) 0.1);

printf("\n%lf", res); \\ res contains the value of n

res=(sin(pi/3+res)-sin(pi/3-0.1))/(0.1+res);

printf("\n%lf", res); \\ res contains the value of cos pi/3.

return 0;

}



130

Chapter 12: The New Calculus integral definition

In order to derive the New Calculus integral, we must first study a short
proof of the Mean Value Theorem using the New Calculus derivative. A
proof of the theorem using the flawed mainstream formulation was
given earlier.

It makes sense to use the New Calculus definition of derivative because
it also shows immediately the connection between the integral and the
derivative in the fundamental theorem of calculus which is derived in
one step from the mean value theorem.

We begin with the New Calculus definition of derivative:𝑓′ 𝑐 = 𝑓 𝑐+𝑛 −𝑓(𝑐−𝑚)𝑚+𝑛
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In the previous diagram, the interval (𝑐 − 𝑚;𝑐 + 𝑛) is divided into equal
partitions or sub-intervals of 𝑚+𝑛𝑘 . The point 𝑐 is the abscissa (𝑥
coordinate) of the arithmetic mean 𝑓′(𝑐) of all the vertical line lengths.
We will prove shortly that𝑓′ 𝑐 = 𝑓 𝑐 + 𝑛 − 𝑓(𝑐 − 𝑚)𝑚 + 𝑛
It is required to prove that the arithmetic mean of the gradients of the
purple tangent lines is equal to the gradient of the blue tangent line at
c which is equal to the gradient of the red secant line.

If there were a mean abscissa 𝜇𝑠 in each of the sub-intervals, then for

the same 𝜇𝑠, we must have 𝑓′(𝜇𝑠) such that

𝑓′ 𝜇𝑠 = 𝑓 𝑐−𝑚+(𝑚+𝑛)(𝑠+1)𝑘 −𝑓 𝑐−𝑚+(𝑚+𝑛)𝑠𝑘𝑚+𝑛𝑘
This follows from the fact that the arithmetic mean of the arithmetic
means of all the sub-intervals will be 𝑓′(𝑐).

However, none of these assumptions are actually needed, because the
New Calculus derivative 𝑓′ 𝜇𝑠 is by definition equivalent to the mean

value theorem for the given sub-interval. At any rate, if these
assumptions are incorrect, then the following reasoning will result in a
contradiction.

So, the mean of all the arithmetic means is given by:

𝑓′ 𝑐 = 1𝑘 𝑘
𝑠=1 𝑓′(𝜇𝑠)
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In the previous statement, we begin by attempting to find the
arithmetic mean of all the sub-interval arithmetic means, that is, to
show that𝑓′ 𝑐 = 𝑓′ 𝜇1 + 𝑓′ 𝜇2 + 𝑓′ 𝜇3 + … + 𝑓′ 𝜇𝑘−1 + 𝑓′ 𝜇𝑘𝑘
Expanding the sum for 𝑠 = 1 to 𝑠 = 𝑘:𝑓′ 𝑐 = 1𝑘 𝑓′ 𝜇1 + 𝑓′ 𝜇2 + 𝑓′ 𝜇3 + … + 𝑓′ 𝜇𝑘−1 + 𝑓′ 𝜇𝑘
𝑓′ 𝑐 = 1𝑘  { 𝑓 𝑐−𝑚+𝑚+𝑛𝑘 −𝑓(𝑐−𝑚)𝑚+𝑛𝑘 + 𝑓 𝑐−𝑚+2(𝑚+𝑛)𝑘 −𝑓 𝑐−𝑚+𝑚+𝑛𝑘𝑚+𝑛𝑘 +

+ 𝑓 𝑐−𝑚+3 𝑚+𝑛𝑘 −𝑓 𝑐−𝑚+2 𝑚+𝑛𝑘𝑚+𝑛𝑘 + …
+ 𝑓 𝑐−𝑚+ 𝑘−1 𝑚+𝑛𝑘 −𝑓 𝑐−𝑚+ 𝑘−2 𝑚+𝑛𝑘𝑚+𝑛𝑘+ 𝑓 𝑐+𝑛 −𝑓 𝑐−𝑚+(𝑘−1)(𝑚+𝑛)𝑘𝑚+𝑛𝑘 }

And so, it is proven that 𝑓′ 𝑐 = 𝑓 𝑐+𝑛 −𝑓(𝑐−𝑚)𝑚+𝑛
Note that it does not matter what 𝑘 we choose, because the arithmetic
mean is always the same. Thus, for the purposes of quadrature, the
seemingly impossible task of finding the arithmetic mean of
innumerably many 𝑦 ordinates, is accomplished by a reducible or
telescoping sum.



133

I revealed that 𝑓′ 𝑐 = 1𝑚+𝑛∫𝑐+𝑛𝑐−𝑚 𝑓′ 𝑥  𝑑𝑥 for some 𝑐, such that𝑐 − 𝑚 < 𝑐 < 𝑐 + 𝑛, whence

𝑓 𝑐+𝑛 −𝑓(𝑐−𝑚)𝑚+𝑛 = 1𝑚+𝑛∫𝑐+𝑛𝑐−𝑚 𝑓′ 𝑥  𝑑𝑥
And ∫𝑐+𝑛𝑐−𝑚 𝑓′ 𝑥 𝑑𝑥 = 𝑓 𝑐 + 𝑛 − 𝑓(𝑐 − 𝑚) is known ubiquitously as
the fundamental theorem of calculus, which as we have shown is
derived in one step from the mean value theorem. The New Calculus
integral is equivalent to the mainstream, definition as follows:

𝐼 = 𝑚 + 𝑛𝑘 𝑘−1
𝑠=0 𝑓′(𝜇𝑠) = 𝑐+𝑛

𝑐−𝑚 𝑓′ 𝑥 𝑑𝑥
𝐼 = 𝑚+𝑛𝑘 ∑𝑘−1𝑠=0 𝑓′(𝜇𝑠) is the New Calculus integral.

Misguided mainstream theory states 𝑓′ 𝑐 = 1𝑚+𝑛∫𝑐+𝑛𝑐−𝑚 𝑓′ 𝑥  𝑑𝑥 as:

𝐹 𝑥 = 𝑥
𝑎 𝑓 𝑡 𝑑𝑡

which supposedly is meant to show the relationship between the
integral and the derivative. However, 𝐹 𝑥 − 𝐹 𝑎 ≠ 𝐹 𝑥 .
But how can you blame mainstream academics who have never
understood calculus or the reasons why it works?
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We evaluate integrals by using the mean value theorem in one of two
ways:

i. We use the relationship between the primitive function 𝑓(𝑥)
and its derivative 𝑓′(𝑥) as stated in the fundamental theorem
of calculus, which is derived in one step from the mean value
theorem.

ii. We use the fact that an integral is the product of two
arithmetic means to calculate a rational number
approximation, that is, numeric integration.

The New Calculus integral can be used theoretically and practically.

Let us see how we can derive the arc length formula using the New
Calculus.

In the graphic that follows, the mus (𝜇𝑠) are the abscissas or 𝑥
coordinates of the mean value (or arithmetic mean of all the 𝑦
ordinates) in each sub-interval. The mean values are represented by the
slopes of the tangent lines or the 𝑦 coordinates 𝑓(𝜇_𝑠) of the point of
tangency, that is, (𝜇𝑠  ;𝑓(𝜇_𝑠)).



135

To find the arc length, we use the distance formula for the segments
that join the endpoints of each partition:𝑠 = 𝑓 𝑐 − 𝑚 + 𝑚+𝑛 𝑠+1𝑘 − 𝑓 𝑐 − 𝑚 + (𝑚+𝑛)𝑠𝑘 2 + 𝑚+𝑛𝑘 2
The segments lengths are given by:

𝑠𝑘 = 𝑚+𝑛𝑘 2 𝑓 𝑐−𝑚+ 𝑚+𝑛 𝑠+1𝑘 −𝑓 𝑐−𝑚+(𝑚+𝑛)𝑠𝑘𝑚+𝑛𝑘
2 + 𝑚+𝑛𝑘 2

But 𝑓′ 𝜇𝑠 = 𝑓 𝑐−𝑚+ 𝑚+𝑛 𝑠+1𝑘 −𝑓 𝑐−𝑚+(𝑚+𝑛)𝑠𝑘𝑚+𝑛𝑘
So, 𝑠𝑘 = 𝑚+𝑛𝑘  𝑓′(𝜇𝑠) 2 + 1
And so,

𝑚+𝑛𝑘  ∑𝑘−1𝑠=0 𝑓′(𝜇𝑠) 2 + 1 =∫𝑐+𝑛𝑐−𝑚 𝑓′(𝑥) 2 + 1 𝑑𝑥
which is the desired result.

You normally see it done in mainstream calculus using the following
approach:
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In the New Calculus,𝑑𝑦 = 𝑓 𝑐 − 𝑚 + 𝑚+𝑛 𝑠+1𝑘 − 𝑓 𝑐 − 𝑚 + (𝑚+𝑛)𝑠𝑘
and 𝑑𝑥 = 𝑚+𝑛𝑘
for each partition. Since no ill-formed theory is used the differentials 𝑑𝑦
and 𝑑𝑥 are well defined.

Now for an actual example.

The arc length of the function 𝑓 𝑥 = 𝑥2 over (0 ;2) is given by:𝑚+𝑛𝑘 ∑𝑘−1𝑠=0 4 𝜇𝑠 2 + 1 =∫𝑐+𝑛𝑐−𝑚 4 𝜇𝑠 2 + 1 𝑑𝑥
Next, we find the arithmetic mean of all the segment lengths by
integrating the distance formula obtained. In the New Calculus, this is a
finite sum found using the mean of each equal partition or sub-interval.

The arc length is thus given if we let ℎ′ 𝑥 = 4𝑥2 + 1 so thatℎ 𝑐 + 𝑛 − ℎ 𝑐 − 𝑚 = 𝑚+𝑛𝑘  ∑𝑘−1𝑠=0 ℎ′(𝜇𝑠)
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Therefore, ℎ 𝑥 = 12𝑥 4𝑥2 + 1 − 14 𝑙𝑛 − 2𝑥 + 4𝑥2 + 1  𝑚 + 𝑛 = 2 and we can calculate the sum for 𝑘 = 1, but it will work for
any 𝑘 given the appropriate mus 𝜇𝑠 . In the New Calculus, every

function has a closed form antiderivative or primitive function which is
only possible using the Gabriel polynomial.

We find the 𝜇𝑠 as follows:

The mean value of ℎ(𝑥) on 0,2 :ℎ 2 −ℎ(0)2−0 = 2.32339
The mean value is an ordinate of ℎ′ 𝑥 = 4𝑥2 + 1. Since 𝜇𝑠 is the

abscissa of 2.32339, we find 𝜇0 by solving 4𝑥2 + 1 = 2.32339, that is,𝜇0 = 𝑥 = 1.04859.

𝑚+𝑛𝑘 ∑𝑘−1𝑠=0 4 𝜇0 2 + 1 =  21∑𝑘−1𝑠=0 4 1.04859 2 + 1= 2 4 1.04859 2 + 1 = 4.64678 which is the arc length.

The graphs are shown in the following figure:

https://www.academia.edu/45229087/The_Gabriel_Polynomial
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As you have seen, there is no use of infinity, infinitesimals or limits
which are all ill-formed concepts.𝑓 𝑐 + 𝑛 − 𝑓 𝑐 − 𝑚 = 𝑚+𝑛𝑛 ∑𝑘−1𝑠=0 𝑓′ 𝜇𝑠 =∫𝑐+𝑛𝑐−𝑚 𝑓′ 𝑥 𝑑𝑥
It is also easy to see how the mainstream integral can be obtained from
the New Calculus definition using only an 𝑥 substitution for 𝜇𝑠 in the

distance function which is used to determine the arithmetic mean of all
the line segments. This substitution property is true for any function,
not just the distance function.

Given that the mean value theorem is used, the finite sum is always
equal to the arc length, regardless of the value in the summand, that is,𝑘.
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From this information, you can derive Green’s theorem and the
Divergence theorem which uses vectors and has a parametric form in
the integral.

The entire single variable New Calculus is captured in the following
graphic:
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Chapter 13: The Gabriel Polynomial

The ideas that led to the Gabriel polynomial were inspired by Newton’s
De Analysi, in particular his proposition 4.

Rotating the diagram helps to understand what Newton was trying to
do.

https://www.academia.edu/45229087/The_Gabriel_Polynomial
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Through finite divided differences, Newton showed that it is possible to
arrive at an interpolation polynomial. See formula [T1] on page 24 of
HowWeGotCalculus.pdf.

Although there is nothing wrong with Newton's approach, my approach
using the New Calculus makes it possible to derive important theorems
(such as Taylor and McClaurin) without resorting to the use of limits or
real analysis. The New Calculus is superior to Newton's calculus.

I define finite differences in terms of the arithmetic mean of each given
interval.

The notation 𝜇10 means the first order mean (denoted by superscript)

and the first difference (denoted by subscript). 𝜇 always refers to the
abscissa of the mean.

The following diagram explains:
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𝑥0𝑥1 = 𝑓 𝑥0 −𝑓(𝑥1)𝑥0−𝑥1 = 𝑓′ 𝜇10 also, 𝑥1𝑥2 = 𝑓 𝑥1 −𝑓(𝑥2)𝑥1−𝑥2 = 𝑓′ 𝜇11
There is no difference from Newton's method with regard to first order
differences. Newton was unaware of the mean value theorem or may
have had vague notions of it. The second order differences are where
my method differs with Newton's approach.

Newton's second order divided difference is:𝑥0𝑥1𝑥2 = 𝑥0𝑥1 −[𝑥1𝑥2]𝑥0−𝑥2
Compare this with my definition:𝑥0𝑥1𝑥2 = 𝑥0𝑥1 −[𝑥1𝑥2]𝜇10−𝜇11 = 𝑓′ 𝜇10 −𝑓′ 𝜇11𝜇10−𝜇11 = 𝑓2 𝜇20
→  𝑥0𝑥1𝑥2 𝜇10 − 𝜇11 = 𝑓′ 𝜇10 − 𝑓′ 𝜇11→  𝑥0𝑥1𝑥2 𝜇10 − 𝜇11 = 𝑓 𝑥0 −𝑓(𝑥1)𝑥0−𝑥1 − 𝑓′ 𝜇11→  𝑓 𝑥0 −𝑓(𝑥1)𝑥0−𝑥1 = 𝑓′ 𝜇11 + 𝑥0𝑥1𝑥2 𝜇10 − 𝜇11→ 𝑓 𝑥0 = 𝑓 𝑥1 + 𝑥0 − 𝑥1 𝑓′ 𝜇11 + (𝑥0 − 𝑥1) 𝜇10 − 𝜇11 𝑥0𝑥1𝑥2→ 𝑓 𝑥0 = 𝑓 𝑥1 + 𝑥0 − 𝑥1 𝑓′ 𝜇11 + (𝑥0 − 𝑥1) 𝜇10 − 𝜇11 𝑓2 𝜇20
[NT]

Let's see an example.

If 𝑓 𝑥 = 𝑥4 + 𝑥3 − 𝑥2 + 𝑥
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Then𝑓′ 𝑥 = 4𝑥3 + 3𝑥2 − 2𝑥 + 1𝑓2 𝑥 = 12𝑥2 + 6𝑥 − 2
Suppose we wish to estimate (3) , that is, 𝑥0 = 3:𝑓 3 = 𝑓 𝑥1 + 3 − 𝑥1 𝑓′ 𝜇11 + (3 − 𝑥1) 𝜇10 − 𝜇11 𝑓2 𝜇20𝑥1 = 4, 𝑥2 = 5
So,𝑓 3 = 𝑓 4 + 3 − 4 𝑓′ 𝜇11 + (3 − 4) 𝜇10 − 𝜇11 𝑓2 𝜇20𝑓 3 = 𝑓 4 − 𝑓′ 𝜇11 − 𝜇10 − 𝜇11 𝑓2 𝜇20
But,𝑥0𝑥1 = 𝑓 𝑥0 −𝑓(𝑥1)𝑥0−𝑥1 = 𝑓′ 𝜇10 = 𝑓 3 −𝑓(4)−1 = 102−308−1 = −206−1 = 206
𝑥1𝑥2 = 𝑓 𝑥1 −𝑓(𝑥2)𝑥1−𝑥2 = 𝑓′ 𝜇11 = 𝑓 4 −𝑓(5)−1 = 308−730−1 = −422−1 = 422

So, 𝑓 3 = 𝑓 4 − 422 − 𝜇10 − 𝜇11  𝑓2 𝜇20
Also,𝜇10 = 3.5224534198 and 𝜇11 = 4.51765748556



144→ 𝜇10 − 𝜇11 =− 0.99520406576
These values of 𝜇 were obtained by an iterative method.

So,𝑓 3 = 308 − 422 − − 0.99520406576 𝑓2 𝜇20
But,

𝑓2 𝜇20 = 𝑓′ 𝜇10 −𝑓′ 𝜇11𝜇10−𝜇11 = 206−422−0.99520406576 = 2160.99520406576
Therefore,𝑓 3 = 308 − 422 + (0.99520406576) 2160.99520406576𝑓 3 = 308 − 422 + 216 = 102 which is exactly what we expected.

Naturally, it would have been far easier just to compute 𝑓(3) in this
case. However, the idea is used towards finding an easier method of
approximation in terms of one abscissa, rather a mixture of abscissa
and means. I wonder if Newton would have discovered his
interpolation polynomial had he been aware of this exact method I
described.

After all, using the first three terms of the Taylor series
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𝑓 𝑥 ≈ 𝑓 𝑎 + 𝑥 − 𝑎 𝑓′ 𝑎 + 𝑥 − 𝑎 2 𝑓2 𝑎2! + …
With 𝑥 = 3 and 𝑎 = 3.1, we have:

𝑓 3 ≈ 𝑓 3.1 + 3 − 3.1 𝑓′ 3.1 + 3 − 3.1 2 𝑓2 3.12! + …
𝑓 3 ≈ 115.6331 − 0.1 (142.794) + 0.1 2 131.922! + …
𝑓 3 ≈ 115.6331 − 0.1 142.794 + 0.1 2 65.96= 115.6331 − 14.2794 + 0.6596 = 102.0133
This approximate result differs from 102 by 0.0133 which is not
surprising because Taylor's Series always results in an approximation,
never an exact value.

Compare my equality,𝑓 𝑥0 = 𝑓 𝑥1 + 𝑥0 − 𝑥1 𝑓′ 𝜇11 + (𝑥0 − 𝑥1) 𝜇10 − 𝜇11 𝑓2 𝜇20
with Taylor's approximation:𝑓 𝑥 ≈ 𝑓 𝑎 + 𝑥 − 𝑎 𝑓′ 𝑎 + 𝑥 − 𝑎 2 𝑓2 𝑎2! + …
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The Root approximation method.

A quick and simple derivation of the approximation method:

Newton used the tangent line in the design of his root approximation
method. The general idea is this:

One can choose any point on a given curve and then theoretically
"slide" the tangent line until it intersects the x-axis and the curve itself
at the same point. Since the tangent line has nowhere else to go as you
slide it along the curve, but gets noticeably closer to the root, it was
obvious to Newton, that the tangent line found using the previous
tangent line's x-intercept, would intercept the x-axis even closer to the
root than its predecessor. The next diagram illustrates the idea:
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Suppose the point chosen is [𝑐, 𝑓(𝑐)]. This is the initial guess.

In order to find the second guess, we need the equation of the tangent
line at 𝑥 = 𝑐, after which we can find where it intersects the 𝑥-axis to
obtain the second guess.

Let 𝑡 𝑥 = 𝑓′ 𝑐 𝑥 + 𝑘 where 𝑡(𝑥) is the equation of the tangent line.

We determine 𝑘 as follows:𝑓 𝑐 = 𝑓′ 𝑐 𝑐 + 𝑘→   𝑘 = 𝑓 𝑐 − 𝑓′ 𝑐 𝑐→    𝑡 𝑥 = 𝑓′ 𝑐 𝑥 + 𝑓 𝑐 − 𝑓′ 𝑐 𝑐→     𝑡 𝑥 = 𝑓′ 𝑐 𝑥 − 𝑐 + 𝑓(𝑐)
We know the tangent line intersects the 𝑥-axis when 𝑡 𝑥 = 0.

So,0 = 𝑓′ 𝑐 𝑥 − 𝑐 + 𝑓(𝑐)→ 𝑥 − 𝑐 = 𝑓(𝑐)𝑓′(𝑐)→ 𝑥 = 𝑐 + 𝑓(𝑐)𝑓′(𝑐)
This last equation provides the next guess, that is, 𝑥 as expected. Simply
replace 𝑐 with the first guess, say 𝑥𝑛 and 𝑥 with the next guess, that is,𝑥𝑛+1 and you have the formula:



149𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)𝑓′(𝑥𝑛)
This last formula is in fact an equality, not an approximation. It
becomes an approximation once it is realised that 𝑥𝑛+1 becomes the

root:𝑥𝑛+1 ≈ 𝑥𝑛 − 𝑓(𝑥𝑛)𝑓′(𝑥𝑛)
Newton's root approximation formula, 𝑥𝑛+1 ≈ 𝑥𝑛 − 𝑓(𝑥𝑛)𝑓′(𝑥𝑛) [NAP]

can be written as an equality using the mean value theorem:

𝑥𝑛+1 = 𝑥𝑛 − 𝑓 𝑥𝑛 −𝑓(𝑥𝑛+1)𝑓′(𝑐) where

𝑓′ 𝑐 = 1𝑛∑𝑛−1𝑠=0 𝑓′ 𝑥𝑛 + |𝑥𝑛+1−𝑥𝑛|𝑠𝑛  
𝑥𝑛+1 = 𝑥𝑛 − 𝑓 𝑥𝑛 −𝑓(𝑥𝑛+1)1𝑛∑𝑛−1𝑠=0 𝑓′ 𝑥𝑛+|𝑥𝑛+1−𝑥𝑛|𝑠𝑛  
Let's see an example.

To see how 𝜇11 = 4.51765748556, we can use the Newton

approximation formula [NAP] with



150𝑓′ 𝑥 = 4𝑥3 + 3𝑥2 − 2𝑥 + 1 − 422 and 𝑓2 𝑥 = 12𝑥2 + 6𝑥 − 2
From the equality,𝑥2 = 𝑥1 − 𝑓 𝑥1 −𝑓(𝑥2)1𝑛∑𝑛−1𝑠=0 𝑓′ 𝑥𝑛+|𝑥2−𝑥1|𝑠𝑛  
We have,𝑥2 = 𝑥1 − 𝑓 𝑥1 − 𝑓 𝑥2𝑓′ 𝑐 → 𝑥1𝑓′ 𝑐 = 𝑥2𝑓′ 𝑐 + 𝑓 𝑥1 − 𝑓(𝑥2)→ 𝑓 𝑥1 − 𝑓 𝑥2 = 𝑥1𝑓′ 𝑐 − 𝑥2𝑓′(𝑐)
→ 𝑓 𝑥1 − 𝑓 𝑥2 = 𝑓′ 𝑐 (𝑥1 − 𝑥2)
→  𝑓 𝑥1 −𝑓 𝑥2𝑥1−𝑥2 = 𝑓′(𝑐)
So,308−7304−5 = 422 = 𝑓′ 𝑐   ↔    𝑐 = 𝜇11 = 4.5176574856 
We know that1𝑛∑𝑛−1𝑠=0 𝑓′ 𝑥1 + |𝑥2−𝑥1|𝑠𝑛 = 422    ↔    𝑓′ 𝜇11 = 422 
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So,

𝑥2 = 4 − 308−730422 = 5 exactly as expected.
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Appendix A:

A second rigorous formulation:

In January 2020, I discovered my historic geometric theorem as a result
of the well-formed concepts of the New Calculus.

Appendix B:

How we got numbers, arithmetic and algebra from geometry is a
fascinating story.

https://www.academia.edu/60864214/Explaining_my_historic_geometric_identity_derived_from_my_geometric_theorem
https://www.academia.edu/44820487/Discovering_the_concept_of_number_a_personal_journey

