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a b s t r a c t 

In order to predict the remaining useful life (RUL) of lithium-ion batteries, a capacity 

degradation model may be developed using either simplified physical laws or machine 

learning-based methods. It is observed that even though degradation models based on 

simplified physical laws are easy to implement, they may result in large error in the appli- 

cation of failure prognostics. While data-driven prognostics models can provide more ac- 

curate degradation forecasting, they may require a large volume of training data and may 

invoke predictions inconsistent with physical laws. It is also very challenging for existing 

methods to predict the RUL at the early stages of battery life. In this paper, we propose 

a Bayesian physics-constrained neural network for battery RUL prediction by overcoming 

limitations of the current methods. In the proposed method, a neural differential operator 

is learned from the first 100 cycles of data. The neural differential operator is modeled 

with a Bayesian neural network architecture that separates the fixed history dependence 

from the time dependence to isolate epistemic uncertainty quantification. Using the bat- 

tery dataset presented in the paper by Severson et al. as an example, we compare our 

proposed method with a simplified physics-based degradation forecasting model and two 

data-driven prognostics models. The results show that the proposed physics-constrained 

neural network can provide more accurate RUL estimation than the other methods with 

the same group of training data. Most importantly, the proposed method allows for RUL 

prediction at earlier stages of the battery life cycle. 

© 2023 Elsevier Inc. All rights reserved. 
1. Introduction 

Lithium-ion battery health prognosis, or the ability to predict its remaining useful life, is crucial for ensuring the re- 

liability and efficiency of the systems that rely on its power. Monitoring and forecasting the remaining battery capacity 

provides valuable insight into the overall performance of the battery and allows for the prediction of battery failure. These 

predictions facilitate timely maintenance and/or replacement, improves the overall energy efficiency of the system, and 

maximizes system operational availability (i.e., minimizing downtime). Battery prognosis is a crucial requirement for various 

systems, including electric vehicles (for optimizing range and performance), renewable energy systems (for improving en- 
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ergy storage), aerospace and defense applications (for predicting remaining battery life in satellites), Internet of Things (for 

monitoring device battery life to ensure seamless operation), among others. 

Failure prognostics–the capability to predict remaining useful life (RUL) estimation–of lithium-ion batteries has been 

a very active research topic for a couple of decades with the rise of such battery usage across many applications [1–4] .

Approaches to failure prognostics of batteries may be roughly classified into three categories, namely physics-based, data- 

driven, and hybrid approaches. This classification is similar to that for failure prognostics in other engineering domains 

[5] . Physics-based methods heavily rely on modeling battery degradation patterns using physics-based or physics-informed 

models, e.g., taking advantage of electro-chemical principles. The physics-based model could be a high-fidelity simulation 

model [6] , an empirical/semi-empirical model [7] , or a simplified model derived from physical laws [8] . For physics-based

methods, failure prognostics of batteries usually consists of two main steps. The first step is to update the uncertain model

parameters based on actual observations of a battery, using Bayesian methods [9–11] , optimization-based methods [12] , or 

other methods [13,14] . After the model updating, the physics-based model is then used to forecast the degradation of the

battery and thus estimate its RUL. The commonly used models in the literature include the exponential function [15] , the

power-law function [11] , the equivalent circuit models [16,17] , and multi-physics simulation-based degradation models [18] . 

There are multiple advantages of physics-based methods. For instance, most of the physics-based methods do not require 

any run-to-failure data. Furthermore, physics-based methods have good extrapolation capabilities if the model accurately 

captures the underlying degradation principle of the batteries. However, this potential advantage becomes the main disad- 

vantage, because the current state of the art knowledge of battery degradation is very limited due to the highly complicated

degradation process [19] . The discrepancy between the model used for prediction and that of the underlying true physics 

could lead to large errors in the RUL prediction, resulting in sub-optimal if not costly consequences in the decision-making. 

With the rapid development of machine learning (ML) and especially deep learning techniques in recent years, many 

data-driven approaches have been developed for prognostics to overcome the limitations of the lack of physical degradation 

knowledge [20–23] . In data-driven approaches, a model is constructed based on run-to-failure data to achieve a mapping 

between observables (voltage, current, etc.) and battery capacity or monitoring data and life directly [24] . Various ML mod-

els have been employed to construct such data-driven models for failure prognostics of batteries. For instance, numerous 

neural network-based data-driven models, including regular artificial neural network models and models based on deep 

neural networks, have been proposed for the capacity estimation of lithium-ion batteries [25–27] . The Gaussian process 

regression model-based method has also been proposed to estimate the RUL of batteries, even though it is not as widely

used as neural network architectures [28,29] . Moreover, to overcome the limitations of individual ML models and improve 

the RUL estimation accuracy and robustness, ensemble learning methods have also been investigated in the literature and 

have shown promising performance [30,31] . Other researchers have shown promise with the use of recurrent neural net- 

work architectures [32,33] , including combining these architectures with classical Bayesian approaches to enable uncertainty 

quantification [34] . The advantage of an ML-based data-driven model is that it is capable of generating the required map-

ping that is not conditioned upon an understanding of the underlying physics of degradation. The ML model learns the 

degradation pattern automatically purely based on run-to-failure data. The disadvantage is that the data used for training 

significantly affects the performance of the data-driven model. If the prediction region is outside of the training space, the 

data-driven models could have a very large prediction error. The model sometimes may also create predictions that violate 

the physical laws. 

While both physics-based methods and emerging data-driven methods have their own advantages and have shown good 

performance for RUL estimation of batteries in some situations, their disadvantages have impeded the adoption of the meth- 

ods in practical applications. This has motivated the development of hybrid approaches that combines physics-based knowl- 

edge with data-driven models [35,36] . The hybrid approaches have been explored in two main directions. In the first direc-

tion, run-to-failure data is used to correct the physics-based degradation models [37–39] . In the second direction, physics- 

based knowledge is incorporated into data-driven models to improve the extrapolation accuracy of data-driven models for 

failure prognostics of batteries [40–43] . A comprehensive review of various hybrid approaches for battery RUL estimation is 

available in [41] . It is believed that the hybrid approaches will outperform the performance of physics-based and data-driven

methods by combining the advantages of these two types of methods. 

Building upon the existing lines of inquiry into hybrid modeling, the proposed approach combines physical insights from 

physics-based forecasting models and the ability to assimilate existing experimental data to capture the complex perfor- 

mance evolution of lithium-ion batteries. The proposed approach seeks to overcome a number of challenges associated with 

existing approaches, namely the lack of uncertainty quantification in hybrid methods, the difficulty associated with train- 

ing recurrent neural networks, and the expert knowledge required to enforce physics constraints. To this end, the proposed 

method leverages the observation that battery discharge capacity is a monotonically decreasing phenomenon to enforce 

physical constraints in a neural network ensemble. Furthermore, the network is trained to act as a neural differential op- 

erator that learns the discharge capacity rate instead of learning the discharge capacity directly. This formulation provides 

a direct way to enforce constraints on time derivatives as well as a way to perform discharge capacity forecasting through

direct time integration of the neural operator (avoiding the need for recurrent architectures). To learn the operator, an ar- 

chitecture inspired by DeepONet [44] is used, consisting of a branch network that encodes the input function space (i.e., 

the domain of battery cells) and a trunk that encodes the domain of the output function (i.e., the number of cycles). To

capture the epistemic uncertainty associated with lack of knowledge of the exact battery degradation phenomenon, the net- 

work is formulated as a Bayesian neural network capable of expressing uncertainty over its own predictions. The resulting 
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algorithm is a physics-constrained Bayesian neural network that provides high flexibility and improved accuracy for RUL 

prediction with respect to existing methods. Using the battery dataset presented in the paper by Severson et al. [45] as

an example, the proposed method was compared with a simplified physics-based degradation forecasting model and two 

data-driven prognostics models. The results show that the proposed physics-constrained neural network can provide more 

accurate and precise RUL estimation than the other methods using the same training data. 

This paper is organized as follows. Section 2 describes all the methods considered, including the proposed approach. 

Section 3 presents results and discussion for all the methods considered. Finally, Section 4 provides concluding remarks and 

future research directions. 

2. Predictive approaches for battery RUL forecast 

In this section, an implementation of the failure forecast model based on simplified physical laws and two data-driven 

failure prognostic methods are presented in Sections 2.1, 2.2.1 , and 2.2.2 respectively. These three methods will be compared

with this paper’s proposed physics-constrained neural network method presented later in Section 2.3 . In the following sec- 

tions, capacity is used to refer to discharge capacity which is generally used to track capacity degradation. Capacity is always

presented in Ampere-hour (Ah) units unless otherwise noted. 

It should be noted that all three methods are distinct and, as a result, are able to take different types of inputs. In

particular, the neural network approach is the most flexible and can incorporate a larger number of inputs than the other

methods without dramatically sacrificing efficiency (e.g., the GPR methods require the computation of the kernel matrix 

which becomes expensive with more inputs). This flexibility is leveraged to include additional potentially useful information 

as input to the neural network. 

2.1. A Physics-Based Failure forecast model 

The Failure Forecast Model (FFM) form proposed by Voight [46] successfully models many geophysical (see [47] ) and 

material-level failure mechanisms (see [47–49] ) that share a common self-accelerating degradation characteristic as the 

system approaches failure. We observe that the inverse of the battery capacity evolution accelerates with time and can, 

therefore, be modeled using the FFM. We assume a failure forecast model that has self-accelerating characteristics and 

perform Bayesian inference to predict the RUL and the uncertainty bounds in the prediction. 

Let C(t) denote the capacity of the battery at time (or equivalently, cycle) t . Let R (t) = C(t) −1 denote the inverse of the

discharge capacity. Since the discharge capacity is a monotonically decreasing phenomenon, the inverse of the discharge 

capacity is a monotonically increasing phenomenon. As per the general FFM model form, R (t) = C(t) −1 is modeled by using

a first order differential equation that takes the form 

dR 

dt 
= kR 

α, where k > 0 and α > 1 . (1) 

Here, the constants k and α are specific parameters for the physical process (discharge capacity degradation here). Using 

Eq. (1) , the quantity R (t) can be solved by assuming that R (t = t f ) = R f , where, t f is the time of failure, such that 

R (t) = 

(
R 

1 −α
f 

+ k (α − 1)(t f − t) 
) 1 

1 −α
. (2) 

The capacity failure threshold is defined as C f = R −1 
f 

, which is assumed to be C f = 0 . 8 in this paper. The discharge capacity

(t) is obtained as 

C(t) = 

(
C α−1 

f 
+ k (α − 1)(t f − t) 

) 1 
α−1 

. (3) 

The value α = 2 represents a special linear case of the FFM, such that 

C(t) | α=2 − C f = k (t f − t) . (4) 

The value of α < 2 represents the case where the discharge capacity follows a convex down trend (curving upward along the

horizontal axis). On the other hand, α > 2 represents the case where the discharge capacity follows a concave down trend

(curving downward along the horizontal axis). As alpha increase, the value of C(t) decays faster as the system approaches

failure. Since discharge capacity is a monotonically degrading phenomenon with the rate of decay increasing over time, 

α ≥ 2 is of interest. 

The goal here is to make a probabilistic estimate of the parameters k , α, t f , and the noise parameter σl (standard devi-

ation of the battery capacity data) using a portion of gathered capacity data D . Let � denote the random vector consisting

of the parameters to be estimated, i.e., { k, α, t f , σl } . The parameter vector can be inferred using Bayes theorem, such that 

P (�| D ) = 

P (D| �) × P (�) 

P (D ) 
. (5) 

In the equation above, P (�) denotes the prior belief of the parameter vector. Since k > 0 , the prior for k is assumed to be

a uniform distribution ranging from 0 to an arbitrarily large number (representing ∞ ). The prior for α is assumed to be
44 
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Fig. 1. Illustration of FFM used to generate posterior predictive plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uniform distribution ranging from 2 to 10. The prior to σl is chosen to be half normal, a weakly informative distribution as

suggested by Gelman et al. [50,51] . Since t f is positive and greater than the current time, the prior for the time of failure

is assumed to be a uniform distribution from the current time t to an arbitrarily large number (representing ∞ ). The term

P (D ) in Eq. (5) is the evidence and is simply a normalizing quantity. Finally, the term P (D| �) denotes the likelihood of

observing data D given the parameter vector �. If a specific forward measurement model is adopted, a tailored likelihood 

function could be derived from that. In this paper, the FFM ( Eq. (3) ) itself is used to model the likelihood function. To

capture the heteroscedastic converging effect of the noise structure, the inference is performed in the logarithmic space 
˜ D = log (D ) . The likelihood of observing ˜ D given the parameters vector � = { k, α, t f , σl } , denoted by P ( ˜ D | �) , is modeled

using a normal distribution with the standard deviation σl and mean μl , i.e., P ( ˜ D | �) = N( ˜ D | μl , σl ) , where the mean of the

likelihood function is given by 

μl = log 

((
C α−1 

f 
+ k (α − 1)(t f − t) 

) 1 
α−1 

)
. (6) 

To obtain the joint posterior distribution of parameters constituting the parameter vector � using Eq. (5) , a sampling-based 

Markov Chain Monte Carlo (MCMC) approach is implemented using a Metropolis sampler within the PyMC3 Python package. 

Once the parameter vector is inferred using the recorded data ˜ D , the future discharge capacity data ˆ ˜ D (called the posterior

predictive distribution) may be forecast using the samples of the inferred parameters run on the FFM model that was used

to construct the likelihood function. Mathematically, ˆ ˜ D is conditioned on the recorded data ˜ D , such that 

P ( ˆ ˜ D| ̃  D ) = 

∫ 
��

P ( ˆ ˜ D| �) P ( �| ̃  D ) d �. (7) 

Fig. 1 illustrates an example of a posterior predictive plot inferred using a window of data that forecasts the time of

failure of the battery’s capacity as well as yields uncertainty bounds of the prediction. We observe that the prediction over-

shoots the true trend for the considered window. This is because the assumed failure model described in Eq. (3) does not

fully capture the characteristics of battery capacity curves. It is designed for forecasting damage or fracture type of failure, 

where degradation notably accelerates towards the end. However, the capacity degradation of a battery behaves differently. 

Unlike the fracture type of failure, the slope of the capacity curve is almost constant towards the end of the battery’s life.

Consequently, the FFM model does not fully capture this degradation characteristic, resulting in an overshooting of the pre- 

diction until the data window comes closer to the failure threshold. 

To predict the distribution of the time of failure (and by extension RUL), parameter estimations are performed using a 

moving window of recorded data because the data contained in the moving window will contain the latest stage information 

about the capacity degradation that informs the degradation curve. A data window size of 20% is used. Let ˆ t f denote a

realization of time, t denote the current instance of time, then the corresponding RUL denoted by ˆ L ( ̂ t f ) is given as 

ˆ L ( ̂ t f , t) = 

ˆ t f − t. (8) 

We note that this is not a recursive approach since a particular data window does not affect the inf erred parameters ob-

tained by any other window and each window acts as an independent source of available data. For the purpose of demon-

stration, we assume non-overlapping windows spanning the entire time/cycle domain as shown later in Fig. 5 and 6 . 
45 
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2.2. Data-Driven prognostic models 

Two different types of data-driven prognostic models, including a Gaussian process regression (GPR)-based model and a 

similarity-based model, will be provided in this subsection. Both models use the run-to-failure data of batteries to build a 

degradation model for failure prognostics. 

2.2.1. A GPR-Based method 

Assuming that N run-to-failure data-sets of battery capacity with different lengths exist, denoted as C i , i = 1 , · · · , N,

where C i = { C i, j , j = 1 , · · · , T i } is the i -th capacity dataset with a length of T i . In order to build a GPR model to capture the

degradation pattern of the battery, an finite impulse response (FIR) filter with a Hanning window is first applied to the

original capacity curves to remove high-frequency noise and outliers in the data and thus smooth the capacity degradation 

curves. 

Since GPR model training will be computationally very slow for a large number data set and further suffers from the

curse of dimensionality, a down-sampling step is performed to reduce the size of the data after the smoothing of the

degradation curves. Denoting the run-to-failure data after down-sampling as ˜ C i = { C i,k , k = 1 , · · · , M i } , ∀ i = 1 , · · · , N, where

M i is the length of the i -th capacity dataset after down-sampling, the finite difference of the capacity between two adjacent

time steps is computed as 

�C i,k = C i,k − C i,k +1 , i = 1 , · · · , N; k = 1 , · · · , M i − 1 , (9) 

where �C i,k is the capacity degradation of the i -th battery from time step t k to time step t k +1 after down-sampling. Note

that the finite difference is computed by subtracting C i,k +1 from C i,k since the capacity is decreasing over time. 

To learn the underlying dynamics of the capacity degradation, a nonlinear autoregressive exogenous model (NARX) using 

the GPR model is constructed. NARX model is a nonlinear time-series modeling method that describe the response of a 

time series at the current time instant as a nonlinear function of the past values of the time series and current and past

values of the driving factors (i.e., exogenous inputs). Various methods can be employed to model such a nonlinear functional 

relationship. When a GPR model is used to build this nonlinear function, the resulting model is called a GP-NRAX model

[52] . The GP-NARX model in this paper is given by 

� ˆ C k = G(�C k −1 , �C k −2 , · · · , �C k −p ; θ ) , (10) 

in which G(·) is the GPR model with hyper-parameters θ , � ˆ C k ∼ N ( μC,k , σ
2 

C,k 
) is the predicted capacity degradation at time

step t k which follows a Gaussian distribution with a mean of μC,k and a standard deviation of σC,k , and p is the number of

lags in the NARX model. The hyper-parameters θ are estimated using the maximum likelihood estimate method based on 

the training data of �C i,k obtained in Eq. (9) . 

For some situations, additional information from the run-to-failure data may be available. For instance, for the data used 

in the numerical example, the first 100 cycles of the discharge capacity curves are available. Denoting those additional 

parameters as ω and incorporating them into the GPR model, the GP-NARX model given in Eq. (10) can be rewritten as 

� ˆ C k = G(�C k −1 , �C k −2 , · · · , �C k −p , ω; θ ) . (11) 

In the above equations, the optimal down-sampling rate and the number of lags p need to be determined through a

group of validation data that is not used in the test. After the construction of the GP-NARX model, for a new battery with

measured capacity data C new,q , q = 1 , · · · , T , where T is the current number of measured time steps, we first predict the

battery capacity degradation of the new battery at time step t T +1 as 

� ˆ C new,T +1 = G(�C new,T , �C new,T −2 , · · · , �C new,T −p+1 , ω; θ ) . (12) 

Since � ˆ C new,T +1 ∼ N ( μnew,T +1 , σ
2 
new,T +1 ) , we first generate N MCS samples of � ˆ C according to the Gaussian distribution 

using Monte Carlo simulation (MCS). Let the MCS samples be �C new,r , r = 1 , · · · , N MCS , the capacity at time step t T +1 is

given as 

ˆ C T +1 ,r = C new,T − �C new,r , r = 1 , · · · , N MCS , (13) 

where ˆ C T +1 ,r , r = 1 , · · · , N MCS are the predicted MCS samples of battery capacity at time step t T +1 due to the uncertainty in

the GPR prediction. 

The above two equations (i.e., Eqs. (12) and (13) ) are implemented recursively over time to forecast battery capacity 

over a long time period, and thereby allows one to predict the RUL of a new battery. 

2.2.2. Similarity-Based approach 

The similarity-based method proposed by Wang et al. in Ref [53] . for data-driven prognostics is also employed in this

paper as a benchmark method for comparison. The basic idea of the similarity-based method is to match the degradation 

pattern of a new battery to that of the run-to-failure data in the library and thus estimate the RUL of the new battery based

on the actual life of the existing units. The approach will be briefly summarized herein, and interested readers are directed

to Ref [53] . for details. As shown in Fig. 2 , a subset of the capacity data of the new battery is first extracted using a window

size �T and denote the extracted data as C s = { C new,T −�T , · · · , C new,T } . For a given run-to-failure capacity curve C i in the
46 
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Fig. 2. Illustration of similarity-based RUL estimation method. Note that the data and curve shown in this figure are for explanation purpose only. They 

are not real capacity data and curve.. 

 

 

 

 

 

 

 

 

 

training data,the time instant T ∗
0 

that C i has the highest similarity with C s is identified by solving the following optimization 

model: 

T ∗0 = arg min 

T 0 

{ f ( C s , C i ( T 0 )) } , 
s.t. 
T 0 ∈ [0 , T e,i − �T ] , 

(14) 

where C i (T 0 ) = { C i,T 0 , · · · , C i,T 0 +�T −1 } are the capacity data of the i -th capacity degradation curve starting from time T 0 with

a window size �T , f ( C s , C i (T 0 ) ) is a loss function that quantifies the similarity of the two data-sets C s and C i (T 0 ) , and T e,i is

the end of life of the i -th battery obtained based on the capacity degradation curve. The loss function f ( C s , C i (T 0 ) ) could be

defined in many different ways, such as likelihood function, Euclidean distance, or correlation measures. In this paper, the 

Euclidean distance is employed as the loss function. 

The above optimization model basically moves the capacity degradation data of the new battery along the time axis to 

find the best match between the capacity degradation pattern of the new battery and that of the battery used for training

(see the illustration in Fig. 2 ). 

After the identification of T ∗
0 

, the similarity, S i , between the degradation pattern of the new battery and that of the i -th

battery for training, is given as 

S i = f ( C s , C (T ∗0 ) ) , i = 1 , · · · , N. (15) 

The corresponding RUL estimate based on the i -th degradation curve is given by 

ˆ L i = T e,i − T ∗0 − �T , i = 1 , · · · , N. (16) 

Finally, the S i , i = 1 , · · · , N, are used as weights and 

ˆ L i , i = 1 , · · · , N as corresponding RUL estimates, to implement a re-

sampling of ˆ L i based on the weights S i to obtain the probabilistic distribution of the RUL estimate of the new battery. In

this paper, the re-sampling of ˆ L i is performed using the particle filtering method. 

2.3. Physics-Constrained bayesian neural network 

Neural networks have been shown to be universal function approximators [54,55] as well as universal nonlinear operator 

approximators [44,56] . Their extensive expressive power comes from performing a series of function composition operations. 

On its own, the individual functions that make up a neural network are often differentiable linear or simple nonlinear

functions. The key aspect is that these operations are differentiable and thus, amenable to be used in conjunction with 

gradient-based optimization algorithms. However, because of the emergent complexity that neural networks exhibit, they 

can often overfit and produce non-physical behavior. To this end, physics constraints can be introduced into the network 

via penalty terms in the loss function [57] . The constraints introduced in this work will be described in the next section.

Neural networks are particularly amenable for imposing Neumann-type constraints because gradients are easily computed 

with auto-differentiation. For these reasons, neural networks were chosen as the proposed approach. 
47 
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Moreover, the present problem exhibits significant variance in the battery RUL. For this reason, it is desirable to opt 

for a Bayesian neural network that can model the epistemic uncertainty associated with the predictions. In this work, it 

is assumed that epistemic uncertainty is associated with the parametric part of the model and not the time-dependent 

portion. The rationale behind this choice is that there is model-form uncertainty associated with the parametric model 

due to not having access to direct state variables associated with the physical phenomena and instead relying on indirect 

measurements. The effects of this assumption could be explored in future work. The time-dependent trunk only takes time 

as input while the parametric branch of the network takes as input the following vector 

λ = { C 0 , C 20 , C 40 , C 60 , C 80 , C 100 , var (Q 100 −10 ) , 

∫ 100 

0 

Cdt} . (17)

This vector of input parameters seeks to capture the trend of the RUL curve in the first 100 cycles. Through an iterative

process, it was determined that 5 sample points from the initial RUL curve were sufficient. In addition to these samples,

it was determined that the area under the curve (AUC), computed by integrating the first 100 steps of the RUL curve, was

also a useful predictor. In addition to these features, the authors of [45] found that the voltage discharge curves from early

cycles correlated well with the final RUL value. For this reason, the variance of the difference between the voltage discharge

curve at 100 and at 10 cycles is used as a predictor as well. 

2.3.1. Bayesian neural network overview 

Unlike a traditional neural network which learns to predict point estimates, a Bayesian Neural Network learns the poste- 

rior distribution, P (w |D) , over the weights given an assumed prior distribution, P (w ) following Bayes theorem as 

P (w |D) = 

P (D| w ) P (w ) ∫ 
P (D| w 

′ ) P (w 

′ ) d w 

′ , (18) 

where w are the model weights to be estimated, D represents the training data, and P (D| w ) is the likelihood of observing

D for given weights w . 

As described in [58] , obtaining the exact predictive posterior distribution is intractable for neural networks of any prac- 

tical size due to the challenge of computing the term in the denominator of Bayes theorem. A common approach for ap-

proximating the predictive posterior is to rely on variational inference, as described in [59,60] . In this formulation, we begin

by minimizing the Kullback-Leibler (KL) divergence between a variational posterior distribution q (w ‖ μ) and the desired 

posterior distribution P (w |D) . The KL divergence term is defined as 

KL (q (w | μ) || P (w |D)) = 

∫ 
q (w | μ) log 

(
q (w | μ) 

P (w |D) 

)
d w, (19) 

where μ are the parameters of the variational distribution q (w | μ) . 

This formulation leads to the familiar problem of minimizing the variational free energy or maximizing the expected 

lower bound (ELBO) which consists of two terms: a KL distance between the variational distribution and the weights prior 

distribution (effectively acting as a complexity cost) and the negative log-likelihood term that effectively captures the re- 

construction loss term. The total loss term is defined as 

H(D, μ) = KL [ q (w | μ) ‖ P (w )] − E q (w ‖ μ) [ log P (D| w )] , (20)

This formulation is used to train the network by employing the Bayes by Backprop algorithm, as described in [58] . In

practice, the loss function is approximated by employing Monte Carlo sampling such that the loss over a batch of size n is

computed as 

H ( D, μ) ≈
n ∑ 

i 

log q 
(
w 

( i ) | μ)
− log P 

(
w 

( i ) 
)

− log P 
(
D| (w 

( i ) 
))

, (21) 

where w 

(i ) represents the i -th Monte Carlo sample drawn from the variational posterior q (w | μ) . In this way, the network

can be trained more or less as a traditional neural network using the tools available in Tensorflow and Tensorflow Probability

[61] . Specifically, dense variational layers are used in Tensorflow to keep track of the variational posterior distribution. 

2.3.2. Neural network architecture and constraints 

A Bayesian Neural Network architecture was used to model the battery discharge capacity rate. A Bayesian neural net- 

work, unlike a traditional network, treats its weights as random variables as described previously. As a result, the network 

functions as a probabilistic model where the weight distributions have been determined through variational inference (i.e., 

during training). The trained network functions as a neural differential operator that can be deployed by performing time 

integration over the desired inference time range. The concept of a neural differential operator refers to a neural network 

that learns the mapping between state variables and the derivative of a field variable (e.g., the discharge capacity) and it

has been used in previous work [62] by the authors. The network architecture was inspired by DeepONet [44] and is shown

in Fig. 3 . DeepONet leverages the concept of neural networks as universal operator approximators (based on the universal 

nonlinear operator approximation theorem introduced by Chen and Chen [63] ). DeepONet consists of 
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Fig. 3. Schematic of general neural network architecture. 

 

 

 

 

 

 

 

 

 

 

• a branch network (i.e., G) that encodes the discrete input function space and, 
• a trunk network (i.e., F) that encodes the domain of the output functions. 

This architecture is desirable here because the objective is to construct the neural network as an operator that models 

the time derivative of the capacity discharge over a function space representing the different battery cells (parameterized 

by their initial capacity performance) and evaluated at an arbitrary point along their lifetime. 

Consistent with Fig. 3 , the trunk F processes the time dependence and the branch G handles the history or parametric

dependence as 

dC 

dt 
∼ p 

(
dC 

dt 
| λ, t 

)
= G 
(λ) F �(t) , (22) 

where 
 and � are the weights of the branch and the trunk, respectively, and λ is the vector of input parameters related

to the first 100 cycles of the discharge capacity curve. The branch learns the encoding over the discrete universe of battery

cells (based on limited observations) while the trunk encodes the output domain, i.e., the number of cycles. In this case,

both networks are exactly the same but they could be different if, for example, the branch needed to act as a functional

over image data or high-dimensional functions. 

The two networks consisted of 8 layers with 10 units, each with a nonlinear swish activation function. The swish activa-

tion function is defined as f (x ) = x/ (1 + exp (−x )) and was chosen because it is part of the Tauber-Wiener functions used

in DeepONet [44] and was shown to behave well based on experiments performed by the authors. The last layer of the

branch network has a variational dense layer with a trainable posterior approximate Gaussian mean field and an isotropic 

Gaussian prior. This variational layer is meant to introduce the capability to predict epistemic uncertainty. The assumption 

that epistemic uncertainty is only present in the branch network was made to avoid having to deal with random variables

when enforcing physical constraints associated with the discharge rate. If the physical constraint could be expressed as a 

probability density function, it would be desirable to include random variables in the trunk as well, but this was not the

case here. 

As the network predicts the discharge capacity rate, the residual of a multi-step integration evaluation is included to 

enforce mathematical consistency. The constraint is enforced via the following loss term, 

L num 

= ‖ 

s ∑ 

j=0 

γ j C k + j − h 

s ∑ 

j=0 

η j 

(
dC 

dt 

)
k + j 

‖ 

2 
2 , (23) 

where γ and η are coefficients from the Butcher tableau corresponding to the Adams-Bashforth linear multistep integration 

method, and h is the time step associated with the training data. The C k + j term represents the (k + j) th time step in the C

vector. 
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It is observed that the discharge capacity is a monotonically decreasing phenomenon. Based on this observation, a con- 

straint enforcing negative self-acceleration is incorporated. The constraint is expressed mathematically by 

d 2 C 

dt 2 
< 0 . (24) 

As the network was constructed to model the discharge capacity, its second time derivative can be obtained by comput- 

ing the gradient of the network via auto-differentiation. Furthermore, because the trunk is the only component with time 

dependence, the loss term associated with this physical constraint can be computed as 

L phys = 

[
ReLU 

(
dF ( t ) 

dt 

)]2 

(25) 

where ReLU is the rectified linear unit function which is non-zero only for positive values. 

Lastly, the reconstruction loss was computed by evaluating the negative log-likelihood of the network with respect to 

the supervised discharge capacity rate as 

L recon = −
N ∑ 

i 

log p 

((
dC 

dt 

)
i 

| λi , t 

)
. (26) 

where N is the number of samples in a batch. Note that this term corresponds to the third term in the variational loss term

shown in Eq. (21) . In addition to the reconstruction term, a complexity term is also computed as 

L complex = 

N ∑ 

i 

log q (w 

(i ) | z) − log P (w 

(i ) ) , (27) 

where q (w 

(i ) | z) is the variational distribution as described in Section 2.3.1 and P (w 

(i ) ) denotes the non-trainable isotropic

Gaussian prior distribution. Because a Gaussian distribution was also assumed for the variational posterior, the parameter 

vector z contains the mean and standard deviation of the distribution. 

The total loss was obtained by adding the four individual loss components as 

L = ζL recon + βL phys + κL num 

+ ρL complex , (28) 

where ζ , β , κ , and ρ are used to weight the contribution of each loss term and are determined manually by inspecting the

relative magnitude of the different loss terms. The loss is minimized using the Adam optimizer with a learning rate set to

10 −4 . 

Once trained, the discharge capacity is obtained by time-integrating the capacity rate as 

C(t) = 

∫ t 

0 

dC 

dt 
dt, (29) 

where dC 
dt 

is sampled from the Bayesian neural network as shown in Eq. (22) . The time T e at which the discharge capacity

will reach its limit state (i.e., its end of life), can then be predicted from which the RUL, ˆ L (t) , is estimated as 

ˆ L (t) = T e − t, (30) 

where t denotes the cycle at which the RUL is being estimated. 

3. Application for model comparison 

3.1. Dataset and pre-processing 

The method was evaluated using the metrics described in Section 3.2 by predicting the RUL of the battery dataset pro-

vided in [45] . For consistency, the same 80 / 20 training/test random split was used for all methods. The capacity degradation

curves were pre-processed to remove outliers and extend them beyond their endpoint by linearly extrapolating them to zero 

discharge capacity by following the instruction given in Ref [64] . Fig. 4 shows the battery capacity as a function of cycles

for the original data and after removing outliers. 

3.2. Performance metrics 

To evaluate the performance of the algorithms, the following performance metrics were considered. 

3.2.1. Error metric 

The error was computed simply as the difference between the actual RUL curve and the prediction as 

εi = L i − ˆ L i , (31) 

where i indicates the i -th test case. 
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Fig. 4. Capacity data used in this example (Before and after removing outliers). 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Root mean squared error 

The root mean squared error (RMSE) is a simple way to evaluate the accuracy of the prediction. The RMSE was computed

by comparing the mean RUL predictions to the actual RUL curve as 

RMSE = 

1 

N 

N ∑ 

i 

(εi ) 
2 , (32) 

where the sum is performed over the N test cases. 

3.2.3. S-Metric 

The S-metric is based on the prognosis metric suggested by the authors of [65] . This score is an asymmetric metric that

penalizes late predictions more heavily than early predictions. The metric is defined as 

s = 

{ ∑ N 
i e 

(
− εi 

a 1 

)
− 1 , for εi < 0 ∑ N 

i e 

(
εi 
a 2 

)
− 1 , for εi ≥ 0 , 

(33) 

where s is the computed score, N is the number of test cases, and the parameters were defined as a 1 = 10 0 0 and a 2 = 130 0

following the guidance provided in [65] but scaling the parameters to be appropriate for the task at hand. 

3.2.4. F1-Score 

The F1-score was computed to test the robustness of the algorithms. To this end, the definition of true positives, false

positives, and false negatives was taken from [66] . False positives were defined to be early predictions while false negatives

were defined to be late predictions. These quantities were computed as 

F P = 

{
1 , if εi > t F P 
0 , otherwise , 

(34) 

F N = 

{
1 , if − εi > t F N 
0 , otherwise , 

(35) 

where t F P and t F N are threshold values that are used to determine the acceptable region over which the prediction is con-

sidered a false prediction. For this paper, these two threshold were set to 50 cycles. Predictions that were within 50 cycles

of the experimental data were considered true positives ( T P ). Lastly, the F1-score was computed as 

F 1 = 

2 T P 

2 T P + F P + F N 

. (36) 

3.3. Results 

The four methods described in Section 2 were exercised to predict the battery RUL. Test 0 has an unusually high RUL

while test 62 has one of the lowest RUL values of all the test cases observed. On the other hand, test 18 and 108 are typical

of the battery RUL observed in most of the cells. For this reason, these four cases were chosen to exemplify the performance

of each of the approaches. Fig. 5 and Fig. 6 show the mean RUL prediction and associated 95% confidence interval for all the

methods considered. 
51 



D.A. Najera-Flores, Z. Hu, M. Chadha et al. Applied Mathematical Modelling 122 (2023) 42–59 

Fig. 5. RUL predictions of test 0 and 18 for all the approaches considered. 
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Fig. 6. RUL predictions of test 62 and 108 for all the approaches considered. 
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Table 1 

Computational cost of a single RUL curve for each method. 

Method Training Prediction 

Physics-BNNet 5 hours 0.23s 

GPR 0.42 hours 142s 

Similarity N/A 0.47s 

Physics-FFM N/A 60s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the physics-based FFM method, a linear and nonlinear version of the model is shown. The FFM is a nonlinear re-

gressor guided by a failure forecasting model equation that accounts for varying rate of capacity degradation over time, as 

observed in the battery’s decline in capacity as well as other failure mechanisms such as fracture and crack propagation.

By using the FFM, the remaining useful life of the battery can be probabilistically inferred. A specific version of the general

nonlinear FFM is a linear FFM, which uses a forecasting model that assumes a constant degradation rate throughout the 

battery’s life, as determined by the data used for forecasting. 

Because all four methods are different, a direct comparison of computational cost is not too meaningful but runtimes 

for computing a single RUL curve are reported for completeness in Table 1 . For the GPR, Similarity-based, and the FFM

methods, a single CPU was used for computation of the RUL curve. For the BNNet approach, a single GPU was used to train

the network for 50,0 0 0 epochs without early-stopping criteria. As shown in Table 1 , even though the physics-constrained

BNNet approach takes a very long time for training, it is the most efficient one among the four methods for RUL prediction.

Because the GPR-based method implements a recursive uncertainty propagation scheme to quantify the uncertainty in the 

RUL prediction (see description in Section 2 ), it is the slowest. In addition, the similarity-based method and physics-based

FFM method do not require any training time, due to the fact that these two methods use a sliding window to either

check the similarity between the data of the window and the available run-to-failure data or to infer and update the model

parameters of the FFM model using Bayesian method for RUL prediction. The computational time of these two methods for 

prediction is therefore mainly caused by similarity checking or Bayesian inference. 

The results of the GPR-based method show that the GPR method can effectively quantify the uncertainty in the RUL 

predictions. As shown in Fig. 5 and Fig. 6 , the true RUL curves lie within the 95 confidence bounds of the RUL prediction.

The GPR-based method can accurately predict the RUL for tests 18, 62, and 108. During the construction of the GPR model,

we only rely on the training data and did not leverage any physics knowledge. As a result, the prediction of the GPR model

could have large prediction errors when the degradation pattern of the test is quite different from that of the training. For

instance, the predicted RUL for test 0 from GPR-based method has large errors while it is pretty accurate for the other test

cases. This is because the degradation of test 0 is unusually slow as mentioned above, which is quite different from that of

tests used for training. The similarity-based method has a similar pattern as the GPR-based method. It can also effectively 

quantify the RUL prediction uncertainty and is pretty accurate for most cases. Very similar to the GPR-based method, the 

similarity-based method also has large prediction errors for test 0. This is attributed to the fact that both the GPR-based

method and similarity-based method are interpolation-based methods. For interpolation-based methods, they could have 

good prediction accuracy when the prediction is within the training domain and may produce large errors if the prediction 

is outside the domain of the training data. The results of the FFM-based method shows that it overshoots the prediction in

the early phase and the prediction gradually converges to the true value towards the end. This is because the FFM model

is not suitable for forecasting battery capacity discharge because it is a nonlinear regression model designed for forecasting 

failure of a damage or fracture type of failure where degradation accelerates towards the end. The capacity degradation 

of battery behaves differently and can be divided into three stages: initial, mid and final phase. In the initial phase, the

capacity degrades at a constant rate, in the mid phase the rate of degradation accelerates and in the final phase, the slope

becomes constant. Unlike the fracture type problem, the degradation rate of battery capacity does not change much in the 

final phase. As a result, the FFM model form does not fully capture this degradation characteristics, resulting in overshooting 

of the prediction until the data window comes closer to the failure threshold. We observe that the general nonlinear FFM,

which is capable of capturing changes in slope, leads to better predictions than the linear FFM. In contrast, the BNNet

approach is fully nonlinear and does not enforce a specific form of nonlinearity, making it more flexible while still able to

enforce the monotonically decreasing discharge capacity. By leveraging this physics knowledge within the neural network 

training, the BNNet approach performs the best among the presented four methods for the four test cases. 

A qualitative and quantitative comparison of the RUL predictions for all the methods is presented in the next section. 

3.4. Comparison and discussions 

The performance was evaluated by comparing the RUL curves to the actual data. Fig. 7 illustrates the distribution of errors

calculated as shown in Eq. 31 . A positive error indicates early end-of-life prediction while a negative error indicates late

end-of-life. For this reason, a positive value can be considered conservative. As illustrated, the residuals from the physics- 

constrained BNNet are narrower and centered around zero, whereas the physics-based FFM and the GPR predictions are 

generally broader. The similarity-based approach has similarly narrower distributions than the other GPR approach, but 

broader than the physics-constrained BNNet method. One of the trends that can be appreciated from this plot is the fact
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Fig. 7. Histogram of error distributions over the test set for the different techniques considered. 

Table 2 

Summary of RUL Prediction Performance. 

Method RMSE S-metric F1-score 

Physics-BNNet 166 87 0.62 

GPR 733 302 0.28 

Similarity 425 101 0.46 

Physics-FFM 5643 982 0.33 

Fig. 8. RUL curve predictions for four representative cells. 

 

 

 

 

that the BNNet and similarity-based approach are generally conservative (i.e., early prediction of the RUL) whereas the 

other methods are unconservative (i.e., late predictions). To quantify the trade-off between precision and accuracy of these 

methods, the F1-score is reported in Table 2 . As shown, the computed F1-score is consistent with the visual observations

about the BNNet method being more precise while having a good recall rate. 

To illustrate the type of predictions obtained with the different methods considered, the RUL curves are plotted together 

in Fig. 8 . Only four representative RUL curves are shown for easiness of visualization (these are the same curves shown

in Fig. 5 and Fig. 6 ). As illustrated, both similarity-based approach and the GPR-based method have large 95% intervals,

whereas the physics-based FFM and physics-constrained BNNet methods have generally narrower bounds. The similarity- 

based approach and the GPR-based method convey the uncertainty of their predictions through this large confidence interval 

which is useful because even when the predictions are not accurate, the model is able to express this uncertainty in the
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Fig. 9. Random discharge capacity curve samples generated by the BNNet (black) and actual experimental curve (dashed red). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

prediction. The physics-constrained BNNet method has significantly narrower bands but it is also more accurate, as judged 

by the performance metrics shown in Table 2 . The BNNet’s narrow 95% intervals seem to correspond to increased accuracy.

The prediction uncertainty for time of failure using the FFM model, which is a nonlinear regressor, is dependent on the

variability of the battery capacity data that is used to probabilistically infer the model parameters for the FFM regressor 

equation. In the case of battery capacity curves shown in Fig. 4 , the variability is low, leading to a narrow prediction interval

for the time of failure and the remaining useful life (RUL). Additionally, the prediction uncertainty is highest in the early 

phase of the prediction as uncertainty propagates during extrapolation for future capacity, and becomes narrower as the 

data window nears the failure threshold (see Fig. 1 ). As mentioned, quantitative performance metrics are shown in Table 2 .

The metrics show a consistent trend, with the physics-constrained BNNet method being the most accurate followed by the 

similarity-based approach method, then the GPR-based method, and lastly the physics-based FFM. 

As the BNNet exhibits superior accuracy, its performance merits further exploration. One way to evaluate the perfor- 

mance of the proposed method is to perform hypothesis testing. We obtain the predicted RUL, ˆ L from the probabilistic 

model as described in Section 2.3.2 . We can then test H 0 : ̂  L μ = L versus H 1 : ̂  L μ � = L , that is, whether the actual RUL curve

matches the mean of the samples of ˆ L generated from the physics-constrained BNNet. To that end, a T-test was performed 

by generating 500 samples from the BNNet model, and then computing the RUL curve and comparing it to the experimental

data. The test was performed at each cycle along the RUL curve to obtain a distribution of T-tests. The proportion of times

the null hypothesis was accepted (i.e., the proportion of cases for which the experimental mean agrees with the predicted 

mean) with a 95% confidence level (two-sided test with p-value less than 0.05) is plotted in Fig. 10 for all the test cases.

As illustrated, the lowest acceptance rate is 90% which indicates that the distribution sampled from the BNNet generative 

process agrees well with the experimental data most of the time. To further illustrate this result, Fig. 9 shows 500 random

discharge capacity curve samples generated by the BNNet plotted alongside the actual experimental curve (shown in red). 

The prediction of each curve takes on average 0.23 seconds. Note that the uncertainty does not grow significantly with time
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Fig. 10. Proportion of cycles for which the null hypothesis H 0 : ̂  L μ = L was accepted. 

 

 

 

 

 

 

because the predictions are not recursive due to the network learning the capacity discharge rate and forward computation 

achieved through time integration (with the RK45 integrator). 

The superior performance of the BNNet compared to the other approaches may be attributed to the fact that the BNNet

approach combines many of the attributes of the other methods. Due to the Bayesian architecture of the BNNet method, this

approach is similar to GPR, as explored in [67] which allows the BNNet to generate good predictions even when the data

exhibit variability. Furthermore, the physics constraints of the BNNet approach were inspired by the constraints utilized 

in the FFM approach, namely the fact that the battery degradation process exhibits monotonic behavior and thus can be 

constrained to have a concave down trend through its second derivative. In addition to these features, the BNNet algorithm 

incorporated ideas from operator inference in its architecture which presumably increased its expressiveness. All of these 

features may have contributed to the good performance of the BNNet method. 

4. Conclusions 

This paper presented a comparison of four distinct approaches to perform RUL prediction of a lithium-ion battery dataset. 

As described in the original paper ( [45] ), the battery dataset introduces several challenges due to the broad variability in

capacity discharge trends for nominally identical battery cells. For this reason, this paper was focused on the application of 

probabilistic methods that can account for the variability inherent in this dataset. Three of the four methods considered are 

well-established techniques in the field of RUL forecasting. It was shown that the FFM approach was too restrictive in the

assumptions it makes about the degradation trends, and that it may not be appropriate to capture the physics of the battery

degradation phenomenon. On the other hand, the data-driven approaches (GPR and Similarity-based) lacked the physical 

constraints to achieve high accuracy but they were able to express this epistemic shortcoming via large uncertainty bounds. 

Lastly, the BNNet approach combined features from the physics-based and data-driven approaches to achieve higher accu- 

racy while predicting confidence intervals that were generally wide enough to capture the behavior of the actual dataset. 

The BNNet outperformed the other approaches in all the metrics considered which implies that the BNNet method is more 

robust, precise, and accurate than the other methods. Future opportunities for research include extending the network ar- 

chitecture to be recurrent or memory-aware for cases in which the physical phenomenon considered is not monotonic and 

to include additional physical constraints by leveraging insights from physical modeling and simulation. 
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