
import gc import os  import torch from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import retrieve_latents from polygraphy import cuda  from ...pipeline import StreamDiffusion from .builder 
import EngineBuilder, create_onnx_path from .engine import AutoencoderKLEngine, UNet2DConditionModelEngine from .models import VAE, UNet, VAEEncoder   class TorchVAEEncoder(torch.nn.Module):     def __init__(self, 
vae):         super().__init__()         self.vae = vae      def forward(self, x):         return retrieve_latents(self.vae.encode(x), torch.Generator())   def accelerate_with_tensorrt(     stream: StreamDiffusion,     
engine_dir: str,     max_batch_size: int = 2,     use_cuda_graph: bool = False,     engine_build_options: dict = {}, ):     text_encoder = stream.text_encoder     unet = stream.unet     vae = stream.vae      del 
stream.unet, stream.vae, stream.pipe.unet, stream.pipe.vae      vae_config = vae.config     vae_dtype = vae.dtype      unet.to(torch.device("cpu"))     vae.to(torch.device("cpu"))      gc.collect()     
torch.cuda.empty_cache()      onnx_dir = os.path.join(engine_dir, "onnx")     os.makedirs(onnx_dir, exist_ok=True)      unet_engine_path = f"{engine_dir}/unet.engine"     vae_encoder_engine_path = f"{engine_dir}/
vae_encoder.engine"     vae_decoder_engine_path = f"{engine_dir}/vae_decoder.engine"      unet_model = UNet(         fp16=True,       device=stream.device,         max_batch_size=max_batch_size,         
embedding_dim=text_encoder.config.hidden_size,         unet_dim=unet.config.in_channels,     )     vae_decoder_model = VAE(device=stream.device, max_batch_size=max_batch_size)     vae_encoder_model = 
VAEEncoder(device=stream.device, max_batch_size=max_batch_size)      if not os.path.exists(unet_engine_path):         unet = unet.to(stream.device, dtype=torch.float16)         builder = EngineBuilder(unet_model, unet, 
device=stream.device)         del unet         builder.build(             create_onnx_path("unet", onnx_dir, opt=False),             create_onnx_path("unet", onnx_dir, opt=True),             unet_engine_path,             
**engine_build_options,         )     else:         del unet      if not os.path.exists(vae_decoder_engine_path):         vae.forward = vae.decode         vae = vae.to(stream.device)         builder = 
EngineBuilder(vae_decoder_model, vae, device=stream.device)         builder.build(             create_onnx_path("vae_decoder", onnx_dir, opt=False),             create_onnx_path("vae_decoder", onnx_dir, opt=True),             
vae_decoder_engine_path,             **engine_build_options,         )      if not os.path.exists(vae_encoder_engine_path):         vae_encoder = TorchVAEEncoder(vae).to(stream.device)         builder = 
EngineBuilder(vae_encoder_model, vae_encoder, device=stream.device)         builder.build(             create_onnx_path("vae_encoder", onnx_dir, opt=False),             create_onnx_path("vae_encoder", onnx_dir, 
opt=True),             vae_encoder_engine_path,             **engine_build_options,         )         del vae_encoder         gc.collect()         torch.cuda.empty_cache()      del vae      cuda_steram = cuda.Stream()      
stream.unet = UNet2DConditionModelEngine(unet_engine_path, cuda_steram, use_cuda_graph=use_cuda_graph)                                                stream.vae = 
AutoencoderKLEngine(         vae_encoder_engine_path,         vae_decoder_engine_path,         cuda_steram,         stream.pipe.vae_scale_factor,         use_cuda_graph=use_cuda_graph,     )     setattr(stream.vae, 
"config", vae_config)     setattr(stream.vae, "dtype", vae_dtype)      gc.collect()     torch.cuda.empty_cache()      return stream

‎src/streamdiffusion/acceleration/tensorrt/builder.pyCopy file name to clipboard+94Original file line numberDiff line numberDiff line change @@ -0,0 +1,94 @@ import gc import os from typing import *  import torch  from 
.models import BaseModel from .utilities import (     build_engine,     export_onnx,     optimize_onnx, )   def create_onnx_path(name, onnx_dir, opt=True):     return os.path.join(onnx_dir, name + (".opt" if opt else 
"") + ".onnx")   class EngineBuilder:     def __init__(         self,         model: BaseModel,         network: Any,         device=torch.device("cuda"),     ):         self.device = device          self.model = model         
self.network = network      def build(         self,         onnx_path: str,         onnx_opt_path: str,         engine_path: str,         opt_image_height: int = 512,         opt_image_width: int = 512,         
opt_batch_size: int = 1,         min_image_resolution: int = 256,         max_image_resolution: int = 1024,         build_enable_refit: bool = False,         build_static_batch: bool = False,         
build_dynamic_shape: bool = False,         build_all_tactics: bool = False,         onnx_opset: int = 17,         force_engine_build: bool = False,         force_onnx_export: bool = False,         force_onnx_optimize: 
bool = False,     ):         if not force_onnx_export and os.path.exists(onnx_path):             print(f"Found cached model: {onnx_path}")         else:             print(f"Exporting model: {onnx_path}")             
export_onnx(                 self.network,                 onnx_path=onnx_path,                 model_data=self.model,                 opt_image_height=opt_image_height,                 opt_image_width=opt_image_width,                 
opt_batch_size=opt_batch_size,                 onnx_opset=onnx_opset,             )             del self.network             gc.collect()             torch.cuda.empty_cache()         if not force_onnx_optimize and 
os.path.exists(onnx_opt_path):             print(f"Found cached model: {onnx_opt_path}")         else:             print(f"Generating optimizing model: {onnx_opt_path}")             optimize_onnx(                 
onnx_path=onnx_path,                 onnx_opt_path=onnx_opt_path,                 model_data=self.model,             )         self.model.min_latent_shape = min_image_resolution // 8         self.model.max_latent_shape 
= max_image_resolution // 8         if not force_engine_build and os.path.exists(engine_path):             print(f"Found cached engine: {engine_path}")         else:             build_engine(                 
engine_path=engine_path,                 onnx_opt_path=onnx_opt_path,                 model_data=self.model,                 opt_image_height=opt_image_height,                 opt_image_width=opt_image_width,                 
opt_batch_size=opt_batch_size,                 build_static_batch=build_static_batch,                 build_dynamic_shape=build_dynamic_shape,               
build_all_tactics=build_all_tactics,                 build_enable_refit=build_enable_refit,             )          gc.collect()         torch.cuda.empty_cache()

‎src/streamdiffusion/acceleration/tensorrt/engine.pyCopy file name to clipboard+123Original file line numberDiff line numberDiff line change @@ -0,0 +1,123 @@ from typing import *  import torch from 
diffusers.models.autoencoder_tiny import AutoencoderTinyOutput from diffusers.models.unet_2d_condition import UNet2DConditionOutput from diffusers.models.vae import DecoderOutput from polygraphy import cuda  from 
.utilities import Engine   class UNet2DConditionModelEngine:     def __init__(self, filepath: str, stream: cuda.Stream, use_cuda_graph: bool = False):         self.engine = Engine(filepath)         self.stream = stream         
self.use_cuda_graph = use_cuda_graph          self.engine.load()         self.engine.activate()      def __call__(         self,           latent_model_input: torch.Tensor,         timestep: torch.Tensor,         
encoder_hidden_states: torch.Tensor,         **kwargs,     ) -> Any:         if timestep.dtype != torch.float3 timestep = timestep.float()        self.engine.allocate_buffers(             shape_dict={                 
"sample": latent_model_input.shape,                 "timestep": timestep.shape,                 "encoder_hidden_states": encoder_hidden_states.shape,                 "latent": latent_model_input.shape,             },             
device=latent_model_input.device,         )          noise_pred = self.engine.infer(             {                 "sample": latent_model_input,                 "timestep": timestep,                 
"encoder_hidden_states": encoder_hidden_states,             },             self.stream,             use_cuda_graph=self.use_cuda_graph,         )["latent"]         return UNet2DConditionOutput(sample=noise_pred)      
def to(self, *args, **kwargs):         pass      def forward(self, *args, **kwargs):         pass   class AutoencoderKLEngine:     def __init__(         self,         encoder_path: str,         decoder_path: str,         
stream: cuda.Stream,         scaling_factor: int,         use_cuda_graph: bool = False,     ):         self.encoder = Engine(encoder_path)         self.decoder = Engine(decoder_path)         self.stream = stream         
self.vae_scale_factor = scaling_factor         self.use_cuda_graph = use_cuda_graph          self.encoder.load()         self.decoder.load()         self.encoder.activate()         self.decoder.activate()      def 
encode(self, images: torch.Tensor, **kwargs):         self.encoder.allocate_buffers(             shape_dict={                 "images": images.shape,                 "latent": (                     images.shape[0],                     
4,                     images.shape[2] // self.vae_scale_factor,                     images.shape[3] // self.vae_scale_factor,                 ),             },             device=images.device,         )         
latents = self.encoder.infer(             {"images": images},             self.stream,             use_cuda_graph=self.use_cuda_graph,         )["latent"]         return AutoencoderTinyOutput(latents=latents)      def 
decode(self, latent: torch.Tensor, **kwargs):         self.decoder.allocate_buffers(             shape_dict={                 "latent": latent.shape,                 "images": (                     latent.shape[0],                     
3,                     latent.shape[2] * self.vae_scale_factor,                     latent.shape[3] * self.vae_scale_factor,                 ),             },             device=latent.device,         )         images 
= self.decoder.infer(             {"latent": latent},             self.stream,             use_cuda_graph=self.use_cuda_graph,         )["images"]         return DecoderOutput(sample=images)      def to(self, *args, 
**kwargs):         pass      def forward(self, *args, **kwargs):         pass

‎src/streamdiffusion/acceleration/tensorrt/models.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/acceleration/tensorrt/models.py+428 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/acceleration/tensorrt/utilities.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/acceleration/tensorrt/utilities.py+441 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/image_utils.pyCopy file name to clipboard+89Original file line numberDiff line numberDiff line change @@ -0,0 +1,89 @@ from typing import *  import numpy as np import PIL.Image import torch import 
torchvision   def denormalize(images):     """     Denormalize an image array to [0,1].     """     return (images / 2 + 0.5).clamp(0, 1)   def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:     """     Convert 
a PyTorch tensor to a NumPy image.     """     images = images.cpu().permute(0, 2, 3, 1).float().numpy()     return images   def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image:     """     Convert a numpy image or 
a batch of images to a PIL image.     """     if images.ndim == 3:         images = images[None, ...]     images = (images * 255).round().astype("uint8")     if images.shape[-1] == 1:         # special case for 
grayscale (single channel) images         pil_images = [PIL.Image.fromarray(image.squeeze(), mode="L") for image in images]     else:         pil_images = [PIL.Image.fromarray(image) for image in images]      return 
pil_images   def postprocess_image(     image: torch.FloatTensor,     output_type: str = "pil",     do_denormalize: Optional[List[bool]] = None, ):     # TODO: if文消してもいいかも。     if not isinstance(image, 
torch.Tensor):         raise ValueError(             f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"         )      if output_type == "latent":         return image      
# TODO: classにして、initで前処理しておいてもいいかも。     do_normalize_flg = True     if do_denormalize is None:         do_denormalize = [do_normalize_flg] * image.shape[0]      image = torch.stack([denormalize(image[i]) 
if do_denormalize[i] else image[i] for i in range(image.shape[0])])      if output_type == "pt":         return image      image = pt_to_numpy(image)      if output_type == "np":         return image      if 
output_type == "pil":         return numpy_to_pil(image)   def process_image(image_pil: PIL.Image.Image, range: Tuple[int, int] = (-1, 1)):     image = torchvision.transforms.ToTensor()(image_pil)     r_min, r_max = 
range[0], range[1]     image = image * (r_max - r_min) + r_min     return image[None, ...], image_pil   def pil2tensor(image_pil: PIL.Image.Image) -> torch.Tensor:     height = image_pil.height     width = 
image_pil.width     imgs = []     img, _ = process_image(image_pil)     imgs.append(img)     imgs = torch.vstack(imgs)     images = torch.nn.functional.interpolate(imgs, size=(height, width), mode="bilinear")     
image_tensors = images.to(torch.float16)     return image_tensors

‎src/streamdiffusion/pip_utils.pyCopy file name to clipboard+52Original file line numberDiff line numberDiff line change @@ -0,0 +1,52 @@ import importlib import importlib.util import os import subprocess import sys 
from typing import *  from packaging.version import Version   python = sys.executable index_url = os.environ.get("INDEX_URL", "")   def version(package: str) -> Optional[Version]:     try:         return 
Version(importlib.import_module(package).__version__)     except ModuleNotFoundError:         return None   def is_installed(package: str) -> bool:     try:         spec = importlib.util.find_spec(package)     except 
ModuleNotFoundError:         return False      return spec is not None   def run_python(command: str, env: Dict[str, str] = None) -> str:     run_kwargs = {         "args": f"{python} {command}",         "shell": True,         
"env": os.environ if env is None else env,         "encoding": "utf8",         "errors": "ignore",     }      print(run_kwargs["args"])      result = subprocess.run(**run_kwargs)      if result.returncode != 0:         
print(f"Error running command: {command}", file=sys.stderr)         raise RuntimeError(f"Error running command: {command}")      return result.stdout or ""   def run_pip(command: str, env: Dict[str, str] = None) -> 
str:     return run_python(f"-m pip {command}", env)

‎src/streamdiffusion/pipeline.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/pipeline.py+89-287 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/tools/install-tensorrt.pyCopy file name to clipboard+44Original file line numberDiff line numberDiff line change @@ -0,0 +1,44 @@ from typing import *  import fire from packaging.version import 
Version  from ..pip_utils import is_installed, run_pip, version   def get_cuda_version_from_torch() -> Optional[Literal["11", "12"]]:     try:         import torch     except ImportError:         return None      
return torch.version.cuda.split(".")[0]   def install(cu: Optional[Literal["11", "12"]] = get_cuda_version_from_torch()):     if cu is None or cu not in ["11", "12"]:         print("Could not detect CUDA version. 
Please specify manually.")         return     print("Installing TensorRT requirements...")      if is_installed("tensorrt"):         if version("tensorrt") < Version("9.0.0"):             run_pip("uninstall -y 
tensorrt")      cudnn_name = f"nvidia-cudnn-cu{cu}==8.9.4.25"      if not is_installed("tensorrt"):         run_pip(f"install {cudnn_name} --no-cache-dir")         run_pip("install --pre --extra-index-url https://
pypi.nvidia.com tensorrt==9.0.1.post11.dev4 --no-cache-dir")      if not is_installed("polygraphy"):         run_pip("install polygraphy==0.47.1 --extra-index-url https://pypi.ngc.nvidia.com")     if not 
is_installed("onnx_graphsurgeon"):         run_pip("install protobuf==3.20.2")         run_pip("install onnx-graphsurgeon==0.3.26 --extra-index-url https://pypi.ngc.nvidia.com")      pass   if __name__ == "__main__":     
fire.Fire(install)
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Materealized is a real-time 3D model generation 
system driven by voice interaction. As users 
recount personal memories, the system 
translates their words into immersive 
visualizations using generative AI. Designed for 
displaced and diasporic communities, the project 
explores how storytelling and emerging 
technology can preserve cultural heritage when 
physical artifacts are lost.



Grounded in interdisciplinary research and 
human-centered design, Materealized 
culminated in a public exhibition that tested the 
emotional and cultural resonance of interactive 
memory-based visuals. It offers an actionable 
model for digital preservation—where memory 
becomes experience, and experience becomes 
connection.

abstract
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01 02 03
To engage cultural institutions in 
preserving displaced voices 
through participatory design

To ensure ethical AI generation 
and representation of people’s 
lived experiences

To make cultural preservation 
emotionally resonant and 
technologically accessible

a progressive design solution that blends human-centered 
thinking with technological innovation. The project’s primary 
objectives are:

Materealized 

proposes...

02



The project was born from the urgency 
 when tangible objects—photographs, 

heirlooms, homes—are no longer available. Rather than 
replicating physical artifacts, Materealized interprets 
personal, spoken narratives using AI 
abstract      

The goal is  
 beyond static documentation 

 that adapt to the stories they 
contain.


to preserve 
cultural identities

to generate rich, 
visuals that communicate emotional and 

cultural depth.



memories interactive and alive—
moving toward immersive, 
participatory experiences

 to make

Mission



Leveraging generative AI to capture and transform fragmented 
memories into immersive experiences, reuniting  displaced people  
with their cultural homelands, empowering them to develop 
stronger cultural identities, sense of self, and communities

Thesis 
Project 
Statement

OFFICIAL
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This project was guided by the Double 
Diamond Framework, which structured the 
design process through cycles of divergent and 
convergent thinking. Each phase—Discover, 
Define, Develop, Deliver—allowed for iterative 
exploration, synthesis, prototyping, and 

refinement. The framework supported a 
balance between open-ended research and 
focused problem-solving:

uncovering user needs, narrowing the 
challenge, building and testing immersive tools, 
and ultimately delivering a culturally resonant 
experience. Insights from each phase directly 
informed the next, ensuring the solution 
evolved responsively and remained grounded 
in both user experience and technological 
feasibility.
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TIMEline 2024

03/18 09/16

Literature Review 

Technology Research 

User Research 



09/17 09/25

Personas

Insights 

How might we



 

09/26 11/25

Technology Development 

Prototyping

User Testing

Exhibition Design

Branding

11/26 12/10

Marketing 

Exhibit 

User Testing 

Documentation

 

The development of Materealized followed a 
structured timeline aligned with the Double 
Diamond design framework. From March 2024 
to September 2024, the project focused on 
interdisciplinary research, literature review, 
user research, and early technology 
exploration. The Define phase took place in 
September 2024, synthesizing insights into 
actionable design challenges and user 
personas. 

Between October and November 2024, the 
Develop phase involved prototyping, iterative 
user testing, and technical system refinement. 
Finally, in late November through December 
2024, the project transitioned into the Deliver 
phase, culminating in the public exhibition, 
feedback collection, and documentation of 
future opportunities for scaling and iteration.
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The goal of the Discover phase was to explore 
how displacement and the loss of physical 
artifacts impact cultural identity and memory 
preservation. Displacement—whether driven by 
conflict, disaster, or economic need—disrupts 
more than geography; it fractures the narrative 
continuity of culture. Over 114 million people are 
currently displaced worldwide, with many unable 
to return home or preserve their cultural legacies 
in traditional forms (UNHCR, 2023). This rupture 
is more than physical—it severs the ties between 
people and the environments that help them 
remember who they are.



This thesis begins with a central inquiry: How 
can we preserve and reanimate cultural memory 
when the physical anchors that hold them—
homes, landmarks, and familial rituals—are 
gone? Materealized emerged in response to this 
question, aiming to explore how memory, 
identity, and emerging technologies can 
intersect to preserve heritage among displaced 
and diasporic communities.

exploring 

memory, 

culture &

technology

Literature Review

Interview Insights

Research Goals

Case Studies

Survey Findings



How can we preserve and 
reanimate cultural memory when 
the physical anchors that hold 
them; homes, landmarks, and 
familial rituals are gone?

1
0



At the core of this exploration is the concept of 
domicide—the deliberate or systemic 
destruction of home and place—as introduced 
by University of Victoria, British Columbia, 
Geography Professor’s Porteous and Smith. 
Domicide does not merely demolish buildings; it 
dismantles the physical environments that 
serve as repositories of memory, thereby 
erasing the communal and spatial rhythms that 
support identity formation. The consequences 
are not only psychological but also 
intergenerational: traditions go unspoken, 
names are forgotten, and cultural practices are 
lost to time (Porteous and Smith 98).

Memory as 

Cultural 

Infrastructure

02.01 Literature Review
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To understand the impact of this disconnection, 
I turned to the theory of collective memory. As 
proposed in On Collective Memory, memories 
are shaped and sustained by social groups 
through shared spaces, language, rituals, and 
symbols (Halbwachs 38). When these elements 
are lost or inaccessible, communities must turn 
to new mediums for cultural preservation.

These types of memory include episodic 
memory, which refers to the recollection of 
specific experiences situated in time and space
—such as childhood celebrations, the layout of 
a family home, or the scent of traditional food 
(Queensland Brain Institute). These memories 
are deeply sensory, emotionally charged, and 
intimately linked to cultural identity.

author Generated Image 2
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Jan Assmann, German cultural historian extends 
Halbwachs’ concept by arguing that collective 
memory is essential to the construction of 
cultural identity. It is through cultural memory—
ritualized, performative, and communicative 
practices that communities transmit knowledge 
across generations. When displacement 
interrupts this process, the continuity of cultural 
identity becomes precarious, particularly for 
diasporic youth born outside their ancestral 
homeland (Assmann 130).



Neuroscience confirms the fragility of memory 
under disrupted conditions. As Neuroscientist 
Phelps explains, the amygdala and 
hippocampus—the brain regions responsible for 
emotional memory—encode stronger, more 
durable memories when experiences are rich in 
sensory and emotional detail. Without 
environmental cues and repetition, the brain’s 
ability to recall and transmit these memories 
weakens (Phelps 195).



This insight shaped the foundation of 
Materealized: if immersive technologies can 
evoke these same emotional and sensory 
dynamics, they may be able to reconstruct the 
memory environment itself, helping users 
access forgotten or fragmented aspects of their 
cultural identity.

02.01 Literature Review cont.
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To explore how memory could be reactivated, I 
conducted a review of existing and emerging 
digital tools used for cultural preservation. 3D 
scanning and modeling technologies have been 
used to recreate destroyed heritage sites, most 
notably in UNESCO-led preservation efforts. 
Oral history archives have also evolved through 
digital platforms, ensuring the preservation of 
community narratives across time and 
geography (Marfleet, 2006).

Reclaiming 
Memory 
Through 
Technology

author Generated Image 5
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Building on this technological foundation, I 
explored the use of generative AI to create 
narratives—not simply as static artifacts, but as 
dynamic, participant-driven experiences. 
Khurana’s Future of Human Memory (2020), a 
speculative design study, offered a provocative 
look at AI’s potential to preserve, but also 
manipulate, personal history. The project raised 
important questions about agency, privacy, and 
representational ethics—all of which influenced 
Materealized’s design constraints  (Khurana).



In response, Materealized emphasizes user 
control, narrative ownership, and cultural 
sensitivity, positioning AI not as a substitute for 
human memory, but as a tool for emotional 
restoration and cultural reconnection.

Virtual reality (VR) enables users to re-enter 
spaces they may have never physically visited, 
while augmented reality (AR) allows them to 
superimpose personal memories over present-
day environments—bridging the past with the 
now. These tools reinforce the concepts of 
memory mapping (the connection of specific 
sounds, colors, or textures to place-based 
memories) and memory reconstruction, 
especially for younger generations raised 
outside their ancestral lands.
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Weidi Zhang & Rodger Luo



Recollection is an interactive AI art installation 
that visualizes memory loss in patients with 
dementia. It interprets fragmented speech and 
partial memories into evolving abstract visuals. 
What stood out about this work was its 
emotional intimacy and speculative framing—it 
did not attempt to “correct” memory but instead 
honored its fragility and impermanence (Zhang 
and Luo).



This case reinforced the idea that abstraction, 
not accuracy, may be the most honest way to 
represent memory. It also validated the use of 
generative visuals and real-time interaction as 
powerful storytelling modalities. For 
Materealized, this affirmed the value of 
ephemeral, memory-inspired visual language 
over documentary realism.

Recollection

02.02 Case studies



Weidi Zhang recollection
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Palak Khurana



Khurana’s speculative design project imagines a future 
in which AI systems fully automate memory 
preservation. It highlights ethical concerns around 
authenticity, narrative control, and surveillance, 
questioning whether algorithmically constructed 
memories can still be considered human (Khurana).



Khurana’s project helped frame Materealized’s critical 
stance toward generative AI. Instead of treating 
memory as data to be archived, the system treats it as 
emotionally alive and relational, requiring care, consent, 
and contextual accuracy.



Together, these case studies shaped Materealized’s 
ethical position. They emphasized that memory 
technologies must not only be immersive and 
interactive, but also transparent, inclusive, and 
emotionally respectful.

Future of Human Memory 

(2050)

02.02 Case studies cont.



KHURANA’S Speculative 

mapping of memory
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Grounding the Work 

in Community

While the problem space of displacement is 
global, the development of Materealized was 
intentionally grounded in a specific and deeply 
personal context: the Filipino diaspora. This 
decision was shaped by both strategic 
constraints—limited time, resources, and access
—and a desire to create work that was intimate, 
informed, and community-centered.



Background on the Filipino Diaspora



Migration is primarily driven by economic 
factors, as individuals seek employment abroad 
to support families and escape limited domestic 
opportunities. Filipino workers have historically 
filled labor shortages in healthcare, domestic 
work, seafaring, and hospitality—especially in 
the U.S., Middle East, and Southeast Asia (World 
Bank, 2023).


The Philippines has a long history of labor 
migration, with over 10 million Filipinos living 
abroad, making it one of the world’s largest 
diasporic populations  (International Labour 
Organization). 



This global dispersal has resulted in a generation 
of Filipinos born outside their homeland, many of 
whom experience a fractured cultural identity. 
While stories of “home” are shared across 
generations, the absence of direct immersion 
leads many to describe themselves as “not 
Filipino enough”—negotiating the tension 
between inherited identity and lived experience.



In interviews conducted for this project, these 
themes surfaced repeatedly: language attrition, 
fading traditions, familial loss, and a growing 
urgency to hold onto what remains. In response, 
Materealized was designed not only as a 
memory system but as a cultural intervention—a 
tool to support emotional reconnection, 
intergenerational dialogue, and heritage 
reconstruction.

02.03 User research



To inform the development of Materealized, I 
conducted mixed-method user research with 
members of the Filipino first and second-
generation immigrant community. 



Surveys combined Likert-scale questions, open-
ended prompts, and short-form responses to 
evaluate�
� Emotional associations with memory and 

cultural tradition�
� Perceptions of cultural loss or disconnectio�
� Preferences for storytelling medium�
� Comfort with AI-generated conten�
� Desires for future tools to preserve and share 

cultural traditions



Interviews were narrative-based, allowing 
participants to share family stories, describe 
experiences of cultural tension, and respond to 
early visual prototypes. Recordings were 
transcribed, analyzed, and were later used for 
prototype development. 

45 Online surveys 

5 Interviews

User

Research 

Methods
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Key findings

02.03 User research cont.

75% expressed concern that Filipino culture
—including language, food, and rituals—is 
at risk of disappearing



60% identified oral traditions and family 
stories as the most endangered elements



70% felt disconnected from their heritage, 
especially those born outside the 
Philippines



80% preferred interactive, visual, or sensory 
formats for engaging with cultural material



55% were cautious about AI in storytelling, 
citing fears of misrepresentation



88%, however, were open to using such 
tools if they offered emotional resonance 
and user control



Qualitative Insights

The user interviews provided in-depth perspectives 
on the challenges of cultural disconnection and the 
emotional significance of preserving heritage. Key 
insights include:



Cultural Disconnection: Participants expressed 
feelings of “whitewashing” and a loss of connection 
to Filipino identity due to assimilation pressures and 
generational gaps.



Nostalgia and Traditions: Sensory memories, such 
as childhood experiences in sari-sari stores and 
traditional foods like “kwek kwek,” highlighted the 
deep emotional ties to cultural practices.



Generational Divide: Stories reflected the difficulty 
of bridging generational gaps, with younger 
participants longing for ways to better understand 
and preserve the stories of elders.



These insights reinforced the need for Materealized 
to prioritize emotional resonance, cultural 
authenticity, and the preservation of family stories 
through interactive, visual storytelling.

“I wish there was a way to 
bring my grandmother’s 
stories to life...so that my 
children can truly understand 
our heritage.” - GN
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DEFINE

03



Following the Discover phase, the Define phase 
focused on translating research findings into 
clear user needs, insights, and design 
opportunities. This phase refined the broad 
themes of displacement, memory fragmentation, 
and cultural loss into a focused, actionable 
design challenge. The goal was to ensure that 
the system design for Materealized remained 
user-centered, culturally sensitive, and 
emotionally resonant at every stage.



By synthesizing qualitative and quantitative 
research, developing personas, and mapping 
emotional journeys, I aimed to ground 
Materealized firmly within the lived realities of 
diasporic Filipino communities.

distilling 
research 

into 

insights 

USER INSIGHTS

PERSONA

USER JOURNEY

HOW MIGHT WE



Through an analysis of survey responses, interviews, and 
prototype feedback, several core insights emerged. These 
insights made it clear that Materealized needed to design for 
reconnection—restoring sensory and emotional memory 
environments—rather than simple documentation.

what i learned

from research 

Fragmented Memories, 
Persistent Emotion

While participants’ memories were often incomplete or sensory 
in nature, emotional connections to these fragments remained 
vivid and strong. Memories of smells, songs, or places evoked 
far more powerful emotional reactions than factual 
recollections.

Desire for Active 
Participation

Participants wanted more than passive consumption of 
heritage—they wanted to actively engage with it. Storytelling, 
speaking aloud, and seeing their words transformed into 
something tangible emerged as preferred interaction methods.

Cautious Optimism 
Toward Technology

Although some participants voiced skepticism about AI’s role in 
cultural preservation, the majority were open to new 
technologies as long as they offered emotional authenticity 
and gave users control over how their narratives were 
represented.

28

03.01 user insights



Maria is a first-generation Filipino American who 
grew up in a bilingual household but feels a 
growing disconnect from her cultural roots. Her 
parents immigrated to the U.S. in the 1980s, and 
while she holds pride in her Filipino heritage, she 
struggles to connect with traditions and stories 
that weren’t fully passed down. Maria recently 
had a child and feels a renewed urgency to 
preserve and share her cultural identity with the 
next generation.




“I want my child to grow up proud of our heritage 
and connected to the stories that shaped our 
family.”

who am i

designing for

03.02 persona

Maria Santos, 34

Marketing Specialist

San Diego, California

First-gen Filipino American



MARIA SANTOS
Goals and Motivations



Reconnect with Filipino culture 
to pass it on to her child.



Preserve family stories, 
traditions, and language.



Share personal experiences 
with a broader community.



Create emotional connections 
through accessible tools.

Frustrations and Challenges



A lack of resources for learning 
Filipino languages in an 

engaging way.



Feeling “not Filipino enough” 
due to generational and cultural 

gaps.



Concern over how AI might 
misrepresent or simplify cultural 

nuances.

author Generated Image 6
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How we remember

03.02 User Journey

1 THE TRIGGER




Something prompts the 
person to recall a memory
—this could be a 
conversation, a specific 
smell, a familiar sound, or 
even a fleeting thought.

Maria smells a dish 
her grandmother used 
to cook, sparking 
memories of family 
gatherings during 
childhood.




NOTE: Emotions: Nostalgia, 
longing, curiosity.

2 Mental 
Reconstruction



The user recalls 
fragmented scenes, 
sensations, or emotions, 
assembling a mental image 
of the memory.


Maria remembers her 
grandmother’s hands 
preparing food, the 
laughter of her 
cousins, and the 
faint scent of 
jasmine in the air.



NOTE: Emotions: Mixed—
joy from the memory and 
sadness from its 
incompleteness.

3 Verbalization or 
Reflection



The individual tries to 
articulate the memory, 
often struggling with gaps 
or fading details.



Maria shares her 
memory with her child 
but struggles to 
fully describe the 
intricate details.





NOTE: Challenges: The 
lack of clarity in details can 
lead to frustration or a 
sense of loss.

author Generated Image 7



4 Emotional 
Amplification



The act of recalling 
intensifies emotional 
connection—triggering joy, 
longing, sadness, or 
nostalgia.


Maria feels warmth 
and gratitude for the 
memory but also a 
bittersweet sense of 
longing for her 
grandmother.




NOTE: Outcome: The 
emotional depth makes the 
memory feel vivid yet 
incomplete

5 Sensory 

Imagination



Unclear elements are filled 
in with imagination, 
blending fact and feeling 
into a fuller mental picture.



Maria imagines the 
exact shade of her 
grandmother’s dress 
and the sound of her 
voice, even if these 
details aren’t fully 
clear in her memory.

6 Connection or 
Disconnection



The individual feels closer 
to the root of their memory
—or painfully aware of 
cultural gaps and forgotten 
details.


Maria feels a 
stronger connection 
to her past but 
wishes there were 
photos or recordings 
to help preserve the 
details for her 
child.


NOTE: Outcome: A mix of 
appreciation for the 
memory and a sense of 
loss for its fragility.

STAGE 7 Preservation 
or Forgetting



The individual takes action 
to record or share the 
memory—or risks letting it 
slip into forgetfulness.



Maria writes down her 
memory in a journal 
to preserve it, 
ensuring her child 
can revisit it later.





NOTE: Outcome: The 
memory’s longevity 
depends on how it’s 
preserved or shared.



Distilling user needs and emotional drivers into a 
focused question led to the formulation of the core 
design challenge:



How might we use generative AI and immersive media 
to help Filipino immigrants and their descendants 
reconnect with fragmented cultural memories 
through participatory, emotionally resonant 
storytelling experiences?



This framing acknowledged both the emotional 
delicacy of memory work and the ethical complexity of 
using AI to represent personal and cultural narratives.

Defining the challenge

03.04 How might we



How might we use 

generative AI and 

immersive media to


help Filipino


immigrants and their 

descendants reconnect


with fragmented


cultural memories


through participatory 

emotionally resonant 

storytelling experiences?

author Generated Image 8
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DEVELOP

04



The Develop phase focused on translating 
insights from the Define phase into a functional  
solution through technical and iterative 
development. This stage involved creating 
prototypes to test the feasibility of generative AI 
in visualizing memories while ensuring emotional 
and cultural authenticity.



Through iterative user testing, each prototype 
was refined to address technical challenges, 
enhance user engagement, and improve the 
accuracy of visual representations. This phase 
emphasized the integration of advanced AI tools, 
such as image generation models and voice-to-
text systems, and leveraged feedback loops to 
ensure the solution met the needs of Filipino 
Americans seeking to preserve and reconnect 
with their heritage. 



The Develop phase highlighted the importance 
of aligning technical innovation with user-
centered design to create an immersive and 
accessible storytelling platform.

ideating 

prototyping

iterating

Ideation

Technology Research

Prototype Development

User Testing

System Refinement

Exhibit design



The idea
The concept behind Materealized is 
straightforward: users record personal 
stories, which are then transformed into 
immersive visualizations using AI tools. 



The goal is to foster cultural connection, 
preserve traditions, and ensure the 
authentic representation of memories.

04.01 ideation

author Generated Image 9
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Concept image: An interactive exhibit where the 

screen becomes a portal into a Filipino immigrant’s 

memory of their rural home—blending voice, 

visuals, and atmosphere to reconstruct a 

fragmented but emotionally rich recollection.



To develop a system capable of transforming voice 
inputs into coherent, real-time visualizations, I engaged 
in an extensive process of technical diagramming and 
workflow testing. 



The challenge centered around how to capture non-
linear, personal storytelling—often rich in emotion but 
fragmented in structure—and translate it into prompts 
that generative AI models could meaningfully interpret. 
To address this, I tested a range of image and video 
generation tools, including MidJourney for still imagery 
and RunwayML for dynamic video generation. In 
parallel, I utilized GPT models to parse raw transcripts 
of narratives, deriving contextual meaning and 
identifying key sensory and emotional elements from 
unscripted storytelling. 

diagramming the 
technical process

04.02 technology research

Diagram: A system map showing the different AI technologies and the 

connection flows between them, illustrating how they work together to 

create a fully autonomous voice-to-image AI system.



4
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04.02 technology research cont.

01
AUDIO 
TRANSCRIPTION

Use a python script 
to run the whisper 
model to generate 
transcriptions of the 
audio file. 

02
PROCESS 
TEXT

Use chatGPT to 
process the text and 
generate prompts

03
GENERATE 

IMAGE
Use prompts to 
generate images in 
Midjourney.  

04
STYLIZE

IMAGE
Use editing software  
to stylize the image 
and cut the audio to 
match the visuals. 

05
EXPORT 
EXPERIENCE 

Video files are 
exported. 

SIMPLIFIED 

TECH DIAGRAM

During testing, I was able to simplify the technical complexity required to 
create an initial prototype into a streamlined process: the user tells a story 
out loud, which is transcribed into text. A GPT model then refines the text 
and generates detailed prompts. These prompts are used to create images 
through AI tools, which are then stitched together into a video using editing 
software like Premiere Pro.



first prototype
To create the first prototype, I used 
narrative clips from participant 
interviews recounting memories of 
the Philippines. These audio 
recordings were processed through 
the early workflow: transcribed, 
parsed into prompts, and visualized 
through generative AI tools. 

04.03 Prototype Development
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Interview Documentation: Pre-recorded stories 

from user research interviews were used as the 

initial inputs to test the capabilities of the first 

prototype.




developing the 
visual language 

The visual language for the first 
prototype was inspired by a 
photogrammetry-like aesthetic, 
aiming to evoke the fragmented, 
ethereal nature of memory. Rather 
than using fully rendered 
environments, I generated AI-based 
images that resembled imperfect 
reconstructions—similar to how 
photogrammetry captures spatial 
surfaces with texture but also with 
gaps and irregularities. 

author Generated Image 10

Generative prompts created with ChatGPT were 

fed into MidJourney, then imported into 

TouchDesigner and mapped as particles to create 

3D interactive visuals.




To give these visuals a sense of 
depth and movement, I mapped the 
generated images onto 3D planes 
using depth maps, creating layers of 
spatial information. 



Within TouchDesigner, these layers 
were then translated into particle 
systems, allowing the images to 
dynamically drift, shift, and breathe 
in response to user interaction. This 
technique created an environment 
that felt both tangible and 
ephemeral, reinforcing the 
conceptual framing of memory not 
as static snapshots, but as living, 
evolving landscapes.

author Generated Image 11
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For early user testing, participants wore VR headsets and 
experienced a curated sequence of memory visualizations 
generated from participant interviews. 8 participants listened to 
original voice recordings while observing the evolving point-cloud 
environments inspired by the stories. 



The goal was to assess whether the combination of sound and 
dynamic visuals could evoke emotional resonance and a sense of 
cultural connection.



Feedback indicated that participants felt a strong emotional 
engagement, often describing the experience as “nostalgic,” 
“immersive,” and “hauntingly beautiful.” Many noted that the 
abstract visual style allowed them to project their own emotions 
onto the scenes, making the memories feel personal rather than 
distant. 



This initial testing validated the potential of Materealized to 
reanimate fragmented memories in a way that was both 
participatory and emotionally powerful.

Testing the first prototype

04.04 User testing



75%
Reported moderate to 
strong cultural connection

75%
Participants found themes 
in the story as relatable. 
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Testing Documentation: The first 

prototype was tested using VR 

headsets, allowing participants to 

experience people’s memories coming to 

life in an immersive environment.




Encouraged by the promising results of the first round 
of user testing, I expanded the system to allow for 
real-time image generation directly from voice input, 
fully integrated within TouchDesigner. 



Using a Whisper model, live audio was transcribed 
into text, which was then fed into Stream Diffusion 
using the XL Turbo model to generate responsive 
images based on the user’s spoken memories. 



A secondary model produced real-time depth maps, 
giving the visuals spatial structure. Within 
TouchDesigner, these outputs were stylized to match 
the original photogrammetry-inspired aesthetic 
developed in the early prototype—maintaining 
continuity in visual language while enabling fully 
dynamic, user-driven memory environments. 



This evolution allowed the system to move from a pre-
processed experience to a truly living, real-time 
storytelling platform.

Developing a 
realtime voice 
to image system 

04.05 system refinement



challenges with 
newest prototype

Early user testing revealed three key 
challenges. First, users often struggled to 
recall and articulate memories in a way 
the system could accurately interpret. 
Second, technological limitations 
sometimes led to misrepresented or 
incoherent visuals, highlighting the need 
for more refined real-time generation 
without relying on manual curation. Third, 
the system needed better support for 
observers—those who preferred to 
experience rather than share stories—by 
offering a meaningful and engaging 
passive interaction mode.
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Testing Documentation: User testing 

with the real-time voice-to-image 

system involved gathering feedback 

through informal interviews and 

observations as participants interacted 

with the system.




To overcome the challenges identified during early user 
testing, I designed an interactive exhibit that enhances 
accessibility, emotional engagement, and inclusivity for all 
participants.



To support storytelling, I introduced “memory slips”—
sensory prompts that helped guide users in recalling vivid 
details about sights, sounds, and emotions, making it easier 
to articulate meaningful stories. 



Instead of focusing on literal visual accuracy, I refined the 
system’s visual output by leaning into abstract 
representations; images were rendered in black and white to 
encourage personal interpretation and to avoid 
misrepresenting or distorting users’ narratives. This shift 
allowed memories to retain their emotional integrity without 
imposing rigid, potentially inaccurate visuals. 



To engage observers who preferred to experience rather 
than share stories, the exhibit incorporated dynamic, 
responsive visuals tied to existing narratives, with body 
tracking and audio-reactive elements that allowed non-
storytellers to interact with the environment. 



Together, these adjustments bridged the gap between 
storytelling, memory representation, and audience 
participation—making the experience immersive, flexible, 
and accessible to all users.

Overcoming 
challenges

04.05 system refinement cont.



Memory slips were designed as unique prompts, each encouraging guests to recount a specific moment 
from their life and guiding them to structure their story with vivid sensory and emotional details. This 
approach helped the system generate more coherent and emotionally aligned images, ensuring that the 
visualizations more accurately reflected the essence of their memories.

memory slips
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Materealized Rendered 3D models: A layer of 
stylization in TouchDesigner softened image 
details, allowing the person recalling the memory 
to fill in the gaps with their own imagination.

open to 

interpretation

I wanted to evolve the visual 
language further By abstracting 
the visuals, the system avoided the 
risk of misrepresenting users’ 
memories, allowing for open 
interpretation and preserving the 
emotional truth of each story 
without imposing a literal or 
potentially inaccurate depiction. 
The following images are stills from 
images generative images based 
on users stories.

04.05 system refinement cont.



“I remember by 
5th birthday...”

5
2

input output



“sitting inside 
an old indian 
temple with my 
aunt...”

input output



“the tips of the 
pine trees added 
green to the 
scene...”

input output

5
4



To design the exhibit, I focused on creating 
an environment that would enhance 
emotional immersion and support intuitive 
interaction with the evolving memory visuals. 
I developed a spatial layout that included 
designated storytelling zones, responsive 
projection areas, and pathways for both 
active participants and observers. 



To better understand how users would move 
through and experience the space, I 
rendered the exhibit in Unreal Engine, 
building a virtual simulation of the gallery 
environment. This allowed me to test 
elements like lighting, scale, sightlines, and 
flow before physical installation. By 
navigating the exhibit in real time, I was able 
to refine the positioning of key components
—such as microphones, projectors, and 
interactive visuals—to optimize engagement 
and ensure that both storytellers and 
observers could connect meaningfully with 
the unfolding memory narratives.

designing an 
exhibit

04.06 exhibit design

Unreal Engine 3D Render: Visualization of the 
exhibit design, showing spatial layout, interactive 
zones, and projection areas used to simulate the 
user experience.
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Exhibit Floor Plan and User Flow: Spatial layout of the 
Materealized installation at the Duncan Anderson Gallery, 
illustrating key interaction points, audience pathways, and 
the sequencing of the immersive experience.





DELIVER

05



The Deliver phase marked the culmination of 
Materealized as a public-facing, immersive 
experience. This phase focused on transforming 
the system from a working prototype into an 
exhibit-ready installation—complete with 
narrative prompts, interactive visuals, and 
embodied storytelling interactions. It also 
included structured feedback collection to assess 
the emotional, cultural, and experiential impact of 
the system, and reflections on how the project 
could scale beyond the initial exhibit context.

materealized

for public

exhibition

Exhibition

Feedback

Publicity & Outreach

Future Development



Materealized was exhibited in a gallery setting, where 
guests were invited to share a memory using a 
microphone and memory slip, and then witness their 
story reimagined as a dynamic, point cloud-based 
visual environment. The space was arranged to 
support both active storytelling and passive 
observation. Projectors displayed the evolving visuals 
across a large wall. 

The Exhibit Experience
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05.01 Exhibition



Guests first encountered three pedestals 
displaying memory slips, along with a didactic 
introducing Materealized. This initial station 
provided instructions on what to expect and set 
the tone for the experience.

duncan anderson gallery exhibit 12/02/24



Guest’s first encountered three pedestals with memory 
slips, as well as a didactic on Materealized. This first 
station provided instructions on what they can expect 
and set the tone for the expereince. 

duncan anderson gallery exhibit 12/02/24
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Each memory slip featured a unique prompt, with 
short instructions to help guide guests in 
recounting their memories with vivid detail.




Guests took their memory slips to the microphone 
positioned at the center of the gallery, where they 
shared their stories aloud.


duncan anderson gallery exhibit 12/02/24



As they spoke, their stories came 

to life on the projection screen.
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duncan anderson gallery exhibit 12/02/24

Visitors watched each other’s stories come to life, 
as the storyteller became a performer—shaping 
what appeared on screen through the power of 
their words.
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Even without new input, the system continues to 

evolve dynamically—generating shifting visual 

interpretations of the last story and creating 

multiple versions over time.




improvement 
opportunities

Key Takeaways:



Participants valued the emotional 
and reflective nature of the 
experience.



Many expressed that the abstraction 
helped preserve the subjective truth 
of memory without imposing a 
“correct” visual.



Some participants requested 
smoother transitions and clearer 
visual-intent mapping, particularly 
during fast or layered visual changes.

05.02 feedback



Survey Highlight�
� Memory Slips: Avg. rating 4.5/5 — most participants 

found them helpful in guiding story recal�
� Ease of Story Selection: Avg. 4.3/5 — prompts made it 

easier to decide what to shar�
� Clarity of Visuals: Avg. 3.5/5 — some visuals lacked 

clarity, but abstraction was often praise�
� Emotional Interpretation: Avg. 4.3/5 — abstract visuals 

encouraged personal interpretatio�
� Memory Reflection Impact: Avg. 4/5 — visuals 

enhanced participants’ engagement with their memory
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promotional 
materials

To effectively promote the Materealized exhibition, I 
focused my marketing efforts on reaching key audiences, 
including committee members, fellow design students, and 
members of the broader academic and creative 
community. To streamline RSVPs and centralize event 
information, I created a personalized Partiful event link. 
This digital tool simplified event management, enabled 
real-time tracking of engagement, and helped ensure a 
strong turnout from my target audience.



In preparation for the exhibition, I also developed a suite of 
promotional materials, including poster assets, press 
release documents, and pitch decks. These materials were 
designed to communicate the project’s purpose, emotional 
resonance, and technological innovation in a clear and 
compelling way. By combining digital outreach with 
professionally crafted promotional assets, I successfully 
connected the exhibition with its intended audience, 
fostering meaningful engagement and collecting valuable 
feedback for future iterations of the project.

03.02 publicity & outreach
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materealized’s impact
The exhibit successfully demonstrated the system’s 
ability to translate personal narratives into emotionally 
resonant, immersive experiences. It validated the 
potential of Materealized as a tool not only for personal 
reflection but for cultural education, empathy building, 
and intergenerational storytelling. By engaging users in 
the act of remembering through voice and witnessing 
those memories come alive in real time, Materealized 
offered a new model of digital cultural preservation that 
was active, embodied, and participatory.



What’s next

The promising results from the exhibit point to 
multiple opportunities for future development�

� Scalability: The system could be adapted for 
mobile or web-based interaction to reach 
broader audiences beyond gallery spaces�

� Multilingual Support: Integrating translation 
and regional language models would allow a 
wider range of diasporic communities to 
participate in their native languages�

� Deeper Community Collaboration: Partnering 
with cultural institutions, archives, and 
community centers could enable more 
intentional curation of memories and visuals�

� Expanded Visual Diversity: Training image 
models on more culturally specific datasets 
could improve the accuracy and richness of 
future visualizations.

05.04 future development
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I would like to express my deepest gratitude to my committee 
members—Michael LaForte, Alison Kowalski, Judith Samper, and 
Kyle Macabasco—for their invaluable guidance and unwavering 
support throughout this project. Your expertise, feedback, and 
encouragement were instrumental in shaping Materealized into 
what it has become.



A heartfelt thank you also goes to my incredible cohort members, 
whose collaboration and feedback were essential in bringing this 
vision to life. Special thanks to Shrey Patel for providing critical 
documentation support throughout the process, and to Divya 
Dhavala and Sofia Ingegno for their assistance during the 
outreach and promotional phases. I am deeply grateful to 
Maryann Dimatulac and Gileen Navarro for generously sharing 
their stories and insights during the prototyping stage, helping 
ground the project in lived experience.



This project would not have been possible without each of you. 
Your contributions, support, and belief in this work made 
Materealized a reality.
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AI Image 1: 
A wide of bombs destroying villages and 

homes with people running , more smoke and bombs 

materializing as a Y2k
futuristic point cloud aesthetic in 

the style of an illustration against a white background --

ar 7:4



AI Image 2: A wide shot of 100 refugees standing 

looking straight at the camera materializing as a Y2k 

futuristic point cloud aesthetic in the style of an 

illustration against a white background



AI Image 3: Memories materealizing as someone sees 

food, photographs, and listening to music materializing 

as a Y2k futuristic point cloud aesthetic in the style of 

an illustration against a white background




AI Image 4: People's memories being triggered of india 

from eating food and photographs of their homeland 

materializing as a Y2k futuristic point cloud aesthetic in 

the style of an illustration against a white background



AI Image 5: Immersive technology used to bridge the 

gap between memories and fostering cultural 

preservation and a sense of belonging materializing as a 

Y2k futuristic point cloud aesthetic in the style of an 

illustration against a white background



Human X Midjourney X ChatGPT

AI Image 6: A full body of a 34 old Filipina 

communication strategist women hyper realistic against 

a white background



AI Image 7: Variation Image 6, women walking to the 

side



AI Image 8: Variation Image 6, women extreme closeup, 

profile side of women’s face



AI Image 9: A low fidelity pen ink sketch of a large public 

fun and playful interactive screen, with a person 

standing in front of it and they see a memory of their 

grandparents farming in the phillipines materializing as 

point clouds.



AI Image 10: A wide shot of a granddaughter and a 

grandparent looking at photos smiling in Philippines in 

the style of a three dimensional rendering of the scene 

materializing in a point cloud style against a black 

background void



AI Image 11: close up of people laughing and smiling 

buying things from the sari sari store in the Philippines 

in the style of a three dimensional rendering of the 

scene materializing in a point cloud style against a black 

background void
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import gc import os  import torch from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import retrieve_latents from polygraphy import cuda  from ...pipeline import StreamDiffusion from .builder 
import EngineBuilder, create_onnx_path from .engine import AutoencoderKLEngine, UNet2DConditionModelEngine from .models import VAE, UNet, VAEEncoder   class TorchVAEEncoder(torch.nn.Module):     def __init__(self, 
vae):         super().__init__()         self.vae = vae      def forward(self, x):         return retrieve_latents(self.vae.encode(x), torch.Generator())   def accelerate_with_tensorrt(     stream: StreamDiffusion,     
engine_dir: str,     max_batch_size: int = 2,     use_cuda_graph: bool = False,     engine_build_options: dict = {}, ):     text_encoder = stream.text_encoder     unet = stream.unet     vae = stream.vae      del 
stream.unet, stream.vae, stream.pipe.unet, stream.pipe.vae      vae_config = vae.config     vae_dtype = vae.dtype      unet.to(torch.device("cpu"))     vae.to(torch.device("cpu"))      gc.collect()     
torch.cuda.empty_cache()      onnx_dir = os.path.join(engine_dir, "onnx")     os.makedirs(onnx_dir, exist_ok=True)      unet_engine_path = f"{engine_dir}/unet.engine"     vae_encoder_engine_path = f"{engine_dir}/
vae_encoder.engine"     vae_decoder_engine_path = f"{engine_dir}/vae_decoder.engine"      unet_model = UNet(         fp16=True,         device=stream.device,         max_batch_size=max_batch_size,         
embedding_dim=text_encoder.config.hidden_size,         unet_dim=unet.config.in_channels,     )     vae_decoder_model = VAE(device=stream.device, max_batch_size=max_batch_size)     vae_encoder_model = 
VAEEncoder(device=stream.device, max_batch_size=max_batch_size)      if not os.path.exists(unet_engine_path):         unet = unet.to(stream.device, dtype=torch.float16)         builder = EngineBuilder(unet_model, unet, 
device=stream.device)         del unet         builder.build(             create_onnx_path("unet", onnx_dir, opt=False),             create_onnx_path("unet", onnx_dir, opt=True),             unet_engine_path,             
**engine_build_options,         )     else:         del unet      if not os.path.exists(vae_decoder_engine_path):         vae.forward = vae.decode         vae = vae.to(stream.device)         builder = 
EngineBuilder(vae_decoder_model, vae, device=stream.device)         builder.build(             create_onnx_path("vae_decoder", onnx_dir, opt=False),             create_onnx_path("vae_decoder", onnx_dir, opt=True),             
vae_decoder_engine_path,             **engine_build_options,         )      if not os.path.exists(vae_encoder_engine_path):         vae_encoder = TorchVAEEncoder(vae).to(stream.device)         builder = 
EngineBuilder(vae_encoder_model, vae_encoder, device=stream.device)         builder.build(             create_onnx_path("vae_encoder", onnx_dir, opt=False),             create_onnx_path("vae_encoder", onnx_dir, 
opt=True),             vae_encoder_engine_path,             **engine_build_options,         )         del vae_encoder         gc.collect()         torch.cuda.empty_cache()      del vae      cuda_steram = cuda.Stream()      
stream.unet = UNet2DConditionModelEngine(unet_engine_path, cuda_steram, use_cuda_graph=use_cuda_graph)     stream.vae = AutoencoderKLEngine(         vae_encoder_engine_path,         vae_decoder_engine_path,         
cuda_steram,         stream.pipe.vae_scale_factor,         use_cuda_graph=use_cuda_graph,     )     setattr(stream.vae, "config", vae_config)     setattr(stream.vae, "dtype", vae_dtype)      gc.collect()     
torch.cuda.empty_cache()       return stream

‎src/streamdiffusion/acceleration/tensorrt/builder.pyCopy file name to clipboard+94Original file line numberDiff line numberDiff line change @@ -0,0 +1,94 @@ import gc import os from typing import *  import torch  from 
.models import BaseModel from .utilities import (     build_engine,     export_onnx,     optimize_onnx, )   def create_onnx_path(name, onnx_dir, opt=True):     return os.path.join(onnx_dir, name + (".opt" if opt else 
"") + ".onnx")   class EngineBuilder:     def __init__(         self,         model: BaseModel,         network: Any,         device=torch.device("cuda"),     ):         self.device = device          self.model = model         
self.network = network      def build(         self,         onnx_path: str,         onnx_opt_path: str,         engine_path: str,         opt_image_height: int = 512,         opt_image_width: int = 512,         
opt_batch_size: int = 1,         min_image_resolution: int = 256,         max_image_resolution: int = 1024,         build_enable_refit: bool = False,         build_static_batch: bool = False,         
build_dynamic_shape: bool = False,         build_all_tactics: bool = False,         onnx_opset: int = 17,         force_engine_build: bool = False,         force_onnx_export: bool = False,         force_onnx_optimize: 
bool = False,     ):         if not force_onnx_export and os.path.exists(onnx_path):             print(f"Found cached model: {onnx_path}")         else:             print(f"Exporting model: {onnx_path}")             
export_onnx(                 self.network,                 onnx_path=onnx_path,                 model_data=self.model,                 opt_image_height=opt_image_height,                 opt_image_width=opt_image_width,                 
opt_batch_size=opt_batch_size,                 onnx_opset=onnx_opset,             )             del self.network             gc.collect()             torch.cuda.empty_cache()         if not force_onnx_optimize and 
os.path.exists(onnx_opt_path):             print(f"Found cached model: {onnx_opt_path}")         else:             print(f"Generating optimizing model: {onnx_opt_path}")             optimize_onnx(                 
onnx_path=onnx_path,                 onnx_opt_path=onnx_opt_path,                 model_data=self.model,             )         self.model.min_latent_shape = min_image_resolution // 8         self.model.max_latent_shape 
= max_image_resolution // 8         if not force_engine_build and os.path.exists(engine_path):             print(f"Found cached engine: {engine_path}")         else:             build_engine(                 
engine_path=engine_path,                 onnx_opt_path=onnx_opt_path,                 model_data=self.model,                 opt_image_height=opt_image_height,                 opt_image_width=opt_image_width,                 
opt_batch_size=opt_batch_size,                 build_static_batch=build_static_batch,                 build_dynamic_shape=build_dynamic_shape,                 build_all_tactics=build_all_tactics,                 
build_enable_refit=build_enable_refit,             )          gc.collect()         torch.cuda.empty_cache()

‎src/streamdiffusion/acceleration/tensorrt/engine.pyCopy file name to clipboard+123Original file line numberDiff line numberDiff line change @@ -0,0 +1,123 @@ from typing import *  import torch from 
diffusers.models.autoencoder_tiny import AutoencoderTinyOutput from diffusers.models.unet_2d_condition import UNet2DConditionOutput from diffusers.models.vae import DecoderOutput from polygraphy import cuda  from 
.utilities import Engine   class UNet2DConditionModelEngine:     def __init__(self, filepath: str, stream: cuda.Stream, use_cuda_graph: bool = False):         self.engine = Engine(filepath)         self.stream = stream         
self.use_cuda_graph = use_cuda_graph          self.engine.load()         self.engine.activate()      def __call__(         self,         latent_model_input: torch.Tensor,         timestep: torch.Tensor,         
encoder_hidden_states: torch.Tensor,         **kwargs,     ) -> Any:         if timestep.dtype != torch.float32:             timestep = timestep.float()          self.engine.allocate_buffers(             shape_dict={                 
"sample": latent_model_input.shape,                 "timestep": timestep.shape,                 "encoder_hidden_states": encoder_hidden_states.shape,                 "latent": latent_model_input.shape,             },             
device=latent_model_input.device,         )          noise_pred = self.engine.infer(             {                 "sample": latent_model_input,                 "timestep": timestep,                 
"encoder_hidden_states": encoder_hidden_states,             },             self.stream,             use_cuda_graph=self.use_cuda_graph,         )["latent"]         return UNet2DConditionOutput(sample=noise_pred)      
def to(self, *args, **kwargs):         pass      def forward(self, *args, **kwargs):         pass   class AutoencoderKLEngine:     def __init__(         self,         encoder_path: str,         decoder_path: str,         
stream: cuda.Stream,         scaling_factor: int,         use_cuda_graph: bool = False,     ):         self.encoder = Engine(encoder_path)         self.decoder = Engine(decoder_path)         self.stream = stream         
self.vae_scale_factor = scaling_factor         self.use_cuda_graph = use_cuda_graph          self.encoder.load()         self.decoder.load()         self.encoder.activate()         self.decoder.activate()      def 
encode(self, images: torch.Tensor, **kwargs):         self.encoder.allocate_buffers(             shape_dict={                 "images": images.shape,                 "latent": (                     images.shape[0],                     
4,                     images.shape[2] // self.vae_scale_factor,                     images.shape[3] // self.vae_scale_factor,                 ),             },             device=images.device,         )         
latents = self.encoder.infer(             {"images": images},             self.stream,             use_cuda_graph=self.use_cuda_graph,         )["latent"]         return AutoencoderTinyOutput(latents=latents)      def 
decode(self, latent: torch.Tensor, **kwargs):         self.decoder.allocate_buffers(             shape_dict={                 "latent": latent.shape,                 "images": (                     latent.shape[0],                     
3,                     latent.shape[2] * self.vae_scale_factor,                     latent.shape[3] * self.vae_scale_factor,                 ),             },             device=latent.device,         )         images 
= self.decoder.infer(             {"latent": latent},             self.stream,             use_cuda_graph=self.use_cuda_graph,         )["images"]         return DecoderOutput(sample=images)      def to(self, *args, 
**kwargs):         pass      def forward(self, *args, **kwargs):         pass

‎src/streamdiffusion/acceleration/tensorrt/models.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/acceleration/tensorrt/models.py+428 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/acceleration/tensorrt/utilities.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/acceleration/tensorrt/utilities.py+441 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/image_utils.pyCopy file name to clipboard+89Original file line numberDiff line numberDiff line change @@ -0,0 +1,89 @@ from typing import *  import numpy as np import PIL.Image import torch import 
torchvision   def denormalize(images):     """     Denormalize an image array to [0,1].     """     return (images / 2 + 0.5).clamp(0, 1)   def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:     """     Convert 
a PyTorch tensor to a NumPy image.     """     images = images.cpu().permute(0, 2, 3, 1).float().numpy()     return images   def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image:     """     Convert a numpy image or 
a batch of images to a PIL image.     """     if images.ndim == 3:         images = images[None, ...]     images = (images * 255).round().astype("uint8")     if images.shape[-1] == 1:         # special case for 
grayscale (single channel) images         pil_images = [PIL.Image.fromarray(image.squeeze(), mode="L") for image in images]     else:         pil_images = [PIL.Image.fromarray(image) for image in images]      return 
pil_images   def postprocess_image(     image: torch.FloatTensor,     output_type: str = "pil",     do_denormalize: Optional[List[bool]] = None, ):     # TODO: if文消してもいいかも。     if not isinstance(image, 
torch.Tensor):         raise ValueError(             f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"         )      if output_type == "latent":         return image      
# TODO: classにして、initで前処理しておいてもいいかも。     do_normalize_flg = True     if do_denormalize is None:         do_denormalize = [do_normalize_flg] * image.shape[0]      image = torch.stack([denormalize(image[i]) 
if do_denormalize[i] else image[i] for i in range(image.shape[0])])      if output_type == "pt":         return image      image = pt_to_numpy(image)      if output_type == "np":         return image      if 
output_type == "pil":         return numpy_to_pil(image)   def process_image(image_pil: PIL.Image.Image, range: Tuple[int, int] = (-1, 1)):     image = torchvision.transforms.ToTensor()(image_pil)     r_min, r_max = 
range[0], range[1]     image = image * (r_max - r_min) + r_min     return image[None, ...], image_pil   def pil2tensor(image_pil: PIL.Image.Image) -> torch.Tensor:     height = image_pil.height     width = 
image_pil.width     imgs = []     img, _ = process_image(image_pil)     imgs.append(img)     imgs = torch.vstack(imgs)     images = torch.nn.functional.interpolate(imgs, size=(height, width), mode="bilinear")     
image_tensors = images.to(torch.float16)     return image_tensors

‎src/streamdiffusion/pip_utils.pyCopy file name to clipboard+52Original file line numberDiff line numberDiff line change @@ -0,0 +1,52 @@ import importlib import importlib.util import os import subprocess import sys 
from typing import *  from packaging.version import Version   python = sys.executable index_url = os.environ.get("INDEX_URL", "")   def version(package: str) -> Optional[Version]:     try:         return 
Version(importlib.import_module(package).__version__)     except ModuleNotFoundError:         return None   def is_installed(package: str) -> bool:     try:         spec = importlib.util.find_spec(package)     except 
ModuleNotFoundError:         return False      return spec is not None   def run_python(command: str, env: Dict[str, str] = None) -> str:     run_kwargs = {         "args": f"{python} {command}",         "shell": True,         
"env": os.environ if env is None else env,         "encoding": "utf8",         "errors": "ignore",     }      print(run_kwargs["args"])      result = subprocess.run(**run_kwargs)      if result.returncode != 0:         
print(f"Error running command: {command}", file=sys.stderr)         raise RuntimeError(f"Error running command: {command}")      return result.stdout or ""   def run_pip(command: str, env: Dict[str, str] = None) -> 
str:     return run_python(f"-m pip {command}", env)

‎src/streamdiffusion/pipeline.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/pipeline.py+89-287 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/tools/install-tensorrt.pyCopy file name to clipboard+44Original file line numberDiff line numberDiff line change @@ -0,0 +1,44 @@ from typing import *  import fire from packaging.version import 
Version  from ..pip_utils import is_installed, run_pip, version   def get_cuda_version_from_torch() -> Optional[Literal["11", "12"]]:     try:         import torch     except ImportError:         return None      
return torch.version.cuda.split(".")[0]   def install(cu: Optional[Literal["11", "12"]] = get_cuda_version_from_torch()):     if cu is None or cu not in ["11", "12"]:         print("Could not detect CUDA version. 
Please specify manually.")         return     print("Installing TensorRT requirements...")      if is_installed("tensorrt"):         if version("tensorrt") < Version("9.0.0"):             run_pip("uninstall -y 
tensorrt")      cudnn_name = f"nvidia-cudnn-cu{cu}==8.9.4.25"      if not is_installed("tensorrt"):         run_pip(f"install {cudnn_name} --no-cache-dir")         run_pip("install --pre --extra-index-url https://
pypi.nvidia.com tensorrt==9.0.1.post11.dev4 --no-cache-dir")      if not is_installed("polygraphy"):         run_pip("install polygraphy==0.47.1 --extra-index-url https://pypi.ngc.nvidia.com")     if not 
is_installed("onnx_graphsurgeon"):         run_pip("install protobuf==3.20.2")         run_pip("install onnx-graphsurgeon==0.3.26 --extra-index-url https://pypi.ngc.nvidia.com")      pass   if __name__ == "__main__":     
fire.Fire(install)

What memories do you cherish
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