
import gc import os import torch from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import retrieve_latents from polygraphy import cuda from ...pipeline import StreamDiffusion from .builder
import EngineBuilder, create_onnx_path from .engine import AutoencoderKLEngine, UNet2DConditionModelEngine from .models import VAE, UNet, VAEEncoder class TorchVAEEncoder(torch.nn.Module): def __init__(self,
vae): super().__init__() self.vae = vae def forward(self, x): return retrieve_latents(self.vae.encode(x), torch.Generator()) def accelerate_with_tensorrt(stream: StreamDiffusion,
engine_dir: str, max_batch_size: int = 2, use_cuda_graph: bool = False, engine_build_options: dict = {},): text_encoder = stream.text_encoder unet = stream.unet vae = stream.vae del
stream.unet, stream.vae, stream.pipe.unet, stream.pipe.vae vae_config = vae.config vae_dtype = vae.dtype unet.to(torch.device("cpu")) vae.to(torch.device("cpu")) gc.collect()
torch.cuda.empty_cache() onnx_dir = os.path.join(engine_dir, "onnx") os.makedirs(onnx_dir, exist_ok=True) unet_engine_path = f"{engine_dir}/unet.engine" vae_encoder_engine_path = f"{engine_dir}/
vae_encoder.engine" vae_decoder_engine_path = f"{engine_dir}/vae_decoder.engine" unet_model = UNet(fp16=True, device=stream.device, max_batch_size=max_batch_size,
embedding_dim=text_encoder.config.hidden_size, unet_dim=unet.config.in_channels,) vae_decoder_model = VAE(device=stream.device, max_batch_size=max_batch_size) vae_encoder_model =
VAEEncoder(device=stream.device, max_batch_size=max_batch_size) if not os.path.exists(unet_engine_path): unet = unet.to(stream.device, dtype=torch.float16) builder = EngineBuilder(unet_model, unet,
device=stream.device) del unet builder.build(create_onnx_path("unet", onnx_dir, opt=False), create_onnx_path("unet", onnx_dir, opt=True), unet_engine_path,
**engine_build_options,) else: del unet if not os.path.exists(vae_decoder_engine_path): vae.forward = vae.decode vae = vae.to(stream.device) builder =
EngineBuilder(vae_decoder_model, vae, device=stream.device) builder.build(create_onnx_path("vae_decoder", onnx_dir, opt=False), create_onnx_path("vae_decoder", onnx_dir, opt=True),
vae_decoder_engine_path, **engine_build_options,) if not os.path.exists(vae_encoder_engine_path): vae_encoder = TorchVAEEncoder(vae).to(stream.device) builder =
EngineBuilder(vae_encoder_model, vae_encoder, device=stream.device) builder.build(create_onnx_path("vae_encoder", onnx_dir, opt=False), create_onnx_path("vae_encoder", onnx_dir,
opt=True), vae_encoder_engine_path, **engine_build_options,) del vae_encoder gc.collect() torch.cuda.empty_cache() del vae cuda_steram = cuda.Stream()
stream.unet = UNet2DConditionModelEngine(unet_engine_path, cuda_steram, use_cuda_graph=use_cuda_graph) stream.vae =
AutoencoderKLEngine(vae_encoder_engine_path, vae_decoder_engine_path, cuda_steram, stream.pipe.vae_scale_factor, use_cuda_graph=use_cuda_graph,) setattr(stream.vae,
"config", vae_config) setattr(stream.vae, "dtype", vae_dtype) gc.collect() torch.cuda.empty_cache() return stream

‎src/streamdiffusion/acceleration/tensorrt/builder.pyCopy file name to clipboard+94Original file line numberDiff line numberDiff line change @@ -0,0 +1,94 @@ import gc import os from typing import * import torch from
.models import BaseModel from .utilities import (build_engine, export_onnx, optimize_onnx,) def create_onnx_path(name, onnx_dir, opt=True): return os.path.join(onnx_dir, name + (".opt" if opt else
"") + ".onnx") class EngineBuilder: def __init__(self, model: BaseModel, network: Any, device=torch.device("cuda"),): self.device = device self.model = model
self.network = network def build(self, onnx_path: str, onnx_opt_path: str, engine_path: str, opt_image_height: int = 512, opt_image_width: int = 512,
opt_batch_size: int = 1, min_image_resolution: int = 256, max_image_resolution: int = 1024, build_enable_refit: bool = False, build_static_batch: bool = False,
build_dynamic_shape: bool = False, build_all_tactics: bool = False, onnx_opset: int = 17, force_engine_build: bool = False, force_onnx_export: bool = False, force_onnx_optimize:
bool = False,): if not force_onnx_export and os.path.exists(onnx_path): print(f"Found cached model: {onnx_path}") else: print(f"Exporting model: {onnx_path}")
export_onnx(self.network, onnx_path=onnx_path, model_data=self.model, opt_image_height=opt_image_height, opt_image_width=opt_image_width,
opt_batch_size=opt_batch_size, onnx_opset=onnx_opset,) del self.network gc.collect() torch.cuda.empty_cache() if not force_onnx_optimize and
os.path.exists(onnx_opt_path): print(f"Found cached model: {onnx_opt_path}") else: print(f"Generating optimizing model: {onnx_opt_path}") optimize_onnx(
onnx_path=onnx_path, onnx_opt_path=onnx_opt_path, model_data=self.model,) self.model.min_latent_shape = min_image_resolution // 8 self.model.max_latent_shape
= max_image_resolution // 8 if not force_engine_build and os.path.exists(engine_path): print(f"Found cached engine: {engine_path}") else: build_engine(
engine_path=engine_path, onnx_opt_path=onnx_opt_path, model_data=self.model, opt_image_height=opt_image_height, opt_image_width=opt_image_width,
opt_batch_size=opt_batch_size, build_static_batch=build_static_batch, build_dynamic_shape=build_dynamic_shape,
build_all_tactics=build_all_tactics, build_enable_refit=build_enable_refit,) gc.collect() torch.cuda.empty_cache()

‎src/streamdiffusion/acceleration/tensorrt/engine.pyCopy file name to clipboard+123Original file line numberDiff line numberDiff line change @@ -0,0 +1,123 @@ from typing import * import torch from
diffusers.models.autoencoder_tiny import AutoencoderTinyOutput from diffusers.models.unet_2d_condition import UNet2DConditionOutput from diffusers.models.vae import DecoderOutput from polygraphy import cuda from
.utilities import Engine class UNet2DConditionModelEngine: def __init__(self, filepath: str, stream: cuda.Stream, use_cuda_graph: bool = False): self.engine = Engine(filepath) self.stream = stream
self.use_cuda_graph = use_cuda_graph self.engine.load() self.engine.activate() def __call__(self, latent_model_input: torch.Tensor, timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor, **kwargs,) -> Any: if timestep.dtype != torch.float3 timestep = timestep.float() self.engine.allocate_buffers(shape_dict={
"sample": latent_model_input.shape, "timestep": timestep.shape, "encoder_hidden_states": encoder_hidden_states.shape, "latent": latent_model_input.shape, },
device=latent_model_input.device,) noise_pred = self.engine.infer({ "sample": latent_model_input, "timestep": timestep,
"encoder_hidden_states": encoder_hidden_states, }, self.stream, use_cuda_graph=self.use_cuda_graph,)["latent"] return UNet2DConditionOutput(sample=noise_pred)
def to(self, *args, **kwargs): pass def forward(self, *args, **kwargs): pass class AutoencoderKLEngine: def __init__(self, encoder_path: str, decoder_path: str,
stream: cuda.Stream, scaling_factor: int, use_cuda_graph: bool = False,): self.encoder = Engine(encoder_path) self.decoder = Engine(decoder_path) self.stream = stream
self.vae_scale_factor = scaling_factor self.use_cuda_graph = use_cuda_graph self.encoder.load() self.decoder.load() self.encoder.activate() self.decoder.activate() def
encode(self, images: torch.Tensor, **kwargs): self.encoder.allocate_buffers(shape_dict={ "images": images.shape, "latent": (images.shape[0],
4, images.shape[2] // self.vae_scale_factor, images.shape[3] // self.vae_scale_factor,), }, device=images.device,)
latents = self.encoder.infer({"images": images}, self.stream, use_cuda_graph=self.use_cuda_graph,)["latent"] return AutoencoderTinyOutput(latents=latents) def
decode(self, latent: torch.Tensor, **kwargs): self.decoder.allocate_buffers(shape_dict={ "latent": latent.shape, "images": (latent.shape[0],
3, latent.shape[2] * self.vae_scale_factor, latent.shape[3] * self.vae_scale_factor,), }, device=latent.device,) images
= self.decoder.infer({"latent": latent}, self.stream, use_cuda_graph=self.use_cuda_graph,)["images"] return DecoderOutput(sample=images) def to(self, *args,
**kwargs): pass def forward(self, *args, **kwargs): pass

‎src/streamdiffusion/acceleration/tensorrt/models.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/acceleration/tensorrt/models.py+428 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/acceleration/tensorrt/utilities.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/acceleration/tensorrt/utilities.py+441 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/image_utils.pyCopy file name to clipboard+89Original file line numberDiff line numberDiff line change @@ -0,0 +1,89 @@ from typing import * import numpy as np import PIL.Image import torch import
torchvision def denormalize(images): """ Denormalize an image array to [0,1]. """ return (images / 2 + 0.5).clamp(0, 1) def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray: """ Convert
a PyTorch tensor to a NumPy image. """ images = images.cpu().permute(0, 2, 3, 1).float().numpy() return images def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image: """ Convert a numpy image or
a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for
grayscale (single channel) images pil_images = [PIL.Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [PIL.Image.fromarray(image) for image in images] return
pil_images def postprocess_image(image: torch.FloatTensor, output_type: str = "pil", do_denormalize: Optional[List[bool]] = None,): # TODO: if文消してもいいかも。 if not isinstance(image,
torch.Tensor): raise ValueError(f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor") if output_type == "latent": return image
TODO: classにして、initで前処理しておいてもいいかも。 do_normalize_flg = True if do_denormalize is None: do_denormalize = [do_normalize_flg] * image.shape[0] image = torch.stack([denormalize(image[i])
if do_denormalize[i] else image[i] for i in range(image.shape[0])]) if output_type == "pt": return image image = pt_to_numpy(image) if output_type == "np": return image if
output_type == "pil": return numpy_to_pil(image) def process_image(image_pil: PIL.Image.Image, range: Tuple[int, int] = (-1, 1)): image = torchvision.transforms.ToTensor()(image_pil) r_min, r_max =
range[0], range[1] image = image * (r_max - r_min) + r_min return image[None, ...], image_pil def pil2tensor(image_pil: PIL.Image.Image) -> torch.Tensor: height = image_pil.height width =
image_pil.width imgs = [] img, _ = process_image(image_pil) imgs.append(img) imgs = torch.vstack(imgs) images = torch.nn.functional.interpolate(imgs, size=(height, width), mode="bilinear")
image_tensors = images.to(torch.float16) return image_tensors

‎src/streamdiffusion/pip_utils.pyCopy file name to clipboard+52Original file line numberDiff line numberDiff line change @@ -0,0 +1,52 @@ import importlib import importlib.util import os import subprocess import sys
from typing import * from packaging.version import Version python = sys.executable index_url = os.environ.get("INDEX_URL", "") def version(package: str) -> Optional[Version]: try: return
Version(importlib.import_module(package).__version__) except ModuleNotFoundError: return None def is_installed(package: str) -> bool: try: spec = importlib.util.find_spec(package) except
ModuleNotFoundError: return False return spec is not None def run_python(command: str, env: Dict[str, str] = None) -> str: run_kwargs = { "args": f"{python} {command}", "shell": True,
"env": os.environ if env is None else env, "encoding": "utf8", "errors": "ignore", } print(run_kwargs["args"]) result = subprocess.run(**run_kwargs) if result.returncode != 0:
print(f"Error running command: {command}", file=sys.stderr) raise RuntimeError(f"Error running command: {command}") return result.stdout or "" def run_pip(command: str, env: Dict[str, str] = None) ->
str: return run_python(f"-m pip {command}", env)

‎src/streamdiffusion/pipeline.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/pipeline.py+89-287 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/tools/install-tensorrt.pyCopy file name to clipboard+44Original file line numberDiff line numberDiff line change @@ -0,0 +1,44 @@ from typing import * import fire from packaging.version import
Version from ..pip_utils import is_installed, run_pip, version def get_cuda_version_from_torch() -> Optional[Literal["11", "12"]]: try: import torch except ImportError: return None
return torch.version.cuda.split(".")[0] def install(cu: Optional[Literal["11", "12"]] = get_cuda_version_from_torch()): if cu is None or cu not in ["11", "12"]: print("Could not detect CUDA version.
Please specify manually.") return print("Installing TensorRT requirements...") if is_installed("tensorrt"): if version("tensorrt") < Version("9.0.0"): run_pip("uninstall -y
tensorrt") cudnn_name = f"nvidia-cudnn-cu{cu}==8.9.4.25" if not is_installed("tensorrt"): run_pip(f"install {cudnn_name} --no-cache-dir") run_pip("install --pre --extra-index-url https://
pypi.nvidia.com tensorrt==9.0.1.post11.dev4 --no-cache-dir") if not is_installed("polygraphy"): run_pip("install polygraphy==0.47.1 --extra-index-url https://pypi.ngc.nvidia.com") if not
is_installed("onnx_graphsurgeon"): run_pip("install protobuf==3.20.2") run_pip("install onnx-graphsurgeon==0.3.26 --extra-index-url https://pypi.ngc.nvidia.com") pass if __name__ == "__main__":
fire.Fire(install)

mate ized

Where memories become bridges to our homeland.

MA HUMAN EXPERIENCE DESIGN INTERACTIONS

THESIS REPORT
GABE GUTIERREZ

real

Materealized is a real-time 3D model generation
system driven by voice interaction. As users
recount personal memories, the system
translates their words into immersive
visualizations using generative AI. Designed for
displaced and diasporic communities, the project
explores how storytelling and emerging
technology can preserve cultural heritage when
physical artifacts are lost.

Grounded in interdisciplinary research and
human-centered design, Materealized
culminated in a public exhibition that tested the
emotional and cultural resonance of interactive
memory-based visuals. It offers an actionable
model for digital preservation—where memory
becomes experience, and experience becomes
connection.

abstract

01 Overview 01.1 Design Challenge 02

01.2 Mission 03

01.3 Thesis Project Statement 04

01.4 Design Methodology 05

01.5 Timeline Overview 06

02 Discover 02.1 Literature Review 11

02.2 Case Studies 17

02.3 User Research 21

03 Define 03.1 User Insights 28

03.2 Persona 29

03.3 User Journey 31

03.4 How Might We 33

04 Develop 04.1 Ideation 38

04.2 Technology Research 39

04.3 Prototype Development 42

04.4 User Testing 45

04.5 System Refinement 47

04.6 Exhibit Design 55

05 Deliver 05.1 Exhibition 60

05.2 Feedback 67

05.3 Publicity & Outreach 69

05.4 Future Development 72

06 Notes 06.1 Acknowledgements 75

06.2 Bibliography 76

contents

01

OVERVIEW

01 02 03
To engage cultural institutions in
preserving displaced voices
through participatory design

To ensure ethical AI generation
and representation of people’s
lived experiences

To make cultural preservation
emotionally resonant and
technologically accessible

a progressive design solution that blends human-centered
thinking with technological innovation. The project’s primary
objectives are:

Materealized

proposes...

02

The project was born from the urgency
 when tangible objects—photographs,

heirlooms, homes—are no longer available. Rather than
replicating physical artifacts, Materealized interprets
personal, spoken narratives using AI
abstract

The goal is
 beyond static documentation

 that adapt to the stories they
contain.

to preserve
cultural identities

to generate rich,
visuals that communicate emotional and

cultural depth.

memories interactive and alive—
moving toward immersive,
participatory experiences

 to make

Mission

Leveraging generative AI to capture and transform fragmented
memories into immersive experiences, reuniting displaced people
with their cultural homelands, empowering them to develop
stronger cultural identities, sense of self, and communities

Thesis
Project
Statement

OFFICIAL

04

This project was guided by the Double
Diamond Framework, which structured the
design process through cycles of divergent and
convergent thinking. Each phase—Discover,
Define, Develop, Deliver—allowed for iterative
exploration, synthesis, prototyping, and

refinement. The framework supported a
balance between open-ended research and
focused problem-solving:

uncovering user needs, narrowing the
challenge, building and testing immersive tools,
and ultimately delivering a culturally resonant
experience. Insights from each phase directly
informed the next, ensuring the solution
evolved responsively and remained grounded
in both user experience and technological
feasibility.

Design
Methodology

DISCOVER

DIV
ERG

ENT
 TH

INK
ING

Con
ver

gen
t T

hin
kin

g

DEFINE DEVELOP DELIVER

DIV
ERG

ENT
 TH

INK
ING

Con
ver

gen
t T

hin
kin

g

TIMEline 2024

03/18 09/16

Literature Review

Technology Research

User Research

09/17 09/25

Personas

Insights

How might we

09/26 11/25

Technology Development

Prototyping

User Testing

Exhibition Design

Branding

11/26 12/10

Marketing

Exhibit

User Testing

Documentation

The development of Materealized followed a
structured timeline aligned with the Double
Diamond design framework. From March 2024
to September 2024, the project focused on
interdisciplinary research, literature review,
user research, and early technology
exploration. The Define phase took place in
September 2024, synthesizing insights into
actionable design challenges and user
personas.

Between October and November 2024, the
Develop phase involved prototyping, iterative
user testing, and technical system refinement.
Finally, in late November through December
2024, the project transitioned into the Deliver
phase, culminating in the public exhibition,
feedback collection, and documentation of
future opportunities for scaling and iteration.

06

DISCOVER

02

The goal of the Discover phase was to explore
how displacement and the loss of physical
artifacts impact cultural identity and memory
preservation. Displacement—whether driven by
conflict, disaster, or economic need—disrupts
more than geography; it fractures the narrative
continuity of culture. Over 114 million people are
currently displaced worldwide, with many unable
to return home or preserve their cultural legacies
in traditional forms (UNHCR, 2023). This rupture
is more than physical—it severs the ties between
people and the environments that help them
remember who they are.

This thesis begins with a central inquiry: How
can we preserve and reanimate cultural memory
when the physical anchors that hold them—
homes, landmarks, and familial rituals—are
gone? Materealized emerged in response to this
question, aiming to explore how memory,
identity, and emerging technologies can
intersect to preserve heritage among displaced
and diasporic communities.

exploring

memory,

culture &

technology

Literature Review

Interview Insights

Research Goals

Case Studies

Survey Findings

How can we preserve and
reanimate cultural memory when
the physical anchors that hold
them; homes, landmarks, and
familial rituals are gone?

1
0

At the core of this exploration is the concept of
domicide—the deliberate or systemic
destruction of home and place—as introduced
by University of Victoria, British Columbia,
Geography Professor’s Porteous and Smith.
Domicide does not merely demolish buildings; it
dismantles the physical environments that
serve as repositories of memory, thereby
erasing the communal and spatial rhythms that
support identity formation. The consequences
are not only psychological but also
intergenerational: traditions go unspoken,
names are forgotten, and cultural practices are
lost to time (Porteous and Smith 98).

Memory as

Cultural

Infrastructure

02.01 Literature Review

author Generated Image 1

To understand the impact of this disconnection,
I turned to the theory of collective memory. As
proposed in On Collective Memory, memories
are shaped and sustained by social groups
through shared spaces, language, rituals, and
symbols (Halbwachs 38). When these elements
are lost or inaccessible, communities must turn
to new mediums for cultural preservation.

These types of memory include episodic
memory, which refers to the recollection of
specific experiences situated in time and space
—such as childhood celebrations, the layout of
a family home, or the scent of traditional food
(Queensland Brain Institute). These memories
are deeply sensory, emotionally charged, and
intimately linked to cultural identity.

author Generated Image 2

12

Jan Assmann, German cultural historian extends
Halbwachs’ concept by arguing that collective
memory is essential to the construction of
cultural identity. It is through cultural memory—
ritualized, performative, and communicative
practices that communities transmit knowledge
across generations. When displacement
interrupts this process, the continuity of cultural
identity becomes precarious, particularly for
diasporic youth born outside their ancestral
homeland (Assmann 130).

Neuroscience confirms the fragility of memory
under disrupted conditions. As Neuroscientist
Phelps explains, the amygdala and
hippocampus—the brain regions responsible for
emotional memory—encode stronger, more
durable memories when experiences are rich in
sensory and emotional detail. Without
environmental cues and repetition, the brain’s
ability to recall and transmit these memories
weakens (Phelps 195).

This insight shaped the foundation of
Materealized: if immersive technologies can
evoke these same emotional and sensory
dynamics, they may be able to reconstruct the
memory environment itself, helping users
access forgotten or fragmented aspects of their
cultural identity.

02.01 Literature Review cont.

author Generated Image 3

Ai Image 4

1
4

To explore how memory could be reactivated, I
conducted a review of existing and emerging
digital tools used for cultural preservation. 3D
scanning and modeling technologies have been
used to recreate destroyed heritage sites, most
notably in UNESCO-led preservation efforts.
Oral history archives have also evolved through
digital platforms, ensuring the preservation of
community narratives across time and
geography (Marfleet, 2006).

Reclaiming
Memory
Through
Technology

author Generated Image 5

02.01 Literature Review cont.

Building on this technological foundation, I
explored the use of generative AI to create
narratives—not simply as static artifacts, but as
dynamic, participant-driven experiences.
Khurana’s Future of Human Memory (2020), a
speculative design study, offered a provocative
look at AI’s potential to preserve, but also
manipulate, personal history. The project raised
important questions about agency, privacy, and
representational ethics—all of which influenced
Materealized’s design constraints (Khurana).

In response, Materealized emphasizes user
control, narrative ownership, and cultural
sensitivity, positioning AI not as a substitute for
human memory, but as a tool for emotional
restoration and cultural reconnection.

Virtual reality (VR) enables users to re-enter
spaces they may have never physically visited,
while augmented reality (AR) allows them to
superimpose personal memories over present-
day environments—bridging the past with the
now. These tools reinforce the concepts of
memory mapping (the connection of specific
sounds, colors, or textures to place-based
memories) and memory reconstruction,
especially for younger generations raised
outside their ancestral lands.

16

Weidi Zhang & Rodger Luo

Recollection is an interactive AI art installation
that visualizes memory loss in patients with
dementia. It interprets fragmented speech and
partial memories into evolving abstract visuals.
What stood out about this work was its
emotional intimacy and speculative framing—it
did not attempt to “correct” memory but instead
honored its fragility and impermanence (Zhang
and Luo).

This case reinforced the idea that abstraction,
not accuracy, may be the most honest way to
represent memory. It also validated the use of
generative visuals and real-time interaction as
powerful storytelling modalities. For
Materealized, this affirmed the value of
ephemeral, memory-inspired visual language
over documentary realism.

Recollection

02.02 Case studies

Weidi Zhang recollection

1
8

Palak Khurana

Khurana’s speculative design project imagines a future
in which AI systems fully automate memory
preservation. It highlights ethical concerns around
authenticity, narrative control, and surveillance,
questioning whether algorithmically constructed
memories can still be considered human (Khurana).

Khurana’s project helped frame Materealized’s critical
stance toward generative AI. Instead of treating
memory as data to be archived, the system treats it as
emotionally alive and relational, requiring care, consent,
and contextual accuracy.

Together, these case studies shaped Materealized’s
ethical position. They emphasized that memory
technologies must not only be immersive and
interactive, but also transparent, inclusive, and
emotionally respectful.

Future of Human Memory

(2050)

02.02 Case studies cont.

KHURANA’S Speculative

mapping of memory

2
0

Grounding the Work

in Community

While the problem space of displacement is
global, the development of Materealized was
intentionally grounded in a specific and deeply
personal context: the Filipino diaspora. This
decision was shaped by both strategic
constraints—limited time, resources, and access
—and a desire to create work that was intimate,
informed, and community-centered.

Background on the Filipino Diaspora

Migration is primarily driven by economic
factors, as individuals seek employment abroad
to support families and escape limited domestic
opportunities. Filipino workers have historically
filled labor shortages in healthcare, domestic
work, seafaring, and hospitality—especially in
the U.S., Middle East, and Southeast Asia (World
Bank, 2023).

The Philippines has a long history of labor
migration, with over 10 million Filipinos living
abroad, making it one of the world’s largest
diasporic populations (International Labour
Organization).

This global dispersal has resulted in a generation
of Filipinos born outside their homeland, many of
whom experience a fractured cultural identity.
While stories of “home” are shared across
generations, the absence of direct immersion
leads many to describe themselves as “not
Filipino enough”—negotiating the tension
between inherited identity and lived experience.

In interviews conducted for this project, these
themes surfaced repeatedly: language attrition,
fading traditions, familial loss, and a growing
urgency to hold onto what remains. In response,
Materealized was designed not only as a
memory system but as a cultural intervention—a
tool to support emotional reconnection,
intergenerational dialogue, and heritage
reconstruction.

02.03 User research

To inform the development of Materealized, I
conducted mixed-method user research with
members of the Filipino first and second-
generation immigrant community.

Surveys combined Likert-scale questions, open-
ended prompts, and short-form responses to
evaluate�
� Emotional associations with memory and

cultural tradition�
� Perceptions of cultural loss or disconnectio�
� Preferences for storytelling medium�
� Comfort with AI-generated conten�
� Desires for future tools to preserve and share

cultural traditions

Interviews were narrative-based, allowing
participants to share family stories, describe
experiences of cultural tension, and respond to
early visual prototypes. Recordings were
transcribed, analyzed, and were later used for
prototype development.

45 Online surveys

5 Interviews

User

Research

Methods

22

Key findings

02.03 User research cont.

75% expressed concern that Filipino culture
—including language, food, and rituals—is
at risk of disappearing

60% identified oral traditions and family
stories as the most endangered elements

70% felt disconnected from their heritage,
especially those born outside the
Philippines

80% preferred interactive, visual, or sensory
formats for engaging with cultural material

55% were cautious about AI in storytelling,
citing fears of misrepresentation

88%, however, were open to using such
tools if they offered emotional resonance
and user control

Qualitative Insights

The user interviews provided in-depth perspectives
on the challenges of cultural disconnection and the
emotional significance of preserving heritage. Key
insights include:

Cultural Disconnection: Participants expressed
feelings of “whitewashing” and a loss of connection
to Filipino identity due to assimilation pressures and
generational gaps.

Nostalgia and Traditions: Sensory memories, such
as childhood experiences in sari-sari stores and
traditional foods like “kwek kwek,” highlighted the
deep emotional ties to cultural practices.

Generational Divide: Stories reflected the difficulty
of bridging generational gaps, with younger
participants longing for ways to better understand
and preserve the stories of elders.

These insights reinforced the need for Materealized
to prioritize emotional resonance, cultural
authenticity, and the preservation of family stories
through interactive, visual storytelling.

“I wish there was a way to
bring my grandmother’s
stories to life...so that my
children can truly understand
our heritage.” - GN

24

DEFINE

03

Following the Discover phase, the Define phase
focused on translating research findings into
clear user needs, insights, and design
opportunities. This phase refined the broad
themes of displacement, memory fragmentation,
and cultural loss into a focused, actionable
design challenge. The goal was to ensure that
the system design for Materealized remained
user-centered, culturally sensitive, and
emotionally resonant at every stage.

By synthesizing qualitative and quantitative
research, developing personas, and mapping
emotional journeys, I aimed to ground
Materealized firmly within the lived realities of
diasporic Filipino communities.

distilling
research

into

insights

USER INSIGHTS

PERSONA

USER JOURNEY

HOW MIGHT WE

Through an analysis of survey responses, interviews, and
prototype feedback, several core insights emerged. These
insights made it clear that Materealized needed to design for
reconnection—restoring sensory and emotional memory
environments—rather than simple documentation.

what i learned

from research

Fragmented Memories,
Persistent Emotion

While participants’ memories were often incomplete or sensory
in nature, emotional connections to these fragments remained
vivid and strong. Memories of smells, songs, or places evoked
far more powerful emotional reactions than factual
recollections.

Desire for Active
Participation

Participants wanted more than passive consumption of
heritage—they wanted to actively engage with it. Storytelling,
speaking aloud, and seeing their words transformed into
something tangible emerged as preferred interaction methods.

Cautious Optimism
Toward Technology

Although some participants voiced skepticism about AI’s role in
cultural preservation, the majority were open to new
technologies as long as they offered emotional authenticity
and gave users control over how their narratives were
represented.

28

03.01 user insights

Maria is a first-generation Filipino American who
grew up in a bilingual household but feels a
growing disconnect from her cultural roots. Her
parents immigrated to the U.S. in the 1980s, and
while she holds pride in her Filipino heritage, she
struggles to connect with traditions and stories
that weren’t fully passed down. Maria recently
had a child and feels a renewed urgency to
preserve and share her cultural identity with the
next generation.

“I want my child to grow up proud of our heritage
and connected to the stories that shaped our
family.”

who am i

designing for

03.02 persona

Maria Santos, 34

Marketing Specialist

San Diego, California

First-gen Filipino American

MARIA SANTOS
Goals and Motivations

Reconnect with Filipino culture
to pass it on to her child.

Preserve family stories,
traditions, and language.

Share personal experiences
with a broader community.

Create emotional connections
through accessible tools.

Frustrations and Challenges

A lack of resources for learning
Filipino languages in an

engaging way.

Feeling “not Filipino enough”
due to generational and cultural

gaps.

Concern over how AI might
misrepresent or simplify cultural

nuances.

author Generated Image 6

30

How we remember

03.02 User Journey

1 THE TRIGGER

Something prompts the
person to recall a memory
—this could be a
conversation, a specific
smell, a familiar sound, or
even a fleeting thought.

Maria smells a dish
her grandmother used
to cook, sparking
memories of family
gatherings during
childhood.

NOTE: Emotions: Nostalgia,
longing, curiosity.

2 Mental
Reconstruction

The user recalls
fragmented scenes,
sensations, or emotions,
assembling a mental image
of the memory.

Maria remembers her
grandmother’s hands
preparing food, the
laughter of her
cousins, and the
faint scent of
jasmine in the air.

NOTE: Emotions: Mixed—
joy from the memory and
sadness from its
incompleteness.

3 Verbalization or
Reflection

The individual tries to
articulate the memory,
often struggling with gaps
or fading details.

Maria shares her
memory with her child
but struggles to
fully describe the
intricate details.

NOTE: Challenges: The
lack of clarity in details can
lead to frustration or a
sense of loss.

author Generated Image 7

4 Emotional
Amplification

The act of recalling
intensifies emotional
connection—triggering joy,
longing, sadness, or
nostalgia.

Maria feels warmth
and gratitude for the
memory but also a
bittersweet sense of
longing for her
grandmother.

NOTE: Outcome: The
emotional depth makes the
memory feel vivid yet
incomplete

5 Sensory

Imagination

Unclear elements are filled
in with imagination,
blending fact and feeling
into a fuller mental picture.

Maria imagines the
exact shade of her
grandmother’s dress
and the sound of her
voice, even if these
details aren’t fully
clear in her memory.

6 Connection or
Disconnection

The individual feels closer
to the root of their memory
—or painfully aware of
cultural gaps and forgotten
details.

Maria feels a
stronger connection
to her past but
wishes there were
photos or recordings
to help preserve the
details for her
child.

NOTE: Outcome: A mix of
appreciation for the
memory and a sense of
loss for its fragility.

STAGE 7 Preservation
or Forgetting

The individual takes action
to record or share the
memory—or risks letting it
slip into forgetfulness.

Maria writes down her
memory in a journal
to preserve it,
ensuring her child
can revisit it later.

NOTE: Outcome: The
memory’s longevity
depends on how it’s
preserved or shared.

Distilling user needs and emotional drivers into a
focused question led to the formulation of the core
design challenge:

How might we use generative AI and immersive media
to help Filipino immigrants and their descendants
reconnect with fragmented cultural memories
through participatory, emotionally resonant
storytelling experiences?

This framing acknowledged both the emotional
delicacy of memory work and the ethical complexity of
using AI to represent personal and cultural narratives.

Defining the challenge

03.04 How might we

How might we use

generative AI and

immersive media to

help Filipino

immigrants and their

descendants reconnect

with fragmented

cultural memories

through participatory

emotionally resonant

storytelling experiences?

author Generated Image 8

3
4

DEVELOP

04

The Develop phase focused on translating
insights from the Define phase into a functional
solution through technical and iterative
development. This stage involved creating
prototypes to test the feasibility of generative AI
in visualizing memories while ensuring emotional
and cultural authenticity.

Through iterative user testing, each prototype
was refined to address technical challenges,
enhance user engagement, and improve the
accuracy of visual representations. This phase
emphasized the integration of advanced AI tools,
such as image generation models and voice-to-
text systems, and leveraged feedback loops to
ensure the solution met the needs of Filipino
Americans seeking to preserve and reconnect
with their heritage.

The Develop phase highlighted the importance
of aligning technical innovation with user-
centered design to create an immersive and
accessible storytelling platform.

ideating

prototyping

iterating

Ideation

Technology Research

Prototype Development

User Testing

System Refinement

Exhibit design

The idea
The concept behind Materealized is
straightforward: users record personal
stories, which are then transformed into
immersive visualizations using AI tools.

The goal is to foster cultural connection,
preserve traditions, and ensure the
authentic representation of memories.

04.01 ideation

author Generated Image 9

38

Concept image: An interactive exhibit where the

screen becomes a portal into a Filipino immigrant’s

memory of their rural home—blending voice,

visuals, and atmosphere to reconstruct a

fragmented but emotionally rich recollection.

To develop a system capable of transforming voice
inputs into coherent, real-time visualizations, I engaged
in an extensive process of technical diagramming and
workflow testing.

The challenge centered around how to capture non-
linear, personal storytelling—often rich in emotion but
fragmented in structure—and translate it into prompts
that generative AI models could meaningfully interpret.
To address this, I tested a range of image and video
generation tools, including MidJourney for still imagery
and RunwayML for dynamic video generation. In
parallel, I utilized GPT models to parse raw transcripts
of narratives, deriving contextual meaning and
identifying key sensory and emotional elements from
unscripted storytelling.

diagramming the
technical process

04.02 technology research

Diagram: A system map showing the different AI technologies and the

connection flows between them, illustrating how they work together to

create a fully autonomous voice-to-image AI system.

4
0

04.02 technology research cont.

01
AUDIO
TRANSCRIPTION

Use a python script
to run the whisper
model to generate
transcriptions of the
audio file.

02
PROCESS
TEXT

Use chatGPT to
process the text and
generate prompts

03
GENERATE

IMAGE
Use prompts to
generate images in
Midjourney.

04
STYLIZE

IMAGE
Use editing software
to stylize the image
and cut the audio to
match the visuals.

05
EXPORT
EXPERIENCE

Video files are
exported.

SIMPLIFIED

TECH DIAGRAM

During testing, I was able to simplify the technical complexity required to
create an initial prototype into a streamlined process: the user tells a story
out loud, which is transcribed into text. A GPT model then refines the text
and generates detailed prompts. These prompts are used to create images
through AI tools, which are then stitched together into a video using editing
software like Premiere Pro.

first prototype
To create the first prototype, I used
narrative clips from participant
interviews recounting memories of
the Philippines. These audio
recordings were processed through
the early workflow: transcribed,
parsed into prompts, and visualized
through generative AI tools.

04.03 Prototype Development

42

Interview Documentation: Pre-recorded stories

from user research interviews were used as the

initial inputs to test the capabilities of the first

prototype.

developing the
visual language

The visual language for the first
prototype was inspired by a
photogrammetry-like aesthetic,
aiming to evoke the fragmented,
ethereal nature of memory. Rather
than using fully rendered
environments, I generated AI-based
images that resembled imperfect
reconstructions—similar to how
photogrammetry captures spatial
surfaces with texture but also with
gaps and irregularities.

author Generated Image 10

Generative prompts created with ChatGPT were

fed into MidJourney, then imported into

TouchDesigner and mapped as particles to create

3D interactive visuals.

To give these visuals a sense of
depth and movement, I mapped the
generated images onto 3D planes
using depth maps, creating layers of
spatial information.

Within TouchDesigner, these layers
were then translated into particle
systems, allowing the images to
dynamically drift, shift, and breathe
in response to user interaction. This
technique created an environment
that felt both tangible and
ephemeral, reinforcing the
conceptual framing of memory not
as static snapshots, but as living,
evolving landscapes.

author Generated Image 11

44

For early user testing, participants wore VR headsets and
experienced a curated sequence of memory visualizations
generated from participant interviews. 8 participants listened to
original voice recordings while observing the evolving point-cloud
environments inspired by the stories.

The goal was to assess whether the combination of sound and
dynamic visuals could evoke emotional resonance and a sense of
cultural connection.

Feedback indicated that participants felt a strong emotional
engagement, often describing the experience as “nostalgic,”
“immersive,” and “hauntingly beautiful.” Many noted that the
abstract visual style allowed them to project their own emotions
onto the scenes, making the memories feel personal rather than
distant.

This initial testing validated the potential of Materealized to
reanimate fragmented memories in a way that was both
participatory and emotionally powerful.

Testing the first prototype

04.04 User testing

75%
Reported moderate to
strong cultural connection

75%
Participants found themes
in the story as relatable.

46

Testing Documentation: The first

prototype was tested using VR

headsets, allowing participants to

experience people’s memories coming to

life in an immersive environment.

Encouraged by the promising results of the first round
of user testing, I expanded the system to allow for
real-time image generation directly from voice input,
fully integrated within TouchDesigner.

Using a Whisper model, live audio was transcribed
into text, which was then fed into Stream Diffusion
using the XL Turbo model to generate responsive
images based on the user’s spoken memories.

A secondary model produced real-time depth maps,
giving the visuals spatial structure. Within
TouchDesigner, these outputs were stylized to match
the original photogrammetry-inspired aesthetic
developed in the early prototype—maintaining
continuity in visual language while enabling fully
dynamic, user-driven memory environments.

This evolution allowed the system to move from a pre-
processed experience to a truly living, real-time
storytelling platform.

Developing a
realtime voice
to image system

04.05 system refinement

challenges with
newest prototype

Early user testing revealed three key
challenges. First, users often struggled to
recall and articulate memories in a way
the system could accurately interpret.
Second, technological limitations
sometimes led to misrepresented or
incoherent visuals, highlighting the need
for more refined real-time generation
without relying on manual curation. Third,
the system needed better support for
observers—those who preferred to
experience rather than share stories—by
offering a meaningful and engaging
passive interaction mode.

48

Testing Documentation: User testing

with the real-time voice-to-image

system involved gathering feedback

through informal interviews and

observations as participants interacted

with the system.

To overcome the challenges identified during early user
testing, I designed an interactive exhibit that enhances
accessibility, emotional engagement, and inclusivity for all
participants.

To support storytelling, I introduced “memory slips”—
sensory prompts that helped guide users in recalling vivid
details about sights, sounds, and emotions, making it easier
to articulate meaningful stories.

Instead of focusing on literal visual accuracy, I refined the
system’s visual output by leaning into abstract
representations; images were rendered in black and white to
encourage personal interpretation and to avoid
misrepresenting or distorting users’ narratives. This shift
allowed memories to retain their emotional integrity without
imposing rigid, potentially inaccurate visuals.

To engage observers who preferred to experience rather
than share stories, the exhibit incorporated dynamic,
responsive visuals tied to existing narratives, with body
tracking and audio-reactive elements that allowed non-
storytellers to interact with the environment.

Together, these adjustments bridged the gap between
storytelling, memory representation, and audience
participation—making the experience immersive, flexible,
and accessible to all users.

Overcoming
challenges

04.05 system refinement cont.

Memory slips were designed as unique prompts, each encouraging guests to recount a specific moment
from their life and guiding them to structure their story with vivid sensory and emotional details. This
approach helped the system generate more coherent and emotionally aligned images, ensuring that the
visualizations more accurately reflected the essence of their memories.

memory slips

50

Materealized Rendered 3D models: A layer of
stylization in TouchDesigner softened image
details, allowing the person recalling the memory
to fill in the gaps with their own imagination.

open to

interpretation

I wanted to evolve the visual
language further By abstracting
the visuals, the system avoided the
risk of misrepresenting users’
memories, allowing for open
interpretation and preserving the
emotional truth of each story
without imposing a literal or
potentially inaccurate depiction.
The following images are stills from
images generative images based
on users stories.

04.05 system refinement cont.

“I remember by
5th birthday...”

5
2

input output

“sitting inside
an old indian
temple with my
aunt...”

input output

“the tips of the
pine trees added
green to the
scene...”

input output

5
4

To design the exhibit, I focused on creating
an environment that would enhance
emotional immersion and support intuitive
interaction with the evolving memory visuals.
I developed a spatial layout that included
designated storytelling zones, responsive
projection areas, and pathways for both
active participants and observers.

To better understand how users would move
through and experience the space, I
rendered the exhibit in Unreal Engine,
building a virtual simulation of the gallery
environment. This allowed me to test
elements like lighting, scale, sightlines, and
flow before physical installation. By
navigating the exhibit in real time, I was able
to refine the positioning of key components
—such as microphones, projectors, and
interactive visuals—to optimize engagement
and ensure that both storytellers and
observers could connect meaningfully with
the unfolding memory narratives.

designing an
exhibit

04.06 exhibit design

Unreal Engine 3D Render: Visualization of the
exhibit design, showing spatial layout, interactive
zones, and projection areas used to simulate the
user experience.

56

Exhibit Floor Plan and User Flow: Spatial layout of the
Materealized installation at the Duncan Anderson Gallery,
illustrating key interaction points, audience pathways, and
the sequencing of the immersive experience.

DELIVER

05

The Deliver phase marked the culmination of
Materealized as a public-facing, immersive
experience. This phase focused on transforming
the system from a working prototype into an
exhibit-ready installation—complete with
narrative prompts, interactive visuals, and
embodied storytelling interactions. It also
included structured feedback collection to assess
the emotional, cultural, and experiential impact of
the system, and reflections on how the project
could scale beyond the initial exhibit context.

materealized

for public

exhibition

Exhibition

Feedback

Publicity & Outreach

Future Development

Materealized was exhibited in a gallery setting, where
guests were invited to share a memory using a
microphone and memory slip, and then witness their
story reimagined as a dynamic, point cloud-based
visual environment. The space was arranged to
support both active storytelling and passive
observation. Projectors displayed the evolving visuals
across a large wall.

The Exhibit Experience

60

05.01 Exhibition

Guests first encountered three pedestals
displaying memory slips, along with a didactic
introducing Materealized. This initial station
provided instructions on what to expect and set
the tone for the experience.

duncan anderson gallery exhibit 12/02/24

Guest’s first encountered three pedestals with memory
slips, as well as a didactic on Materealized. This first
station provided instructions on what they can expect
and set the tone for the expereince.

duncan anderson gallery exhibit 12/02/24

62

Each memory slip featured a unique prompt, with
short instructions to help guide guests in
recounting their memories with vivid detail.

Guests took their memory slips to the microphone
positioned at the center of the gallery, where they
shared their stories aloud.

duncan anderson gallery exhibit 12/02/24

As they spoke, their stories came

to life on the projection screen.

64

duncan anderson gallery exhibit 12/02/24

Visitors watched each other’s stories come to life,
as the storyteller became a performer—shaping
what appeared on screen through the power of
their words.

66

Even without new input, the system continues to

evolve dynamically—generating shifting visual

interpretations of the last story and creating

multiple versions over time.

improvement
opportunities

Key Takeaways:

Participants valued the emotional
and reflective nature of the
experience.

Many expressed that the abstraction
helped preserve the subjective truth
of memory without imposing a
“correct” visual.

Some participants requested
smoother transitions and clearer
visual-intent mapping, particularly
during fast or layered visual changes.

05.02 feedback

Survey Highlight�
� Memory Slips: Avg. rating 4.5/5 — most participants

found them helpful in guiding story recal�
� Ease of Story Selection: Avg. 4.3/5 — prompts made it

easier to decide what to shar�
� Clarity of Visuals: Avg. 3.5/5 — some visuals lacked

clarity, but abstraction was often praise�
� Emotional Interpretation: Avg. 4.3/5 — abstract visuals

encouraged personal interpretatio�
� Memory Reflection Impact: Avg. 4/5 — visuals

enhanced participants’ engagement with their memory

68

promotional
materials

To effectively promote the Materealized exhibition, I
focused my marketing efforts on reaching key audiences,
including committee members, fellow design students, and
members of the broader academic and creative
community. To streamline RSVPs and centralize event
information, I created a personalized Partiful event link.
This digital tool simplified event management, enabled
real-time tracking of engagement, and helped ensure a
strong turnout from my target audience.

In preparation for the exhibition, I also developed a suite of
promotional materials, including poster assets, press
release documents, and pitch decks. These materials were
designed to communicate the project’s purpose, emotional
resonance, and technological innovation in a clear and
compelling way. By combining digital outreach with
professionally crafted promotional assets, I successfully
connected the exhibition with its intended audience,
fostering meaningful engagement and collecting valuable
feedback for future iterations of the project.

03.02 publicity & outreach

7
0

materealized’s impact
The exhibit successfully demonstrated the system’s
ability to translate personal narratives into emotionally
resonant, immersive experiences. It validated the
potential of Materealized as a tool not only for personal
reflection but for cultural education, empathy building,
and intergenerational storytelling. By engaging users in
the act of remembering through voice and witnessing
those memories come alive in real time, Materealized
offered a new model of digital cultural preservation that
was active, embodied, and participatory.

What’s next

The promising results from the exhibit point to
multiple opportunities for future development�

� Scalability: The system could be adapted for
mobile or web-based interaction to reach
broader audiences beyond gallery spaces�

� Multilingual Support: Integrating translation
and regional language models would allow a
wider range of diasporic communities to
participate in their native languages�

� Deeper Community Collaboration: Partnering
with cultural institutions, archives, and
community centers could enable more
intentional curation of memories and visuals�

� Expanded Visual Diversity: Training image
models on more culturally specific datasets
could improve the accuracy and richness of
future visualizations.

05.04 future development

72

NOTES

06

I would like to express my deepest gratitude to my committee
members—Michael LaForte, Alison Kowalski, Judith Samper, and
Kyle Macabasco—for their invaluable guidance and unwavering
support throughout this project. Your expertise, feedback, and
encouragement were instrumental in shaping Materealized into
what it has become.

A heartfelt thank you also goes to my incredible cohort members,
whose collaboration and feedback were essential in bringing this
vision to life. Special thanks to Shrey Patel for providing critical
documentation support throughout the process, and to Divya
Dhavala and Sofia Ingegno for their assistance during the
outreach and promotional phases. I am deeply grateful to
Maryann Dimatulac and Gileen Navarro for generously sharing
their stories and insights during the prototyping stage, helping
ground the project in lived experience.

This project would not have been possible without each of you.
Your contributions, support, and belief in this work made
Materealized a reality.

ACKNOWLEDGEMENTS

7
6

Assmann, Jan. “Collective Memory and Cultural Identity.” New
German Critique, no. 65, 1995, pp. 125–133.

Halbwachs, Maurice. On Collective Memory. Translated by
Lewis A. Coser, University of Chicago Press, 1992.

International Labour Organization. “Labour Migration in the
Philippines.” ILO.org, 2023, https://www.ilo.org.

Khurana, Palak. “Future of Human Memory.” Medium, 2020,
https://medium.com/@palakkhurana1912.

Marfleet, Philip. “Refugees and History: Why We Must Address
the Past.” Refugee Survey Quarterly, vol. 25, no. 2, 2006, pp.
52–65.

Phelps, Elizabeth A. “Human Emotion and Memory: Interactions
of the Amygdala and Hippocampal Complex.” Current Opinion
in Neurobiology, vol. 14, no. 2, 2004, pp. 198–202.

Porteous, J. Douglas, and Sandra E. Smith. Domicide: The
Global Destruction of Home. McGill-Queen’s University Press,
2001.

Queensland Brain Institute. “Memory: How We Make, Store and
Recall It.” qbi.uq.edu.au, University of Queensland, n.d.,
https://qbi.uq.edu.au.

World Bank. Philippine Migration Experience and Cases. 2023,
https://thedocs.worldbank.org.

Zhang, Weidi, and Rodger Luo. “Recollection.” zhangweidi.com,
2020, https://www.zhangweidi.com/works.

BIBLIOGrAPHY

https://www.ilo.org
https://medium.com/@palakkhurana1912/future-of-human-memory-speculative-design-for-2050-33ec5d9d90b2
https://qbi.uq.edu.au
https://thedocs.worldbank.org
https://www.zhangweidi.com/works

AI Image 1:
A wide of bombs destroying villages and

homes with people running , more smoke and bombs

materializing as a Y2k
futuristic point cloud aesthetic in

the style of an illustration against a white background --

ar 7:4

AI Image 2: A wide shot of 100 refugees standing

looking straight at the camera materializing as a Y2k

futuristic point cloud aesthetic in the style of an

illustration against a white background

AI Image 3: Memories materealizing as someone sees

food, photographs, and listening to music materializing

as a Y2k futuristic point cloud aesthetic in the style of

an illustration against a white background

AI Image 4: People's memories being triggered of india

from eating food and photographs of their homeland

materializing as a Y2k futuristic point cloud aesthetic in

the style of an illustration against a white background

AI Image 5: Immersive technology used to bridge the

gap between memories and fostering cultural

preservation and a sense of belonging materializing as a

Y2k futuristic point cloud aesthetic in the style of an

illustration against a white background

Human X Midjourney X ChatGPT

AI Image 6: A full body of a 34 old Filipina

communication strategist women hyper realistic against

a white background

AI Image 7: Variation Image 6, women walking to the

side

AI Image 8: Variation Image 6, women extreme closeup,

profile side of women’s face

AI Image 9: A low fidelity pen ink sketch of a large public

fun and playful interactive screen, with a person

standing in front of it and they see a memory of their

grandparents farming in the phillipines materializing as

point clouds.

AI Image 10: A wide shot of a granddaughter and a

grandparent looking at photos smiling in Philippines in

the style of a three dimensional rendering of the scene

materializing in a point cloud style against a black

background void

AI Image 11: close up of people laughing and smiling

buying things from the sari sari store in the Philippines

in the style of a three dimensional rendering of the

scene materializing in a point cloud style against a black

background void

78

import gc import os import torch from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import retrieve_latents from polygraphy import cuda from ...pipeline import StreamDiffusion from .builder
import EngineBuilder, create_onnx_path from .engine import AutoencoderKLEngine, UNet2DConditionModelEngine from .models import VAE, UNet, VAEEncoder class TorchVAEEncoder(torch.nn.Module): def __init__(self,
vae): super().__init__() self.vae = vae def forward(self, x): return retrieve_latents(self.vae.encode(x), torch.Generator()) def accelerate_with_tensorrt(stream: StreamDiffusion,
engine_dir: str, max_batch_size: int = 2, use_cuda_graph: bool = False, engine_build_options: dict = {},): text_encoder = stream.text_encoder unet = stream.unet vae = stream.vae del
stream.unet, stream.vae, stream.pipe.unet, stream.pipe.vae vae_config = vae.config vae_dtype = vae.dtype unet.to(torch.device("cpu")) vae.to(torch.device("cpu")) gc.collect()
torch.cuda.empty_cache() onnx_dir = os.path.join(engine_dir, "onnx") os.makedirs(onnx_dir, exist_ok=True) unet_engine_path = f"{engine_dir}/unet.engine" vae_encoder_engine_path = f"{engine_dir}/
vae_encoder.engine" vae_decoder_engine_path = f"{engine_dir}/vae_decoder.engine" unet_model = UNet(fp16=True, device=stream.device, max_batch_size=max_batch_size,
embedding_dim=text_encoder.config.hidden_size, unet_dim=unet.config.in_channels,) vae_decoder_model = VAE(device=stream.device, max_batch_size=max_batch_size) vae_encoder_model =
VAEEncoder(device=stream.device, max_batch_size=max_batch_size) if not os.path.exists(unet_engine_path): unet = unet.to(stream.device, dtype=torch.float16) builder = EngineBuilder(unet_model, unet,
device=stream.device) del unet builder.build(create_onnx_path("unet", onnx_dir, opt=False), create_onnx_path("unet", onnx_dir, opt=True), unet_engine_path,
**engine_build_options,) else: del unet if not os.path.exists(vae_decoder_engine_path): vae.forward = vae.decode vae = vae.to(stream.device) builder =
EngineBuilder(vae_decoder_model, vae, device=stream.device) builder.build(create_onnx_path("vae_decoder", onnx_dir, opt=False), create_onnx_path("vae_decoder", onnx_dir, opt=True),
vae_decoder_engine_path, **engine_build_options,) if not os.path.exists(vae_encoder_engine_path): vae_encoder = TorchVAEEncoder(vae).to(stream.device) builder =
EngineBuilder(vae_encoder_model, vae_encoder, device=stream.device) builder.build(create_onnx_path("vae_encoder", onnx_dir, opt=False), create_onnx_path("vae_encoder", onnx_dir,
opt=True), vae_encoder_engine_path, **engine_build_options,) del vae_encoder gc.collect() torch.cuda.empty_cache() del vae cuda_steram = cuda.Stream()
stream.unet = UNet2DConditionModelEngine(unet_engine_path, cuda_steram, use_cuda_graph=use_cuda_graph) stream.vae = AutoencoderKLEngine(vae_encoder_engine_path, vae_decoder_engine_path,
cuda_steram, stream.pipe.vae_scale_factor, use_cuda_graph=use_cuda_graph,) setattr(stream.vae, "config", vae_config) setattr(stream.vae, "dtype", vae_dtype) gc.collect()
torch.cuda.empty_cache() return stream

‎src/streamdiffusion/acceleration/tensorrt/builder.pyCopy file name to clipboard+94Original file line numberDiff line numberDiff line change @@ -0,0 +1,94 @@ import gc import os from typing import * import torch from
.models import BaseModel from .utilities import (build_engine, export_onnx, optimize_onnx,) def create_onnx_path(name, onnx_dir, opt=True): return os.path.join(onnx_dir, name + (".opt" if opt else
"") + ".onnx") class EngineBuilder: def __init__(self, model: BaseModel, network: Any, device=torch.device("cuda"),): self.device = device self.model = model
self.network = network def build(self, onnx_path: str, onnx_opt_path: str, engine_path: str, opt_image_height: int = 512, opt_image_width: int = 512,
opt_batch_size: int = 1, min_image_resolution: int = 256, max_image_resolution: int = 1024, build_enable_refit: bool = False, build_static_batch: bool = False,
build_dynamic_shape: bool = False, build_all_tactics: bool = False, onnx_opset: int = 17, force_engine_build: bool = False, force_onnx_export: bool = False, force_onnx_optimize:
bool = False,): if not force_onnx_export and os.path.exists(onnx_path): print(f"Found cached model: {onnx_path}") else: print(f"Exporting model: {onnx_path}")
export_onnx(self.network, onnx_path=onnx_path, model_data=self.model, opt_image_height=opt_image_height, opt_image_width=opt_image_width,
opt_batch_size=opt_batch_size, onnx_opset=onnx_opset,) del self.network gc.collect() torch.cuda.empty_cache() if not force_onnx_optimize and
os.path.exists(onnx_opt_path): print(f"Found cached model: {onnx_opt_path}") else: print(f"Generating optimizing model: {onnx_opt_path}") optimize_onnx(
onnx_path=onnx_path, onnx_opt_path=onnx_opt_path, model_data=self.model,) self.model.min_latent_shape = min_image_resolution // 8 self.model.max_latent_shape
= max_image_resolution // 8 if not force_engine_build and os.path.exists(engine_path): print(f"Found cached engine: {engine_path}") else: build_engine(
engine_path=engine_path, onnx_opt_path=onnx_opt_path, model_data=self.model, opt_image_height=opt_image_height, opt_image_width=opt_image_width,
opt_batch_size=opt_batch_size, build_static_batch=build_static_batch, build_dynamic_shape=build_dynamic_shape, build_all_tactics=build_all_tactics,
build_enable_refit=build_enable_refit,) gc.collect() torch.cuda.empty_cache()

‎src/streamdiffusion/acceleration/tensorrt/engine.pyCopy file name to clipboard+123Original file line numberDiff line numberDiff line change @@ -0,0 +1,123 @@ from typing import * import torch from
diffusers.models.autoencoder_tiny import AutoencoderTinyOutput from diffusers.models.unet_2d_condition import UNet2DConditionOutput from diffusers.models.vae import DecoderOutput from polygraphy import cuda from
.utilities import Engine class UNet2DConditionModelEngine: def __init__(self, filepath: str, stream: cuda.Stream, use_cuda_graph: bool = False): self.engine = Engine(filepath) self.stream = stream
self.use_cuda_graph = use_cuda_graph self.engine.load() self.engine.activate() def __call__(self, latent_model_input: torch.Tensor, timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor, **kwargs,) -> Any: if timestep.dtype != torch.float32: timestep = timestep.float() self.engine.allocate_buffers(shape_dict={
"sample": latent_model_input.shape, "timestep": timestep.shape, "encoder_hidden_states": encoder_hidden_states.shape, "latent": latent_model_input.shape, },
device=latent_model_input.device,) noise_pred = self.engine.infer({ "sample": latent_model_input, "timestep": timestep,
"encoder_hidden_states": encoder_hidden_states, }, self.stream, use_cuda_graph=self.use_cuda_graph,)["latent"] return UNet2DConditionOutput(sample=noise_pred)
def to(self, *args, **kwargs): pass def forward(self, *args, **kwargs): pass class AutoencoderKLEngine: def __init__(self, encoder_path: str, decoder_path: str,
stream: cuda.Stream, scaling_factor: int, use_cuda_graph: bool = False,): self.encoder = Engine(encoder_path) self.decoder = Engine(decoder_path) self.stream = stream
self.vae_scale_factor = scaling_factor self.use_cuda_graph = use_cuda_graph self.encoder.load() self.decoder.load() self.encoder.activate() self.decoder.activate() def
encode(self, images: torch.Tensor, **kwargs): self.encoder.allocate_buffers(shape_dict={ "images": images.shape, "latent": (images.shape[0],
4, images.shape[2] // self.vae_scale_factor, images.shape[3] // self.vae_scale_factor,), }, device=images.device,)
latents = self.encoder.infer({"images": images}, self.stream, use_cuda_graph=self.use_cuda_graph,)["latent"] return AutoencoderTinyOutput(latents=latents) def
decode(self, latent: torch.Tensor, **kwargs): self.decoder.allocate_buffers(shape_dict={ "latent": latent.shape, "images": (latent.shape[0],
3, latent.shape[2] * self.vae_scale_factor, latent.shape[3] * self.vae_scale_factor,), }, device=latent.device,) images
= self.decoder.infer({"latent": latent}, self.stream, use_cuda_graph=self.use_cuda_graph,)["images"] return DecoderOutput(sample=images) def to(self, *args,
**kwargs): pass def forward(self, *args, **kwargs): pass

‎src/streamdiffusion/acceleration/tensorrt/models.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/acceleration/tensorrt/models.py+428 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/acceleration/tensorrt/utilities.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/acceleration/tensorrt/utilities.py+441 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/image_utils.pyCopy file name to clipboard+89Original file line numberDiff line numberDiff line change @@ -0,0 +1,89 @@ from typing import * import numpy as np import PIL.Image import torch import
torchvision def denormalize(images): """ Denormalize an image array to [0,1]. """ return (images / 2 + 0.5).clamp(0, 1) def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray: """ Convert
a PyTorch tensor to a NumPy image. """ images = images.cpu().permute(0, 2, 3, 1).float().numpy() return images def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image: """ Convert a numpy image or
a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for
grayscale (single channel) images pil_images = [PIL.Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [PIL.Image.fromarray(image) for image in images] return
pil_images def postprocess_image(image: torch.FloatTensor, output_type: str = "pil", do_denormalize: Optional[List[bool]] = None,): # TODO: if文消してもいいかも。 if not isinstance(image,
torch.Tensor): raise ValueError(f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor") if output_type == "latent": return image
TODO: classにして、initで前処理しておいてもいいかも。 do_normalize_flg = True if do_denormalize is None: do_denormalize = [do_normalize_flg] * image.shape[0] image = torch.stack([denormalize(image[i])
if do_denormalize[i] else image[i] for i in range(image.shape[0])]) if output_type == "pt": return image image = pt_to_numpy(image) if output_type == "np": return image if
output_type == "pil": return numpy_to_pil(image) def process_image(image_pil: PIL.Image.Image, range: Tuple[int, int] = (-1, 1)): image = torchvision.transforms.ToTensor()(image_pil) r_min, r_max =
range[0], range[1] image = image * (r_max - r_min) + r_min return image[None, ...], image_pil def pil2tensor(image_pil: PIL.Image.Image) -> torch.Tensor: height = image_pil.height width =
image_pil.width imgs = [] img, _ = process_image(image_pil) imgs.append(img) imgs = torch.vstack(imgs) images = torch.nn.functional.interpolate(imgs, size=(height, width), mode="bilinear")
image_tensors = images.to(torch.float16) return image_tensors

‎src/streamdiffusion/pip_utils.pyCopy file name to clipboard+52Original file line numberDiff line numberDiff line change @@ -0,0 +1,52 @@ import importlib import importlib.util import os import subprocess import sys
from typing import * from packaging.version import Version python = sys.executable index_url = os.environ.get("INDEX_URL", "") def version(package: str) -> Optional[Version]: try: return
Version(importlib.import_module(package).__version__) except ModuleNotFoundError: return None def is_installed(package: str) -> bool: try: spec = importlib.util.find_spec(package) except
ModuleNotFoundError: return False return spec is not None def run_python(command: str, env: Dict[str, str] = None) -> str: run_kwargs = { "args": f"{python} {command}", "shell": True,
"env": os.environ if env is None else env, "encoding": "utf8", "errors": "ignore", } print(run_kwargs["args"]) result = subprocess.run(**run_kwargs) if result.returncode != 0:
print(f"Error running command: {command}", file=sys.stderr) raise RuntimeError(f"Error running command: {command}") return result.stdout or "" def run_pip(command: str, env: Dict[str, str] = None) ->
str: return run_python(f"-m pip {command}", env)

‎src/streamdiffusion/pipeline.pyCopy file name to clipboardExpand all lines: src/streamdiffusion/pipeline.py+89-287 Load DiffLarge diffs are not rendered by default.

‎src/streamdiffusion/tools/install-tensorrt.pyCopy file name to clipboard+44Original file line numberDiff line numberDiff line change @@ -0,0 +1,44 @@ from typing import * import fire from packaging.version import
Version from ..pip_utils import is_installed, run_pip, version def get_cuda_version_from_torch() -> Optional[Literal["11", "12"]]: try: import torch except ImportError: return None
return torch.version.cuda.split(".")[0] def install(cu: Optional[Literal["11", "12"]] = get_cuda_version_from_torch()): if cu is None or cu not in ["11", "12"]: print("Could not detect CUDA version.
Please specify manually.") return print("Installing TensorRT requirements...") if is_installed("tensorrt"): if version("tensorrt") < Version("9.0.0"): run_pip("uninstall -y
tensorrt") cudnn_name = f"nvidia-cudnn-cu{cu}==8.9.4.25" if not is_installed("tensorrt"): run_pip(f"install {cudnn_name} --no-cache-dir") run_pip("install --pre --extra-index-url https://
pypi.nvidia.com tensorrt==9.0.1.post11.dev4 --no-cache-dir") if not is_installed("polygraphy"): run_pip("install polygraphy==0.47.1 --extra-index-url https://pypi.ngc.nvidia.com") if not
is_installed("onnx_graphsurgeon"): run_pip("install protobuf==3.20.2") run_pip("install onnx-graphsurgeon==0.3.26 --extra-index-url https://pypi.ngc.nvidia.com") pass if __name__ == "__main__":
fire.Fire(install)

What memories do you cherish

	1.1 Cover Back
	1.2 Cover Front
	1.3 Signature Page 1
	1.4 Signature Page 2
	1.5 Abstract
	1.6 Table of Contents
	1.7 Overview
	1.8 Design Challenge
	1.9 Mission
	1.10 Thesis Project Statement
	1.11 Thesis Project Statement
	1.12 Thesis Project Statement
	2.1 Discover Section
	2.2 Discover Section
	2.3 Background
	2.4 Background
	2.5 Background
	2.6 Background
	2.7 Background
	2.8 Background
	2.9 Background
	2.10 Background
	2.11 Background
	2.12 Background
	2.13 Background
	2.14 Background
	2.15 Background
	2.16 Background
	2.17 Background
	2.18 Background
	3.1 Define Section
	3.2 Define Section
	3.3 Define Section
	3.4 Define Section
	3.5 Define Section
	3.6 Define Section
	3.7 Define Section
	3.8 Define Section
	3.9 Define Section
	3.10 Define Section
	4.1 Discover Section
	4.2 Discover Section
	4.3
	4.4
	4.5
	4.6
	4.7
	4.8
	4.9
	4.10
	4.11
	4.12
	4.13
	4.14
	4.15
	4.16
	4.17
	4.18
	4.19
	4.20
	4.21
	4.222
	5.1 deliver
	5.2 deliver
	5.3 deliver
	5.4
	5.5
	5.6
	5.7
	5.8
	5.9
	5.10
	5.11
	5.12
	5.13
	5.14
	5.15
	5.16
	06.1 Notes
	06.2 Notes
	06.3 Notes
	06.4 Notes
	06.5 Notes
	06.6 Notes

