
The mathematical theory of a higher-order geometrically-exact beam
with a deforming cross-section

Mayank Chadha ⇑, Michael D. Todd
Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0085, USA

a r t i c l e i n f o

Article history:
Received 11 January 2020
Received in revised form 17 April 2020
Accepted 3 June 2020
Available online 4 July 2020

Keywords:
Coupled Poisson’s and warping effect
Variational formulation
Geometrically-exact beam
Large deformations
Finite element formulation

a b s t r a c t

This paper investigates the variational formulation and numerical solution of a higher-order, geometri-
cally exact Cosserat type beam with deforming cross-section, instigated from generalized kinematics pre-
sented in earlier works. The generalizations include the effects of a fully-coupled Poisson’s and warping
deformations in addition to other deformation modes from Simo-Reissner beam kinematics.
The kinematics at hand renders the deformation map to be a function of not only the configuration of

the beam but also elements of the tangent space of the beam’s configuration (axial strain vector, curva-
ture, warping amplitude, and their derivatives). While this complicates the process of deriving the bal-
ance laws and exploring the variational formulation of the beam, the completeness of the result makes
it worthwhile. The weak and strong form are derived for the dynamic case considering a general bound-
ary.
We restrict ourselves to a linear small-strain elastic constitutive law and the static case for numerical

implementation. The finite element modeling of this beam has higher regularity requirements. The
matrix (discretized) form of the equation of motion is derived. Finally, numerical simulations comparing
various beam models are presented.

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The development of the beam/rod theories idealized by a space
curve goes back to two and half centuries ago and was instrumen-
tal in accelerating the second industrial revolution (Euler and
Truesdell, 1960). Interestingly, further development of beam the-
ory continues to date. The advanced and versatile applications of
beam theory to numerous areas such as the deformation of bio-
polymers (Travers and Thompson, 2004; Manning et al., 1996), bio-
logical structures (Klapper, 1996), shape-sensing (Todd et al., 2013;
Chadha and Todd, 2016, 2017b,c), robotics, multi-body dynamics
(Lang et al., 2011), composite structures (Hodges, 2006), contact
problems (Meier et al., 2018), thermal problems (Green and
Naghdi, 1979; Altenbach et al., 2012), micro and nanostructures
used in MEMS and NEMS etc., necessitates further development
and refinement of this theory. We first perform a relevant litera-
ture review in the next few paragraphs.

Duhem (1893) and Darboux (1894) investigated a kinematic
idea that provided a sense of rotation to any material point, such

that a point in the object not only has a position vector associated
with it but also has an attached triad that assigns a sense of rota-
tion to these material points. It was Cosserat and Cosserat (1909)
who conceived the idea of moving frames to capture geometrically
exact non-linear deformation of the beams (and shells) using
framed space curve. Ericksen and Truesdell Ericksen and
Truesdell (1957) generalized the Cosserat brother’s work to
develop a non-linear theory of rods and shells for finite strain.
Some of the prominent investigations and research on theory of
rods include (Hay, 1942; Cohen, 1966; Whitman and DeSilva,
1969; Green et al., 1974a,b; Antman, 1974; Antman and Jordan,
1975; Argyris, 1982; Argyris and Symeonidis, 1980a; Argyris and
Symeonidis, 1980b; Reissner, 1972, 1973; Simo, 1985). The devel-
opments in the beam theory in the last century are summarized in
Ericksen and Truesdell (1957), Yang et al. (2003) and Chadha and
Todd (2017a).

Among these seminal contributions, the work by Reissner was
the first major leap forward towards the geometrically-exact beam
theory, when he extended Kirchhoff–Love beam theory (Love,
2013) to also capture shear deformation in addition to bending
and torsion in 2D (Reissner, 1972) and 3D (Reissner, 1981). The
prominent work by Simo, 1985 extended Reissner’s beam to 3D
(with geometric-exactness preserved) in the setting of differential
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geometry (now called Simo-Reissner beam theory). Many papers
were published in the same time period concerning finite element
formulation of geometrically-exact beams, the primary contribu-
tors being: Simo et al. (Simo, 1985; Simo and Hughes, 1986;
Simo and Vu-Quoc, 1986, 1988); Iura et al. (Iura and Atluri,
1988a,b); Cardona et al. (Cardona and Géradin, 1988); Ibrahimbe-
govic (Ibrahimbegović, 1995). These papers considered linearly
elastic material and addressed both static and dynamic cases, but
they presented different approaches to time-stepping schemes
and updating rotation vector: Eulerian (Simo and Hughes, 1986;
Simo and Vu-Quoc, 1988), updated Lagrangian (Cardona and
Géradin, 1988), and total Lagrangian (Ibrahimbegović, 1995; Iura
and Atluri, 1988b). Since these papers got published, research tack-
ling the theoretical and computational techniques gained momen-
tum and the advanced research in this field continues to occur till
date, for examples: problems related to discretization and interpo-
lation approaches (Zupan and Saje, 2003; Zupan and Zupan, 2018;
Crisfield and Jelenic, 1983; Borkovic et al., 2018; Chadha and Todd,
2019; Sander, 2010; Sonneville et al., 2014), mixed formulation (Li
et al., 2017), non-linear materials and constitutive law (Mata et al.,
2007, 2008; Arora et al., 2019; Pimenta et al., 2008), space and
time-integration schemes (Simo et al., 1995; Demoures et al.,
2014; Romero and Armero, 2002), initially curved configuration
(Kapania and Li, 2003; Chadha and Todd, 2017a), higher-order
Kirchhoff–love beam (Boyer et al., 2011; Meier et al., 2019; Greco
and Cuomo, 2013), and enhanced kinematics (Simo and Hughes,
1986; Sokolov et al., 2015; Yiu, 2005; Chadha and Todd, 2019).
Noteworthy contributions to computational formulation of
geometrically-exact beam including shear deformation and their
applications (e.g., multi-body dynamics of earth orbiting satellites)
was made by Vu-Quoc in collaboration with Simo (Vu-Quoc, 1986;
Vu-Quoc and Simo, 1987; Simo and Vu-Quoc, 1987). Simo and Vu-
Quoc (Simo and Vu-Quoc, 1991) extended their previous work
(Simo, 1985; Simo and Vu-Quoc, 1986) to incorporate warping
using a Saint–Venant warping function. McRobie and Lasenby
(1999) presented an alternative derivation of the Simo Vu-Quoc
beam by using Clifford or geometric algebra for both derivation
and numerical implementation. A very recent paper by Carrera
and Zozulya (2019) gives Carrera Unified Formulation (CUF) for
the micropolar beams.

Our recent work Chadha and Todd (2019) investigated and
refined the kinematics of Cosserat beams. This development incor-
porated a fully coupled Poisson’s and warping effect along with the
classical deformation effects like bending, torsion, shear, and axial
deformation for the case of finite displacement and strain; it thus
allowed us to capture a three dimensional, multi-axial strain fields
using single-manifold kinematics. Numerous works on shear based
deformation are founded on Timoshenko’s beam theory that
assumes a uniform shear strain distribution restricting the cross-
section to remain planar. However, the kinematics developed in
Chadha and Todd (2019) also considers non-uniform shear defor-
mation due to bending-induced shear. For such beam kinematics,
we first focus our attention on performing a step-by-step analysis
of the balance laws and the variational formulation of the beam.
Unlike the traditional geometrically-exact beam theory where
the deformation map is a function of the differential invariants
(curvatures) of a framed curve, the work presented in Chadha
and Todd (2019) considers a deformation map that also depends
on the higher-order derivatives of the curvatures and mid-curve
strains due to the inclusion of a fully coupled Poisson’s and warping
effect. This makes the process of obtaining a variation of these
quantities challenging. We observe that the theory converges to
the one presented in Simo and Vu-Quoc (1991) if we ignore the
Poisson’s effect and bending induced non-uniform shear. To
numerically solve the system, we restrict this paper to static case
and utilize a multiaxial linear material constitutive law valid for

large deformation but limited to small strains, thus relating the
reduced forces to their corresponding finite strain counterpart (in
addition to the mid-curve axial strain, curvature, and warping
amplitude, we also have their derivatives). Linearization of the
weak form is detailed and is followed by matrix formulation of
the equation of motion. For simplicity, we assume displacement-
prescribed boundary conditions. We update the rotation tensor
in an Eulerian sense using an incremental current rotation vector.
We obtain and update curvature and its derivatives using the
results presented in another recent paper (Chadha and Todd,
2019a).

Section 2–5 details the kinematics and variational formulation,
whereas, the Sections 6–9 deals with the discussion of constitutive
law and numerical formulation. In Section 2, we summarize the
kinematics detailed in Chadha and Todd (2019). In Section 3, we
obtain the variation of quantities required for derivation of field
equations. In Sections 4 and 5, we derive the governing equations.
Section 6 discusses the multi-axial linearly elastic constitutive law
considering large deformation but small strain. Section 7 describes
the finite element formulation for static case, and Section 8 illus-
trates numerical examples. Finally, Section 9 concludes the paper.

2. Comprehensive kinematics and mathematical tools

We first present some preliminary definitions and notations:
the dot product, ordinary vector product, and tensor product of
two Euclidean vectors v1 and v2 are defined as v1 � v2 ¼
vT

1v2;v1 � v2, and v1 � v2 respectively. The Euclidean norm is rep-
resented by k:k or the un-bolded version of the symbol (for exam-
ple, kvk � v). The nth order partial derivative with respect to a
scalar, n1 for instance, is given by the operator @n

n1
, with @1

n1
� @n1 .

A vector, a tensor or a matrix is represented by bold symbol and
their components are given by indexed un-bolded symbols. The
action of a tensor A onto the vector v is represented by
Av � A:v . The contraction between two tensors A and B is given

by A : B ¼ AijBij ¼ trace BT :A
� �

. We note that the centered dot ‘‘�”
is meant for dot product between two vectors, whereas the action
of a tensor onto the vector, the matrix multiplication or product of
a scalar to a matrix (or a vector) is denoted by a lower dot ‘‘.”. Vec-
tors when expressed in array form are columnar in nature. Vertical
concatenation of n vectors (for example, of dimension 3� 1)
v1;v2; . . . ;vn is represented by the vector v1;v2; . . . ;vn½ � (of
dimension 3n� 1). The n dimensional Euclidean space is repre-
sented by Rn, with R1 ¼ R, with Rþ denoting the set of positive real
numbers (including 0). The diagonal matrix, for example, consist-
ing of the diagonal elements (a; b; c) is denoted by
diagonal a; b; c½ �. Finally, 03; I3 represents 3� 3 zero matrix and
the identity matrix respectively. The zero vector is defined as
01 ¼ 0;0;0½ �.

In this section, we shall briefly review the concepts and kine-
matics discussed in Chadha and Todd (2019) to establish continu-
ity in the write-up.

2.1. Deformation map and configuration of the beam

Let an open set X0 � R3 and X � R3 with at least piecewise
smooth boundaries S0 and S represent the undeformed and
deformed configuration of the beam respectively. The beam config-
uration is described by the mid-curve and a family of cross-
sections. To lay the kinematic description of a beam, we assume
the undeformed configuration X0 to be straight.

Let the fixed orthonormal reference basis be represented by Eif g
with origin at 0; 0;0ð Þ. The regular curve u0 : 0; L½ ��!R3 represents
the mid-curve associated with X0. It is parameterized by the
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arc-length n1 2 0; L½ �. We assume that the undeformed configura-
tion is made up of continuously varying plane family of cross-
sections B0 n1ð Þ, such that u0 ¼ n1E1 is the locus of geometric cen-
troid of the family of cross-sections B0 n1ð Þ. The cross-section
B0 n1ð Þ is spanned by the vectors E2 � E3 originating at u0 n1ð Þ such
that n2; n3ð Þ 2 B0 n1ð Þ. Let C0 n1ð Þ represent the peripheral boundary
of B0 n1ð Þ, such that S0 ¼ B0 0ð Þ [ B0 Lð Þ[8n1C0 n1ð Þ. Any material
point in the beam is defined by its material coordinate n1; n2; n3ð Þ
with a position vector R0 ¼ niEi.

In order to proceed further, we first define the deformed config-
uration X1 of the beam restrained by rigid cross-section constraint.
The configuration X1 is defined by a regular mid-curve u n1ð Þ and a
family of plane cross-sections B1 n1ð Þ, parameterized by the unde-
formed arc-length n1. Equivalently, the mid-curve u s n1ð Þð Þ and a
family of plane cross-sections B1 s n1ð Þð Þ are reparametrized by the
deformed arc-length s, such that n1 ¼ n1 sð Þ is at least C1 continuous
and @sn1 – 0. The director frame field di n1ð Þf g defines the orienta-
tion of the cross-section B1 s n1ð Þð Þ. We have, B1 n1ð Þ ¼

n2; n3ð Þ 2 R2
n1

n o
, where R2

n1
is 2D Euclidean space spanned by the

directors d2 n1ð Þ � d3 n1ð Þ, with origin at u n1ð Þ. We define the defor-
mation map /1 : R0 2 X0#R1 2 X1, such that

/1 R0ð Þ ¼ R1 ¼ u n1ð Þ þ r1; ð1aÞ
r1 ¼ n2d2 þ n3d3: ð1bÞ

The deformed configuration X2 is defined by the mid-curve
u n1ð Þ and non-planar family of warped cross-section B2 n1ð Þ � R3

n1
,

where R3
n1

is the 3D Euclidean space spanned by the director triad
di n1ð Þf g originating at u n1ð Þ. The deformation map
/2 : R0 2 X0#R2 2 X2 is then defined as

/2 R0ð Þ ¼ R2 ¼ u n1ð Þ þ n2d2 n1ð Þ þ n3d3 n1ð Þ þW n1; n2; n3ð Þd1 n1ð Þ:
ð2Þ

In the equation above, W n1; n2; n3ð Þ denotes the warping func-
tion. Simo and Vu-Quoc (1991) investigated Cosserat beam sub-
jected to Saint–Venant’s warping such that W n1; n2; n3ð Þ ¼

p n1ð ÞW n2; n3ð Þ, where p n1ð Þ gives warping amplitude and W n2; n3ð Þ
is the warping function obtained by solving the corresponding
Neumann boundary value problem defined by Eq. [13] of Simo
and Vu-Quoc (1991). Chadha and Todd (2019) proposed a modified
warping function that includes warping due to bending induced
shear and non-uniform torsion in asymmetric cross-section (refer
to Section 2.3, 2.4, and the appendix of Chadha and Todd (2019)).
It is discussed in Section 2.4.

The final deformed state X defined by the mid-curve u and a

family of cross-section B n1ð Þ ¼ W; n̂2; n̂3
� �

2 R3
n1
. It incorporates a

fully coupled Poisson’s and warping effect. The deformation map
for X is given by / : R0 2 X0#R 2 X, such that

/ R0ð Þ ¼ R ¼ u n1ð Þ þ r;

r ¼ n̂2d2 n1ð Þ þ n̂3d3 n1ð Þ þWd1 n1ð Þ: ð3Þ

Here, the vector r gives the position vector of a material point n2; n3ð Þ
in the deformed cross-section B n1ð Þ with respect to the point u n1ð Þ.
Let C n1ð Þ represent the boundary of cross-section B n1ð Þ, such that

S ¼ B 0ð Þ [ B Lð Þ[8n1C n1ð Þ. The coordinates n̂2; n̂3
� �

are obtained by

Poisson’s transformation Pn1 : n2; n3ð Þ 2 B1# n̂2; n̂3
� �

2 B3, such that

n̂i ¼ 1� m k21 � d1
� �� �

ni for i ¼ 2;3: ð4Þ
In the equation above, m represents Poisson’s ratio and is

assumed to be a constant (homogeneous material). The quantity
k21 is the first strain vector of the deformed configuration X2

defined in Eq. (15). Therefore, k21 � d1 essentially gives the longitudi-
nal strain along d1 at the material point n1; n2; n3ð Þ in the deformed
state X2. Fig. 1 illustrates various configurations described so far.

2.2. Rotation and finite strain parameters

2.2.1. Axial strain vector
The midcurve axial strain e n1ð Þ, and the three shear angles

c11 n1ð Þ; p2 � c12 n1ð Þ, and p
2 � c12 n1ð Þ subtended by the directors

Fig. 1. Schematic diagram illustrating geometric description of various deformed configurations.
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d1; d2, and d3 with the tangent vector @su to the deformed mid-
curve u are defined as

e ¼ ds�dn1
dn1

) dn1
ds ¼ 1

1þe ;

@su � di ¼
cos c1i; for i ¼ 1
sin c1i; for i ¼ 2;3

� �
:

ð5Þ

This leads us to the definition of axial strain vector e as

e ¼ @n1u� d1 ¼ eidi ¼ eiEi: ð6Þ
As in the equation above, the components of a vector v in Eif g

and dif g is denoted as v ¼ v iEi ¼ v idi.

2.2.2. Finite rotation and curvature
The director triad dif g is related to the fixed reference triad Eif g

by means of an orthogonal tensor Q 2 SO 3ð Þ, such that

di ¼ Q :Ei ) Q ¼ di � Ei: ð7Þ
Finite rotations are represented by an element of a proper orthogo-
nal rotation (Lie) group SO 3ð Þ with its Lie algebra so 3ð Þ (refer to
Chadha and Todd, 2019a). The rotation tensor can be parameterized
by a rotation vector h 2 R3 by means of exponential map
exp : so 3ð Þ�!SO 3ð Þ. The local homeomorphism of exp map in the
neighborhood of identity I3 2 SO 3ð Þ for h 2 0;p½ Þ, guarantees the
existence of a unique inverse of exponential map in the neighbor-
hood of I3 2 SO 3ð Þ, called the logarithm map log : SO 3ð Þ�!so 3ð Þ,
such that

Q hð Þ ¼ exp ĥ
� �

: ð8aÞ

log Q hð Þð Þ ¼ log exp ĥ
� �� �

¼ ĥ 2 so 3ð Þ; with k log Q hð Þð Þk ¼ h:ð8bÞ

From here on, any matrix quantity with a hat on it (.̂) represents an
anti-symmetric matrix. The equation above allows us to evaluates
the deviation between two rotation tensors, say the approximated

rotation tensor Q h and the exact rotation tensor Q , by measuring
the length of the geodesic between them, such that the error
Q error is quantified as

Q ¼ Q error:Q
h;

eQ ¼ k log Q errorð Þk 2 0;p½ Þ: ð9Þ

For any â; b̂ 2 so 3ð Þ, we define the Lie-bracket as
:; :½ � : so 3ð Þ � so 3ð Þ�!R3, such that:

â; b̂
h i

¼ â:b̂� b̂:â
� �

: ð10Þ

It is important to understand the derivative of director triad as
it defines local change of the triad. We have

@n1di ¼ @n1Q :Ei ¼ @n1Q :Q T :di ¼ ĵ:di: ð11Þ

Here, ĵ ¼ @n1Q :Q T represents the curvature tensor. It is an anti-
symmetric matrix with the corresponding axial vector j ¼ jidi,
known as curvature vector. We define TQSO 3ð Þ as the tangent plane
of non-linear SO 3ð Þ manifold, such that @n1Q ¼ ĵ:Q 2 TQSO 3ð Þ. We
note that so 3ð Þ ¼ T I3SO 3ð Þ, i.e., the tangent space of SO 3ð Þ at the

identity. We define the material curvature ĵ ¼ Q T :ĵ:Q ¼
Q T :@n1Q 2 so 3ð Þ obtained by parallel transport of ĵ:Q from
TQSO 3ð Þ�!so 3ð Þ. Let j and j represent the axial vector correspond-

ing to the anti-symmetric matrix ĵ and ĵ respectively. It can then
be proven that j ¼ Q T :j such that if j ¼ jidi, then j ¼ jiEi. Refer
to Section 2.2 of (Chadha and Todd, 2019a) for better understanding
of material and spatial curvature; and left-invariant and right-

invariant tangent vector fields. We call the quantities ĵ and j as
material representation; and ĵ and j as spatial representation of

the curvature tensor and the curvature vector respectively. Like cur-
vature tensor, we can have material form of other quantities like
deformation gradient tensor, angular velocity etc. For instance,
the material form of axial strain vector and cross-section position
vectors (r1 andr) isgiven by e ¼ Q T :e; r1 ¼ Q T :r1; and r ¼ Q T :r
respectively. From here on, we recognize any material vector or ten-
sor with a bar �:ð Þ over it.

Finally, consider a spatial and material vector v ¼ v idi ¼ v iEi

and v ¼ v iEi respectively, such that v ¼ Q :v . The derivative of
these vectors are obtained as

@n1v ¼ @n1v i:di þ v i:@n1di ¼ ~@n1v þ j� v ;
@n1v ¼ @n1v i:Ei ¼ Q T : ~@n1v :

ð12Þ

In the equation above, ~@n1v defines co-rotational derivative of spa-
tial vector v . It essentially gives the change in components of the
vector v , provided the frame of reference is assumed to be fixed.
Along similar lines, the co-rotational derivative of the tensor A is
defined as ~@n1A ¼ Q :@n1A:Q

T , more detail of which can be found in

Section 2.2.4 of Chadha and Todd (2019a). From here on, ~@x :ð Þ
denotes the co-rotational derivative of quantity :ð Þwith respect to x.

2.3. Deformation gradient tensor and strain vectors

The deformation gradient tensor F of the final deformed state X
referenced to X0 can be defined (refer to Eq. (30) of Chadha and
Todd (2019)) as,

F ¼ @niR� Ei ¼ ki þ dið Þ � Ei ¼ ki � Eið Þ þ Q ¼ H þ Q : ð13Þ
It consist of two parts: change in infinitesimal tangent vector by vir-
tue of rotation (change in direction) and straining (change in mag-
nitude). Readers are referred to Section 3 of Chadha and Todd
(2019) for detailed interpretation of strain vector ki. The expression
of strain vector ki is obtained in Eq. (35) of Chadha and Todd (2019).
The material form of strain vectors ki and the deformation gradient
tensor F are given by the following

ki ¼ Q T :ki ¼ Q T :@n1R� Ei; ð14aÞ
F ¼ ki � Ei þ I3 ¼ H þ I3 ¼ Q :F:I3 ¼ Q :F: ð14bÞ

The quantities H ¼ ki � Ei and H ¼ ki � Ei gives spatial and material
form of strain tensor respectively.

2.4. Revisiting the deformation map /

The strain vector k21 is crucial in defining the Poisson’s transfor-
mation as seen in Eq. (4). We recall that the quantity k21 is the first
strain vector of the deformed configuration X2, such that k21 � d1

essentially gives the longitudinal strain along d1 at the material
point n1; n2; n3ð Þ in the deformed state X2. We can obtain the
expression of k2i from the expression of ki as

k21 ¼ k1jn̂j!nj
¼ eþ n3:@n1d3 þ n2:@n1d2 þ @n1W:d1 þW:@n1d1
� �

;

k21:d1 ¼ e1 þ n3j2 � n2j3 þ @n1W
� �

:

ð15Þ
To maintain the single-manifold character of Cosserat beams, it

is necessary to pre-define the cross-sectional deformation depen-
dences upon the Poisson’s and warping effects. We briefly discuss
the warping function W. In Chadha and Todd (2019), we arrived at
the governing differential equation (Eqs. (68a) and (68b) of Chadha
and Todd (2019)) for warping for an asymmetrical beam cross-
section subjected to the curvature and axial strains for the linear
case the solution of which yielded W in a variable separable form
as the following
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W n1; n2; n3ð Þ ¼
X1
n¼0

@2n
n1
j1:W1 2nð Þ þ @2nþ1

n1
j2:W2 2nþ1ð Þ

þ @2nþ1
n1

j3:W3 2nþ1ð Þ: ð16Þ
Proposing this form of warping function was inspired by the work
of Brown and Burgoyne (Brown and Burgoyne, 1994; Burgoyne
and Brown, 1994). The cross-section dependent warping functions
in Eq. (16) (like W10;W12; . . . ;W21;W23; . . .) can be obtained by solv-
ing the set of governing differential equation discussed in appendix
6.1.4 of Chadha and Todd (2019). Higher-order derivatives of j1

take care of non-uniform torsion (unlike Saint Venant’s warping)
whereas higher-order derivatives of jj (j ¼ 2;3) capture bending-
induced non-uniform shear deformation (unlike Timoshenko’s uni-
form shear). We assume that the contribution of higher-order
derivative > 1ð Þ of curvatures to warping is negligible. Thus, to facil-
itate the computation of governing field equations, we consider a
simplified warping function for this paper

W n1; n2; n3ð Þ ¼ p n1ð ÞW1 n2; n3ð Þ þ @n1j2:W2 n2; n3ð Þ
þ @n1j3:W3 n2; n3ð Þ

¼ p n1ð ÞW1 n2; n3ð Þ þ @n1j �W23: ð17Þ
In the equation above, W23 ¼ W2 n2; n3ð ÞE2 þW3 n2; n3ð ÞE3 and
@n1j ¼ @n1ji:Ei. For the sake of computation, the cross-section
dependent functions W1 n2; n3ð Þ;W2 n2; n3ð Þ; and W3 n2; n3ð Þ are
assumed to be known. Therefore, all we require in this paper is to
know the warping functions beforehand. In this case, we have
obtained the warping functions by solving the governing differen-
tial equation derived in Chadha and Todd (2019) assuming that
the deformation due to warping is small with linear isotropic mate-
rial. However, it is possible to solve for the warping functions in the
non-linear setting as the structure deforms by numerically solving
for the warping function at every iteration (refer to Arora et al.,
2019).

2.5. Revisiting the material and spatial strain vector ki

In this Section, we elaborate the expressions of strain vectors ki
and ki in a desirable form. Using the definition of R in (3), and the
definition of the strain vector as ki ¼ @niR� di, we obtain the
expressions for material and spatial form of strain vector ki

expressed in matrix form as

L ¼ L:� and L ¼ L:�: ð18Þ
where

L ¼ k1; k2; k3
� 	

; L ¼ k1; k2; k3½ �;
� ¼ e; @n1e;j; @n1j; @

2
n1
j; @3

n1
j; p; @n1p; @

2
n1
p

h i
;

ð19Þ

such that

L ¼ Q 3:L and � ¼ K:�: ð20Þ
Here, K ¼ diagonal Q ; Q ; Q ; Q ; Q ; Q ; I3½ � and Q3 ¼ diagonal Q ; Q ;½
Q � respectively. We carefully note that for any n;Q :@n

n1
j ¼ ~@n

n1
j

(refer to Propositions 1 and 3 in Chadha and Todd (2019a) that also
defines the operator ~@n

n1
). Therefore,

� ¼ e; ~@n1e; j;
~@n1j;

~@2
n1
j; ~@3

n1
j; p; @n1p; @

2
n1
p

h i
: ð21Þ

The matrices L can be expanded as

L ¼

Lk1e Lk1@n1 e Lk1j Lk1@n1j Lk1
@2n1

j
Lk1
@3n1

j
Lk1p Lk1

@n1
p Lk1

@2n1
p

Lk2e Lk2@n1 e Lk2j Lk2@n1j Lk2
@2n1

j
Lk2
@3n1

j
Lk2p Lk2

@n1
p Lk2

@2n1
p

Lk3e Lk3@n1 e Lk3j Lk3@n1j Lk3
@2n1

j
Lk3
@3n1

j
Lk3p Lk3

@n1
p Lk3

@2n1
p

2
666664

3
777775:

ð22Þ

The corresponding spatial form L consisting of the component
matrices Lkix , with x 2 � is obtained as

L ¼ Q 3:L:K
T : ð23Þ

We call the quantities Lkix (given in Appendix A.1) and Lkix the mate-
rial and spatial L-terms, respectively. The elaborate expression of
material and spatial L matrices is contained in the supplementary
material.

2.6. Configuration and the state space

Adapting the kinematics discussed above, we find that there are
three primary quantities required to defined the configuration
X : u 2 R3; Q 2 SO 3ð Þ and p 2 R. For static case, the configuration,
tangent, and state space of the beam X is given as

C :¼ U ¼ u;Q ;pð Þ : 0; L½ ��!R3 � SO 3ð Þ � R

 �

; ð24aÞ
TUC :¼ ~U ¼ @n1u; @n1Q ; @n1p

� �
: 0; L½ ��!R3 � TQSO 3ð Þ � R


 �
; ð24bÞ

TC :¼ U; ~U
� �jU 2 C; ~U 2 TUC

 �

: ð24cÞ
It is interesting to interpret the curvature vector j and the deriva-
tive of rotation vector @n1h with a physical viewpoint. At an arc-
length n1, the director triad di n1ð Þf g rotates about the vector
j n1ð Þ:dn1 to yield the triad at di n1 þ dn1ð Þf g. Whereas, the triad
di n1ð Þf g and di n1 þ dn1ð Þf g are obtained by finite rotation of the
frame Eif g about the rotation vector h n1ð Þ and
h n1 þ dn1ð Þ ¼ h n1ð Þ þ @n1h n1ð Þ:dn1 respectively. , the material form
of axial strain vector and cross-section Fig. 2(left) illustrates the
idea discussed here. In terms of the exponential map,

Q n1 þ dn1ð Þ ¼ exp ĵ n1ð Þ:dn1
� �

:Q n1ð Þ
¼ exp ĵ n1ð Þ:dn1

� �
: exp ĥ n1ð Þ

� �
¼ exp ĥ n1ð Þ þ @n1 ĥ n1ð Þ:dn1

� �
: ð25Þ

The equation above can be used to obtain the relationship
between ĵ and @n1 ĥ as shown in Eq. (7) of Chadha and Todd
(2019a). With slight abuse of notation, we can associate the tan-
gent space with curvature tensor field ĵ n1ð Þ (instead of
@n1Q ¼ ĵ:Q ). The isomorphism between so 3ð Þ and R3 permits one
to identify the tensor field ĵ n1ð Þwith its corresponding axial vector
j n1ð Þ 2 R3. Thus, the state space is defined by the set
u; dif g; p; @n1u;j; @n1p
� �

. Redefining the tangent space described
in Eq. (24b) yields

TUC :¼ ~U ¼ @n1u;j; @n1p
� �

: 0; L½ ��!R3 � R3 � R

 �

: ð26Þ
For the dynamic case, we define the configuration space parameter-
ized with arc-length and time n1; tð Þ as,
C :¼ U ¼ u;Q ;pð Þ : 0; L½ � � Rþ�!R3 � SO 3ð Þ � R


 �
: ð27Þ

However, it is important to look at the configuration of beam Xt at a
fixed time t 2 Rþ to study curvature vector j and consider a point
with constant arc-length to understand the evolution of director
field with time (given by angular velocity tensor x̂ ¼ @tQ :Q T ).
Hence,

Q n1 þ dn1; tð Þ ¼ exp ĵ n1; tð Þ:dn1
� �

:Q n1; tð Þ;
Q n1; t þ dtð Þ ¼ exp x̂ n1; t þ dtð Þ:dtð Þ:Q n1; tð Þ: ð28Þ

Fig. 3 illustrates the discussion on SO 3ð Þ manifold carried out so far.

Remark 1. We guide the readers on what is to come next by
detailing the structure of the following writing. Even though the
beam is a 3D structure, we model it as a 1D single-manifold
structure. As is clear from the configuration space of the beam in
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Eq. (24a), this reduced 1D beam theory consist of 7 primary
degrees of freedom: 3 components of the position vector u
defining translation, 3 components of the rotation vector h
parameterizing Q , and the warping amplitude p. Therefore, we
expect a single equation describing the weak form and a set of 7
governing differential equations as a strong form. Corresponding to
each of these degree of freedom, we have 7 strain terms: axial
strain e;j, and @n1p that constitutes the tangent space TUC. Unlike,
Simo Vu-Quoc beam (Simo and Hughes, 1986), the kinematics of
the beam in this paper depends on higher-order derivatives of
these strain terms, thus, making the derivation of the variation of
these terms challenging. Therefore, Section 3 is dedicated to
obtaining the variation of these terms so that they can be used to
obtain the weak form in Section 4. The strong form of governing
equation is then obtained from the weak form in Section 5. The
reduced internal forces and their respective strain conjugates are
related by linear constitutive law in Section 6. Finally, Section 7
derives the matrix form of the equation that may be numerically
solved.

3. Variation

To obtain the virtual work principle (a weak form of equilibrium
equation), we need to obtain admissible variation of the deformed
configuration. We also must linearize the weak form for numeri-
cally solving the system. This shall be covered in the second part
of this paper. However, since both variation and linearization are
geometrically similar procedures (that help us operate on the tan-
gent space TUC), we shall carefully describe the variation of defor-
mation map and associated strain quantities here.

3.1. Admissible variation of the deformed configuration X

To obtain the virtual deformed configuration of the system, we
superimpose an admissible variation or admissible infinitesimal
(and instantaneous) displacement field dU ¼ du; dQ ; dpð Þ to the
configuration U ¼ u;Q hð Þ; pð Þ. The varied configuration is then
defined by U� ¼ u�;Q �; p�

� �
, such that for � > 0, we have

Fig. 2. Physical interpretation of curvature j (left figure) and variation of rotation vector da (right figure) resulting in infinitesimal rotation.

Fig. 3. Geometric representation of SO 3ð Þ manifold, exponential map, tangent plane TQ SO 3ð Þ, curvature tensor ĵ, and angular velocity tensor x̂.

M. Chadha, M.D. Todd / International Journal of Solids and Structures 202 (2020) 854–880 859



u� ¼ uþ �du; and du ¼ @�u�j�¼0; ð29aÞ
Q � ¼ Q hþ �dhð Þ ¼ Q �dað Þ:Q hð Þ; and dQ ¼ @�Q �j�¼0; ð29bÞ
p� ¼ pþ �dp; and dp ¼ @�p�j�¼0: ð29cÞ
Unlike the variation in the mid-curve axial vector, and the warping
amplitude, understanding the variation in the rotation tensor needs
some detailed investigation. This is because u 2 R3 and p 2 R

belong to linear vector spaces, where as SO 3ð Þ is a non-linear man-
ifold. It is advantageous to express the virtual rotation tensor by
means of virtual rotation vector in current state da contrary to the
variation of total rotation vector dh. Hence, the varied director field
is then given by

di� ¼ Q �:Ei ¼ Q �dað Þ:di: ð30Þ
Refer to Fig. 2 (right image) for physical interpretation of the virtual
current rotation vector da. The rotation tensor Q � ¼ Q hþ �dhð Þ
transforms the vector Ei to di� in a single step, whereas, the tensor
Q � ¼ Q �dað Þ:Q hð Þ performs the same transformation in two steps:

Ei !Q hð Þ
di !Q �dað Þ

di�. From Eq. (29b), we arrive at the expression of vir-
tual rotation tensor and director field

dQ ¼ @� exp �dâð Þ:exp ĥ
� �� �

j�¼0 ¼ dâ:exp �dâð Þ:exp ĥ
� �� �

j�¼0 ¼ dâ:Q hð Þ;
ð31aÞ

ddi ¼ dQ :Ei ¼ dâ:di: ð31bÞ
Here, dâ represents the anti-symmetric matrix associated with the

vector da. We define the material form of incremental rotation dâ
(with da being the associated axial vector) as

dâ ¼ Q T :dâ ¼ Q T :dQ ; da ¼ Q T :da: ð32Þ
It follows from the discussion above that @n1Q ; dQ 2 TQSO 3ð Þ;
dU 2 TUC; dâ 2 so 3ð Þ and U; dUð Þ 2 TC. Like the relationship
between j and @n1h defined in Eq. (7) of Chadha and Todd
(2019a), we can arrive at the relation between da and dh. We rede-
fine dU as,

dU ¼ du; da; dp½ �: ð33Þ
Having understood the varied configuration space, the expressions
derived in this section can be directly used to obtain the variation
of other quantities using straightforward application of the chain
rule.

3.2. Variation of the strain quantities and their derivatives

In this section, we obtain the variation of finite strain quantities
in terms of du; da; dpð Þ and their derivatives. The virtual material
strain vectors dki are strain conjugate to material form of first PK
stress vectors (discussed later in Section 4.2). Deriving the expres-
sion of dki requires us to first find variation of L-terms and d� as a
function of du; da; dpð Þ and their derivatives.

3.2.1. Variation of the finite strain terms
From the definition of axial strain vector e, we obtain

de ¼ d@n1u� dâ:d1; ð34aÞ
de ¼ d Q T :e

� �
¼ Q T d@n1uþ @n1 û:da

� � ¼ Q T :~de: ð34bÞ

Similarly, the variation of spatial and material curvature tensor is
given by

dĵ ¼ d @n1Q :Q T
� �

¼ d@n1Q :Q T þ @n1Q :dQ T ¼ d@n1 âþ dâ; ĵ
� 	

; ð35aÞ

dĵ ¼ d Q T :@n1Q
� �

¼ dQ T :@n1Q þ Q T :d@n1Q ¼ Q T :d@n1 â:Q ¼ Q T :~dĵ:Q :

ð35bÞ

The variation of the spatial and material curvature vectors are
obtained as

dj ¼ d@n1aþ dâ:j; ð36aÞ
dj ¼ Q T :d@n1a ¼ Q T :~dj: ð36bÞ

Like the co-rotated derivatives, ~de ¼ d@n1uþ @n1 û:da
� �

; ~dj ¼ d@n1a

and ~dĵ ¼ d@n1 â defines the co-rotated variation of the curvature
vector, axial strain vector and curvature tensor, respectively.

3.2.2. Variation of the vector �
Since the derivative and variation can be used interchangeably,

we obtain d@n1e; d@
n
n1
j using Eqs. (34b), and (36b). These results can

be used to express d� in the following form

d� ¼ KT :B1:dH ¼ KT :~d�; ð37Þ
where,

dH ¼ du; d@n1u; d@2
n1
u; da; d@n1a; d@

2
n1
a; d@3

n1
a; d@4

n1
a; dp; d@n1p; d@

2
n1
p

h i
;

d� ¼ de; d@n1e; dj; d@n1j; d@
2
n1
j; d@3

n1
j; dp; d@n1p; d@

2
n1
p

h i
;

~d� ¼ ~de; ~d ~@n1e;
~dj; ~d ~@n1j;

~d ~@2
n1
j; ~d ~@3

n1
j; dp; d@n1p; d@2

n1
p

h i
:

ð38Þ
The virtual vector dH can be related to dU by means of a differential
operator B2 (of size 27� 7), such that

dH ¼ B2:dU: ð39Þ
The Eq. (37) can then be re-written as

d� ¼ KT :B1:B2:dU;
~d� ¼ B1:B2:dU:

ð40Þ

The expanded description of the matrices B1 and B2 are given in
Appendices A.2.1 and A.2.2, respectively.

3.2.3. Variation of the strain vector ki and the concatenated strain
vector L

From Eq. (18), we have

dL ¼ dL:�þL:d�: ð41Þ

We realize that, except for dLk1j ¼ dr̂T , the variation in all other L-
terms are 03. Thus, we have

dL:� ¼ dLk1j :j;01;01
� 	 ¼ dr̂T :j;01;01

h i
ð42Þ

From the expression of r ¼ Q T :r ¼ n̂2E2 þ n̂3E3 þWE1, we can find

dr̂T that can be substitutes in (42) to obtain:

dL:� ¼ M:d�; ð43Þ
where,

M ¼
Mk1

e 03 Mk1
j Mk1

@n1
j Mk1

@2n1
j

03 Mk1
p Mk1

@n1
p 01

03 03 03 03 03 03 01 01 01

03 03 03 03 03 03 01 01 01

2
664

3
775:

ð44Þ

Like L-terms, we call Mki
:ð Þ as M-terms. Appendix A.1 gives the

expression of M-terms. Similar to Eq. (23), we define the spatial
form of M matrix consisting of Mki

:ð Þ, such that

M ¼ Q 3:M:KT ; ð45Þ
The elaborate expression of material and spatial M matrices is con-
tained in the supplementary material. Substituting Eq. (43) into Eq.
(41), we get
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dL ¼ dk1; dk2; dk3
� 	 ¼ LþM

� �
:d�: ð46Þ

We define the co-rotational variation of the concatenated strain
vector L as

~dL ¼ ~dk1; ~dk2; ~dk3
h i

¼ Q 3:dL ¼ Q 3: LþM
� �

:d� ¼ LþMð Þ:~d�: ð47Þ

The variation of deformation gradient tensor is obtained as

dF ¼ ~dF þ dQ :F ¼ ~dF þ dâ:F;
~dF ¼ Q :dF ¼ ~dki � Ei;

dF ¼ dki � Ei:

ð48Þ

3.3. Variation of displacement field

We need the variation of displacement field to evaluate the vir-
tual work done by external load. We define the displacement field
u n1; n2; n3ð Þ as u ¼ R� R0. Since, dR0 ¼ 01, we have du ¼ dR. Thus,
Eq. (3) yields

dR ¼ duþ dr; ð49aÞ
dr ¼ ~dr þ dâ:r; ð49bÞ
~dr ¼ dn̂2d2 þ dn̂3d3 þ dWd1: ð49cÞ

We can manipulate the expression of ~dr in Eq. (49c) to a following
desirable form

~dr ¼ Lk1@n1 e:
~deþ Lk1@n1j:

~djþ Lk1
@2n1

j
: Q :d@n1j
� �þ Lk1

@3n1
j
: Q :d@2

n1
j

� �
þ dp:Lk1@n1 p þ d@n1p:L

k1

@2n1
p
;¼ Lk1@n1 e:

~deþ Lk1@n1j:
~djþ Lk1

@2n1
j
: ~d ~@n1j
� �

þ Lk1
@3n1

j
: ~d ~@2

n1
j

� �
þ dp:Lk1@n1 p þ d@n1p:L

k1

@2n1
p
: ð50Þ

4. Weak form of governing differential equation

4.1. General virtual work principle

We define the unsymmetric two-point first Piola Kirchoff stress
tensor P ¼ Pi � Ei referenced to the undeformed configuration X0

such that the vector Pi represents the associated stress-vectors.
We can write the integral or residual form of equilibrium equation
asZ
X0

du � DivP þ q0b� q0@
2
t R

� �
dX0 ¼ 0: ð51Þ

Here, Div is divergence operator referenced to the configuration X0.
The quantities q0 n1; n2; n3ð Þ ¼ q0 and b n1; n2; n3ð Þ ¼ b give the mass
density field in the undeformed state and the body force per unit
mass respectively. Since F ¼ I3 þ Grad uð Þ, we have dF ¼ Grad duð Þ.
Here, Grad is the gradient operator with respect to the configuration
X0. Using this result and divergence theorem on Eq. (51), we get the
general virtual work principle

G U; dUð Þ ¼ dUstrain þ dWinertial � dWext ¼ 0; ð52Þ
where,

dUstrain ¼
Z
X0

P : dFdX0 ¼
Z
X0

trace PT :dF
� �

dX0; ð53aÞ

dWinertial ¼
Z
X0

q0du � @2
t RdX0; ð53bÞ

dWext ¼
Z
S0

du � P:Nð ÞdS0 þ
Z
X0

du � bdX0 ¼ dWst
ext þ dWb

ext: ð53cÞ

The virtual work due to external forces is contributed by surface

tractions dWst
ext

� �
and body forces (dWb

ext). In the equation above,
N represents the normal vector to the surface S0 of the beam.

4.2. Virtual strain energy

The expression of strain energy in Eq. (53a) can be further sim-
plified by using Eq. (48), such that

dUstrain ¼
Z
X0

P : dFdX0 ¼
Z
X0

P : ~dFdX0 þ
Z
X0

P : dâ:Fð ÞdX0: ð54Þ

We observe that P : dâ:Fð Þ ¼ PFT : dâ ¼ 0. This is because, PFT is
symmetric and dâ is an anti-symmetric matrix. We define the con-
catenated stress vector P ¼ P1;P2;P3½ � and its material counterpart
P ¼ P1;P2;P3

� 	
, such that P ¼ Q3:P. This further simplifies Eq. (54)

to the following

dUstrain ¼ RX0
P : ~dFdX0 ¼ RX0

Pi:~dkidX0 ¼ RX0
Pi:dkidX0;

dUstrain ¼ RX0
P � ~dLdX0 ¼ RX0

P � dLdX0:
ð55Þ

Using the results in Eqs. (46) and (47) we have,

dUstrain ¼
Z
X0

~d� � LþMð ÞT :P
� �

dX0 ¼
Z L

0

~d� �N intdn1; ð56aÞ

dUstrain ¼
Z
X0

d� � LþM
� �T

:P
� �

dX0 ¼
Z L

0
d� �N intdn1: ð56bÞ

We define the spatial and material reduced section force vectors

N int n1ð Þ and N int n1ð Þ (refer to Appendix A.3.1) as

N int ¼ N e;N @n1
e;N j;N @n1

j;N @2n1
j;N @3n1

j;Np;N@n1
p;N@2n1

p

� 

¼
Z
B0

LþMð ÞT :PdB0;

N int ¼ N e;N @n1
e;N j;N @n1

j;N @2n1
j;N @3n1

j;Np;N@n1
p;N@2n1

p

� 

¼
Z
B0

LþM
� �T

:PdB0; ð57Þ

Using Eq. (40), we arrive at the desired matrix form of virtual strain
energy expression

dUstrain ¼
Z L

0
dUTBT

2B
T
1N intdn1: ð58Þ

4.3. Virtual work done due to external and inertial forces

4.3.1. Virtual work done due to external forces
The virtual work due to external forces is contributed by surface

traction and body force. We first consider the surface traction term

dWst
ext ¼

Z
S0

du � P:Nð ÞdS0 ¼
Z L

0

Z
B0 n1þdn1ð Þ

du � P1dB0

 

�
Z
B0 n1ð Þ

du � P1dB0 þ
Z
C0 n1ð Þ

du � P:Nð ÞdC0

!
dn1 ð59Þ

Recall the expression of du ¼ duþ dâ:r þ ~dr as discussed in Sec-
tion 3.3. We simplify the first two integrals to obtain boundary
terms. We note the following resultsZ

B0 n1þdn1ð Þ
du � P1dB0 �

Z
B0 n1ð Þ

du � P1dB0 ¼ @n1 du � Bu

� �
dn1Z

B0 n1þdn1ð Þ
dâ:rð Þ � P1dB0 �

Z
B0 n1ð Þ

dâ:rð Þ � P1dB0 ¼ @n1 da � :Bað Þdn1Z
B0 n1þdn1ð Þ

~dr � P1dB0 �
Z
B0 n1ð Þ

~dr � P1dB0 ¼ @n1

� ~de � Be þ ~dj � Bj þ Q :d@n1j
� � � B@n1

j þ Q :d@2
n1
j

� �
� B@2n1

j

�
þ dp:Bp þ d@n1p:B@n1

pÞdn1: ð60Þ
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Here, the quantities B :ð Þ and B :ð Þ represents the reduced end bound-
ary force terms, and are defined in appendix A.3.2. Therefore, the
virtual work due to end boundary terms associated with the trac-
tion dWst

extjB 0ð Þ[B Lð Þ is given by:

dWst
extjB 0ð Þ[B Lð Þ ¼

Z L

0

Z
B0 n1þdn1ð Þ

du �P1dB0 �
Z
B0 n1ð Þ

du �P1dB0

 !
dn1

¼ du �Buþ da �Baþ ~de �Beþ ~dj �Bjþ Q � d@n1j
� � �B@n1

j

h
þ Q :d@2

n1
j

� �
�B@2n1

jþ dp:Bp þ d@n1p:B@n1
p


L
0
: ð61Þ

Note that Bu; Ba and Bp represents the reduced section force,
moment and bi-shear as in Simo and Vu-Quoc (1991). We now con-
sider the virtual work due to surface traction on the peripheral
boundary [8n1C0 n1ð Þ, denoted by dWst

extj[8n1C0 n1ð Þ, where

dWst
extj[8n1C0 n1ð Þ ¼

Z L

0

Z
C0 n1ð Þ

du � P:Nð ÞdC0

 !
dn1

¼
Z L

0
du � Nst

u þ da � Nst
a þ ~de � Nst

e þ ~dj � Nst
j

�
þ Q :d@n1j
� � � Nst

@n1
j þ Q :d@2

n1
j

� �
� Nst

@2n1
j þ dp:Nst

p

þ d@n1p:N
st
@n1

pÞdn1: ð62Þ

In the equation above, the quantities Nst
:ð Þ and Nst

:ð Þ represents the
reduced external force due to surface traction (represented by the
super script st), and are defined in appendix A.3.3. Similarly, the vir-
tual work due to body force field b is obtained as

dWb
ext ¼

Z L

0
du �Nb

uþ da �Nb
aþ ~de �Nb

e þ ~dj �Nb
jþ Q :d@n1j

� � �Nb
@n1

j

�
þ Q :d@2

n1
j

� �
�Nb

@2n1
jþ dp:Nb

p þ d@n1p:N
b
@n1

pÞdn1: ð63Þ

The quantities Nb
:ð Þ and Nb

:ð Þ represents the reduced external force
due to body force (represented by the super script b). Hence,

dWext ¼ dWst
extj[8n1C0 n1ð Þ þ dWb

ext

� �
þ dWst

extjB 0ð Þ[B Lð Þ: ð64Þ

Defining the (total) reduced external forces as N :ð Þ ¼ Nst
:ð Þ þ Nb

:ð Þ and

N :ð Þ ¼ Nst
:ð Þ þ Nb

:ð Þ, we have,

dWst
extj[8n1C0 n1ð Þ þ dWb

ext

� �
¼
Z L

0
du �Nuþ da �Na þ ~de �Ne

�
þ ~dj �Njþ Q :d@n1j

� � �N@n1
j

þ Q :d@2
n1
j

� �
�N@2n1

jþ dp:Np þ d@n1p:N@n1
pÞdn1
ð65Þ

To proceed further, we intend to obtain virtual work in terms of the
virtual quantities du; da and dp and their derivatives. Eqs. (61) and
(65) can be further condensed in matrix form as

dWst
extjB 0ð Þ[B Lð Þ ¼ dH � B3N boundary

� �� 	L
0 ¼ dHTB3N boundary

� 	L
0

¼ dUTBT
2B3N boundary

h iL
0
; dWst

extj[8n1C0 n1ð Þ þ dWb
ext

� �
¼
Z L

0
dH � B3N extð Þdn1 ¼

Z L

0
dHTB3N extdn1

¼
Z L

0
dUTBT

2B3N extdn1; ð66Þ

where,

N boundary ¼ Bu;Be;Ba;Bj;B@n1
j;B@2n1

j;Bp; B@n1
p

� 

;

N ext ¼ Nu;Ne;Na;Nj;N@n1
j;N@2n1

j;Np;N@n1
p

� 

:

ð67Þ

The vectors N boundary and N ext represent concatenated end bound-
ary forces and reduced external forces respectively. Refer to Appendix
A.2.3 for the expression of matrix B3.

4.3.2. Virtual work done due to inertial forces

Realize that the body force b and the acceleration @2
t R is defined

over the volume X0. Therefore, like the expression of virtual work
contribution due to body force in Eq. (63), we can arrive at the
following

dWinertial ¼
Z L

0
du �Fuþ da �Faþ ~de �Feþ ~dj �Fjþ Q :d@n1j

� � �F@n1
j

�
þ Q :d@2

n1
j

� �
�F@2n1

jþ dp:Fp þ d@n1p:F@n1
p

�
dn1: ð68Þ

The equation above can be written in a matrix form as:

dWinertial ¼
Z L

0
dUTBT

2B3N inertialdn1: ð69Þ

The concatenated inertial force vector N inertial with its components
defined in Appendix A.3.2 is

N inertial ¼ Fu; Fa; Fe; Fj; F@n1
j; F@2n1

j; Fp; F@n1
p

� 

: ð70Þ

4.4. Virtual work principle revisited

We restate the weak form of governing differential Eq. (52) for
the beam kinematics at hand by using the expression of virtual
strain energy in Eq. (58), virtual work due to external forces in
Eq. (64) and (66) and the virtual work contribution due to inertial
work obtained in Eq. (69) as

G U; dUð Þ ¼
Z L

0
dUTBT

2 BT
1N int þ B3N inertial � B3N ext

� �
dn1

� dWst
extjB 0ð Þ[B Lð Þ ¼ 0: ð71Þ

5. Strong form of governing differential equation

We can obtain the strong form (governing differential equa-
tions) from the weak form using the equivalence principle. The
strong form essentially represents the local balance laws governing
the deformation of the beam. The analysis carried to obtain the
strong form can be summarized in two steps. Firstly, we transform
the weak form in Eq. (71) using integration by parts to obtain an
equation of the form

G U; dUð Þ ¼
Z L

0
du � Eu þ da � Ea þ dp:Ep
� �

dn1 þ G	 ¼ 0; ð72Þ

where

G	 ¼ dU	
strain þ dW	

inertial � dW	
ext � dWst

extjB 0ð Þ[B Lð Þ: ð73Þ
The terms dU	

strain þ dW	
inertial � dW	

ext are the boundary terms arising
as a result of carrying integration by part on the integral in Eq. (71).
Since the strong form equations are local in nature, the boundary
terms arising due to integration by part must be �dWst

extjB 0ð Þ[B Lð Þ such
that no boundary term appears in the transformed equation of the
form

G U; dUð Þ ¼
Z L

0
du � Eu þ da � Ea þ dp:Ep
� �

dn1 ¼ 0: ð74Þ

It can be proved that G	 ¼ 0. The proof is detailed in the supplemen-
tary material. This result should not come as a surprise because the
strong form describes local equilibrium of forces. The proof of
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G	 ¼ 0 also provides a check for correctness of the work discussed
so far. In Eq. 74, we have

Eu ¼ @n1nþ Nu � Fu; ð75aÞ
Ea ¼ @n1mþ @n1 û:nþ Na � Fa; ð75bÞ
Ep ¼ @n1MW � Np þ Np � Fp: ð75cÞ
In Eq. ((75c), Np represents the bi-shear. Here we define the reduced
cross-section force, moment vector, and the bi-moment as

n ¼ N e � ~@n1N @n1
e

� �
þ Fe � Neð Þ

� �
; ð76aÞ

m ¼ N j � ~@n1N @n1
j þ ~@2

n1
N @2n1

j � ~@3
n1
N @3n1

j

� �

þ Fj � ~@n1F@n1
j þ ~@2

n1
F@2n1

j

� �

� Nj � ~@n1N@n1
j þ ~@2

n1
N@2n1

j

� �
; ð76bÞ

MW ¼ N@n1
p � @n1N@2n1

p

� �
þ F@n1

p � N@n1
p

� �� �
: ð76cÞ

Since G	 ¼ 0, the arbitrary nature of the virtual displacement field
dU leads us to conservation of linear and angular momentum and
the balance laws for bi-shear and bi-moment: Eu ¼ 01;Ea ¼ 01

and Ep ¼ 0, respectively. The strong form of equation described in
Eq. set (75) appears similar to the governing equations discussed
in Simo and Vu-Quoc (1991), except for the definition of reduced
section forces and bi-moment n;m and MW. The fact that reduced
forces in Eq. (76), contains inertial and external force terms is dis-
tracting. However, the results obtained in the process of proving
G	 ¼ 0, helps us to simplify n;m and MW defined above to a desir-
able form independent of inertial and external force terms (see
the supplementary material for derivation).

n ¼ RB0 Lk1e
� �T

:P1dB0 ¼ RB0 P1dB0;

m ¼ RB0 Lk1j
� �T

:P1dB0 ¼ RB0 r � P1dB0;

MW ¼ RB0 Lk1@n1 p:P1dB0:

ð77Þ

As expected, the expression of reduced section force, couple and bi-
moment is independent of any external and inertial force terms. The
reduced forces obtained above are identical to the respective quan-
tities discussed in Simo and Vu-Quoc (1991).

6. Constitutive law

6.1. Saint–Venant/Kirchhoff constitutive law for small strains

In this Section, we define the multi-axial linearly elastic consti-
tutive law considering large deformation but small strain. Recall,
the expression of material form of deformation gradient tensor in
Eq. (14b): F ¼ I3 þH. The small strain assumption is imposed by
assuming kHk ¼ O �ð Þ for a small parameter � > 0 such that
lim�!0

O �ð Þ
� ¼ constant. Keeping this in mind, we can linearize the

material deformation gradient tensor about I3 such that

F� ¼ I3 þ @F
@�

j�¼0:�þ O �2
� � ¼ I3 þ �H þ O �2

� �
: ð78Þ

The spatial form can be obtained by linearizing F about Q , or simply
by left translation of F� as

F� ¼ Q þ �H þ O �2
� �

: ð79Þ
It is advantageous to postulate linear isotropic constitutive law
(Saint–Venant/Kirchhoff material) by relating the linear part of sec-

ond PK stress tensor S ¼ SijEi � Ej with the linear part of the corre-
sponding strain conjugate: Lagrangian strain tensor (symmetric)
E ¼ EijEi � Ej. This is because of the material nature of these quan-
tities. We have (refer to Marsden and Hughes, 1994)

S ¼ 2GE þ ktrace Eð Þ: ð80Þ

Here, G and k ¼ Em
1þmð Þ 1�2mð Þ are the Lamé’s constant. The quantities G

and E represents shear and Young’s modulus respectively. For small
strain, up to order O �ð Þ, it can be proved that: P ¼ S and
E ¼ 1

2 H þHT
� � ¼ HS (see supplementary material for proof). This

brings us to the definition of constitutive relation in terms of P
and HS. Using Eq. (80), we have

P ¼ 2GHS þ ktrace HS
� �

: ð81Þ

Using the constitutive law given by (81), we can express the mate-
rial form of stress vector Pi in terms of material form of strain vec-
tors ki as

P ¼
P1

P2

P3

2
64

3
75 ¼

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75 k1

k2

k3

2
64

3
75 ¼ C:L: ð82Þ

The matrices C ij are constant material matrix that is defined in
Appendix (137). In spatial form, the stress vectors can be related
to the spatial strain vectors as

P ¼ C:L;where C ¼ Q 3:C:Q
T
3: ð83Þ

6.2. Reduced constitutive law

The goal is to obtain a linear relationship between the internal

force vector N int with the vector �. We ignore terms of the order
O �2
� �

in the expression of ki. To start with, we make use of the
two following observations to redefine the internal force vector
for first order strain:

First, we realize that except for Lkij , all the other Lki:ð Þ are indepen-

dent of any strain measurements. Realizing P1�!O �ð Þ, we haveZ
B0

Lkij :P1dB0

� �
�

¼ �:
Z
B0

r̂T1:P1dB0 þ O �2
� �

: ð84Þ

Therefore, from here on Lkij ¼ r̂T1. Secondly, we note that the M-
matrix are of order O �ð Þ. Therefore,Z
B0

Mk1
:ð Þ:P1dB0�!O �2

� �
: ð85Þ

Using Eqs. (84) and (85), we redefine the material form of reduced

forces by ignoring higher-order terms as: N int ¼
R
B0
LT :PdB0, where

L is defined in Eq. (22) with Lki
j ¼ r̂T1. Using Eq. (82) and the relation

given in Eq. (18) we get:

N int ¼
Z
B0

LT :C:LdB0 ¼
Z
B0

LT :C:L:�dB0 ¼
Z
B0

LT :C:LdB0

� �
:�¼C:�:

ð86Þ

The elements of the matrix C can be obtained from Eq. (86) by sub-
stituting the expressions of L-Matrix and C defined in Appendices
A.1 and A.4. The symmetric matrix C relates the reduced force vec-
tors with the finite strains and their derivatives, the expanded form
of which is given in Appendix A.4. The spatial form can be written as
C ¼ K:C:KT . The elaborate expression of the matrices associated
with the constitutive law is detailed in the supplementary material.
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7. Linearization and numerical formulation for static case

In this Section, we consider the numerical formulation of the
beam discussed in this paper for static case assuming a linear elas-
tic small strain constitutive law discussed in Section 6. We assume
displacement prescribed boundary condition. For these assumed
conditions, the weak form obtained in Eq. (71) becomes

G U; dUð Þ ¼ dUstrain � dWext

¼
Z L

0
dUTBT

2B
T
1N intdn1 �

Z L

0
dUTBT

2B3N extdn1 ¼ 0: ð87Þ

7.1. Consistent linearization

7.1.1. Linearization of weak form
The linearized part of the functional G U; dUð Þ at the configura-

tion U# in the direction of DU, such that U� ¼ U# þ �DU, is given
as

L G U; dUð Þ½ � U# ;DUð Þ ¼ G U#; dU
� �þ DG U#; dU

� �
:DU: ð88Þ

In the equation above, DG U#; dU
� �

:DU is the Frećhet differential
defined by directional derivative formula as

DG U#; dU
� �

:DU ¼ dG U�; dUð Þ
d�

j�¼0: ð89Þ

In Eq. (88), the term G U#; dU
� �

is responsible for the unbalanced
forces, whereas the term DG U#; dU

� �
:DU (linear in DU) yields the

tangent stiffness matrix. For simplicity, we assume that U# ¼ U
and define the linear increment in the weak form DG as

DG U#; dU
� �

:DU ¼ DG U#; dU
� � ¼ DG U; dUð ÞjU¼U#

¼ DG U; dUð Þ ¼ DdUstrain � DdWext: ð90Þ

7.1.2. Linearization of virtual strain energy
The expression of virtual strain energy can be written using Eq.

(58) as

dUstrain ¼
Z L

0
dUTBT

2B
T
1N intdn1 ¼

Z L

0
dUTBT

2B
T
1KN intdn1: ð91Þ

Thus, the linearized virtual strain energy is obtained as

DdUstrain ¼
Z L

0
dUTBT

2B
T
1KDN intdn1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{DdUstrain1

þ
Z L

0
dUTBT

2B
T
1DKN intdn1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{DdUstrain2

þ
Z L

0
dUTBT

2DB
T
1KN intdn1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{DdUstrain3

: ð92Þ

Since the process of linearization is similar to the variation, using
Eq. (40), we get D� ¼ KTB1B2DU. Using the constitutive law given
in Eq. (86), we can obtain the linear increment in the material inter-
nal force vector

DN int ¼ CD� ¼ CKTB1B2DU: ð93Þ
Thus,

DdUstrain1 ¼ DdUstrain1 U; dUð Þ:DU

¼
Z L

0
dUTBT

2B
T
1CB1B2DUdn1: ð94Þ

Similarly, we have DQ ¼ Dâ:Q , using which, we get

DK:N int ¼ Dâ:N e;Dâ:N @n1
e;Dâ:N j;Dâ:N @n1

j;Dâ:N @2n1
j;Dâ:N @3n1

j;0;0;0
� 


¼ B4DH¼ B4B2DU: ð95Þ
Appendix A.2.4 gives expression of the matrix B4. Thus,

DdUstrain2 ¼ DdUstrain2 U; dUð Þ:DU ¼
Z L

0
dUTBT

2B
T
1B4B2DUdn1: ð96Þ

To derive the expression of DdUstrain3, we use the expression of BT
1 in

Eq. (123) and obtain

DBT
1N int ¼ B5DH ¼ B5B2DU: ð97Þ

Appendix A.2.5 defines the matrix B5. Therefore, we have

DdUstrain3 ¼ DdUstrain3 U; dUð Þ:DU ¼
Z L

0
dUTBT

2B5B2DUdn1: ð98Þ

Finally, if B6 ¼ B5 þ BT
1:B4, we define

DdUstrain23 ¼ DdUstrain2 þ DdUstrain3 ¼ DdUstrain23 U; dUð Þ:DU

¼
Z L

0
dUTBT

2B6B2DUdn1: ð99Þ

The term DdUstrain1 leads to the symmetric material stiffness matrix
whereas, the term DdUstrain23 yields geometric stiffness matrix (not
necessarily symmetric).

7.1.3. Linearization of virtual external work done
From the expression of virtual external work, we have

DdWext ¼
Z L

0
dUTBT

2DB3N extdn1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{DdWext1

þ
Z L

0
dUTBT

2B3DN extdn1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{DdWext2

: ð100Þ

The term DdWext1 arises due to geometric dependence of DdWext;
whereas the term DdWext2 is due to non-conservative nature of
the external forces. We can represent DB3N ext and B3DN ext in a
more desirable form,

DB3N ext ¼ B7DH ¼ B7B2DU;

B3DN ext ¼ B8DH ¼ B8B2DU:
ð101Þ

Appendix A.2.6 gives the matrix B7. The matrix B8 depends on the
characteristic of external loading (for example: follower load, pres-
sure load, etc) and is determined on a case by case basis. The sup-
plementary material contains a discussion on handling the point
load and it details the B8 matrix for such loading.

7.2. Discretization and Galerkin form of equilibrium equation

We discretize the domain using Ne elements. Any element e
consist of Nen number of nodes and has length Le ¼ ne1b � ne1a, where,
ne1b and ne1a are the arc-length of the first and last node of the ele-
ment e, such that ne1b > ne1a and ne1 2 ne1a; n

e
1b

� 	
. We approximate

the admissible incremental displacement field DU by a finite
dimensional subspace that is subset of the variationally admissible
tangent space. The incremental displacement field Due;Dae;Dpeð Þ
restricted to element e can then be interpolated by means of shape
functions as

Due ¼
XNen

I¼1

NIDue
I ; Dae ¼

XNen

I¼1

NIDae
I ; Dpe ¼

XNen

I¼1

NIDpe
I : ð102Þ

Here, Due
I ;Da

e
I and Dpe

I represents the nodal incremental displace-
ment, vortivity and warping amplitude at node I of element e

respectively; NI is the shape-function associated with Ith node.

864 M. Chadha, M.D. Todd / International Journal of Solids and Structures 202 (2020) 854–880



7.2.1. Unbalanced force vector
We first obtain the nodal internal load vector f eintI . The approxi-

mated virtual strain energy can be written as

dUh
strain ¼

XNe

e¼1

XNen

I¼1

dUeT
I

Z ne1b

ne1a

BT
I B

eT

1 N
e
intdn1

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{f e
intI

¼
XNe

e¼1

XNen

I¼1

dUeT
I f eintI:

ð103Þ
The matrix BI , defined in Appendix A.2.7, consists of the shape-
functions and its derivatives. The superscript e on any quantity rep-
resents the restriction of that quantity on element e.

In order to define incremental load steps necessary for numer-
ical formulation, we first define the load coefficient x 2 0;1½ � with
N ext xð Þ ¼ xN ext0, such that

dWext xð Þ ¼ xdWext0 ¼ x
Z L

0
dUTBT

2B3N ext0dn1: ð104Þ

The approximated virtual external work is obtained as

dWh
ext0 ¼

XNe

e¼1

XNen

I¼1

dUeT
I

Z ne1b

ne1a

BT
I B3N

e
ext0dn1

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{f eext0I

¼
XNe

e¼1

XNen

I¼1

dUeT
I f eext0I:

dWh
ext xð Þ ¼

XNe

e¼1

XNen

I¼1

dUeT
I f eextI xð Þ; where f eextI xð Þ ¼ xf eext0I:

ð105Þ
Refer to Appendices A.3.4 and A.3.5 for the expression of internal
and external force vectors: f eintI and f eextI xð Þ. The unbalanced force
vector associated with element e at node I is defined as

Fe
I Ue; xð Þ ¼ f eextI U

e; xð Þ � f eintI U
eð Þ: ð106Þ

7.2.2. Element tangent stiffness
The approximated form of linearized virtual strain energy

obtained in Section 7.1.2 is given by:

ð107Þ
Here, the element tangential stiffness matrix corresponding to
internal loads Ke

intIJ ¼ Ke
mIJ þ Ke

gIJ consist of a symmetric material

part Ke
mIJ and a geometric part Ke

gIJ (not necessarily symmetric). Sim-
ilarly, the contribution to stiffness matrix due to external loads can
be obtained by using results in Section 7.1.3, such that the approx-
imated linearized virtual work is obtained as

ð108Þ

Here, the element tangential stiffness matrix corresponding to
internal loads Ke

extIJ ¼ Ke
ext1IJ þ Ke

ext2IJ consist of two parts: the matrix

Ke
ext1IJ gives contribution due to dependence of external work on the

configuration of the system, assuming the force vectors are conser-
vative; whereas, the matrix Ke

ext2IJ is due to non-conservative nature
of the external forces. The element stiffness matrix is given as

Ke
IJ U

e; xð Þ ¼ Ke
intIJ U

eð Þ � Ke
extIJ U

e; xð Þ
¼ Ke

mIJ U
eð Þ þ Ke

gIJ U
eð Þ � Ke

ext1IJ U
e; xð Þ � Ke

ext2IJ U
e; xð Þ:

ð109Þ

7.2.3. Matrix form of linearized equation of motion and iterative
solution

The unbalanced force vector and the element tangent stiffness
can be assembled using assembly operator A such that the global
stiffness and global unbalanced force is obtained as

K ¼ A Ke
IJ

� �
;

F U; xð Þ ¼ A Fe
I

� � ¼ xA f eext0I U
eð Þ� ��A f eintI U

eð Þ� � ¼ xf ext0 Uð Þ � f int Uð Þ:
ð110Þ

We use standard Newton Raphson’s iterative procedure. We
divide the external loading into n load steps. Let Un represents
the discretized form of degrees of freedom vector at load step n,
such that DUn ¼ Unþ1 �Un. At equilibrium state corresponding to
load step n (converged state), the unbalanced force vanishes, i.e.,
F Un; xnð Þ ¼ 0. Provided the nth load step has converged, we aim

to find DUn, such that F Unþ1; xnþ1ð Þ ¼ 0. At ith iteration, we can lin-
earize the equation F Unþ1; xnþ1ð Þ ¼ 0 about F Ui

nþ1; x
i
nþ1

� �
, such that

Uiþ1
nþ1 ¼ Ui

nþ1 þ DUiþ1
n and xinþ1 ¼ xn as

F Uiþ1
nþ1; xnþ1

� � ¼ F Ui
nþ1; xn

� �þ @F
@U

j Ui
nþ1 ;xnð Þ:DUiþ1

n

þ @F
@x

j Ui
nþ1 ;xnð Þ: xnþ1 � xnð Þ ¼ 0: ð111Þ

We define the global tangent stiffness matrix (obtained in (110))
and obtain the following results from Eq. (110),

F Ui
nþ1; xn

� � ¼ xnf ext0 Ui
nþ1

� �� f int Ui
nþ1

� �
;

K Ui
nþ1; xn

� � ¼ � @F Unþ1 ;xnþ1ð Þ
@Unþ1

j Ui
nþ1 ;xnð Þ;

f ext0 Ui
nþ1

� � ¼ @F Unþ1 ;xnþ1ð Þ
@xnþ1

j Ui
nþ1 ;xnð Þ:

ð112Þ

Substituting the results obtained above into the Eq. (111), we get

K Ui
nþ1; xn

� �
:DUiþ1

n ¼ xnþ1f ext0 Ui
nþ1

� �� f int Ui
nþ1

� � ¼ F Ui
nþ1; xnþ1

� �
:

ð113Þ

7.3. Updating the axial strain vector, curvature vector and their
derivatives

7.3.1. Updating configuration
Solving Eq. (113), yields an incremental change in configuration

space due to deformation, say DU ¼ Du;Da;Dpf g. The derivatives
of these increments can be obtained by using the approximation
in Eq. (102) such that @n

n1
DUe ne1

� � ¼ @n
n1
NI ne1
� �

:DUe; @n
n1
Dae ne1

� � ¼
@n
n1
NI ne1
� �

:Dae
I and @n

n1
Dpe ne1

� � ¼ @n
n1
NI ne1
� �

:Dpe
I . Let the initial and fi-

nal configuration be given as Ui ¼ ui;Q i; pi


 �
and Uf ¼ uf ;Q f ;



pfg, such that

uf ¼ ui þ Du; @n
n1
uf ¼ @n

n1
ui þ @n

n1
Du; ð114aÞ

pf ¼ pi þ Dp; @n
n1
pf ¼ @n

n1
pi þ @n

n1
Dp; ð114bÞ

Q f ¼ exp Dâð Þ:Q i ¼ Qþ:Q i where; Qþ ¼ exp Dâð Þ: ð114cÞ
From the expressions of Bi with i 2 1;3;4;5;6f g in appendix

A.2, the following quantities other than the configuration space
itself need to be updated: @n1u; @2

n1
u; ĵ; @n1 ĵ, and @2

n1
ĵ and the

finite strain quantities constituting �. Once we update �, we can
obtain the material (and then spatial) form of internal force vector,
eventually getting the updates Bi with i 2 4;5;6f g.

Remark 2. We note that in Eq. (114c), we use multiplicative
updating rule for the rotation tensor. The incremental rotation
Qþ ¼ exp Dâð Þ becomes singular when kDak ¼ 2np for n ¼ 1;
2;3; . . .. Refer to Ibrahimbegović et al. (1995) for a rescaling
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remedy to avoid this singularity. In this paper, we make sure that
our load step size is small enough such that the singularity does
not arise.

7.3.2. Updating axial strain, curvature and its derivatives
Readers are recommended to refer to Chadha and Todd (2019a,

b) (particularly the appendix) that details method for obtaining
and updating the higher order derivatives of curvature. So far, we
have obtained all the elements constituting � except for e and
@n1e. These can be obtained using the definition of axial strain vec-
tor in Eq. (6), such that:

e ¼ Q T :@n1u� E1; ð115aÞ
@n1e ¼ Q T : @2

n1
u� ĵ:@n1u

� �
¼ Q T : ~@n1@n1u

� �
: ð115bÞ

Using the results in Proposition 3, presented in Chadha and Todd
(2019a), we get @n1e ¼ Q T : ~@n1e. From Eq. (115b), ~@n1e ¼ ~@n1 @n1u

� �
.

Using Proposition 1 (that also defines the operator @̂n1 used below)
presented in Chadha and Todd (2019a), we have the following

~@n
n1
e ¼ ~@n

n1
@n1u
� � ¼ @n1 � @̂n1

� �n
@n1u
� �

; ð116aÞ

@n
n1
e ¼ Q T : ~@n

n1
@n1u
� � ¼ Q T :

Xn
i¼0

�1ð Þ n�ið Þ n!
i! n� ið Þ!
� �

@n
n1
@̂

n�ið Þ
n1

 !
@n1u: ð116bÞ

The following section presents few numerical example concerning
the formulation described so far.

8. Numerical examples

We consider three numerical examples based on the formula-
tion described in this chapter using the constitutive model defined
in Section 6. The set of problems chosen emphasizes on a large 3D
deformation of beam/framed structure.

We consider the tolerance of 10�5 in the Euclidean norm of
force residue kP Uð Þk ¼ kxf ext0 Uð Þ � f int Uð Þk as a measure of con-
vergence. The numerical results, including the deformation map
and finite strains, obtained by the current formulation (referred
to as Chadha-Todd (CT) beam) are compared with the Simo-
Reissener beam model (SR) described in Simo (1985), Simo Vu-
Quoc beam model (SV) discussed in Simo and Vu-Quoc (1991),
and Crisfield co-rotational formulation detailed in Crisfield
(1990). As per the description of deformed configuration in Fig. 1,
the SR beam is defined by the configuration X1; the SV beam is
defined by a special case of configuration X2 that considers non-
uniform St. Venant warping but ignores bending induced shear
contribution to warping; the CT beam is described by the state X,
and the CF beam is a special case of SR (defined by X1) that ignores
the shear deformation. We also note that SV and CT beam becomes
identical if we ignore Poisson’s deformation and warping due to

bending induced shear; SR and CF beam formulation becomes
identical if shear deformation is ignored; all the four beams are
the same if the structure is infinitely slender.

In the following simulations, we consider rectangular cross-
section with the edge dimensions b� d, such that d P b. The warp-
ing functionW1 pertaining to the torsion can be obtained using the
St. Venant’s Neumann boundary value problem. There exists a
closed-form solution of this differential equation for rectangular
cross-section (refer to Sokolnikoff (1956)) given by

W1 n2; n3ð Þ ¼ n2n3 � 8d2

p3

X1
n¼0

�1ð Þn sin knn2ð Þ sinh knn3ð Þ
2nþ1ð Þ3 cosh knbð Þ ;

kn ¼ 2nþ1ð Þp
d for n ¼ 0;1;2; . . . :

ð117Þ

Fig. 4a illustrates the warping function W1a for a square cross-
section with the edge dimension 0:5 units obtained by solving
the concerned Neumann boundary value problem. Similarly,
Fig. 4b represents the warping function W1b obtained using Eq.
(117) considering 0 6 n 6 3. We observe from Fig. 4c that Eq.
(117) with 0 6 n 6 3 gives an excellent estimate of the warping
function W1.

The bending induced shear warping functions are obtained in
the Appendices A1.5 and A1.6 of Chadha and Todd (2019). We con-
sider the warping functions defined in Eq. (85) of Chadha and Todd
(2019) asW2 andW3. This warping function includes the non-linear
shear induced warping and it ignores the uniform shear deforma-
tion of the cross-section as it is taken care of by the director triad.
Therefore, we have

W3 ¼ � E
2G

n32
3

 !
; W2 ¼ � E

2G
n33
3

 !
: ð118Þ

8.1. A discussion on convergence

The weak form requires obtaining updated curvature field @r
n1
j

(see components of B1 matrix in Eq. (123)) and D@s
n1
j (see Eqs. (38)

and (40)) at each iteration, such that r ¼ 0;1;2 and s ¼ 0;1;2;3.
This demands C3 continuity in Da as obtaining D@r

n1
j requires up

to r þ 1ð Þ derivatives of Da. Secondly, the weak form has up to
the second-order derivative of the position vector, and the warping
amplitude requiring a C1 continuity in Du and Dp. Maintaining a
global C3 continuity in the incremental rotation angle will impose
8 continuity conditions at element boundary that can be fulfilled
by a seventh-order polynomial (e.g.: eight, seventh-order Hermite
polynomials obtained by imposing Kronecker-delta properties at
the element junction; or considering seventh-order Lagrangian-
polynomials on an eight-noded element). We denote k as the order
of the approximating polynomial used, and m is the highest order
of derivative in the weak form, which for our case is m ¼ 4. A

Fig. 4. Saint Venant’s warping function for a square cross-section.
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fourth-order Lagrangian polynomial k ¼ 4 satisfies the minimum
requirement for the weak form to be square-integrable, and a
seventh-order polynomial k ¼ 7 is required for the continuity at
the element boundary. Although k ¼ 4 violates continuity require-
ments, it yields a converging solution (since kþ 1 > m) satisfying
the compatibility requirement and yields a continuous curvature
and mid-curve axial-strain vector at the element junctions (despite
committing a variational crime). In this case, care must be taken to
avoid using quadrature rules that require element end nodes (like,
Gauss–Lobatto). We use a full Newton–Raphson iterative solution
procedure with uniformly reduced Gauss–Legendre quadrature to
avoid shear locking.

The rate of convergence b in sth Sobolev norm Hs, with
0 P s P m and H0 � L2, using Aubin-Nitsche’s (refer to Chapter 4
of Hughes (2012)) criterion is given by b ¼ min kþ 1� s;ð
2 kþ 1�mð ÞÞ. With these criteria, all seven degrees of freedom
exhibit a positive rate of convergence for both fourth and seventh
order polynomial. For instance, the convergence rate in L2-norm of
rotational degree of freedom is b ¼ 2 for k ¼ 4, and b ¼ 8 for k ¼ 7.
Therefore, the seventh-order shape function not only enforces con-
tinuity requirements at the element boundary, but it also increases
the rate of convergence. On the other hand, the numerical solution
with a seventh-order shape function is computationally expensive
as compared to a fourth-order polynomial (see Fig. 6), and might
lead to oscillatoric strain response at the Gauss-points depending
on the shape functions used (see Fig. 10).

From Eq. (114), we note that the rotation quantified by a non-
linear quantity Q 2 SO 3ð Þ is updated by the multiplicative rule that
utilizes the current incremental rotation vector Da. Unlike Da, it is
meaningless to define the quantity a, because the rotation is
parameterized by the vector h, not a. Therefore, the traditional def-
inition of the L2 norm does not exist for the current incremental
rotation vector Da. It is a stand-alone quantity and is not defined
as a vector difference between two vectors, or Da – af � ai as the
vector a is undefined. However, we could have adapted a total
Lagrangian updating scheme (as in Ibrahimbegović, 1995) and
used Dh instead of Da that would allow updating the rotation vec-
tor using additive rule, or hf ¼ hi þ Dh, and Q f ¼ exp hfð Þ. The tradi-
tional definition of L2-norm would then be valid for the rotation
vector h.

8.2. Numerical Example 1: Cantilever beam subjected to conservative
concentrated end load

For simulation 1, we consider a cantilever beam with a uniform
square cross-section with edge length 0:5 units subjected to the
conservative concentrated load Nu ¼ 18;5;5½ � units and
Na ¼ 120;500;200½ � units at end node. The beam has the material
and geometric properties as: E ¼ 150� 103 units; L ¼ 10 units;
G ¼ 62:5� 103 units and m ¼ 0:2. The Vlasov warping constant
for this case is significantly small: C88 ¼ 0:796. We report the
displacement at the end node obtained using CT-beam for 100 ele-
ments as: u Lð Þ ¼ 1:3030;1:6435;0:4488ð Þ units; p Lð Þ ¼
0:2591 units, and h Lð Þ ¼ k log Q Lð Þð Þk ¼ 1:2093 units.

The results discussed in the remaining part of this section is
obtained by considering 15 elements, seventh-order Lagrangian
polynomial and 30 load steps (implying xnþ1 � xn ¼ 1

30). Tables 1
and 2, gives the norm of force residue for the selective load step.
The convergence rates of the Newton method are observed.

Fig. 5 represents the mid-curve and director triad field of the
considered beam for selective load steps respectively. The plot
compares the undeformed state X0 and the deformed state
obtained using SR, SV, CT, and CF beam models. Fig. 6a demon-
strates the convergence of the degrees of freedom for fourth (blue

color) and seventh (red color) order Lagrangian shape function.
Fig. 6b illustrates the run time of FEM code considering fourth
(blue color) and seventh (red color) order Lagrangian shape func-
tion. The finite element code can further be optimized, therefore,
the relevant quantity to look for in Fig. 6b is the ratio of the run
time. The formulation with k ¼ 7 is around 4.6 times computation-
ally more expensive than k ¼ 4. The quantities eu and eQ (defined
in Eq. (9)) represent the error in the mid-curve position vector
and the rotation tensor of SR and SV beam relative to the CT beam
for four different load steps are plotted in the Figs. 7 and 8.

There is significant difference in the position vector of the mid-
curve obtained using CT beam model relative to SR, CF, and SV
beams. This is primarily because the bending stiffness for CT beam
is greater than the bending section modulus for SR, SV, and CF

beam by a factor of f ¼ 3m2þ2m�2
4m2þ2m�2 þ m2

2 1þmð Þ
I11
Ixx

� �� �
P 1, such that

C33xx ¼ fEIxx, where the subscript xx is either 22 or 33 (refer to
Fig. 9c). Secondly, CT beam is flexible in torsion relative to the
other beam models. We also observe that the error eu, increases
with the arc-length n1, or equivalently @n1eu > 0. This phenomenon
is very similar to the problem of dead-reckoning (also called a con-
ing effect) in path-estimation.

In Fig. 10a, we observe that CT and SV predicts almost the same
warping amplitude p. This is because the parameters C78; C79; C89;

C99; C98; C97 are small for the considered cross-section. We observe
oscillations in the warping amplitude p (a possible reason is dis-
cussed in next section). The beam is subjected to conservative tor-
sional moment, leading to constant warping amplitude away from
the boundary. Since the aforementioned material constants Cij are
negligible and the cross-section is symmetric (shear center and the
centroid of the cross-section coincides), the warping amplitude
p n1ð Þ converges with the torsional curvature field j1 n1ð Þ as
depicted in Fig. 10b. Fig. 11 shows the curvatures (left column)
and axial strain components (right column) for load steps
5; 10; 20; 30ð Þ obtained using Simo-Reissener (SR), Simo Vu-Quoc
(SV) and Chadha-Todd (CT) beam models.

8.3. Numerical Example 2: Cantilever beam subjected to pure torsion
and elongation

We consider a beam with the same geometry and material
property as Example 1 discussed in Section 8.2, except for the
changes in cross-sectional dimensions. For current example, we
consider a rectangular cross-section with the dimensions b ¼ 0:5
units and d ¼ 4b ¼ 2 ¼ L

5 units. The Vlasov constant for the consid-

ered cross-section is C88 ¼ 1261:65. The beam is subjected to a tor-
sion of 10,000 units and an axial pull of 10000 units at the free end.
This structure can not be considered as a slender beam because the
depth of the cross-section is 20% of its length. The goal of this
example is to demonstrate the performance of the CT beam relative

Table 1
Numerical Example 1: Force residue for the load steps 5; 10; 20; 30ð Þ obtained using
the CT beam.

Iter. Force residual norm

Load step 5 Load step 10 Load step 20 Load step 30

0 1:840� 101 1:840� 101 1:840� 101 1:840� 101

1 6:336� 102 6:0931� 102 1:781� 103 6:750� 102

2 1:996� 100 2:210� 100 1:079� 101 1:547� 100

3 2:599� 10�2 1:081� 10�1 3:987� 100 2:222� 10�1

4 1:309� 10�5 6:785� 10�5 1:022� 10�3 2:489� 10�5

5 3:068� 10�7 3:128� 10�7 1:099� 10�5 3:066� 10�7

6 – – 3:088� 10�7 –
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Fig. 5. Numerical Example 1: Deformed configuration.

Fig. 6. Numerical Example 1: Convergence and computational time plot. The red and blue represents the results for the 7th and the 4th order shape-function.

Fig. 7. Numerical Example 1: Error in the Simo-Reissener beam relative to the Chadha-Todd beam.
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to SV, SR, and CF beam when Poisson’s and warping effects are
dominant. We expect a significant deviation of CT and SV beam rel-
ative to the SR and CF beam. We consider 30 load steps, 15 ele-
ments, and fourth-order Lagrangian polynomial.

Fig. 12 represents the deformed state for SR (and CF), SV and CT
beammodels. We observe a few expected results. The error in eu is
negligible for SR (Fig. 13a) and SV (Fig. 14a) beams. This is because

the mid-cure of the beam is effected by pure elongation. However,
as observed in Figs. 12 and 13b, there is a significant error in rota-
tion triad obtained for SR and CF beam relative to CT beam (or even
SV beam). We can infer from Fig. 12a that the deviation of the
director triad in the SR beam relative to the CT beam (obtained
at the Gauss points) increases linearly along the length of the
beam. However, at first glimpse, the triangular shape of the error
plot eQ (Fig. 13b) depicts a linear increase followed by a decrease
in the error. This observation is misleading and contradicting to
our previous inference. The wave nature of error plot eQ is due to
the local homeomorphism of exponential map discussed in Sec-
tion 3.2.2 of Chadha and Todd (2019). In fact, the error plot 13b
does show continuous increase of error since eQ 2 0;p½ Þ.

We attribute large error in the deformation map predicted by
SR beam to the fact that the considered structure can no longer
be considered slender and the deformation is significantly effected
by fully coupled Poisson’s and warping effect. The inclusion of all
deformation effects in the CT beam makes it more flexible (or less
stiff).

Fig. 15 shows the first component of the axial strain vector e1
and the mid-curve axial strain e. Since the beam is not subjected
to bending and shear, e2 ¼ e3 ¼ 0;j2 ¼ j3 ¼ 0, and e1 ¼ e. As
expected, we observe that all four beams have excellent agreement
on the mid-curve deformation and the axial strains.

Fig. 8. Numerical Example 1: Error in the Simo Vu-Quoc beam relative to the Chadha-Todd beam.

Fig. 9. Factor f as a function of Poisson’s ratio for a square cross-section.

Fig. 10. Numerical Example 1: Torsional curvature and warping amplitude.
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Fig. 16a illustrates the torsional curvature field obtained using
SR, CF, SV, and CT beam models; and Fig. 16b illustrates the warp-
ing amplitude obtained using SV and CT for the load steps in the
multiple of five. We make the following observations. Firstly, we
observe a significant underestimation of the torsional curvature
obtained by the SR or CF beam. This is because the beam is no
longer slender. The CT and SV beams are more flexible in torsion

relative to SR and CF beam. In case of uniform torsion, we have
p ¼ j1. If T represents torsion at the end node (here, T ¼ 10000
units), the torsional curvature converges to a constant value for
CT and SV beam as j1 Lð Þ ¼ T

C3311
þC3711

¼ 2:306 (note that C3711 < 0),

whereas, the curvature for SR and CF beam can be obtained as
j1 Lð Þ ¼ T

C3311

¼ 0:456.

Fig. 11. Numerical Example 1: Components of the material curvature vector (left column) and the axial strain vector (right column).
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Secondly, for the given loading, we anticipate a constant torsion
field (as in SR beam), but the torsional curvature transitions from
zero to constant value in SV and CT beam. Similar is the case with
the warping amplitude. We also know that for uniform torsion, the
warping amplitude equals the torsional curvature, as observed in
Fig. 17. The fixed boundary on the left end implies p 0ð Þ ¼ 0. Seem-
ingly, the warping amplitude guides the value of torsional curva-
ture leading to an anomaly in the value of curvature near the

boundary. Thirdly, we observe oscillations in the torsional curva-
ture and warping amplitude in plot 16. We suspect that the oscil-
lation in the warping amplitude is because of the dependence of
the bi-shear on @2

n1
p. Since the quantity @2

n1
p is highly oscillatory

at Gauss points it leads to oscillations in the warping amplitude.
As noted before, in the case of uniform torsion, the torsional curva-
ture is guided by the warping amplitude. Therefore, we observe the
same oscillations in j1 n1ð Þ.

Fig. 12. Numerical Example 2: Deformed state.

Fig. 13. Numerical Example 2: Error in the Simo-Reissener beam relative to the Chadha-Todd beam.

Fig. 14. Numerical Example 2: Error in the Simo Vu-Quoc beam relative to the Chadha-Todd beam.
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8.4. Numerical Example 3: 3D frame subjected to concentrated
conservative loads at multiple nodes

We consider a structure with the geometry depicted in Fig. 18
subjected to two different cases of loading and cross-section. The

local element frames are defined by eif g. The only global to local
transformation that we make here is for the material matrix C.
We consider 150 load steps and fourth-order Lagrangian shape-
function for this example.

8.4.1. Case 1
For case 1, we consider a moderately slender structure with the

cross-sectional dimension as b ¼ 0:5 units and d ¼ 5b units. We
subject the structure to 3 times the load showed in Fig. 18.

Fig. 15. Numerical Example 2: Axial strains.

Fig. 16. Numerical Example 2: Torsional curvature and warping amplitude.

Fig. 17. Numerical Example 2: Warping amplitude and torsional curvature for CT
beam.

Table 2
Numerical Example 3: Position vector u ¼ uiEi for different beam models at node A
and B.

Node A Node B

u1 u2 u3 u1 u2 u3

Case 1 CT 14.150 �5.483 10.460 7.705 11.190 8.463
SV 14.380 �5.484 9.893 10.410 9.330 8.397
SR 13.930 �4.768 11.660 14.210 7.144 12.750
CF 13.960 �4.761 11.650 14.090 7.247 12.640

Case 2 CT 15.780 4.388 4.792 6.364 11.010 9.937
SV 15.770 5.353 3.738 6.702 10.790 9.738
SR 14.210 7.144 12.750 5.773 11.060 10.720
CF 14.090 7.247 12.640 5.766 11.040 10.670
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Fig. 19 illustrates the deformed shape for various load-steps using
CT, SV, SR, and CF beam models. As is expected, SR and CF formu-
lation yields a very similar deformation field. Figs. 19 and 20 shows
the error in the mid-curve position vector and rotation triads pre-
dicted by SR and SV beams relative to CT beam respectively. CT
beam prediction is closer to the SV beam as compared to the SR
beam. Figs. 21 and 22 compares the curvature and warping ampli-
tude fields interpolated linearly from their values at the Gauss

points obtained by CT, SV, and SR beam models for various load
steps. The yellow plane represents a positive plot. We note that
the strain fields are in the global coordinate system, for example,
in the local element coordinate system, j1 represents bending cur-
vature about e2 for elements 1, 2, 3, and 4, whereas it represents
torsional curvature for elements 5 and 6. Similarly, the torsional
curvature for elements 1 and 2 is given by j3, for elements 3 and
4 by j2 (the local and global system aligns for elements 4 and 5).

Fig. 18. Numerical Example 3: Geometry and load pattern.

Fig. 19. Numerical Example 3, case 1: Deformed configuration.

M. Chadha, M.D. Todd / International Journal of Solids and Structures 202 (2020) 854–880 873



A clear resemblance in the warping amplitude p can be observed
with j3 for elements 1 and 2; with j2 for elements 3 and 4; and
with j1 for elements 5 and 6. see Fig. 23.

8.4.2. Case 2
For case 2, we consider a more slender structure with the cross-

sectional dimension as b ¼ 0:2 units and d ¼ 8b units (higher

aspect ratio of the cross-section as compared to case 1). We subject
the structure to 2 times the load showed in Fig. 18. Fig. 24 illus-
trates the deformed shape for various load-steps using CT, SV, SR,
and CF beam models. As is expected, SR and CF formulation yields
a very close displacement field. The difference in the displacement
fields obtained by various beam models is very prominent in this
example because the slenderness of the structure and the higher

Fig. 20. Numerical Example 3, case 1: Error in the Simo-Reissener beam relative to the Chadha-Todd beam.

Fig. 21. Numerical Example 3, case 1: Error in the Simo Vu-Quoc beam relative to the Chadha-Todd beam.
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aspect ratio of the cross-section brings out the effect of fully cou-
pled Poisson’s and warping effect in the displacement and strain
fields. We report the deformed position vector u (in consistent
units) at the nodes A and B marked in Fig. 18 for both Case 1 and
Case 2.

9. Summary and conclusion

In this paper, we have detailed the variational formulation (in-
cluding dynamic behavior) and numerical implementation (re-
stricted to the static case) of geometrically-exact Cosserat beams
with a deforming cross-section. In this regard, the current investi-
gation is a sequel to our previous work on generalizing the kine-

matics of beam to encompass major deformation effects of the
beam in the setting of single-manifold characterized
geometrically-exact Cosserat beams.

On a broader level, this paper can be divided into five parts. In
the first part, we briefly lay down the foundation of kinematics
used in this study. Since the configuration of the system at hand
is a product space R3 � SO 3ð Þ � R, we describe the important con-
cepts related to finite rotation, curvature, material, and spatial
quantities. Finally, we define the tangent space and tangent bundle
associated with the deformed configuration.

To arrive at the virtual work principle, we evaluate the variation
of necessary quantities. The attempt to capture fully coupled Pois-
son’s and warping effects (including bending induced non-uniform

Fig. 22. Numerical Example 3, case 1: The component of material curvatures �j1, and �j2 in global coordinates.

Fig. 23. Numerical Example 3, case 1: The component of material curvature �j3 in global coordinates, and warping amplitude p.
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shear) results in the dependence of deformation map on deriva-
tives of curvature fields (up to second-order). This makes the calcu-
lation of variations rather demanding. The second part of this
paper is dedicated to the calculation of variations of kinematic
quantities required to obtain the weak form.

The third domain of thiswork dealswith deriving theweak equi-
librium equation in a form desirable to computationally solve the
problem. This beam model has higher regularity requirements as
compared to the conventional Simo-Reissner beam. We expected
to obtain an exactly similar balance of linear momentum, angular
momentum, and bi-moment as given in Simo and Vu-Quoc (1991).
Despite using an advanced kinematic model, the strong form, when
expressed using the first PK stress tensor, does not change.

The last part of this paper deals with developing a finite ele-
ment model considering a small strain linear constitutive model
for the static case. For the considered constitutive model, the mate-
rial stiffness matrix is symmetric, whereas, in general, the geomet-
ric stiffness is not symmetric. Finally, numerical simulations
comparing various beam models are presented.
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Appendix A. Appendix

A.1. Expressions of L and M-terms

A.1.1. Material form of L-terms associated with k1

L
k1

e ¼ I3

L
k1

@n1
e ¼ �mr1 � E1

L
k1

j ¼ r̂
T

L
k1

@n1
j ¼ mn2r1 � E3 � mn3r1 � E2

L
k1

@2n1
j ¼ E1 �W23

L
k1

@3n1
j ¼ �mr1 �W23

L
k1

p ¼ 01

L
k1

@n1
p ¼ W1E1

L
k1

@2n1
p ¼ �mW1r1

ð119Þ

L
k2

e ¼ �mE2 � E1

L
k2

@n1
e ¼ 03

L
k2

j ¼ 2mn2E2 � E3 � mn3E2 � E2 þ mn3E3 � E3

L
k2

@n1
j ¼ E1 � @n2W23

L
k2

@2n1
j ¼ �mE2 �W23 � mr1 � @n2W23

L
k2

@3n1
j ¼ 03

L
k2

p ¼ @n2W1:E1

L
k2

@n1
p ¼ �mW1E2 � m@n2W1:r1

L
k2

@2n1
p ¼ 01

ð120Þ

Fig. 24. Numerical Example 3, case 2: Deformed configuration.
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A.1.2. Material form of L-terms associated with k3 and M-terms

Lk3e ¼ �mE3 � E1

Lk3@n1 e ¼ 03

Lk3j ¼ �mn2E2 � E2 þ mn2E3 � E3 � 2mn3E3 � E2

Lk3@n1j ¼ E1 � @n3W23

Lk3
@2n1

j
¼ �mE3 �W23 � mr1 � @n3W23

Lk3
@3n1

j
¼ 03

Lk3p ¼ @n3W1:E1

Lk3@n1 p ¼ �mW1E3 � m@n3W1:r1

Lk3
@2n1

p
¼ 01

ð121Þ

Mk1
e ¼ �mĵ:r1 � E1

Mk1
j ¼ mĵ:r1 � n2E3 � n3E2ð Þ

Mk1
@n1

j ¼ ĵ:E1 �W23

Mk1

@2n1
j
¼ �mĵ:r1 �W23

Mk1
p ¼ W1ĵ:E1

Mk1
@n1

p ¼ �mW1ĵ:r1

ð122Þ

A.2. Expressions of matrices

A.2.1. Matrix B1

B1 ¼

03 I3 03 @n1 û 03 03 03 03 03

03 �ĵ I3 @2
n1
û� ĵ:@n1 û

� �
@n1 û 03 03 03 03

03 03 03 03 I3 03 03 03 03

03 03 03 03 �ĵ I3 03 03 03

03 03 03 03 ĵ:ĵ�@n1 ĵ
� � �2ĵ I3 03 03

03 03 03 03

@n1 ĵ:ĵþ2ĵ:@n1 ĵ

�@2
n1
ĵ� ĵ:ĵ:ĵ

 !
3 ĵ:ĵ�@n1 ĵ
� � �3ĵ I3 03

03 03 03 03 03 03 03 03 I3

2
6666666666666664

3
7777777777777775

ð123Þ

A.2.2. Matrix B2

BT
2 ¼

I3 @n1 :I3 @2
n1
:I3 03 03 03 03 03 01 01 01

03 03 03 I3 @n1 :I3 @2
n1
:I3 @3

n1
:I3 @4

n1
:I3 01 01 01

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 1 @n1 @2
n1

2
664

3
775

ð124Þ
Here, @n

n1
:I3 ¼ diagonal @n

n1
; @n

n1
; @n

n1

h i

A.2.3. Matrix B3

B3 ¼

I3 03 03 03 03 03 01 01

03 I3 03 03 03 03 01 01

03 03 03 03 03 03 01 01

03 �@n1û I3 03 03 03 01 01

03 03 03 I3 ĵ ĵ:ĵþ @n1 ĵ
� �

01 01

03 03 03 03 I3 2ĵ 01 01

03 03 03 03 03 I3 01 01

03 03 03 03 03 03 01 01

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 1 0

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0 1

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0 0

2
666666666666666666664

3
777777777777777777775

ð125Þ

A.2.4. Matrix B4

B4 ¼

03 03 03 �N̂ e 03 03 03 03 03

03 03 03 �N̂ @n1
e 03 03 03 03 03

03 03 03 �N̂ j 03 03 03 03 03

03 03 03 �N̂ @n1
j 03 03 03 03 03

03 03 03 �N̂ @2n1
j 03 03 03 03 03

03 03 03 �N̂ @3n1
j 03 03 03 03 03

03 03 03 03 03 03 03 03 03

2
66666666666666664

3
77777777777777775

ð126Þ

A.2.5. Matrix B5

B5 ¼

03 03 03 03 03 03 03 03 03

03 03 03 B524 B525 03 03 03 03

03 03 03 03 03 03 03 03 03

03 B542 B543 B544 B545 03 03 03 03

03 B552 03 B554 B555 B556 B557 03 03

03 03 03 B564 B565 B566 03 03 03

03 03 03 B574 B575 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

2
666666666666666664

3
777777777777777775

ð127Þ

where:

B524 ¼ N̂ @n1
e:ĵ; B525 ¼ �N̂ @n1

e; B542 ¼ N̂ e þ ĵ; N̂ @n1
e

h i
;

B543 ¼ N̂ @n1
e;

B544 ¼ �@n1 û:N̂ @n1
e:ĵ; B545 ¼ @n1û:N̂ @n1

e; B552 ¼ N̂ @n1
e;

B554 ¼ N̂ @n1
jþ ĵ;N̂ @2n1

j

� 

þ ĵ:N̂ @2n1

jþ ĵ: ĵ;N̂ @3n1
j

� 

þ ĵ; ĵ;N̂ @3n1

j

� 
� 
�

þĵ:ĵ:N̂ @3n1
jþ @n1 ĵ;N̂ @3n1

j

� 

þ2@n1 ĵ:N̂ @3n1

j

�
:ĵ

þ N̂ @2n1
jþ ĵ:N̂ @3n1

jþ2 ĵ;N̂ @3n1
j

� 
� �
:@n1 ĵþ N̂ @3n1

j:@
2
n1
ĵ;

B555 ¼ � N̂ @n1
j þ ĵ; N̂ @2n1

j

� 

þ ĵ:N̂ @2n1

j þ ĵ: ĵ; N̂ @3n1
j

� 

þ ĵ; ĵ; N̂ @3n1

j

� 
� 
�

þĵ:ĵ:N̂ @3n1
j þ @n1 ĵ; N̂ @3n1

j

� 

þ 2@n1 ĵ:N̂ @3n1

j

�

þ N̂ @2n1
j þ ĵ:N̂ @3n1

j þ 2 ĵ; N̂ @3n1
j

� 
� �
:ĵþ 2N̂ @3n1

j:@n1 ĵ;

B556 ¼ N̂ @3n1
j:ĵ� N̂ @2n1

j þ ĵ:N̂ @3n1
j þ 2 ĵ; N̂ @3n1

j

� 
� �
;

B557 ¼ �N̂ @3n1
j;

B564 ¼ 3N̂ @3n1
j:@n1 ĵþ 2N̂ @2n1

j þ 3 ĵ; N̂ @3n1
j

� 

þ 3ĵ:N̂ @3n1

j

� �
:ĵ;

B565 ¼ � 2N̂ @2n1
j þ 3 ĵ; N̂ @3n1

j

� 

þ 3ĵ:N̂ @3n1

j

� �
þ 3N̂ @3n1

j:ĵ;

B566 ¼ �3N̂ @3n1
j; B574 ¼ 3N̂ @3n1

j:ĵ; B575 ¼ �3N̂ @3n1
j:
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A.2.6. Matrix B7

B7 ¼

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 B742 03 03 03 03 03 03 03

03 03 03 B754 B755 B756 03 03 03

03 03 03 B764 B765 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

2
666666666666664

3
777777777777775
: ð128Þ

where:

B742 ¼ N̂e;

B754 ¼ N̂@n1
j þ ĵ; N̂@2n1

j

� 

þ ĵ:N̂@2n1

j

� �
:ĵþ N̂@2n1

j:@n1 ĵ;

B755 ¼ N̂@2n1
j:ĵ� N̂@n1

j þ ĵ; N̂@2n1
j

� 

þ ĵ:N̂@2n1

j

� �
;

B756 ¼ �N̂@2n1
j;

B764 ¼ 2N̂@2n1
j:ĵ;

B765 ¼ �2N̂@2n1
j:

A.2.7. Matrix BI

BT
I ¼

I3 @n1NI :I3 @2
n1
NI :I3 03 03 03 03 03 01 01 01

03 03 03 I3 @n1NI :I3 @2
n1
NI :I3 @3

n1
NI :I3 @4

n1
NI :I3 01 01 01

0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 0T
1 0T

1 1 @n1NI @2
n1
NI

2
664

3
775

ð129Þ

Here, @n
n1
NI:I3 ¼ diagonal @n

n1
NI; @

n
n1
NI; @

n
n1
NI

h i

A.3. Force vectors

A.3.1. Material form of reduced section forces

N e ¼
R
B0

Lk1e þMk1
e

� �T
:P1 þ Lk2e

� �T
:P2 þ Lk3e

� �T
:P3dB0

N @n1
e ¼

R
B0

Lk1@n1 e
� �T

:P1dB0

N j ¼ RB0 Lk1j þMk1
j

� �T
:P1 þ Lk2j

� �T
:P2 þ Lk3j

� �T
:P3dB0

N @n1
j ¼ RB0 Lk1@n1j þMk1

@n1
j

� �T
:P1 þ Lk2@n1j

� �T
:P2 þ Lk3@n1j

� �T
:P3dB0

N @2n1
j ¼ RB0 Lk1

@2n1
j
þMk1

@2n1
j

� �T

:P1 þ Lk2
@2n1

j

� �T

:P2 þ Lk3
@2n1

j

� �T

:P3dB0

N @3n1
j ¼ RB0 Lk1

@3n1
j

� �T

:P1dB0

Np ¼
R
B0
Mk1

p :P1 þ Lk2p :P2 þ Lk3p :P3dB0

N@n1
p ¼

R
B0

Lk1@n1 p þMk1
@n1

p

� �
:P1 þ Lk2@n1 p:P2 þ Lk3@n1 p:P3dB0

N@2n1
p ¼

R
B0
Lk1
@2n1

p
:P1dB0:

ð130Þ

A.3.2. End boundary forces, and reduced inertial forces

Bu ¼ RB0 Lk1e
� �T

:P1dB0

Ba ¼ RB0 Lk1j
� �T

:P1dB0

Be ¼
Z
B0

Lk1@n1 e
� �T

:P1dB0

Bj ¼
Z
B0

Lk1
@n1

j

� �T
:P1dB0

B@n1
j ¼

Z
B0

Lk1
@2n1

j

� �T

:P1dB0

B@2n1
j ¼

Z
B0

Lk1
@3n1

j

� �T

:P1dB0

Bp ¼
Z
B0

Lk1
@n1

p:P1dB0

B@n1
p ¼

Z
B0

Lk1
@2n1

p
:P1dB0 ð131Þ

Fu ¼ RX0
q0 Lk1e
� �T

:@2
t RdX0

Fa ¼ RX0
q0 Lk1j
� �T

:@2
t RdX0

Fe ¼
R
X0
q0 Lk1@n1 e
� �T

:@2
t RdX0

Fj ¼ RX0
q0 Lk1@n1j
� �T

:@2
t RdX0

F@n1
j ¼ RX0

q0 Lk1
@2n1

j

� �T

:@2
t RdX0

F@2n1
j ¼ RX0

q0 Lk1
@3n1

j

� �T

:@2
t RdX0

Fp ¼
R
X0
q0L

k1
@n1

p:@
2
t RdX0

F@n1
p ¼

R
X0
q0L

k1

@2n1
p
:@2

t RdX0

ð132Þ

A.3.3. Reduced external forces due to surface traction and body force

Nst
u ¼ RC0

Lk1e
� �T

: P:Nð ÞdC0

Nst
a ¼ RC0

Lk1j
� �T

: P:Nð ÞdC0

Nst
e ¼ RC0

Lk1@n1 e
� �T

: P:Nð ÞdC0

Nst
j ¼ RC0

Lk1@n1j
� �T

: P:Nð ÞdC0

Nst
@n1

j ¼ RC0
Lk1

@2n1
j

� �T

: P:Nð ÞdC0

Nst
@2n1

j ¼ RC0
Lk1

@3n1
j

� �T

: P:Nð ÞdC0

Nst
p ¼ RC0

Lk1@n1 p: P:Nð ÞdC0

Nst
@n1

p ¼
R
C0

Lk1
@2n1

p
: P:Nð ÞdC0

ð133Þ

Nb
u ¼ RB0 q0 Lk1e

� �T
:bdB0

Nb
a ¼ RB0 q0 Lk1j

� �T
:bdB0

Nb
e ¼

R
B0
q0 Lk1@n1 e
� �T

:bdB0

Nb
j ¼ RB0 q0 Lk1@n1j

� �T
:bdB0

Nb
@n1

j ¼ RB0 q0 Lk1
@2n1

j

� �T

:bdB0

Nb
@2n1

j ¼ RB0 q0 Lk1
@3n1

j

� �T

:bdB0

Nb
p ¼ RB0 q0L

k1
@n1

p:bdB0

Nb
@n1

p ¼
R
B0
q0L

k1

@2n1
p
:bdB0

ð134Þ
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A.3.4. Nodal internal force vector

f eintI ¼
Z ne1b

ne1a

BT
I B

eT

1 N
e
intdn1 ¼ f eintI1; f eintI2; f eintI3

� 	
: ð135Þ

Here,

f eintI1 ¼
Z ne1b

ne1a

@n1NI N
e
e þ ĵ:N

e
@n1

e

� �
þ @2

n1
NIN

e
@n1

e

� �
dn1;

f eintI2 ¼
Z ne1b

ne1a

NI �@n1û:N
e
e � @2

n1
ûþ @n1û:ĵ

� �
:N

e
@n1

e

� ��

þ@n1NI: N
e
j � @n1 û:N

e
@n1

e þ ĵ:N
e
@n1

j þ ĵ:ĵþ @n1 ĵ
� �

:N
e
@2n1

j

�

þ ĵ:@n1 ĵþ 2@n1 ĵ:ĵþ @2
n1
ĵþ ĵ:ĵ:ĵ

� �
:N

e
@3n1

j

�

þ @2
n1
NI N

e
@n1

j þ 2ĵ:N e
@2n1

j þ 3 ĵ:ĵþ @n1 ĵ
� �

:N
e
@3n1

j

� �

þ@3
n1
NI N

e
@2n1

j þ 3ĵ:N e
@3n1

j

� �
þ @4

n1
NI:N

e
@3n1

j

�
dn1:

f eintI3 ¼
Z ne1b

ne1a

NI:N
e
p þ @n1NI:N

e
@n1

p þ @2
n1
NI:N

e
@2n1

p

� �
dn1:

A.3.5. Nodal external force vector

A.4. Constitutive law

Define: ~k ¼ 2Gþ k.

C11 ¼
k



0 0

0 G 0

0 0 G

2
6664

3
7775; C12 ¼

0 k 0

G 0 0

0 0 0

2
664

3
775; C13 ¼

0 0 k

0 0 0

G 0 0

2
664

3
775;

C21 ¼
0 G 0

k 0 0

0 0 0

2
664

3
775; C22 ¼

G 0 0

0 k



0

0 0 G

2
664

3
775; C23 ¼

0 0 0

0 0 k

0 G 0

2
664

3
775;

C31 ¼
0 0 G

0 0 0

k 0 0

2
664

3
775; C32 ¼

0 0 0

0 0 G

0 k 0

2
664

3
775; C33 ¼

G 0 0

0 G 0

0 0 k



2
664

3
775:
ð137Þ

The reduced force vectors are related to the mid-curve strains as:

N e ¼C11 :eþC12 :@n1 eþC13 :jþC14 :@n1jþC15 :@
2
n1
jþC16 :@

3
n1
jþp:C17 þ@n1 p:C18 þ@2

n1
p:C19 ;

N @n1
e ¼C21 :eþC22 :@n1 eþC23 :jþC24 :@n1jþC25 :@

2
n1
jþC26 :@

3
n1
jþp:C27 þ@n1 p:C28 þ@2

n1
p:C29 ;

N j ¼C31 :eþC32 :@n1 eþC33 :jþC34 :@n1jþC35 :@
2
n1
jþC36 :@

3
n1
jþp:C37 þ@n1 p:C38 þ @2

n1
p:C39 ;

N @n1
j ¼C41 :eþC42 :@n1 eþC43 :jþC44 :@n1jþC45 :@

2
n1
jþC46 :@

3
n1
jþp:C47 þ@n1 p:C48 þ@2

n1
p:C49 ;

N @n1 j
¼C51 :eþC52 :@n1 eþC53 :jþC54 :@n1jþC55 :@

2
n1
jþC56 :@

3
n1
jþp:C57 þ@n1 p:C58 þ@2

n1
p:C59 ;

N @3n1
j ¼C61 :eþC62 :@n1 eþC63 :jþC64 :@n1jþC65 :@

2
n1
jþC66 :@

3
n1
jþp:C67 þ@n1 p:C68 þ@2

n1
p:C69 ;

N p ¼C71 :eþC72 :@n1 eþC73 :jþC74 :@n1jþC75 :@
2
n1
jþC76 :@

3
n1
jþp:C77 þ@n1 p:C78 þ@2

n1
p:C79 ;

N @n1 p
¼C81 :eþC82 :@n1 eþC83 :jþC84 :@n1jþC85 :@

2
n1
jþC86 :@

3
n1
jþp:C87 þ @n1 p:C88 þ@2

n1
p:C89 ;

N @2n1
p ¼C91 :eþC92 :@n1 eþC93 :jþC94 :@n1jþC95 :@

2
n1
jþC96 :@

3
n1
jþp:C97 þ @n1 p:C98 þ@2

n1
p:C99 :

ð138Þ

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.ijsolstr.2020.06.002.
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f eextI xð Þ ¼
Z ne1b

ne1a

BT
I B3N

e
ext xð Þdn1 ¼ f eextI1; f eextI2; f eextI3

� 	

¼
Z ne1b

ne1a

NI:N
e
u xð Þ þ @n1NI:N

e
e xð Þ

NI: N
e
a xð Þ � @n1û:Ne

e xð Þ� �þ @2
n1
NI:N

e
@2n1

j xð Þ

þ@n1NI: Ne
j xð Þ þ ĵ:Ne

@n1
j xð Þ þ ĵ:ĵþ @n1 ĵ

� �
:Ne

@2n1
j xð Þ

� �NI:N
e
p xð Þ þ @n1NI:N

e
@n1

p xð Þ

0
B@

3
75dn1 ð136Þ

2
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