

City of Kyle Annual Drinking Water Quality Report for the period of January 1, 2024 to December 31, 2024

This report is intended to provide important information about Kyle's drinking water and the efforts made by this water system to provide safe drinking water.

NOTICE: This customer confidence report is only applicable to persons who receive their water from the City of Kyle. If you do not receive your water service from the City of Kyle, please contact your water provider to obtain your confidence report.

- SOURCES OF DRINKING WATER, REGULATIONS AND INSTRUCTIONS FOR PUBLIC INPUT
- 2 INFORMATION ABOUT SOURCE WATER ASSESSMENTS
- 3 CONTAMINANTS
- DEFINITIONS OF WATER QUALITY TEST RESULTS
- 5 2024 WATER QUALITY TEST RESULTS

PWS ID# TX1050002 City of Kyle, Texas

For more information contact:

Michael Van Winkle

Division Manager Treatment Operations

Phone: 512-262-3024 or E-mail: pw@cityofkyle.com

Este reporte incluye información importante sobre el agua para tomar.

Para asistencia en español, favor de llamar al telefono 512-262-3024 or E-mail pw@cityofkyle.com

Sources of Drinking Water

The sources of drinking water (including tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells.

The city of Kyle uses purchased surface water and treated groundwater.

Surface Water comes from:

- · Canyon Lake via Lake Dunlap
- Guadalupe County through the Guadalupe-Blanco River Authority (GBRA)

Groundwater comes from:

- · San Antonio segment Edwards Aquifer
- · Hays County Barton Springs segment Edwards Aquifer, Hays County

Federal & State Regulations

To ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) prescribes regulations that limit the level of certain contaminants in water provided by public water systems.

The Federal Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Contaminants may be found in all drinking water that may cause taste, color or odor problems. It's important to note that these types of issues are not necessarily causes for health concerns.

For more information on taste, odor, or color of drinking water, please contact the system's business office.

Public Input

The Kyle City Council meets on the first and third Tuesdays of each month at Kyle City Hall, located at 100 W. Center Street in Kyle, TX. Occasionally, the council discusses business that pertains to drinking water quality, supply and infrastructure. For more information, agendas and meeting details, please call 512-262-1010 or visit our website at www.cityofkyle.com. Agendas are posted at least 72 hours prior to meetings and are available on the city's website.

Information About Source Water Assessments

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report.

Fluoride / Fluoridation

Kyle's water supply does NOT have fluoride added to it; the fluoride in our groundwater sources is naturally occurring.

The flouride sample for this calendar year did not exceed primary or secondary consitiuent levels.

Some home water treatment units are available to remove fluoride from drinking water. To learn more about home water treatment units, you may call NSF International at 1-877-8-NSF-HELP.

Hardness

The hardness of Kyle's municipal drinking water can vary considerably depending on several factors, including the time of year. This is a result of the amount of groundwater we are using in the system at any given time.

Groundwater resources are the primary contributors of hardness in our system. The range of hardness is 275-295 mg/L of total hardness (as CaCO3). General guidelines for classification of waters are: 0 to 60 mg/L (milligrams per liter) as calcium carbonate is classified as soft; 61 to 120 mg/L as moderately hard; 121 to 180 mg/L as hard; and more than 180 mg/L as very hard.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: https://www.tceq.texas.gov/gis/swaview

Further details about sources and source water assessments are available in Drinking Water Watch at the

following URL: http://dww2.tceq.texas.gov/DWW/

As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals — and in some cases radioactive material — and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least some small amounts of contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that MAY be present in source water include:

- Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Pesticides and herbicides may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants can be naturally occurring or be the result of oil and gas production and mining activities.

Some people can be more vulnerable than the general population to certain microbial contaminants in drinking water, such as Cryptosporidium. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections.

More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 800-426-4791.

Definitions of Water Quality Test Results

The tables on the last pages of this report contain scientific terms and measures, some of which may require explanation. See the list below for what these terms mean.

Avg: Regulatory compliance with some MCLs is based on a running annual average of monthly samples.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as possible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MFL: million fibers per liter (a measure of asbestos)

NA: not applicable.

NTU: nephelometric turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion — or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million — or one ounce in 7,350 gallons of water.

ppt: parts per trillion, or nanograms per liter (ng/L)

ppq: parts per quadrillion, or pictograms per liter (pg/L)

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	5% of montly samples are positive	1.6	-	0	N	Naturally present in the environment.

Lead and Copper

	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	7/20/2022	1.3	1.3	.11	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing.
Lead	7/20/2022	0	15	1.3	1	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

Disinfection By-Products

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2024	18	10-28.1	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes (TTHM)	2024	60	29.9-82.5	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
---------------------------------	------	----	-----------	-----------------------	----	-----	---	---

^{*}The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Compounds

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	1/25/2022	.18	0.0553 - 0.18	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Flouride	2024	1.61	1.61 - 1.61	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [Measured as Nitrogen]	2024	2	0.14 - 2.05	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Potential Hydrogen (Ph) Range

Average	Range			
7.8	7.5-8.1			

Radioactive Contaminants

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	02/14/2023	1.1	1.1 - 1.1	0	5	pCi/L	N	Erosion of natural deposits.
Gross alpha excluding radon and uranium	02/14/2023	5.7	3.6 - 5.7	0	15	pCi/L	N	Erosion of natural deposits.

Volatile Organic Compounds

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Xylenes	2024	0.0009	0.0009 - 0.0009	10	10	ppm	N	Discharge from petroleum factories; Discharge from chemical factories.

Disinfectant Residual

Disinfectant Residual	Collection Date	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation	Source in Drinking Water
FREE	2024	1.41	.37-2.16	4	4	ppm	N	Water additive used to control microbes.

2024 Purchased Surface Water Quality Results

Turbidity

	Level Detected	Limit (Treatment Technique)	Violation	Likely Source of Contamination
Highest single measurement	0.21 NTU	1 NTU	N	Soil runoff
Lowest monthly % meeting limit	100%	0.3 NTU	N	Soil runoff

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Disinfection By-Products

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorite	2024	0.666	0 - 0.666	0.8	1	ppm	Ν	By-product of drinking water disinfection.

Additional Information for Lead

In the summer of 2024, the City of Kyle completed a lead service line inventory in our water distribution system. The lead service line inventory is an inventory of every service line in our distribution system, including both the utility owned and customer owned service lines.

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Kyle is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead

Lead Service Line Inventory Summary

Service Line Classification	Quantity	Percentage of total inventory
Non-Lead	14,200	99.31%
Galvanized requiring replacement	98	.68%
Lead	1	.01%

An online service line inventory map is available at:

https://giskyle.maps.arcgis.com/apps/mapviewer/index.html?webmap=4e407e7527864c6188e77f8b35add7e8

Additional Monitoring

As part of an on-going evaluation program the EPA has required us to monitor some additional contaminants/chemicals. Information collected through the monitoring of these contaminants/chemicals will help to ensure that future decisions on drinking water standards are based on sound science.

The Safe Drinking Water Act (SDWA) requires that once every five years the EPA issue a list of unregulated contaminants to be monitored by public water systems.

The fifth Unregulated Contaminant Monitoring Rule (UCMR 5) was published on December 27, 2021. UCMR 5 requires sample collection for 30 chemical contaminants between 2023 and 2025. The data collected under UCMR 5 improves understanding of the prevalence and amount of 29 per- and polyfluoroalkyl substances (PFAS) and lithium in the nation's drinking water systems.

During the City of Kyle's UCMR5 sampling events, NO regulated contaminants were found. Some samples were positive for unregulated contaminants above the Minimum Reporting Level and were as follows:

Contaminant	Reported Level	Range (mg/L)	
		Low	High
lithium	0.0109	NA	0.0126
perfluorobutanoic acid (PFBA)	0.0000145	NA	0.0000194
perfluorohexanoic acid (PFHxA)	0.000031	NA	0.0000031
perfluoropentanoic acid (PFPeA)	0.0000039	NA	0.0000045

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

- Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- · Water plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- · Visit https://www.cityofkyle.com/water-utilities/page/residential-water-conservation-rebateprograms for water conservation rebate opportunities.