Integrated Photonic Devices

Photonics is the science and technology of generating, controlling, and detecting photons
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* Improved EM interference immunity

* Increased bandwidth

» Expanded frequency division multiplexing
» Expanded multiple switching

» Small size and lower power consumption

x Improved optical alignment
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Silicon photonics delivers all the components necessary to facilitate the transmission and
reception of data
Why..?? P

Standard CMOS silicon-based fabrication techniques:
* Produces high volume, low cost components

* Integrate components at manufacturing stage removing need of expensive assembly of devices
ef:
. Cheben et.al., “Subwavelength integrated photonics,” Nature, vol. 560, no. 7720.
. W. Hibers, ¢ Teraher‘tz technology: Towards THz integrated photonics,” Nat. Photonics, vol. 4, no. 8, pp. 503-504, Aug. 2010.
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Khan et.al., “Photonic integrated circuit design in a foundry fabless ecosystem,” IEEE J. Sel. Top. Quantum Electron., vol. 25, no.
, Sep. 2019.
. Paniccia, “Integrating silicon photonics,” Nature Photonics, vol. 4, no. 8. Nature Publishing Group, pp. 498-499, Aug. 2010.
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Optical Modulator

An optical modulator is a device which can be used for manipulating a property of light ( intensity, phase, etc..)

Source: www.semiwiki.com

Why Modulation...????

« Embedding the information on the optical carrier
for data security

« Workhorses of the internet

 Enabling modern data communications

« Maximizing bandwidth

« Growth of smart cities

* Implementation of Internet of Things (1oT)

« Self-driving cars
¢ Telemedicine adoption /
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Silicon based Sub-bandgap Photodetector

Photon flux with broad Photon-absorption-induced

frequency spectrum

27

internal photo emission) /
Thermionic emission

' Internal Photoemission (IPE) ]l

(dark current) « Metal-semiconductor Schottky junction for infrared detection
« Optical excitation of electrons in the metal to the energy greater
than the Schottky barrier height

(dsgy <Photon Energy)

E, « Transports the electrons to the conduction band of the
\ semiconductor

Drawback of Metal/n-Si Schottky junction-based Photodetector How to Overcome..?? !

« Low responsivity and guantum efficiency: Metal reflects most of
the light of wavelength above 1100 nm

« Thin metal layer: high series resistance as well as poor adhesion

« Momentum imbalance: reflection of excited charge carriers in
place of emission

* Incoming light excites the carriers which lie far below the fermi
level

 Difficult for the charge carrier to cross the metal-semiconductor
potential barrier

Ref:

1. S. Muehlbrandt et al., “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica, vol. 3, no. 7, Jul. 2016.

2. M. Casalino et.al., “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um: Fabrication and
characterization,” Appl. Phys. Lett., vol. 92, no. 25, Jun. 2008.

3. M. Alavirad et.al., “High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors,” Opt. Express, vol. 24, no. 20, Oct. 2016.

4. B. Desiatov et.al., “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,”
Optica, vol. 2, no. 4, Apr. 2015.

v'Replacing metal with transparent conducting oxides
(TCO’s)
v'TCO’s: Indium Tin Oxide (ITO) =>
most potential candidates to replace metal in  Schottky
photodetectors
v'IPE: ¢ <Photon Energy;

¢y (ITO/N-Si)=0.45eV < 0.8 eV
v ITO with good carrier concentration integrated with Si



Optical Modulation In Composite Waveguide based on Si-1TO Heterojunction
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Optical Modulator based on Distributed Heterojunctions
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Photodetector using Sub-bandgap Transition in Si-ITO Heterojunction
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Optical Modulator based on SI-ITO Grating Embedded Rib Structure
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K Slow-light effect arising from the optical confinement in the
small mode volumes increases the light-matter interaction and
yields a larger group delay

* ITO’s electrical tuning along with larger group delay =» efficient slow light
enhanced optical modulation

« Extinction-ratio over 8 dB (for 10 um long device)

* Modulation efficiency V_ L around 12 V-pum for 1530 -1570 nm wavelength
Active control of slow Ilght

k Electrical tuning in group delay of 82 ps /

S. Rajput et. al., Optics Letters, vol. 46, no. 14, pp. 3468-3471, June 2021. (1.F.-3.56)
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High Extinction Ratio and Low Voltage Ring Modulator based on Si-ITO

Heterojunction
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All Optical Modulation in ITO Ring Resonator employing ENZ state

1.4 pm

( a) —

1me ITO

S19,

Si-substrate

Optical Input
1550 nm (Probe)

I
(®) Alignment Marks for two-step

Lithography

o

Taper for on- Top view of the
chip coupling fabricated
device

:

High Intensity Near Infrared
Laser Source (Pump)

Optical Output 1550 nm

All-Optical Measurements

High Intensity Near Infrared
Laser Source (Pump)

Tunable
Laser Source
(Probe)

Optical
Spectrum
Analyser

Polarization
Controller

SMF

-10

-15
o 20
I,
| o=
-8 25
0 _
g -30 F 50 MW/m? tinction Ratio= 18 dB
® ——— 100 MW/m?
= —— 150 MW/m?

35 F —— 200 MW/m?

F ——— 250 MW/m?
-40
1550 . 1555

Wavelength (nm)

S. Rajput et. al., Nature Scientific Reports, vol. 13, 18379, October 2023. (1.F.-4.6)
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