Integrated Photonic Devices

Photonics is the science and technology of generating, controlling, and detecting photons

Photonic Integrated Circuit

Why Photonics...????

- Improved EM interference immunity
- Increased bandwidth
- Expanded frequency division multiplexing
- Expanded multiple switching
- Small size and lower power consumption
- Improved optical alignment

Photonics and electronics integrated circuits are complementary and not competitive...!!!!

Wantum Data Output Data Ou

Silicon Photonics

<u>Smart Integration of</u> <u>Electronics and Photonics</u>

(Enable each technology to play to its strength)

CMOS's Density and ability to perform complex processing

Photonics outright speed and transmission capacity

Silicon photonics delivers all the components necessary to facilitate the transmission and reception of data

Why..??

Standard CMOS silicon-based fabrication techniques:

- Produces high volume, low cost components
- Integrate components at manufacturing stage removing need of expensive assembly of devices *Ref:*
- P. Cheben et.al., "Subwavelength integrated photonics," *Nature*, vol. 560, no. 7720.
- 2. H. W. Hübers, "Terahertz technology: Towards THz integrated photonics," Nat. Photonics, vol. 4, no. 8, pp. 503-504, Aug. 2010.
- M. U. Khan et.al., "Photonic integrated circuit design in a foundry fabless ecosystem," *IEEE J. Sel. Top. Quantum Electron.*, vol. 25, no. 5, Sep. 2019.
- M. Paniccia, "Integrating silicon photonics," *Nature Photonics*, vol. 4, no. 8. Nature Publishing Group, pp. 498–499, Aug. 2010.

Optical Modulator

An optical modulator is a device which can be used for manipulating a property of light (intensity, phase, etc..)

Telemedicine adoption

4. C. K. Tang et.al., "Highly efficient optical phase modulator in SOI waveguides," *Electron. Lett.*, vol. 31, no. 6, Mar. 1995.

5. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. of Quantum Electronics, vol. 23, no. 1., 1987.

Silicon based Sub-bandgap Photodetector

Internal Photoemission (IPE)

- Metal-semiconductor Schottky junction for infrared detection
- Optical excitation of electrons in the metal to the energy greater than the Schottky barrier height

$(\phi_{SBH} < Photon Energy)$

• Transports the electrons to the conduction band of the semiconductor

Drawback of Metal/n-Si Schottky junction-based Photodetector

• *Low responsivity and quantum efficiency:* Metal reflects most of the light of wavelength above 1100 nm

- Thin metal layer: high series resistance as well as poor adhesion
- <u>Momentum imbalance</u>: reflection of excited charge carriers in place of emission
- Incoming light excites the carriers which lie far below the fermi level
- Difficult for the charge carrier to cross the metal-semiconductor potential barrier

Ref:

How to Overcome..??

- ✓ Replacing metal with transparent conducting oxides (TCO's)
- ✓TCO's: Indium Tin Oxide (ITO) =>

most potential candidates to replace metal in Schottky photodetectors

- ✓ IPE: \$\overline\$_{SBH}\$ < Photon Energy;
 \$\overline\$_{SBH}\$ (ITO/n-Si)=0.45 eV < 0.8 eV
- \checkmark ITO with good carrier concentration integrated with Si

^{1.} S. Muehlbrandt et al., "Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception," Optica, vol. 3, no. 7, Jul. 2016.

^{2.} M. Casalino et.al., "Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm: Fabrication and characterization," *Appl. Phys. Lett.*, vol. 92, no. 25, Jun. 2008.

^{3.} M. Alavirad et.al., "High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors," Opt. Express, vol. 24, no. 20, Oct. 2016.

^{4.} B. Desiatov et.al., "Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime," *Optica*, vol. 2, no. 4, Apr. 2015.

Optical Modulation in Composite Waveguide based on Si-ITO Heterojunction

Reverse Bias Voltage (V)

(a)

SMF

TLS

Polarizer

SMU

SMF

DUT

Vacuum

Stage

Characterization of Si-ITO Heterojunction

Carrier Concentration: Carrier Concentration: Carrier Concentration: $0.89 \text{ x} 10^{19} / \text{cm}^3$ $5.02 \text{ x} 10^{19} / \text{cm}^3$ $1.57 \text{ x} 10^{20} / \text{cm}^3$

- ITO Deposition at different oxygen partial pressure $(3.5 \text{ sccm to } 0.5 \text{ sccm}) \rightarrow \text{ in order to vary carrier}$ concentration
- Deposition Technique: Ion Assisted e-beam deposition

Findings

- Increase in transmittance with increasing reverse bias voltage
- **Extinction Ratio:** 7 dB for 1 mm long device
- Potential modulation for phase and photodetection

S. Rajput et. al., Journal of Lightwave Technology, vol. 38, no. 6, pp. 1365-1371, March 2020. (I.F.-4.7

Optical Modulator based on Distributed Heterojunctions

S. Rajput et. al., Physical Review Applied, vol. 15, no. 5, pp. 54029, May 2021. (I.F.-4.985)

- 0V

- -2V

-4V

0.512

-4 V

-3 V

-2 V

-1 V

- 0 V

1556

Annul A

1554

0.496

0.504

1552

Photodetector using Sub-bandgap Transition in Si-ITO Heterojunction

S. Rajput et. al., Journal of Lightwave Technology, vol. 39, no. 21, pp. 6886-6892. (I.F.-4.439)

Optical Modulator based on Si-ITO Grating Embedded Rib Structure

- Modulation efficiency V_{π} L around 12 V-µm for 1530 -1570 nm wavelength
- Active control of slow light

5

Voltage (V)

0

Electrical tuning in group delay of 82 ps

S. Rajput et. al., Optics Letters, vol. 46, no. 14, pp. 3468-3471, June 2021. (I.F.-3.56)

High Extinction Ratio and Low Voltage Ring Modulator based on Si-ITO Heterojunction

S. Rajput et. al., Optics Comm, vol. 545, pp. 129562, May 2023. (I.F.-2.3)

All Optical Modulation in ITO Ring Resonator employing ENZ state

Wavelength (nm)

S. Rajput et. al., Nature Scientific Reports, vol. 13, 18379, October 2023. (I.F.-4.6)

Research Expertise

Design &	Nanofabrication	Measurement &	
Simulation:		Testing	
Lumerical Mode, FDTD,	Lithography:	Optical fiber and	•Hands on Lab development
Charge Transport Solver	Maskless Lithography &	electrical probe system	experience with and maintenance
	Electron beam		cleanroom for lithography
	Lithography		RCAT Indore Indore
Fimmwave/Fimprop	Etching:	Thin-film measurement	Indore Indore
	Reactive Ion Etching &	and characterization	
	Wet Etching	(Ellipsometry, XRD,	Handson
		XRR, Hall Effect,	experience with
CSolver	Danasition	Spectroscopy)	cleanroom •Global
GSolver	Deposition:	Electro-optic moscurement	facilities at the Foundries
	Sputtering, Ion-Assisted	(modulation denth speed	Quantum Exposure CNIC Nanofabrication Microsystems and
	e-beam Deposition	(Inoutration deput, speed, I-V Tx line_etc.)	Centre (ONC). AIM Photonics
		1- v, 1 x IIIIe, etc.).	University of
Vlanaut LEdit and			Waterloo
Nayout, LEast and		Imaging: SEM, AFM,	
Clewin for Mask		Comocal & Optical	
designing of manodevices		пистовсору	_