

FAMILY OF COMPANIES

SPECIALTY GAS

MEDICAL GAS

INDUSTRIAL GAS

AGL's goal is to enhance the individual and organizational performance of its customers through the effective selection and efficient use of quality products.

CAPABILITIES

AGL is independently owned and operated.

AGL is an authorized Air Products, Matheson, and Messer Group industrial, medical and specialty gas distributor.

AGL's fill plant operations are FDA registered and inspected. Plant operations are also audited annually and conform to ISO 9001 standard operating procedures thus allowing the highest quality gases available.

AGL ensures product quality from receipt to final delivery through constantly monitored and updated Quality Control procedures. Its state-of-the-art in-house Specialty Gas Laboratory can accommodate the increasing demand for certified pure gases and mixtures.

AGL owns, operates and maintains a fleet of delivery vehicles. Its fleet includes cylinder delivery trucks, bulk liquid nitrogen and oxygen transports as well as gaseous helium and hydrogen tube trailers. These capabilities, with the additional support of our vendors' delivery fleets, gives you a fail safe reliability of product delivery.

AGL owns and maintains its large cylinder inventory thru its DOT certified hydrostatic testing and reconditioning facility.

AGL's flexibility allows the use of other vendors' cylinders resulting in a single source of rental billing.

AGL's unique pricing structure unbundles components allowing for identification of costs for bottom line analysis of its competitiveness.

AGL is accessible to its customers 24 hours a day, 7 days a week, 365 days a year.

AGL's market position allows us to align with a variety of major gas and equipment manufacturers enabling us to draw on their strengths and present to you, our customer, these benefits.

AGL's plan to accomplish its goal is to fully exploit its unique capabilities so that its customers can expect AGL to respond to their needs faster and more efficiently than any other supplier in the region.

TABLE OF CONTENTS

CYLINDER SPECIFICATIONS	6
PURE GASES	
Acetylene	7
Air	
Ammonia	
Argon	8-9
Butane	9
Carbon Dioxide	
Carbon Monoxide	11
Chlorine	
Ethane	
Ethylene	
Halocarbons	12
Helium	
Hydrogen	
Hydrogen Chloride	
Hydroen Sulfide	
lsobutane	
Krypton	
Methane	
Neon	
Nitric Oxide	
Nitrogen	
Nitrogen Dioxide	
Nitrous Oxide	
Oxygen	
Propane	
Propylene	
Sulfur Dioxide	
Sulfur Hexafluoride	
Xenon	23
HEFFILL CONVERGIONE FACTORS	400
USEFUL CONVERSIONS FACTORS	168
FOUIDMENT /LICTED IN ALDUDETICAL ODDED)	
EQUIPMENT (LISTED IN ALPHBETICAL ORDER)	
Changeover Manifold Tutorial	63
Changeover Manifolds	
Auto-Logic II Electronic Fully Automatic Touch Screen	
Ultra-Logic [®] Electronic Fully Automatic Touch Screen	
High Purity Semi-Automatic	
Economical High Purity Semi-Automatic	
Compression Fittings For Metal Tubing	
Custom Systems	60
Cylinder Clean Room Covers	75
Cylinder Connections and Gaskets	142-143
Cylinder Hand Trucks	138
Cylinder Heating Systems	

TABLE OF CONTENTS CONTINUED

Cylinder Holding Devices	
Wall Mount Cylinder Holder	132
Bench Mount Cylinder Holder	133
Large Cylinder Holders	133
Lecture Bottle Supports	133
Small Cylinder Stands	133
Cylinder Floor Stands	134
"Gas Station" Process Stand	13
Cylinder Storage Racks	
Gas Safety Storage Cabinets	137
Cylinder Scales	112-113
Cylinder Warming Blankets	11
Cryogenic Transfer Hose	140
Demand Flow Regulator	50
Easy-Mount Regulator Bracket	12 ⁻
Excess Flow Valves	
Filters	
Particulate Filters	104 10
Coalescing Filters	
In-Line Filters	
Flash Arrestors	
Flexible Hoses	
Flowmeter Tutorial	8
Flowmeters	
7920 Series 150 mm	
Gas Proportioner	
Multi-Tube Units and Mixers	
7965 Series 65 mm	
7923 Acrylic Purge Meters	
7974 Acrylic Flowmeters	
7975 Acrylic Flowmeters	
Electronic Mass Flow Tutorial	
Electronic Mass Flow Controllers	
Electronic Mass Flow Meters	90-9
Gas Controls For Disposable Cylinders	_
Fixed Flow Nickel-Plated Brass for Non-Corrosive Gases	
Fixed Flow Stainless Steel for Corrosive Gases	
Fixed Flow Brass with CGA 600 Connection	
Adjustable Fixed Flow	
Demand Flow	50
Gas Detection Systems	
Fixed Installation Type	122-123
SF6 Leak Detector	124
Mini-Gas Leak Detector	12
Welding Purge Monitor	120
Kitagawa Gas Detector Pump and Tubes	127-13 ⁻
Gas Data and Equipment Recommenation	
Gas Heaters	
Gas Handling Equipment Tutorial	
Jas Hallullu Luulviileili Tulviiai	/4-/:

TABLE OF CONTENTS CONTINUED

Gas Purifiers and Traps	
High Pressure Model 8010	94
High Capacity Model 8000	95
Oxygen Traps	96
Oxygen Removing Purifier for Hydrogen	100
Carbon Dioxide Traps	98
Indicating Moisture Traps	97
Hydrocarbon Traps	99
Gas Safety And Material Compatibility Data	148-149
Instrument Grade Pipe Fittings	144-145
Laser Cutting and Welding Equipment	
High Flow Regulator for Laser Cutting	46
Laser Welding Gas Supply Systems	
Leak-Tector TM Testing Solution	
Lecture Bottle Equipment	
Regulators	50
Lecture Bottle Holders	
Lecture Bottle Control Valves	
Low Gas Pressure Alarm	
	02
Manifolds Manifold Tabada	70
Manifold Tutorial	
Brass Manifolds	
Stainless Steel Manifolds	
Manifold Alarm Accessories	
Molecular Sieves	
Numerical Equipment Index	
Point of Use Panels	
Mass Spec Distribution	57
Generator Backup	57
Multiple Source	58
Single Source	59
Pressure Gauges	141
Pressure Regulators	
Brass High Purity 1-Stage	20
Brass High Purity 2-Stage	
Stainless Steel High Purity 1-Stage	
Stainless Steel High Purity 2-Stage	
Economical Corrosive Gas, High Purity 1-Stage	
Economical Corrosive Gas, High Purity 2-Stage	
Brass High Purity Line	
Stainless Steel High Purity Line	
Economical Corrosive Gas, High Purity Line	32
Corrosive Gas 1-Stage	35
High Flow High Purity	
High Pressure	
High Purity Low Delivery Pressure	
General Purpose Low Delivery Pressure	

TABLE OF CONTENTS CONTINUED

Pressure Regulators - continued	
General Purpose 1-Stage	44
General Purpose 2-Stage	45
Lecture Bottle Regulators	
Cryogenic Container Regulators	48
Disposable Cylinder Regulators	52-56
Pressure Switches	76-77
Pressure Transducers	
Protocol Stations	72-73
Purge Assemblies	
Special Wrenches	139
Valves	
Needle Valves	118
Check Valves	118
Diaphragm Valves	119
Relief Valves	
Manual Controls	
Video - "The Control and Handling of Compressed Gases"	147
Whisper Valve®	49

Trademarks

Auto-Logic - SGD Inc. Leak-Tector - SGD Inc. Teflon - E. I. DuPont de Nemours and Company, Inc. Elgiloy - Combined Metals of Chicago, LLC Lexan - GE Plastics Ultra-Logic - SGD Inc.

Hastelloy - Haynes International Monel - Huntington Alloy Corp. Viton - DuPont Performance Elastomers

CYLINDER SPECIFICATIONS

CYLINDER SIZE		DIMENSIONS					AVERAGE TARE WEIGHT		INTERNAL VOLUME	
		(excluding valve and cap)				(excluding	valve and cap)			
		(IN)			(CN	1)	(LB)	(KG)	(LITERS)	(CUFT)
HIGH PRESSURE CYL	LINDERS									
T	9	Χ	55	22.9	Х	139.7	140	63.5	49.0	1.73
K, K	9	Χ	52	22.9	Х	132.0	133	60.3	43.8	1.55
S	7.5	Χ	46	19.0	Х	116.8	76	34.5	26.6	0.94
Υ	7	Χ	42	17.8	Х	106.7	52	23.6	21.5	0.76
Q	7	Χ	31	17.8	Х	78.7	40	18.1	15.0	0.53π
60	7	Χ	22	17.8	Χ	55.8	32	14.5	8.2	0.29
G	6	Χ	20	15.2	Х	50.8	29	13	6.9	0.24
40	7	Χ	18	17.8	Х	45.7	27	12.3	10.6	0.37
R	5.30	Х	14	13.5	Х	35.6	11	5	3.6	0.12
F	4.25	Х	16.75	10.8	Х	42.6	8.5	3.8	2.8	0.09
E	4.25	Χ	26	10.8	Х	66.0	12.5	5.7	4.6	0.16
D	4.25	Χ	16.50	10.8	Χ	41.9	8.5	3.8	2.8	0.09
В	3.75	Χ	13.2	59.5	Х	33.7	4	1.81	1.38	0.05
LB	2	Χ	12	5	Х	30	4	1.6	0.44	0.016
6K	10	Χ	51	25	Х	120	312	141	42.4	1.50
3K	9	Χ	51	23	Х	130	189	86	43.8	1.55
ALUMINUM CYLINDE	RS									
SAL	8	Χ	48	20	Х	122	49	22	29.5	1.04
QAL	7	Χ	33	18	Х	84	32	14	15.7	0.55
GAL	7	Х	16	18	Х	40	16	7	5.9	0.21
LOW PRESSURE CYL	INDERS									
FX	15	Х	43	38	Х	109	72	33	109.6	3.87
20#	12.25	Х	14	31.1	Х	35.6	19	8.6	45.8	1.62
LAB380	12	Х	41	30.5	Х	104.1	180	81.6	60.9	2.15
LAB145	9	Х	31	22.9	Х	78.7	69	31.3	8.6	0.30
150AM	15	Х	52	38	Х	132	158	72	126.3	4.46
CRYOGENIC CONTAI	NERS									
GP65/LS240	26	Х	58.4	66.0	Х	148.3	330	150	250	8.83
GP50/LS180	20		63.5	50.8		161.3	300	136.1	196	6.92
GPHP49	20		65.8	50.8		167.1	375	170	200	8.0
GP45/LS170	20		59.6	50.8		151.3	280	127.0	176	6.21
LSHE250	32		67.4	81.3		171.1	370	168	28	0.99
LSHE100	24		59	61.0		147.9	190	86	114	4.03
LSHE60	24		50.1	61.0		127.3	165	75	68.7	2.43
LSHE30	20		48.4	50.8		117.8	125	57	34.6	1.22

ACETYLENE

TECHNICAL DATA

Molecular Weight 26.04
Specific Volume cu.ft./lb. 14.7
Hazard Class 2.1 (Flammable Gas)

D.O.T. Label Flammable Gas
I.D. Number UN 1001
CAS Registry Number 74-86-2

ATOMIC ABSORPTION (PREPURIFIED)

Min. Purity 99.6%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
LAB380	380	250	510
RECOMMEND	ED EQUIPMENT		
		Series	Page
Single-stage F	Regulator	3103A	26
Flash Arrestor		8491-F	114
Purifier		8010	94

AIR

TECHNICAL DATA	
Molecular Weight	28.97
Specific Volume cu.ft./lb.	13.3
Hazard Class	2.2 (Nonflammable Gas)
D.O.T. Label	Nonflammable Gas
I.D. Number	UN 1002
CAS Registry Number	none

ULTRA ZERO Z-I

THC < 0.1ppm	$H_20 < 2ppm$	co/co ₂	< 1ppm
Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	311	2640	346
K	233	2200	346
0	78	2200	346

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

ZERO Z-II

HC < 1.0ppm	$H_20 < 2ppm$	co/co ₂	< 1ppm
Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	311	2640	346
K	233	2200	346
Q	78	2200	346
RECOMMENDE	D EQUIPMENT		
		Series	Page
Two-stage Reg	ulator	3201	27
Single-stage R	egulator	3101	26

AIR - CONTINUED

BREATHING *NOT FOR MEDICAL USE

Exceeds grade D specifications

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	311	2640	346
K	233	2200	346
Q	78	2200	346
E	22	1900	346
6K	509	6000	702

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
3	2421	45
Single-stage Regulator	3101	26
	2401	44
For 6K Cylinders	3800V	40
	3860T	41

DRY

 $H_20 < 3ppm$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	311	2640	346
K	233	2200	346
Q	78	2200	346
LB	2	1775	170
RECOMMENI	DED EQUIPMENT		
		Series	Page
Two-stage R	egulator	3201	27
Single-stage	Regulator	3101	26
			50

6000 PSIG BREATHING *NOT FOR MEDICAL USE

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	cu. ft. @ 70° psig	
6K	509	6000	702
ECOMMENI	DED EQUIPMENT		
		Series	Page
Single-stage Regulator			
ingle-stage	Regulator	3800V	40

AMMONIA

TECHNICAL DATA

Molecular Weight 17.03 Specific Volume cu.ft./lb. 22.6

D.O.T. Label Nonflammable Gas

D.O. Number UN 1005

CAS Registry Number 7664-41-7

RESEARCH

Min. Purity 99.999%

CH₄ < 2ppm N₂ < 5ppm CO < 2ppm

 0_2 and $H_20 < 5$ ppm

Cyl. Size	Contents lbs.	Pressure @ 70° psig	Valve Outlet CGA
K	50	114	660
SAL	34	114	660
G	5	114	660

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3403	28
Deep Purge Assembly	4800	116

ANHYDROUS

Min. Purity 99.99%

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
150AM	150	114	240
100AM	100	114	240
50AM	50	114	240
Q	15	114	240
G	5	114	240
LB	0.375	114	180

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3403	28
LB Regulator	T3920	50
Deep Purge Assembly	4800	116

ARGON

TECHNICAL DATA

 Molecular Weight
 39.95

 Specific Volume cu.ft./lb.
 9.7

 Hazard Class
 2.2 (Nonflammable Gas)

 D.O.T. Label
 Nonflammable Gas

 I.D. Number
 Gas
 UN 1006

 Liquid
 UN 1951

 CAS Registry Number
 7440-37-1

SCIENTIFIC

Min. Purity 99.9999%

Total maximum impurities < 1ppm

Cyl.	Contents	Pressure	Valve Outle	
Size	cu. ft.	@ 70° psig	CGA	
SAL	152	2000	580	
RECOMMENI	DED EQUIPMENT			
		Series	Page	
wo-stage R	egulator	3201	27	
Single-stage	Regulator	3101	26	

RESEARCH

Min. Purity 99.9996%

 $\begin{array}{lll} {\rm H_2 < 1ppm} & & {\rm CO~\&~CO_2 < 0.5ppm} \\ {\rm N_2 < 1ppm} & & {\rm THC < 0.5ppm} \\ {\rm O_2 < 0.5ppm} & & {\rm H_2O < 0.5ppm} \end{array}$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	337	2640	580
SAL	152	2000	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

ULTRA HIGH PURITY

Min. Purity 99.999%

 $\begin{array}{ll} \text{THC} < 0.5 \text{ppm} & \text{H}_2\text{O} < 1 \text{ppm} \\ \text{O}_2 < 1 \text{ppm} & \end{array}$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	337	2640	580
K	250	2200	580
0	92	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

ZERO

Min. Purity 99.998%

 $\mathsf{THC} < 0.5\mathsf{ppm}$

0₂ < 2ppm

 $H_2^-0 < 3ppm$

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	337	2640	580
K	250	2200	580
Q	92	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

OXYGEN FREE

Min. Purity 99.998%

 $H_20 < 3ppm$

 $0^{-}_{2} < 0.5$ ppm

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	337	2640	580
K	250	2200	580
Q	92	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

Argon continued on next page.

ARGON - CONTINUED

PREPURIFIED

Min.	Purity	99.998%
H_O	/ 2nnn	n

n ₂ u < sppiii	0 ₂ < 2ppiii	100 < 2	ppiii
Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
6K	571	6000	677
T	337	2640	580
K	250	2200	580
Q	92	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

1775

170

HIGH PURITY

LB

Min. Purity 99.996%

02	< 5ppm	$H_20 < 3ppm$	THC < 5ppm	
	Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
	T	337	2640	580
	K	250	2200	580
	Q	92	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

INDUSTRIAL

 $0_2 < 10 ppm$

Min. Purity 99.985%

_		_		
	Cyl.	Contents	Pressure	Valve Outlet
	Size	cu. ft.	@ 70° psig	CGA
	T	337	2640	580
	K	250	2200	580
	S	155	2200	580
	Υ	125	2200	580
	Q	92	2200	580
	R	20	2200	580

THC < 0.5ppm

 $H_20 < 15$ ppm

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44

LIQUID, INDUSTRIAL

Min. Purity 99.998%

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
GP65	6330	125	580
GP50	4758	125	580
GPHP49	4757	500	580
GP45	4485	125	580
RECOMMEND	ED EQUIPMENT		
		Series	Page
Single-stage F	Regulator	3101	26
		HL3300	48

BUTANE

TECHNICAL DATA

Molecular Weight	58.124
Specific Volume cu.ft./lb.	6.4
Hazard Class	2.1 (Flammable Gas)
D.O.T. Label	Flammable Gas
I.D. Number	UN 1011
CAS Registry Number	106-97-8

INSTRUMENT

Min. Purity 99.5 Wt.% (Liquid phase)

Cyl.	Contents	Pressure	Valve Outlet
Size*	lbs.	@ 70° psig	CGA
FX	120	17	510
20#	20	17	510
LB	0.375	17	170
*All sizes exc	ept LB available wi	th dip tube.	

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3103	26
Flash Arrestor	8491-F	114

C.P.

Min. Purity 99.0 Wt.% (Liquid phase)

Cyl. Size*	Contents lbs.	Pressure @ 70° psig	Valve Outlet CGA
FX	120	17	510
20#	20	17	510
LB	0.375	17	170
*All sizes exc	ept LB available wi	th dip tube.	

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3103	26
LB Regulator	3910	50
Flash Arrestor	8491-F	114

AEROSOL PROPELLANT A-17

Min. Purity 95%

Cyl.	Contents	Pressure	Valve Outlet
Size*	lbs.	@ 70° psig	CGA
FX	120	17	510
20#	20	17	510
All aerosol cy	ylinders are equipp	ed with dip tube.	
RECOMMEND	ED EQUIPMENT		
		Series	Page
Manual Contro	ol	8520	121

CARBON DIOXIDE

TECHNICAL DATA

Molecular Weight 44.01 Specific Volume cu.ft./lb. 8.74

SFC 55 99.9995%

Min. Purity 99.9995%

 $\begin{array}{lll} \text{H}_2\text{O} < \text{2ppm} & \text{C}_1 - \text{C}_6 \text{ THCs} < \text{0.5ppm} \\ \text{O}_2 < \text{0.5ppm} & \text{Organic compounds} < \text{0.1ppm*} \\ \text{N}_2 < \text{2ppm} & \text{Particulates 0.1 w/w} \\ \text{CO} < \text{0.5ppm} & \text{*Total organic compounds} > \text{C}_6 \end{array}$

Pressurization of the cylinder with helium is available as an option. All cylinders are equipped with dip tubes unless otherwise specified.

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
SAL	39	838	320
GAL	8	838	320

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26

SFC 99.999%

Min. Purity 99.999%*

Sum of $\,\text{N}_2,\,\text{O}_2,\,\text{CO}$ and $\text{CH}_4<\text{10ppm}$

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
SAL	39	838	320
*Liquid phase			

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26

RESEARCH

Min. Purity 99.999%

 $\mathrm{O_2 < 2ppm} \qquad \qquad \mathrm{CO < 1ppm} \qquad \qquad \mathrm{THC < 0.5ppm}$

 $N_2^- < 5$ ppm H_2 0 < 2ppm

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
SAL	39	838	320
GAL	8	838	320

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26

ANAEROBIC

Min. Purity 99.99%*

 $0_2 < 9 \text{ppm} \qquad \qquad \text{H}_2 < 4 \text{ppm} \qquad \qquad \text{H}_2 0 < 10 \text{ppm}$

THC < 1ppm

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
K	50	838	320

*Liquid phase

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26

COLEMAN INSTRUMENT

Min. Purity 99.99%*

 $\begin{array}{ll} \text{O}_2 < \text{20ppm} & \text{THC} < \text{10ppm} \\ \text{N}_2 < \text{70ppm} & \text{H}_2 \text{O} < \text{10ppm} \end{array}$

Contents	Pressure	Valve Outlet
lbs	@ 70° psig	CGA
50	838	320
	lbs	lbs @ 70° psig

*Liquid phase

RECOMMENDED EQUIPMENT

Single-stage Regulator Series Page 2401 44

FOOD GRADE

Min. Purity 99.8%*

 $\rm H_2 0 < 10 ppm$

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
K	50	838	320
Q	19	838	320
LB	0.5	838	170

*Liquid phase

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	2401	44
	3101	26
LB Regulator	3910	50

COMMERCIAL

Min. Purity 99.5%*

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
GP50	418	350	320
GP45	384	350	320
K	50	838	320

*Liquid phase

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	2401	44

DIP TUBES AND OTHER SIZES ARE AVAILABLE

CARBON MONOXIDE

TECHNICAL DATA

Molecular Weight 28.01 Specific Volume cu.ft./lb. 13.8

Hazard Class 2.3 (Poison Gas)
D.O.T. Label Poison Gas and
Flammable Gas
I.D. Number UN 1016
CAS Registry Number 630-08-0

RESEARCH

Min. Purity 99.99%

 $\begin{array}{ll} \text{CO}_2 < 30\text{ppm} & \text{THC} < 10\text{ppm} \\ \text{N}_2 < 40\text{ppm} & \text{H}_2\text{O} < 10\text{ppm} \end{array}$

 $0_2^2 < 10$ ppm

Cyl.	Contents	Pressure	Valve Outlet
Size	liters	@ 70° psig	CGA
6	100	1000	350
2	50	1602	350
2	25	799	350
2	10	315	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

C.P.

Min. Purity 99.3%

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	240	2000	350
K	175	1650	350
Q	70	1650	350
G	25	1650	350
LB	1.75	1650	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44
LB Regulator	3910	50

COMMERCIAL

Min. Purity 98%

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	240	2000	350
K	175	1650	350
Q	70	1650	350
G	25	1650	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44

CHLORINE

TECHNICAL DATA

Molecular Weight 70.906
Specific Volume cu.ft./lb. 5.40
Hazard Class 2.3 (Poison Gas)
D.O.T. Label Poison Gas
I.D. Number UN 1017
CAS Registry Number 7782-50-5

RESEARCH

Min. Purity 99.96%

 $\begin{array}{l} {\rm CO}_2 < 200 {\rm ppm} \\ {\rm O}_2 < 40 {\rm ppm} \\ {\rm N}_2 < 120 {\rm ppm} \\ {\rm H}_2 {\rm O} < 3 {\rm ppm} \end{array}$

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
K	100	85	660
Q	40	85	660
G	15	85	660
LB	1	85	180

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3472	35
Manual Control	8550	121
LB Regulator	T3920	50
Deep Purge Assembly	4800	116

HIGH PURITY

Min. Purity 99.5%

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
Q	40	85	660
G	15	85	660
LB	1	85	180

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3472	35
Manual Control	8550	121
LB Regulator	T3920	50
Deep Purge Assembly	4800	116

PURGE ASSEMBLIES SEE PAGE 116

CYLINDER SCALES SEE PAGE 112-113

ETHANE

TECHNICAL DATA

Molecular Weight 30.07 Specific Volume cu.ft./lb. 12.80 Hazard Class 2.1 (Flammable Gas)

D.O.T. Label Flammable Gas
I.D. Number UN 1035
CAS Registry Number 74-84-0

RESEARCH

Min. Purity 99.99%

Cyl. Size	Contents grams	Pressure @ 70° psig	Valve Outlet CGA
6	300	543	350
7	150	543	350

RECOMMENDED EQUIPMENT

Single-stage Regulator Series Page 3101 26

C.P.

Min. Purity 99%

Cyl. Size	Contents Ibs	Pressure @ 70° psig	Valve Outlet CGA
T	40	543	350
K	32	543	350
Q	10	543	350
G	3	543	350
LB	0.25	543	170

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3102	26
LB Regulator	3910	50

ETHYLENE

TECHNICAL DATA

Molecular Weight 28.054
Specific Volume cu.ft./lb. 13.70
Hazard Class 2.1 (Flammable Gas)
D.O.T. Label Flammable Gas
I.D. Number UN 1962

CAS Registry Number

RESEARCH

Min. Purity 99.95%

Cyl. Size	Contents grams	Pressure @ 70° psig	Valve Outlet CGA
6	280	1200	350
7	140	1200	350

74-85-1

RECOMMENDED EQUIPMENT

 Series
 Page

 Two-stage Regulator
 3201
 27

 Single-stage Regulator
 3101
 26

C.P.

Min. Purity 99.5%

Cyl. Size	Contents Ibs	Pressure @ 70° psig	Valve Outlet CGA
T	34	1200	350
K	30	1200	350
Q	11	1200	350
G	4.5	1200	350
LB	0.25	1000	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
LB Regulator	3910	50

HALOCARBONS

TECHNICAL DATA

Halocarbon gases are available from stock. We have chosen not to list them at this time due to the uncertain future of these types of products. **Please inquire**.

CURRENTLY AVAILABLE

Halocarbon 11	Halocarbon 12	Halocarbon 13
Halocarbon 22	Halocarbon 113	Halocarbon 114
Halocarbon 500	Halocarbon 502	Halocarbon 503

^{*}Environmentally safe substitutes are available.

HELIUM

TECHNICAL DATA

Molecular Weight	4.0026
Specific Volume cu.ft./lb.	96.7
Hazard Class	2.2 (Nonflammable Gas)
D.O.T. Label	Nonflammable Gas
I.D. Number	Gas UN 1046
	Liquid UN 1963
CAS Registry Number	7440-59-7

SCIENTIFIC

Min. Purity 99.99995%

 $Total\ maximum\ impurities < 0.5ppm$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA	
SAL	136	2000	580	
ECOMMENI	DED EQUIPMENT			
		Series	Page	
wo-stage Re	egulator	3201	27	
ingle-stage	Regulator	3101	26	

CHROMATOGRAPHIC

Min. Purity 99.9999%

Total maximum impurities < 1ppm

Single-stage Regulator

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	291	2640	580
K	219	2200	580
RECOMMENI	DED EQUIPMENT		
		Series	Page
No-stane R	equilator	3201	27

3101

26

Helium continued on next page.

HELIUM - CONTINUED

RESEARCH

Min. Purity 99.9995%

 $\begin{array}{lll} \mbox{H}_2 < \mbox{1ppm} & \mbox{N}_2 < \mbox{1ppm} & \mbox{Ne} < \mbox{2ppm} \\ \mbox{O}_2 < \mbox{0.5ppm} & \mbox{THC} < \mbox{0.2ppm} & \mbox{CO} \& \mbox{CO}_2 < \mbox{0.5ppm} \\ \end{array}$

 $H_2^{-}0 < 1$ ppm

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	282	2530	580
K	200	2000	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

ULTRA HIGH PURITY

Min. Purity 99.999%

0₂ < 1ppm

 $\mathsf{THC} < 0.5\mathsf{ppm}$

 $H_2^{-}0 < 1$ ppm

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	282	2530	580
K	200	2000	580
Q	73	2000	580
LB	2	1800	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
LB Regulator	3900	50

ZERO

Min. Purity 99.9998%

THC < 0.5ppm O_2 < 5ppm H_2O < 3ppm

Cyl. Contents Pressure Valve
Size Cyl ft @ 70° nsig

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	282	2530	580
K	200	2000	580
Q	73	2000	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

HIGH PURITY

Min. Purity 99.998%

 $\mathrm{O}_2 < \mathrm{5ppm} \qquad \qquad \mathrm{H}_2\mathrm{O} < \mathrm{3ppm}$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	282	2530	580
K	200	2000	580
Q	73	2000	580
LB	2	1800	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
LB Regulator	3900	50

INDUSTRIAL

Min. Purity 99.99%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	282	2530	580
K	200	2000	580
S	136	2000	580
Υ	122	2000	580
Q	73	2000	580
R	20	2000	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44

HIGH PRESSURE

Manual Control Valve

Min. Purity 99.995%

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
6K	513	6000	677
3K	328	3500	680
RECOMMENI	DED EQUIPMENT		
		Series	Page
Single-stage	Regulator	3800V	40
		3860T	41

LIQUID HELIUM IN NON-MAGNETIC CONTAINERS

Cyl.	Contents	Pressure	
Size	liters	@ 70° psig	
LSHE 250	250	0	
LSHE 100	100	0	
LSHE 60	60	0	
LSHE 30	30	0	
RECOMMENDI	ED EQUIPMENT		
		Series	Page

8520

121

HYDROGEN

TECHNICAL DATA

Molecular Weight 2.016
Specific Volume cu.ft./lb. 191.3
Hazard Class 2.1 (Flammable Gas)
D.O.T. Label Flammable Gas
I.D. Number UN 1049
CAS Registry Number 1333-74-0

RESEARCH

Min. Purity 99.9999%

 $\begin{array}{lll} N_2 < 0.5 ppm & C0 \& CO_2 < 0.2 ppm & O_2 < 0.5 ppm \\ H_2 O < 1 ppm & THC < 0.1 ppm & Argon < 5 ppm \end{array}$

Cyl.	Contents cu. ft.	Pressure	Valve Outlet
Size		@ 70° psig	CGA
T	284	2640	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
Flash Arrestor	8491-F	114

ULTRA HIGH PURITY

Min. Purity 99.999%

 $\begin{array}{lll} \text{O}_2 < \text{1ppm} & & \text{N}_2 < \text{0.5ppm} \\ \text{CO \& CO}_2 < \text{0.2ppm} & & \text{THC} < \text{0.5ppm} \\ \end{array}$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	261	2400	350
K	197	2000	350
Q	71	2000	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
Flash Arrestor	8491-F	114

PREPURIFIED

Min. Purity 99.99%

 $0_2 < 10 ppm \hspace{1cm} \text{H}_2 \text{O} < 5 ppm \hspace{1cm} \text{THC} < 1 ppm$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	261	2400	350
K	197	2000	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
LB Regulator	3910	50
Flash Arrestor	8491-F	114

ZERO

Min. Purity 99.995%

THC < 0.5ppm $H_2O < 1$ ppm $N_2 < 3$ ppm

CO & CO₂ < 2ppm

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	261	2400	350
K	197	2000	350
Q	71	2000	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
Flash Arrestor	8491-F	114

EXTRA DRY

Min. Purity 99.95%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	261	2400	350
K	197	2000	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
Flash Arrestor	8491-F	114

INDUSTRIAL

Min. Purity 99.5%

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
K	197	2000	350
RECOMMEND	DED EQUIPMENT	Series	Page
	·	Series 3201	Page 27
wo-stage Reingle-stage	egulator		•

HIGH PRESSURE

Single-stage Regulator

Min. Purity 99.995%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
6K	483	6000	703
3K	322	3500	695

3800V

3860T

40

41

HYDROGEN CHLORIDE

TECHNICAL DATA

Molecular Weight 36.46 Specific Volume cu.ft./lb. 10.6

Hazard Class 2.3 (Poison Gas)
D.O.T. Label Poison Gas, Corrosive
I.D. Number UN 1050
CAS Registry Number 7647-01-0

TECHNICAL

Min. Purity 99.%

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
K(1P)	60	613	330
Q(2P)	20	613	330
G(3P)	8	613	330
LB	0.5	613	180

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3741	35
Manual Control	8520	121
LB Regulator	T3920	50
Deep Purge Assembly	4800	116

HYDROGEN SULFIDE

TECHNICAL DATA

 Molecular Weight
 34.08

 Specific Volume cu.ft./lb.
 11.23

 Hazard Class
 2.3 (Poison Gas)

 D.O.T. Label
 Poison Gas,

 Flammable Gas

 I.D. Number
 UN 1053

 CAS Registry Number
 7783-06-4

C.P.

Min. Purity 99.5% (Liquid phase)

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
K(1P)	60	252	330
Q(2P)	22	252	330
G(3P)	9	252	330
F(4P)	3	252	330
LB	0.5	252	180

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3402	28
Manual Control	8520	121
LB Regulator	T3920	50
Deep Purge Assembly	4800	116

ISOBUTANE

TECHNICAL DATA

Molecular Weight 58.124 Specific Volume cu.ft./lb. 6.5

Hazard Class 2.1 (Flammable Gas)
D.O.T. Label Flammable Gas
I.D. Number UN 1969
CAS Registry Number 75-28-5

RESEARCH

Min. Purity 99.99% (Liquid phase)

Cyl. Size	Contents grams	Pressure @ 70° psig	Valve Outlet CGA
6	400	31	510
7	200	31	510

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26
Manual Control	8520	121

INSTRUMENT

Min. Purity 99.5%

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
FX	116	31	510
20#	20	31	510
LB	0.375	31	170

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3103	26
Manual Control	8520	121
LB Regulator	3910	50

C.P.

Min. Purity 99.0%

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
FX	116	31	510
20#	20	31	510
LB	0.375	31	170

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3103	26
Manual Control	8520	121
LB Regulator	3910	50

AEROSOL PROPELLANT A-31

Min. Purity 95.0%

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
FX	116	31	510
20#	20	31	510
*All aerosol c	ylinders are equipp	ed with dip tubes	

RECOMMENDED EQUIPMENT

	Series	Page
Manual Control	8520	121

KRYPTON

TECHNICAL DATA Molecular Weight 83.80 Specific Volume cu.ft./lb. 4.61 Hazard Class 2.2 (Nonflammable Gas) D.O.T. Label Nonflammable Gas I.D. Number UN 1056 CAS Registry Number 7439-90-9

RESEARCH I

Min. Purity 99.999%	0 ₂ < 1ppm
CO ₂ < 0.5ppm	Xe < 5ppm
CO < 0.5ppm	THC < 1ppm
$N_2 < 3ppm$	H ₂ 0 < 1ppm

Cyl. Size	Contents liters	Pressure @ 70° psig	Valve Outlet CGA
K	5000	1400	580
Q	1000	730	580
Q	500	380	580
6	100	850	580
2	50	1327	580
2	25	719	580
2	10	302	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

RESEARCH II

Min. Purity 99.997%	0 ₂ < 2ppm
CO ₂ < 1ppm	Xe < 20ppm
CO < 1ppm	THC < 1ppm
$N_2 < 10$ ppm	$H_20 < 1ppn$

Cyl. Size	Contents liters	Pressure @ 70° psig	Valve Outlet CGA
K	5000	1400	580
Q	1000	730	580
Q	500	380	580
6	100	850	580
2	50	1327	580
2	25	719	580
2	10	302	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

PURIFIED

Min. Purity 99.97%	0 ₂ < 5ppm
CO ₂ < 3ppm	Xe < 200ppm
CO < 1ppm	THC < 2ppm
$N_2 < 50$ ppm	$H_20 < 2ppm$

Cyl. Size	Contents liters	Pressure @ 70° psig	Valve Outlet CGA
K	5000	1400	580
Q	1000	730	580
Q	500	380	580
6	100	850	580
2	50	1327	580
2	25	719	580
2	10	302	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

FILTERS - TRAPS - PURIFIERS SEE PAGES 94-107.

METHANE

TECHNICAL DATA Molecular Weight 16.043 Specific Volume cu.ft./lb. 23.8 Hazard Class 2.1 (Flammable Gas) D.O.T. Label Flammable Gas I.D. Number UN 1971 CAS Registry Number 74-82-8

RESEARCH

Min. Purity 99.999%

N ₂ < 20ppm	H ₂ 0 < 2ppm
0_2 < 4ppm	C ₂ H ₆ < 10ppm
$C0 \& C0_2 < 10$ ppm	

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	356	2400	350
K	260	2000	350
Q	100	2000	350
G	40	2000	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
Flash Arrestor	8491-F	114

ULTRA HIGH PURITY

Min. Purity 99.99%

$N_2 < 40$ ppm	H ₂ 0 <10ppm
0_2 < 5ppm	$C_2^-H_6 < 20ppm$
$C\bar{0} \& CO_2 < 10$ ppm	- 0

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	356	2400	350
K	260	2000	350
I B	2	1775	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
LB Regulator	3900	50
Flash Arrestor	8491-F	114

C.P.

Min. Purity 99.5%

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	356	2400	350
K	260	2000	350
Q	100	2000	350
G	40	2000	350
LB	2	1775	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26
LB Regulator	3900	50
Flash Arrestor	8491-F	114

TECHNICAL

Min. Purity 98%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	356	2400	350
K	260	2000	350
LB	2	1775	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44
LB Regulator	3910	50
Flash Arrestor	8491-F	114

COMMERCIAL (NATURAL GAS)

Min. Purity 93%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	356	2400	350
K	260	2000	350
Q	100	2000	350
G	40	2000	350

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44
Flash Arrestor	8491-F	114

TECHNICAL DATA

Molecular Weight 20.18 Specific Volume cu.ft./lb. 19.23 2.2 (Nonflammable Gas) Hazard Class D.O.T. Label Nonflammable Gas I.D. Number UN 1065 **CAS Registry Number** 7440-01-9

RESEARCH I

Min. Purity 99.9995%

 $0_2 < 0.5 ppm$ $N_2 < 1$ ppm CO < 0.1ppm $C\overline{O}_2 < 0.1$ ppm $A\overline{R} < 1ppm$ $CH_4 < 0.1ppm$ $H_2\bar{0} < 1$ ppm

Cyl. Size	Contents liters	Pressure @ 70° psig	Valve Outlet CGA
K	5000	1900	580
Q	1000	850	580
G	250	530	580
6	100	1585	580
7B	50	1650	580
7A	25	825	580
7	7	225	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

RESEARCH II

Min. Purity 99.999%

 $\text{CO \& CO}_2 < 0.5 \text{ppm}$ He < 8ppm $0_2 < 0.5 ppm$ $H_20 < 1ppm$ $N_2^- < 2ppm$ THC < 0.5ppm

Cyl. Size	Contents liters	Pressure @ 70° psig	Valve Outlet CGA
T	7500	2400	580
K	6100	2180	580
Q	1000	920	580
Q	500	450	580
6	100	1050	580
2	50	1740	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

ULTRA HIGH PURITY

Min. Purity 99.996%

 $\text{CO \& CO}_2 < 0.5 \text{ppm}$ $\begin{matrix} 0 \\ N_2^2 < 4 ppm \end{matrix}$ He < 30ppm $H_20 < 1\bar{p}pm$ THC < 0.5ppm

Cyl. Size	Contents liters	Pressure @ 70° psig	Valve Outlet CGA
T	7500	2400	580
K	6100	2180	580
Q	1000	920	580
G	500	450	580
6	100	1050	580
2	50	1740	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

NITRIC OXIDE

TECHNICAL DATA

Molecular Weight 30.0 Specific Volume cu.ft./lb. 13.0 **Hazard Class** 2.3 (Poison) D.O.T. Label Poison Gas I.D. Number UN 1660 **CAS Registry Number** 10102-43-9

C.P.

Min. Purity 99.0%

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
K(1P)	56	500	660
Q(2P)	20	500	660
G(3P)	8	500	660
6P	1.2	500	660

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3401	28
Deep Purge Assembly	4800	116

TECHNICAL DATA

Molecular Weight 28.01 Specific Volume cu.ft./lb. 13.8 2.2 (Nonflammable Gas) **Hazard Class** D.O.T. Label Nonflammable Gas I.D. Number UN 1066 Liquid UN 1977 CAS Registry Number 7727-37-9

SCIENTIFIC

Min. Purity 99.9999%

Total maximum impurities < 1ppm

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
SAL	142	2000	580
RECOMMENI	DED EQUIPMENT		

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

RESEARCH

Min. Purity 99.9995%

 ${\rm CO~\&~CO_2} < 0.5 ppm$ $H_2 < 1 ppm$ THC < 0.2 ppm $H_2^{\overline{}}0 < 1$ ppm Ne < 1ppm $0_2 < 1$ ppm

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	304	2640	580
K	230	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

Nitrogen continued on next page.

NITROGEN - CONTINUED

ULTRA HIGH PURITY

Mın.	Purity	99	.999%

02	< 1ppm	$H_20 < 1 ppm$	THC <	0.5ppm
	Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
	T	304	2640	580
	K	230	2200	580
	Q	84	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

ZERO

Min. Purity 99.998%

 $\mathrm{THC} < 0.5\mathrm{ppm}$ $H_20 < 3ppm$ $0_2 < 4ppm$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	304	2640	580
K	230	2200	580
Q	84	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

PREPURIFIED

Min. Purity 99.998%

0₂ < 5ppm $\mathrm{H}_2\mathrm{O}<\mathrm{3ppm}$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	304	2640	580
K	230	2200	580
Q	84	2200	580
LB	2	1775	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
	2421	45
Single-stage Regulator	3101	26
	2401	44
LB Regulator	3910	50

HIGH PURITY

Min. Purity 99.99%

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	304	2640	580
K	230	2200	580
Q	84	2200	580

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

FOOD GRADE

Min. Purity 99.7%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	304	2640	580
K	230	2200	580
S	143	2200	580
Q	84	2200	580
R	19	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
	2421	45
Single-stage Regulator	3101	26
	2401	44

INDUSTRIAL

Min. Purity 99.7%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	304	2640	580
K	230	2200	580
S	143	2200	580
Q	84	2200	580
R	19	2200	580

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44

HIGH PRESSURE

Min. Purity 99.998%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
6K	494	6000	677
3K	335	3500	680

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3800V	40
	3860T	41

LIQUID, INDUSTRIAL

Min. Purity 99.998%

Cyl.* Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
LS240	240 liters	22	295
LS180	180 liters	22	295
LS170	170 liters	22	295
GP65	5240 cu. ft.	125**	580
GP50	4058 cu. ft.	125**	580
GPHP49	3681 cu.ft.	500	580
GP45	3640 cu. ft.	125**	580

^{*}LS - Liquid withdrawal

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26
Cryogenic Container Regulator	HL3300	48

^{*}GP - Gas withdrawal

^{**}Other pressure settings available up to 475 psig

NITROGEN DIOXIDE

TECHNICAL DATA

Molecular Weight 46.005 Specific Volume cu.ft./lb. 4.70 Hazard Class 2.3 (Poison Gas)

D.O.T. Label Poison Gas, Oxidizer

I.D. Number UN 1067 CAS Registry Number 10102-44-0

NITROGEN DIOXIDE

Min. Purity 99.5% (liquid phase)

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs.	@ 70° psig	CGA
K(1P)	120	0	660
G(3P)	10	0	660
F(4P)	5	0	660
6P	1	0	660

RECOMMENDED EQUIPMENT

	Series	Page
Manual Control	8520	121

NITROUS OXIDE

TECHNICAL DATA

Molecular Weight 44.01
Specific Volume cu.ft./lb. 8.7
Hazard Class 2.2 (Nonflammable Gas)
D.O.T. Label Nonflammable Gas
I.D. Number Gas UN 1070
Liquid UN 2201
CAS Registry Number 10024-97-2

SFC

Min. Purity 99.999%

 $\begin{array}{lll} H_2 0 < 2ppm & C 0 < 1ppm \\ O_2 < 1ppm & C_1 - C_6 \ THC's < 1ppm \\ N_2 < 4ppm & Organic \ compounds < 0.1ppm^* \end{array}$

*Total organic compounds $> C_6$

Pressurization of the cylinder with helium is available as an option. All cylinders are equipped with dip tubes unless otherwise specified.

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
SAL	39	745	326
GAL	8	745	326

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26

RESEARCH

Min. Purity 99.995%*

 $\begin{array}{l} \text{N}_2 < 25\text{ppm} \\ \text{O}_2 < 5\text{ppm} \\ \text{H}_2\text{O} < 10\text{ppm} \end{array}$

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
SAL	39	745	326
GAL	8	745	326
6	100 liters	745	326
2	50 liters	745	326
2	25 liters	570	326

*Liquid phase

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26

C.P. / SEMICONDUCTOR

Min. Purity 99%*

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
K	60	745	326
20#	20	745	326
LB	0.5	745	170

*Liquid phase

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26
	2401	44
LB Regulator	3910	50

CATHETER

Min. Purity 99.5%

 $\rm H_20 < 50 ppm$

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
10	10	745	326

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26

DIP TUBES AND OTHER SIZES ARE AVAILABLE

OXYGEN

TECHNICAL DATA

 Molecular Weight
 32.10

 Specific Volume cu.ft./lb.
 12.1

 Hazard Class
 2.2 (Nonflammable Gas)

 D.O.T. Label
 0xygen

 I.D. Number
 Gas
 UN 1072

 Liquid
 UN 1073

CAS Registry Number 7782-44-7

SCIENTIFIC

Min. Purity 99.999%

 $\begin{array}{lll} \mbox{Ar} < \mbox{5ppm} & \mbox{N}_2 < \mbox{2ppm} & \mbox{CO} \& \mbox{CO}_2 < \mbox{0.5ppm} \\ \mbox{THC} < \mbox{0.5ppm} & \mbox{Kr} < \mbox{1ppm} & \mbox{H}_2\mbox{0} < \mbox{1ppm} \\ \end{array}$

Cyl.	Contents cu. ft.	Pressure	Valve Outlet
Size		@ 70° psig	CGA
T	337	2640	540

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

RESEARCH

Min. Purity 99.997%

 $\begin{array}{lll} Ar < 10 ppm & N_2 < 5 ppm & C0 \& CO_2 < 2 ppm \\ THC < 1 ppm & Kr < 10 ppm & H_2O < 1 ppm \end{array}$

Cyl.	Contents cu. ft.	Pressure	Valve Outlet
Size		@ 70° psig	CGA
T	337	2640	540

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

ULTRA HIGH PURITY

Min. Purity 99.994%

 $\begin{array}{lll} Ar < 35 ppm & N_2 < 10 ppm & C0 \& CO_2 < 2 ppm \\ THC < 1 ppm & Kr < 15 ppm & H_2O < 1 ppm \end{array}$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	337	2640	540
K	251	2200	540

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

ZERO

Min. Purity 99.8%

 $\mathsf{THC} < 0.5\mathsf{ppm} \qquad \qquad \mathsf{H}_2\mathsf{0} < \mathsf{3ppm}$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	337	2640	540
K	251	2200	540

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
Single-stage Regulator	3101	26

AVIATORS

Min. Purity 99.96%

 $\mbox{H}_2\mbox{O} < \mbox{Sppm} \qquad \qquad \mbox{CO \& CO}_2 < \mbox{10ppm}$

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	337	2640	540
K	251	2200	540
Q	92	2200	540
LB	2	1600	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44
LB Regulator	3910	50

EXTRA DRY

Min. Purity 99.6%

 $H_20 < 10ppm$

Cyl.	Contents	Pressure	Valve Outlet
Size	cu. ft.	@ 70° psig	CGA
T	337	2640	540
K	251	2200	540
Q	92	2200	540
LB	2	1600	170

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	3201	27
	2421	45
Single-stage Regulator	3101	26
	2401	44
LB Regulator	3910	50

INDUSTRIAL

Min. Purity 99.5%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
T	337	2640	540
K	251	2200	540
S	155	2200	540
Υ	125	2200	540
Q	92	2200	540
R	20	2200	540

RECOMMENDED EQUIPMENT

	Series	Page
Two-stage Regulator	2421	45
Single-stage Regulator	2401	44
Flash Arrestor	8491-F	114

LIQUID, INDUSTRIAL

Min. Purity 99.5%

Cyl. Size	Contents cu. ft.	Pressure @ 70° psig	Valve Outlet CGA
GP50	5012	235	540
GPHP49	4887	500	540
GP45	4500	235	540

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26
Cryogenic Container Regulator	HL3300	48

PROPANE

TECHNICAL DATA

Molecular Weight 44.11 Specific Volume cu.ft./lb. 8.50

2.1 (Flammable Gas) **Hazard Class** D.O.T. Label Flammable Gas I.D. Number UN 1075 74-98-6 **CAS Registry Number**

RESEARCH

Min. Purity 99.97%

Ethylene < 1ppm $0_2 < 2ppm$ Propylene < 50ppmn-Butane < 5ppm Methane <1ppm $\mathsf{N}_2 < \mathsf{2ppm}$ Isobutane < 100ppm Ethane < 150ppm $H_20 < 1$ ppm

Cyl. Size	Contents grams	Pressure @ 70° psig	Valve Outlet CGA
6	375	109	510
7	175	109	510

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3103	26
Flash Arrestor	8491-F	114

INSTRUMENT

Min. Purity 99.5%

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
FX	100	109	510
20#	20	109	510
LB	0.31	109	170

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3103	26
Manual Control	8520	121
LB Regulator	3900	50
Flash Arrestor	8491-F	114

C.P.

Min. Purity 99.0%

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
FX	100	109	510
20#	20	109	510
LB	0.31	109	170

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3103	26
Manual Control	8520	121
LB Regulator	3900	50
Flash Arrestor	8491-F	114

AEROSOL PROPELLANT A-108

Min. Purity 95.0%

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
FX	100	109	510
20#	20	109	510
*All agreed c	vlindere are equinn	ad with din tuhae	

RECOMMENDED EQUIPMENT

	Series	Page
Manual Control	8520	121
Flash Arrestor	8491-F	114

TECHNICAL DATA

42.09 Molecular Weight Specific Volume cu.ft./lb. 8.93 **Hazard Class** 2.1 (Flammable Gas) D.O.T. Label Flammable Gas UN 1077 I.D. Number **CAS Registry Number** 115-07-1

POLYMER

Min. Purity 99.5% (Liquid phase)

GA
JUA
510
510

	Series	Page
Single-stage Regulator	3103	26
Manual Control	8520	121
LB Regulator	3910	50

C.P.

Min. Purity 99.0% (Liquid phase)

Manual Control

LB Regulator

Cyl. Size	Contents Ibs	Pressure @ 70° psig	Valve Outlet CGA
FX	105	136	510
20#	20	136	510
LB	0.31	136	170
RECOMMENDED EQUIPMENT			

8520

3910

26

121

50

Series Page Single-stage Regulator 3103

SULFUR DIOXIDE

TECHNICAL DATA

Molecular Weight 64.06
Specific Volume cu.ft./lb. 5.9
Hazard Class 2.3 (Poison Gas)
D.O.T. Label Poison Gas
I.D. Number UN 1079
CAS Registry Number 7446-09-5

ANHYDROUS

Min. Purity 99.98% (Liquid phase)

Cyl.	Contents	Pressure	Valve Outlet
Size	lbs	@ 70° psig	CGA
FC	150	34	660
Q	35	34	660
G	19	34	660
LB	1	34	180

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3403	28
Deep Purge Assembly	4800	116

SULFUR HEXAFLUORIDE

TECHNICAL DATA

Molecular Weight 146.06
Specific Volume cu.ft./lb. 2.6
Hazard Class 2.2 (Nonflammable Gas)

D.O.T. Label Nonflammable Gas
I.D. Number UN 1080
CAS Registry Number 2551-62-4

CF₄ < 25ppm

INSTRUMENT

Air < 60ppm

Min. Purity 99.99% (Liquid phase)

Cyl. Size	Contents lbs	Pressure @ 70° psig	Valve Outlet CGA
K	115	310	590
Λ	40	310	500

 $H_20 < 10ppm$

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3102	26

C.P.

Min. Purity 99.9% (Liquid phase)

Air < 500ppm CF₄ < 500ppm H₂0 < 67ppm

Cyl. Size	Contents Ibs	Pressure @ 70° psig	Valve Outlet CGA
K	115	310	590
Q	40	310	590
LB	0.5	310	170

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	2401	26
LB Regulator	3910	50

XENON

TECHNICAL DATA

Molecular Weight 131.30
Specific Volume cu.ft./lb. 2.9
Hazard Class 2.2 (Nonflammable Gas)
D.O.T. Label Nonflammable Gas
I.D. Number UN 2036
CAS Registry Number 7440-63-3

RESEARCH I

Min. Purity 99.999%

 $\begin{array}{lll} \text{CO}_2 < \text{1ppm} & \text{O}_2 < 0.5 \text{ppm} \\ \text{Kr} < 5 \text{ppm} & \text{THC} < 0.5 \text{ppm} \\ \text{N}_2 < 3 \text{ppm} & \text{H}_2 \text{O} < 0.5 \text{ppm} \end{array}$

Cyl.	Contents	Pressure	Valve Outlet
Size	liters	@ 70° psig	CGA
Q	1000	630	580
G	500	680	580
6	100	670	580
2	50	800	580
2	25	600	580
2	10	300	580

RECOMMENDED EQUIPMENT

Single-stage Regulator Series Page 3101 26

RESEARCH II

Min. Purity 99.997%

 $\begin{array}{lll} {\rm CO}_2 < {\rm 1ppm} & & {\rm O}_2 < {\rm 1ppm} \\ {\rm Kr} < 25 {\rm ppm} & & {\rm THC} < {\rm 1ppm} \\ {\rm N}_2 < 5 {\rm ppm} & & {\rm H}_2 {\rm O} < {\rm 1ppm} \end{array}$

Cyl.	Contents	Pressure	Valve Outlet
Size	liters	@ 70° psig	CGA
Q	1000	630	580
G	500	680	580
6	100	670	580
2	50	800	580
2	25	600	580
2	10	300	580

RECOMMENDED EQUIPMENT

Single-stage Regulator Series Page 3101 26

PURIFIED

Min. Purity 99.95%

 $\begin{array}{lll} {\rm CO_2 < 5ppm} & & {\rm O_2 < 5ppm} \\ {\rm Kr < 500ppm} & & {\rm THC < 5ppm} \\ {\rm N_2 < 25ppm} & & {\rm H_2O < 2ppm} \end{array}$

Cyl. Size	Contents liters	Pressure @ 70° psig	Valve Outlet CGA
Q	1000	630	580
G	500	680	580
6	100	670	580
2	50	800	580
2	25	600	580
2	10	300	580

RECOMMENDED EQUIPMENT

	Series	Page
Single-stage Regulator	3101	26

A BRIEF TUTORIAL ON GAS HANDLING EQUIPMENT

PRESSURE REGULATORS

Pressure regulators (often just called regulators) are used in a gas system to reduce the pressure from a high pressure source, such as a compressed gas cylinder or a gas supply pipeline, to a safe level consistent with the pressure rating of the system to which the gas is being supplied. They provide positive control of the source pressure in a gas system. This control of pressure permits better control of flow rates and helps to provide a safer operation.

There are two basic types of pressure regulators; two-stage and one-stage. The outward appearance of both types is very similar and it is often difficult for the novice to identify the two types.

Most two-stage and one-stage pressure regulators are fitted with two pressure gauges; one to monitor the inlet pressure and the other to monitor the delivery pressure. Line regulators and some regulators used on liquefied gases have only a delivery pressure gauge, because in these applications the inlet pressure is virtually constant. Historically, the compressed gas industry has established the convention of placing the inlet and high pressure gauge on the right and the low pressure and delivery pressure gauge on the left.

A pressure regulator **does not** control flow, but precise control of pressure is required for precise flow control. This is accomplished by the installation of a valve on the outlet side of the regulator in conjunction with a flowmeter or electronic mass flow controller.

What is the difference between a two-stage and one-stage pressure regulator? A two-stage regulator reduces the pressure in two steps. In the first stage the high pressure gas is reduced to a pre-set intermediate pressure level, then reduced again in the second stage to the manually adjusted value desired by the operator. This two step reduction provides steady gas delivery throughout the discharge of almost the full cylinder contents. This is why two-stage regulators are used whenever the discharge pressure of a system must be precisely maintained. Two-stage regulators are generally used whenever the compressed gas cylinder pressure exceeds 1000 psig. Cylinders having a pressure less than 1000 psig are generally fitted with a one-stage regulator since the advantage of the two-stage regulator is minimized by the lower inlet pressure.

One-stage regulators perform the same service as two-stage regulators, but in one step. Thus, the discharge pressure is not controlled with the same precision, because the discharge pressure will vary widely over the full range of cylinder pressures unless periodic adjustments are made to compensate for decreasing inlet pressures. One-stage regulators are economic alternatives in applications where precise control is not required or usage is intermittent over the life time of the source cylinder.

NOTE: See pages 130-146 for gas data and equipment recommendations.

RELIEF VALVES

Relief valves are installed in systems or regulators to protect against over pressurization of system components that are not capable of withstanding the higher pressures that could enter the protected region upon the failure of another system component or an operator error. Relief valves are generally offered in two types, adjustable or fixed pressure. Adjustable units can be set by the user at different pressures within a reasonably wide range. Fixed pressure units are preset at the factory for one pressure and cannot easily be changed.

PURGE DEVICES

Purge devices are valving systems usually installed on the inlet side of a pressure regulator, to maintain the integrity of a high purity gas system, remove toxic or corrosive residual gases from the regulator inlet, and/or protect the operator from exposure during cylinder changeovers or system shut-downs.

MANUAL CONTROLS

Manual controls are valves that have been designed for direct connection to a compressed gas cylinder valve outlet. They provide a simple means of transferring the contents of a cylinder to another system or vessel. They **do not control pressure** and should never be used without an operator in attendance at all times. A safety relief device should be installed in any system employing a manual control.

FLOWMETERS

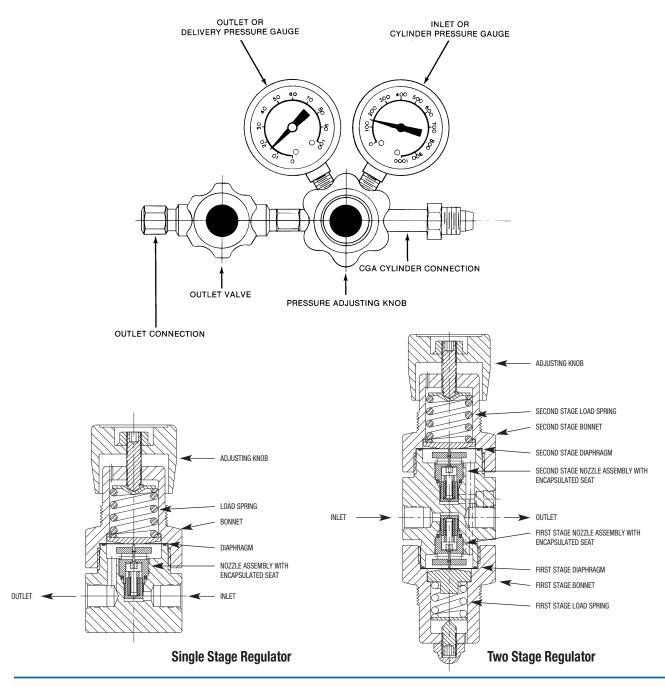
Flowmeters are used in fluid systems to indicate the rate of flow of the fluid. They do not control the rate of flow unless they are equipped with a valve or flow controller. Rotameters and electronic mass flowmeters are the two basic types of flow measuring devices available. For more specific information see pages 31-39.

PURIFIERS

Purifiers are devices that are designed to remove specific impurities or components from a gas stream. They generally function by adsorption or catalytic action. Some are designed as housings that accept replaceable cartridges containing the adsorbing materials, others are sealed units that are replaced completely, while others require no replacement or can be regenerated in place.

PARTICULATE FILTERS

Gas line filters are devices designed to remove particles from the gas stream in which they are installed. The size of the particles removed is determined by the filter media used. A filter's rating is usually expressed in microns, referring to the maximum size diameter that will pass through the filter.


VALVES

There are two basic types of valves used with gases; diaphragm packless and packed. Diaphragm, packless valves are used for on/off control or rough flow control in high purity applications. They are designed using a metal diaphragm to seal the gas cavity from the valve stem threads. Packed valves are designed with a packing gland that creates a seal on the valve stem. This packing may be above or below the threads of the valve, depending on the intended application.

CYLINDER SCALES

A cylinder scale is used to monitor the contents of a liquefied gas cylinder feeding a critical batch operation where a lack of gas during the run would cause the batch to fail. Cylinder scales are designed to provide a positive indication of the amount of product remaining in the cylinder. Two types are generally offered, mechanical and electronic. Electronic scales offer the added benefit of a low weight alarm and relay contacts to operate accessory equipment. Both types are offered in this catalog.

pressure regulator component designations

BRASS HIGH PURITY 1-STAGE REGULATOR Series 3100

DESCRIPTION

The Series 3100 single stage regulators are designed and constructed for both high purity, low volume use and general purpose applications. They provide outstanding performance, yet they are rugged and versatile enough for the laboratory or plant. The relative low cost of these units has established them as the pressure regulator of choice in many plants and laboratories.

FEATURES

- Small internal volume less than 5 cc.
- High purity diffusion resistant, metal diaphragm construction.
- Encapsulated seat.
- Diffusion resistant, brass diaphragm packless control valve installed on outlet as standard.
- Designed to pass an inboard helium leak-rate test of $1x10^{-9}$ cc per sec.
- All parts ultrasonically cleaned prior to assembly.
- Rear panel mounting holes.

APPLICATIONS

The 3100 Series regulators are ideally suited for use with small cylinders of Research Purity or Ultra High Purity gases. The small internal volume and high purity design result in more efficient use of expensive materials because it takes less gas to fill the internal cavity. They are also useful for less critical pressure reduction applications, where the precise control of pressure or flow is not required.

Special 3103A model for acetylene.

NOTE: See pages 150-166 for gas data and equipment recommendations.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185°F.

Flow Coefficient (C_V): 0.08 Standard, 0.2 optional **

Inlet and Outlet: 1/4" NPT female

Outlet Valve Standard

MATERIALS OF CONSTRUCTION

Body: brass

Nozzle Assembly: brass

Seat: Kel-F®

Diaphragm: stainless steel Diaphragm Seal: Teflon® Inlet Filter: stainless steel Bonnet: nickel plated aluminum

Gauges: brass

Knob: aluminum - black anodized

HOW TO ORDER***

Model	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge
Number	psig	psig	psig
3101-25-CGA*	5-25	0-60	0-4000
3101-50-CGA*	5-50	0-100	0-4000
3101-100-CGA*	10-100	0-200	0-4000
3101-250-CGA*	10-250	0-400	0-4000
3101-500-CGA*	100-500	0-600	0-4000
3102-25-CGA*	5-25	0-60	0-2000
3102-50-CGA*	5-50	0-100	0-2000
3102-100-CGA*	10-100	0-200	0-2000
3102-250-CGA*	10-250	0-400	0-2000
3103A-15-510	0-15	0-30 redline	0-400
3103-25-CGA*	5-25	0-60	0-400
3103-50-CGA*	5-50	0-100	0-400
3103-100-CGA*	10-100	0-200	0-400

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M
1/4" Hose Barb	4HB

EZ3100 Bracket (see page 121).

^{*}Specify CGA Connection Number when ordering.

** Add "HF" to basic model number (i.e., 3101HF -25-CGA).

***For panel mounting bonnet add "PM" to base number (i.e., 3101PM-25-CGA).

BRASS HIGH PURITY 2-STAGE REGULATOR Series 3200

DESCRIPTION

The Series 3200 two stage regulators are designed and constructed for both high purity and general purpose applications. While compact in design these regulators provide outstanding performance, comparable to most larger diaphragm competitive models. They are ideally suited for use with gases and gas mixtures having a full cylinder pressure of 1000 psig or more. The construction is rugged enough for the plant, yet versatile enough for the laboratory.

FEATURES

- High purity diffusion resistant, metal diaphragm construction on both stages.
- Encapsulated seats on both stages.
- Diffusion resistant, brass diaphragm packless control valve installed on outlet as standard.
- Designed to pass an inboard helium leak-rate test of 1x10⁻⁹ cc per sec.
- All parts ultrasonically cleaned prior to assembly.
- · Optional interstage safety relief valve available.

APPLICATIONS

The 3200 Series regulators are ideal for critical pressure reduction applications, where the precise control of pressure or flow is required. They are an excellent choice for use with high purity carrier gases or gas mixtures used with gas chromatographs and other instrumentation. Once you experience the improved control of gas to your gas chromatograph or other system, you will want to upgrade all your other regulators.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185°F.

Flow Coefficient(C_V): 0.08 Standard, 0.2 optional**

Inlet and Outlet: 1/4" NPT female

Outlet Valve Standard

Delivery Pressure Rise: 0.02 psig max. per 100 psi

inlet pressure decay.

MATERIALS OF CONSTRUCTION

Body: brass

Nozzle Assemblies: brass Seat: 1st stage - Kel-F® 2nd stage - Kel-F®

Diaphragm: stainless steel Diaphragm Seal: Teflon® Inlet Filter: stainless steel Bonnet: nickel plated aluminum

Gauges: brass

Knob: aluminum - black anodized

EZ3200 Bracket (see page 121).

HOW TO ORDER***

Model	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge	
Number	psig	psig	psig	
3201-10-CGA*	5-10	0-30	0-4000	
3201-25-CGA*	5-25	0-30	0-4000	
3201-50-CGA*	5-50	0-100	0-4000	
3201-100-CGA*	10-100	0-200	0-4000	
3201-250-CGA*	10-250	0-400	0-4000	
3201-500-CGA*	100-500	0-600	0-4000	

^{*}Specify CGA connection number when ordering.

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M
1/4" Hose Barb	4HB

^{**}Add "HF" to basic model number (i.e. 3201 HF-25-CGA).

^{***}For panel mounting bonnet add "PM" to base number (i.e., 3201PM-50-CGA).

STAINLESS STEEL HIGH PURITY 1-STAGE REGULATOR Series 3400

DESCRIPTION

The Series 3400 single stage regulators are designed and constructed for both high purity and general purpose applications. They provide outstanding performance, yet they are rugged and versatile enough for the laboratory or plant.

FEATURES

- Low internal volume less than 5 cc.
- High purity diffusion resistant, metal diaphragm construction.
- Encapsulated seat.
- Diffusion resistant, stainless steel diaphragm packless control valve installed on outlet as standard.
- Designed to pass an inboard helium leak-rate test of 1x10⁻⁹ cc per sec.
- · All parts ultrasonically cleaned prior to assembly.
- · Rear panel mounting holes.

APPLICATIONS

The 3400 Series regulators are ideal for use with many corrosive gases, such as ammonia, hydrogen sulfide, and sulfur dioxide. They are also very useful for controlling the pressure of gas mixtures containing reactive gas components and low levels of the corrosive halogen gases, like chlorine.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185°F.

Flow Coefficient (C_V): 0.08 standard, 0.2 optional**

Inlet and Outlet: 1/4" NPT female

Outlet Valve Standard

MATERIALS OF CONSTRUCTION

Body: 316L stainless steel

Nozzle Assembly: 316 stainless steel

Seat: Kel-F®

Diaphragm: stainless steel
Diaphragm Seal: Teflon®
Inlet Filter: stainless steel
Bonnet: nickel plated aluminum
Gauges: 316 stainless steel
Knob: aluminum - black anodized

NOTE: See pages 150-166 for gas data and equipment recommendations.

HOW TO ORDER***

Model Number	Del. Press. Range psig	Del. Press. Gauge psig	Inlet Press. Gauge psig
3401-25-CGA*	5-25	0-60	0-3000
3401-50-CGA*	5-50	0-100	0-3000
3401-100-CGA*	10-100	0-200	0-3000
3401-250-CGA*	25-250	0-400	0-3000
3401-500-CGA*	100-500	0-600	0-3000
3402-25-CGA*	5-25	0-60	0-2000
3402-50-CGA*	5-50	0-100	0-2000
3402-100-CGA*	10-100	0-200	0-2000
3403-25-CGA*	5-25	0-60	0-400
3403-50-CGA*	5-50	0-100	0-400

^{*}Specify CGA Connection Number when ordering.

Warning: A Purge assembly (see pages 116-117) is strongly suggested when using the above regulators with any corrosive gas.

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M
1/4" Hose Barb	4HB

EZ3100 Bracket (see page 121).

^{**} Add "HF" to basic model number (i.e. 3401HF -25-CGA).

^{***}For panel mounting bonnet add "PM" to base number (i.e., 3401PM-50-CGA).

STAINLESS STEEL HIGH PURITY 2-STAGE REGULATOR Series 3500

DESCRIPTION

The Series 3500 two stage regulators are designed and constructed for both high purity and general purpose applications. While compact in design these regulators provide outstanding performance, comparable to most larger diaphragm competitive models. They are an excellent choice for use with ultra high purity gases or gas mixtures having a full cylinder pressure of 1000 psig or more. They are rugged and versatile enough for the laboratory or plant.

FEATURES

- High purity diffusion resistant, metal diaphragm construction on both stages.
- Encapsulated seats on both stages.
- Diffusion resistant, stainless steel diaphragm packless control valve installed on outlet as standard.
- Designed to pass an inboard helium leak-rate test of 1x10⁻⁹ cc per sec.
- All parts ultrasonically cleaned prior to assembly.
- Optional interstage safety relief valve available.

APPLICATIONS

The 3500 Series regulators are ideal for critical pressure reduction applications, where the precise control of pressure or flow is required. They are also very useful for controlling the pressure of gas mixtures containing corrosive gases, such as ammonia, hydrogen sulfide, sulfur dioxide, and low levels of the corrosive halogen gases, like chlorine.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185° F.

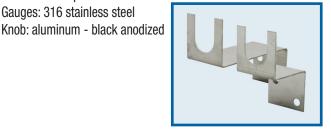
Flow Coefficient (C_V): 0.08 standard, 0.2 optional**

Inlet and Outlet: 1/4" NPT female

Outlet Valve Standard

Delivery Pressure Rise: 0.02 psig max. per 100 psi inlet

pressure decay.


MATERIALS OF CONSTRUCTION

Body: 316 stainless steel

Nozzle Assemblies: 316 stainless steel

Nozzles: 316 stainless steel Seat: 1st stage - Kel-F® 2nd stage - Kel-F®

Diaphragm: stainless steel
Diaphragm Seal: Teflon®
Inlet Filter: stainless steel
Bonnet: nickel plated aluminum
Gauges: 316 stainless steel

EZ Mounting Brackets (see page 121).

HOW TO ORDER***

Model	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge	
Number	psig psig		psig	
3501-10-CGA*	5-10	0-30	0-3000	
3501-25-CGA*	5-25	0-30	0-3000	
3501-50-CGA*	5-50	0-100	0-3000	
3501-100-CGA*	10-100	0-200	0-3000	
3501-250-CGA*	25-250	0-400	0-3000	
3501_500_CGA*	100-500	0-1000	0-3000	

^{*}Specify CGA Connection Number when ordering.

Warning: A Purge assembly (see pages 116-117) is strongly suggested when using the above regulators with any corrosive gas.

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M
1/4" Hose Barb	4HB

^{**}Add "HF" to basic model number (i.e. 3501 HF-25-CGA).

^{***}For panel mounting bonnet add "PM" to base number (i.e., 3501PM-50-CGA).

ECONOMICAL, CORROSIVE GAS, HIGH PURITY 1-STAGE REGULATOR Series 3450

DESCRIPTION

The Series 3450 single stage regulators are specifically designed and constructed for use with difficult to handle gases, like chlorine and hydrogen chloride. The monel[®] internal parts installed in a 316L stainless steel body create an economical high purity corrosive gas regulator for most applications.

FEATURES

- Monel® internal parts for added corrosion resistance.
- Encapsulated seat.
- · High purity diffusion resistant, metal diaphragm construction.
- Diffusion resistant, diaphragm packless control valve installed on outlet as standard.
- Designed to pass an inboard helium leak-rate test of 1x10⁻⁹ cc per sec.
- · All parts ultrasonically cleaned prior to assembly
- · Rear panel mounting holes.

APPLICATIONS

The 3450 Series regulators are ideal for use with many corrosive gases, such as chlorine, hydrogen chloride, boron trichloride, and boron triflouride. They are also useful for controlling the pressure of gas mixtures containing these corrosive gas components, particularly at higher concentration levels.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185°F.

Flow Coefficient(C_V): 0.08 Inlet and Outlet: 1/4" NPT Female

Outlet Valve Standard

MATERIALS OF CONSTRUCTION

Body: 316L stainless steel Seat Assembly: Monel®

Seat: Kel-F® Diaphragm: Elgiloy Diaphragm Seal: Teflon® Inlet Filter: Monel®

Bonnet: nickel plated aluminum Gauges: 316 stainless steel Outlet Valve: 316 stainless steel Outlet Connections: 316 stainless steel Knob: aluminum - black anodized

NOTE: See pages 150-166 for gas data and equipment recommendations.

HOW TO ORDER***

HOW TO ONDER			
Model	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge
Number+	psig	psig	psig
3451-25-CGA*	5-25	0-60	0-3000
3451-50-CGA*	5-50	0-100	0-3000
3451-100-CGA*	10-100	0-200	0-3000
3452-25-CGA*	5-25	0-60	0-1000
3452-50-CGA*	5-50	0-100	0-1000
3452-100-CGA*	10-100	0-200	0-1000
3453-25-CGA*	5-25	0-60	0-400
3453-50-CGA*	5-50	0-100	0-400
3454-25-CGA*	5-25	0-60	none
3454-50-CGA*	5-50	0-100	none

^{*}Specify CGA Connection Number when ordering

Warning: A Purge assembly (see pages 116-117) is strongly suggested when using the above regulators with any corrosive gas.

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M
1/4" Hose Barb	4HB

EZ3100 Bracket (see page 121).

^{***}For panel mounting bonnet add "PM" to base number (i.e., 3451PM-50-CGA).

ECONOMICAL, CORROSIVE GAS, HIGH PURITY 2-STAGE REGULATOR Series 3550

DESCRIPTION

The Series 3550 two stage regulators are designed and constructed for use with reactive and corrosive gases and gas mixtures. While compact in design these regulators provide outstanding performance, comparable to most larger diaphragm competitive models. The monel[®] internal parts installed in a 316L stainless steel body create an economical, high purity, corrosive gas regulator.

FEATURES

- Monel[®] internal parts for added corrosion resistance.
- High purity diffusion resistant, metal diaphragm construction on both stages.
- Encapsulated seats on both stages.
- Diffusion resistant, stainless steel diaphragm packless control valve installed on outlet as standard.
- Designed to pass an inboard helium leak-rate test of 1x10⁻⁹ cc per sec.
- · All parts ultrasonically cleaned prior to assembly.

APPLICATIONS

The 3550 Series regulators are ideal for critical pressure reduction applications involving higher pressure reactive and/or corrosive gases, where the precise control of pressure or flow is required. They are an excellent choice for use with gas mixtures of such components having a full cylinder pressure of 1000 psig or more.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185°F.

Flow Coefficient(C_V): 0.08 Inlet and Outlet: 1/4" NPT female

Outlet Valve Standard

Delivery Pressure Rise: 0.02 psig max. per 100 psi inlet

pressure decay.

The state of the s

MATERIALS OF CONSTRUCTION

Body: 316L stainless steel Seat Assemblies: Monel®

Seats: First and Second Stage: Kel-F®

Diaphragms: Elgiloy Diaphragm Seal: Teflon® Inlet Filter: Monel®

Bonnet: nickel plated aluminum

Gauges: stainless steel

Outlet Valve: 316 stainless steel Outlet Connections: 316 stainless steel

EZ Mounting Brackets (see page 121).

HOW TO ORDER***

Model Number	Del. Press. Range psig	Del. Press. Gauge psig	Inlet Press. Gauge psig
3551-25-CGA*	5-25	0-30	0-3000
3551-50-CGA*	5-50	0-100	0-3000
3551-100-CGA*	10-100	0-200	0-3000

^{*}Specify CGA Connection Number when ordering.

OUTLET OPTIONS

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M
1/4" Hose Barb	4HB

Warning: A Purge assembly (see pages 116-117) is strongly suggested when using the above regulators with any corrosive gas.

^{***}For panel mounting bonnet add "PM" to base number (i.e., 3551PM-50-CGA).

BRASS HIGH PURITY LINE REGULATOR Series 3101L

DESCRIPTION

The 3101L Series line regulators are designed to suit a large variety of applications. The high purity design makes them ideal for line drop regulators in instrumentation labs, with the $0.2\ C_V$ orifice they are capable of very high flow rates.

FEATURES

- Small internal volume less than 5cc.
- Capable of large flows with only a small pressure drop.
- High purity diffusion resistant, metal diaphragm construction.
- Encapsulated seat.
- Diffusion resistant, brass diaphragm packless control valve installed on the outlet as standard.
- Designed to pass an inboard helium leak-rate test of 1x10⁻⁹ cc per sec.
- · All parts ultrasonically cleaned prior to assembly.
- · Rear panel mounting holes.

APPLICATIONS

The 3101L Series is an excellent choice for gas flow applications with low inlet pressures and low differential pressure between regulator inlet and outlet.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185°F.

Flow Coefficient(C_V): 0.08 standard, 0.2 Cv optional**

Inlet and Outlet: 1/4" NPT female

Outlet Valve Standard

MATERIALS OF CONSTRUCTION

Body: brass

Nozzle Assembly: brass Diaphragm: stainless steel

Seat: Kel-F®

Diaphragm Seal: Teflon® Inlet Filter: stainless steel Bonnet: nickel plated aluminum

Gauge: brass

Knob: aluminum - black anodized

EZ3100 Bracket (see page 121).

HOW TO ORDER***

Model	Del. Press. Range	Del. Press. Gauge
Number	psig	psig
3101L-10	5-10	0-30
3101L-25	5-25	0-60
3101L-50	5-50	0-100
3101L-100	10-100	0-200
3101L-250	20-250	0-400

^{**} Add "HF" to basic model number (i.e. 3101LHF-25).

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M

^{***}For panel mounting bonnet add "PM" to base number (i.e., 3101LPM-50).

STAINLESS STEEL HIGH PURITY LINE REGULATOR Series 3401L

DESCRIPTION

The 3401L Series line regulators are designed to suit a large variety of applications. The high purity design makes them ideal for line drop regulators in instrumentation labs, with the 0.2 Cv orifice they are capable of very high flow rates.

FEATURES

- Small internal volume less than 5cc.
- Capable of large flows with only a small pressure drop.
- High purity diffusion resistant, metal diaphragm construction.
- · Encapsulated seat.
- Diffusion resistant, stainless steel diaphragm packless control valve installed on the outlet as standard.
- Designed to pass an inboard helium leak-rate test of 1x10-9 cc per sec.
- · All parts ultrasonically cleaned prior to assembly.
- · Rear panel mounting holes.

APPLICATIONS

The 3401L Series is an excellent choice for gas flow applications with low inlet pressures and low differential pressure between inlet and outlet. The high inlet pressure rating makes also very suitable as a sensitive cylinder regulator for many low pressure corrosive gases when fitted with the proper CGA cylinder valve outlet connection.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185°F.

Flow Coefficient(Cv): 0.08 standard, 0.2 Cv optional **

Inlet and Outlet: 1/4" NPT female

Outlet Valve Standard

MATERIALS OF CONSTRUCTION

Body: 316 stainless steel

Nozzle Assembly: 316 stainless steel

Diaphragm: stainless steel

Seat: Kel-F®

Diaphragm Seal: Teflon® Inlet Filter: stainless steel Bonnet: nickel plated aluminum

Gauge: stainless steel

Knob: aluminum - black anodized

EZ Mounting Brackets (see page 121).

HOW TO ORDER***

Model Number+	Del. Press. Range psig	Del. Press. Gauge psig
3401L-10	5-10	0-30
3401L-10	5-10 5-25	0-60
3401L-50	5-50	0-100
3401L-100	10-100	0-100
3401-250	20-250	0-400

^{**}Add "HF" to basic model number (i.e. 3401LHF-25).

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M

^{***}For panel mounting bonnet add "PM" to base number (i.e., 3401LPM-50).

ECONOMICAL CORROSIVE GAS HIGH PURITY LINE REGULATOR Series 3451L

DESCRIPTION

The 3451L Series line regulators are designed to suit a large variety of applications. The installation of Monel® internal parts into a stainless steel body creates an economical, high purity line regulator for corrosive gas service.

FEATURES

- · Capable of large flows with only a small pressure drop.
- Monel[®] internal construction for increased corrosion resistance.
- High purity diffusion resistant, metal diaphragm construction.
- Encapsulated seat.
- Diffusion resistant, stainless steel diaphragm packless control valve installed on the outlet as standard.
- Designed to pass an inboard helium leak-rate test of 1x10⁻⁹ cc per sec.
- · All parts ultrasonically cleaned prior to assembly.
- · Rear panel mounting holes.

APPLICATIONS

The 3451L Series is an excellent choice for corrosive gas flow applications with low inlet pressures and low differential pressure between regulator inlet and outlet.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig

Operating Temp. Range: -40° to +185°F. Flow Coefficient(C_V): 0.08 standard Inlet and Outlet: 1/4" NPT female

Outlet Valve Standard

HOW TO ORDER***

Model Number	Del. Press. Range psig	Del. Press. Gauge psig
3451L-25	5-25	0-60
3451L-50	5-50	0-100
3451L-100	10-100	0-200

^{***}For panel mounting bonnet add "PM" to base number (i.e., 3451LPM-50).

OUTLET OPTIONS

	P/N Suffix
No Outlet Valve	NV
1/4" Compression Fitting	T4F
1/8" Compression Fitting	T2F
1/4" NPT Male	P4M

MATERIALS OF CONSTRUCTION

Body: 316L Stainless Steel Seat Assembly: Monel® Diaphragm: Elgiloy® Seat: Kel-F®

Diaphragm Seal: Teflon®

Inlet Filter: Monel® Bonnet: nickel plated aluminum

Gauge: stainless steel

Knob: aluminum - black anodized

EZ3100 Bracket (see page 121).

CORROSIVE GAS, 1-STAGE REGULATOR Series 3470

DESCRIPTION

The Series 3470 single stage regulators are specifically designed and constructed for use with difficult to handle gases, such as chlorine and hydrogen chloride. The large monel nozzle and PCTFE® seat combined with the tied diaphragm assembly greatly reduces the possibility of failure due to creep so common in other corrosive gas regulators. A Teflon-lining on the stainless steel diaphragm forms a protective coating to extend regulator life. The electroless nickel-plated brass body is a major contributor to the economical nature of this regulator while providing corrosion protection.

FEATURES

- Four built-in PCTFE seats provide convenient maintenance and long regulator life.
- Large Teflon® lined 316L stainless steel diaphragm.
- Monel valve with Teflon packing installed on outlet.
- Captured vent bonnet provides for save venting in the event of a diaphragm failure.

APPLICATIONS

The 3470 Series regulators are ideal for use with many corrosive gases, such as chlorine, hydrogen chloride, boron trichloride, and boron triflouride. They are also useful for controlling the pressure of high concentration gas mixtures containing these corrosive gas components.

NOTE: See pages 150-166 for gas data and equipment recommendations.

MATERIALS OF CONSTRUCTION

Body: Electroless nickel-plated brass

Nozzle: Monel® Seat: PCTFE

Diaphragm: Teflon® Lined 316L Stainless Steel Inlet Filter: Electroless nickel-plated sintered bronze

Seals: Viton

SPECIFICATIONS

Max. Inlet Pressure - 3000 psig Operating Temp. Range - 20 $^{\circ}$ to +160 $^{\circ}$ F Flow Coefficient(C_V) 0.129 Body Inlet and Outlet - 1/4" NPT female Valve outlet - 1/4" NPT male

HOW TO ORDER

Model	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge
Number*	psig	psig	psig
3470-80-CGA*	5-80	0-100	0-3000
3470-160-CGA*	10-160	0-300	0-3000
3471-80-CGA*	5-80	0-100	0-1000
3471-160-CGA*	10-160	0-300	0-1000
3472-80-CGA*	5-80	0-100	0-300

^{*}Specify CGA Connection Number when ordering.

Warning: A Purge assembly (see pages 116-117) is strongly suggested when using the above regulators with any corrosive gas.

HIGH FLOW - HIGH PURITY REGULATOR Series 3831H

DESCRIPTION

The 3831H series regulators are designed for high flow applications involving high purity gases. The series features a Cv of 0.55 and excellent regulation.

FEATURES

- Capable of high flows with only a small pressure drop.
- High purity metal diaphragm construction.
- All parts ultrasonically cleaned prior to assembly.
- Excellent pressure regulation 1.6 psi/100 psi.
- Encapsulated seat with 10 micron filter.

APPLICATIONS


The 3831H series regulators are ideal as manifold, laser assist gas, or pipeline regulators for high flow systems of high purity or industrial gases.

SPECIFICATIONS

	3831H	3831HL
Max. Inlet Pressure:	3000 psig*	3000 psig*
Operating Temp. Range:	-40°F to +165°	-40°F to +165°
Flow Coefficient(Cv):	0.55	0.55
Inlet and Outlet:	1/2" NPT female	1/2" NPT female

MATERIALS OF CONSTRUCTION

3831H	3831HL
brass barstock	brass barstock
forged brass	forged brass
302 SS**	302 SS**
PTFE Teflon	PTFE Teflon
PTFE Teflon	PTFE Teflon
brass	brass
	brass barstock forged brass 302 SS** PTFE Teflon PTFE Teflon

HOW TO ORDER

Model	Del. Press psig	Del. Press. Gauge psig	Inlet Press. Gauge psig
3831H-050	0-50	0-100	0-4000
3831H-125	0-125	0-200	0-4000
3831H-250	0-250	0-400	0-4000
3831H-500	0-500	0-1000	0-4000
3831HL-015	0-15	0-30	none
3831HL-050	0-50	0-100	none
3831HL-125	0-125	0-200	none
3831HL-250	0-250	0-400	none
3831HL-500	0-500	0-600	none

^{*500} psig on the 0-15 psig models.

^{** 0-15} psig models have a neoprene diaphragm and seat.

HIGH FLOW - PISTON-SENSED REGULATOR Series 3833

DESCRIPTION

The 3833 series regulators are designed for high flow applications. The series features a large main valve with a Cv of 2.0.

FEATURES

- Capable of high flows with only a small pressure drop from full to empty cylinder.
- Wide choice of delivery pressure ranges.
- · Available in aluminum, brass and stainless steel.

APPLICATIONS

The 3833 series regulators are ideal to meet the requirements of systems where a high flow of gases needs to be delivered with good outlet pressure control.

SPECIFICATIONS

	3833	3833L
Max. Inlet Pressure:	3000 psig	3000 psig
Operating Temp. Range:	-40°F to +165°	-40°F to +165°
Flow Coefficient(Cv):	2.0	2.0
Inlet and Outlet**:	1/2" NPT female	1/2" NPT female

^{**}A 100 micron filter is recommended for installation on the regulator inlet. P/N 7510-100-P8MM or 7520-100-P8MM (see page 76)

MATERIALS OF CONSTRUCTION

	3833A	3833B	3833S
Body:	aluminum	brass	316 SS
Bonnet:	nickel	nickel	nickel
ţ	olated brass	plated brass	plated brass
Main Valve Assembly	316 SS	316 SS	316 SS
Main Valve Seat:	Vespel	Vespel	CTFE
Seal:	Buna-N	Buna-N	PTFE (Teflon)
Main valve:	316 SS	316 SS	316SS
Gauges	brass	brass	SS

3833

	Del. Press.	Del. Press	Inlet Press.
Model	Range	Gauge	Gauge
Number	psig	psig	psig
3833A-25	0-25	0-60	0-4000
3833A-50	0-50	0-100	0-4000
3833A-100	0-100	0-200	0-4000
3833A-150	0-150	0-200	0-4000
3833A-200	0-200	0-400	0-4000
3833AL-25	0-25	0-60	none
3833AL-50	0-50	0-100	none
3833AL-100	0-100	0-200	none
3833AL-150	0-150	0-200	none
3833AL-200	0-200	0-400	none
3833B-25	0-25	0-60	0-4000
3833B-50	0-50	0-100	0-4000
3833B-100	0-100	0-200	0-4000
3833B-150	0-150	0-200	0-4000
3833B-200	0-200	0-400	0-4000
3833BL-25	0-25	0-60	none
3833BL-50	0-50	0-100	none
3833BL-100	0-100	0-200	none
3833BL-150	0-150	0-200	none
3833BL-200	0-200	0-400	none
3833S-25	0-25	0-60	0-4000
3833S-50	0-50	0-100	0-4000
3833S-100	0-100	0-200	0-4000
3833S-150	0-150	0-200	0-4000
3833S-200	0-200	0-400	0-4000
3833SL-25	0-25	0-60	none
3833SL-50	0-50	0-100	none
3833SL-100	0-100	0-200	none
3833SL-150	0-150	0-200	none
3833SL-200	0-200	0-400	none
*For nanel mounti	na honnet add "DM" t	n hasa numbar (i a	38331 PM_50)

^{*}For panel mounting bonnet add "PM" to base number (i.e., 3833LPM-50).

HIGH PRESSURE - PISTON-SENSED REGULATOR SERIES 3832

DESCRIPTION

The 3832 series regulators are designed for high pressure applications up to 2500 psig involving applications with inlet pressures up to 3000 psig. The series features a main valve with a Cv of 0.08.

FEATURES

- · Capable of high flows with only a small pressure drop.
- Available in brass or stainless steel construction.
- · Unbalanced stem provides positive shut-off.

APPLICATIONS

The 3833 series regulators are ideal to meet the requirements of systems where a high flow of gases needs to be delivered with good outlet pressure control.

SPECIFICATIONS

	3832	3832L
Max. Inlet Pressure:	3000 psig	3000 psig
Operating Temp. Range:	-40°F to +165°	-40°F to +165°
Flow Coefficient(Cv):	0.08	80.0
Inlet and Outlet:	1/4" NPT female	1/4" NPT female

MATERIALS OF CONSTRUCTION

3832B	3832S
brass	316 SS
nickel plated brass	nickel plated brass
Brass	316 SS
Kel-F	Kel-F
Viton	PTFE (Teflon)
Brass	Stainless Steel
	brass nickel plated brass Brass Kel-F Viton

3832

HOW TO ORDER***

	Del. Press.	Del. Press	Inlet Press.
Model	Range	Gauge	Gauge
Number	psig	psig	psig
3832B-250-CGA*	0-250	0-400	0-4000
3832B-500-CGA*	0-500	0-600	0-4000
3832B-1000-CGA*	0-1000	0-2000	0-4000
3832B-1500-CGA*	0-1500	0-2000	0-4000
3832B-2000-CGA*	0-2000	0-4000	0-4000
3832B-2500-CGA*	0-2500	0-4000	0-4000

Options:

Brass Diaphragm outlet valve installed: add suffix "DV" after model number. Brass Packed outlet valve installed: add suffix "PV" after model number

3832S-250-CGA*	0-250	0-400	0-3000
3832S-500-CGA*	0-500	0-1000	0-3000
3832S-1000-CGA*	0-1000	0-2000	0-3000
3832S-1500-CGA*	0-1500	0-2000	0-3000
3832S-2000-CGA*	0-2000	0-3000	0-3000
3832S-2500-CGA*	0-2500	0-3000	0-3000

Options:

- SS Diaphragm outlet valve installed: add suffix "DV" after model number.
- SS Packed outlet valve installed: add suffix "PV" after model number

^{*}Specify CGA connection when ordering.

HIGH PRESSURE - MONEL PISTON-SENSED REGULATOR SERIES 3835

DESCRIPTION

The 3835 series regulators are ideally designed for use in high pressure oxygen applications with delivery pressures up to 2500 psig involving applications with inlet pressures up to 3000 psig. The series features a main valve with a Cv of 0.08.

FEATURES

- · Capable of high flows with only a small pressure drop.
- · Monel construction.
- Unbalanced stem provides positive shut-off.

APPLICATIONS

The 3833 series regulators are ideal to meet the requirements of systems where a high flow of gases needs to be delivered with good outlet pressure control.

SPECIFICATIONS

	3835	3835L
Max. Inlet Pressure:	3000 psig	3000 psig
Operating Temp. Range:	-40°F to +165°	-40°F to +165°
Flow Coefficient(Cv):	0.08	0.08
Inlet and Outlet:	1/4" NPT female	1/4" NPT female

MATERIALS OF CONSTRUCTION

	3835
Body:	Monel
Bonnet:	Monel
Main Valve Assembly	Monel
Main Valve Seat:	Kel-F
Seal:	Viton
Gauges	Stainless Steel

3835

HOW TO ORDER***

Model	Del. Press. Range	Del. Press Gauge	Inlet Press. Gauge
Number	psig	psig	psig
3835-25-CGA*	0-25	0-60	0-4000
3835-50-CGA*	0-50	0-100	0-4000
3835-100-CGA*	0-100	0-200	0-4000
3835-250-CGA*	0-250	0-400	0-4000
3835-500-CGA*	0-500	0-1000	0-4000
3835-1000-CGA*	0-1000	0-1500	0-4000
3835-1500-CGA*	0-1500	0-2000	0-4000
3835-2000-CGA*	0-2000	0-3000	0-4000
3835-2500-CGA*	0-2500	0-3000	0-4000
3835L-25-CGA*	0-25	0-60	none
3835L-50-CGA*	0-50	0-100	none
3835L-100-CGA*	0-100	0-200	none
3835L-250-CGA*	0-250	0-400	none
3835L-500-CGA*	0-500	0-1000	none
3835L-1000-CGA*	0-1000	0-1500	none
3835L-1500-CGA*	0-1500	0-2000	none
3835L-2000-CGA*	0-2000	0-3000	none
3835L-2500-CGA*	0-2500	0-3000	none

Options:

Monel diaphragm outlet valve installed- add suffix "DV" to model number. Monel packed outlet valve installed- add suffix "PV" to model number.

HIGH PRESSURE REGULATORS Series 3800V

DESCRIPTION

These series 3800V regulators feature a compact, reliable piston design for precise gas control at higher inlet pressures. They are designed for non-corrosive gas service and are especially suited for dead-end pressurized systems, such as pressure vessel testing.

FEATURES

- Piston type actuation.
- · Cartridge type seat assembly.
- · Delrin cap bushing for smooth adjustment.
- Easily panel mounted with optional panel mount nuts.
- · Double filter protection

SPECIFICATIONS

Maximum inlet: up to 6000 psig Operating temperature: 0° to 140°F. Cv factor: 0.103

Outlet port: 1/4" NPT female

Outlet Connection: 1/4" stainless steel compression fitting

Weight: 4 lbs.

Dimensions: 6"W x 6-1/2"H x 6-1/4"

MATERIALS OF CONSTRUCTION

Body: machined brass
Bonnet: machined brass

Piston: brass
Inlet filter: bronze
Seat: Kel-F®
Seals: Viton®
Gauges: brass

NOTE: See pages 150-166 for gas data and equipment recommendations.

Madel Nember	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge
Model Number	psig	psig	psig
3800V-750-CGA*	50-750	0-1000	0-6000
3800V-1500-CGA*	100-1500	0-2000	0-6000
3800V-3000-CGA*	200-3000	0-4000	0-6000
3800V-4500-CGA*	300-4500	0-6000	0-6000

^{*} Specify CGA Connection when ordering.

HIGH PRESSURE REGULATORS Series 3860T

DESCRIPTION

The Series 3860T high pressure regulators are designed to safely reduce inlet pressures from cylinders filled with gases to 6000 psig. The self-venting feature of the regulator allows the operator to reduce the pressure setting in a closed system by venting the downstream pressure through the regulator.

FEATURES

- Full 6000 psig delivery pressure capability.
- · Available in brass or stainless steel.
- Self-venting design for ease of pressure adjustment.
- Unbalanced stem assures positive shut-off.
- Removable valve assembly module permits ease of repairs.
- Large adjusting knob provides fast low-torque pressure. settings.

Maximum Inlet:

brass 6000 psig stainless steel 10000 psig Operating temperature: 40° to 165°F.

Cv factor: 0.2

Leakage: bubble-tight Inlet and Outlet ports: 1/4" NPT female

Weight: 5 lbs.

MATERIALS OF CONSTRUCTION

	3860TB	3860TS
Body:	brass	303 stainless steel
Bonnet:	brass	nickel plated brass
Main valve seat:	Vespel	Vespel
Vent valve seat:	Kel-F®	Kel-F®
Seals:	Buna-N	Buna-N
Back-up rings:	Buna-N and Teflon®	Buna-N and Teflon®
Gauges:	brass	316 stainless steel

HOW TO ORDER

	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge**
Model Number	psig	psig	psig
3860TB-500-CGA*	0-500	0-600	0-7500
3860TB-1000-CGA*	0-1000	0-2000	0-7500
3860TB-1500-CGA*	10-1500	0-2000	0-7500
3860TB-2500-CGA*	15-2500	0-4000	0-7500
3860TB-4000-CGA*	25-4000	0-6000	0-7500
3860TB-6000-CGA*	50-6000	0-7500	0-7500
3860TS-500-CGA*	0-500	0-1000	0-10,000
3860TS-1000-CGA*	0-1000	0-2000	0-10,000
3860TS-1500-CGA*	10-1500	0-3000	0-10,000
3860TS-2500-CGA*	15-2500	0-3000	0-10,000
3860TS-4000-CGA*	25-4000	0-6000	0-10,000
3860TS-6000-CGA*	50-6000	0-10,000	0-10,000
3860TS-10,000-CGA*	100-10,000	0-10,000	0-10,000

^{*}Specify CGA connection when ordering.

Add prefix "NV" to model number if self-venting feature is not desired (i.e. NV3860TB-6000-677).

Self-venting feature is not recommended with flammable or toxic gases.

^{**}Regulators fitted with a CGA connection rated for 3000 psig will have a 0-4000 psig brass, or 0-3000 psig SS inlet pressure gauge.

HIGH PURITY LOW DELIVERY PRESSURE REGULATORS Series 3700HP

DESCRIPTION

These regulators were designed to meet the needs of applications requiring reliable low-pressure control while maintaining gas purity. They are available in single and two stage versions to meet most non-corrosive gas applications. The low pressure stage has a large sensitive aluminum-faced neoprene diaphragm to provide delivery pressures as low as 2" of water.

Single Stage Line Regulators for Non-Corrosive Gases

MATERIALS OF CONSTRUCTION

Body & Bonnet: Zinc Seat: Nitrile

Diaphragm: Aluminum-faced natural rubber

Internal parts: Steel, brass, and zinc

FEATURES

- Extremely low delivery pressures.
- Aluminum faced diaphragm for high purity applications.
- Maximum inlet pressure 250 psig.
- Diaphragm packless valve on outlet is standard.
- $C_V = 0.114$.

The Series 3700HP regulators are available in three delivery pressure ranges; 2-35" of water, and 0.8-2.7 psig and 2.7-5 psig. As a line regulator they have a maximum inlet pressure rating of

250 psig. Inlet and outlet connections are 1/4" NPT female. The Series 3700HP has an aluminum faced natural rubber diaphragm to provide a diffusion resistant metal barrier for high purity gas applications. If you do not desire the outlet valve ad suffix "NV" to the part number.

HOW TO ORDER

Model	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge
Number	psig	psig	psig
3701HP	2-25" water	0-30" water	none
3702HP	2.7-5 psig	0-10 psig	none
3703HP	0.8-2.7 psig	0-3 psig	none

Two-stage High Purity Regulators for Low Pressure Delivery

When source gas pressures exceed 250 psig, this hybrid regulator created by coupling a Series 3700HP regulator with a Series 3101 single stage regulator is an ideal choice for such higher pressure applications

MATERIALS OF CONSTRUCTION

First Stage See model 3101 on page 26

2nd Stage See above

Model	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge
Number	psig	psig	psig
3101HY3701-CGA*	2-25" water	0-30" water	0-4000 psig
3101HY3702-CGA*	2.7-5 psig	0-10 psig	0-4000 psig
3101HY3703-CGA*	0.8-2.7 psig	0-3 psig	0-4000 psig

^{*}Specify CGA connection when ordering. If you do not desire the standard outlet valve add the suffix "NV" to the part number.

GENERAL PURPOSE LOW DELIVERY PRESSURE REGULATORS Series 3700

DESCRIPTION

These regulators were designed to meet the needs of applications requiring reliable low-pressure control of non-high purity gases. They are available in single and two stage versions to meet most non-corrosive gas applications. The low pressure stage has a large sensitive neoprene diaphragm to provide delivery pressures as low as 2" of water.

Single Stage Line Regulators for Non-Corrosive Gases

MATERIALS OF CONSTRUCTION

Body & Bonnet: Zinc Seat: Nitrile

Diaphragm: Natural rubber Internal parts: Steel, brass, zinc

FEATURES

- Extremely low delivery pressures.
- · Large sensitive diaphragm for reliable pressure control.
- Maximum inlet pressure 250 psig.
- · Needle valve on outlet is standard.
- $C_V = 0.114$.

The Series 3700 regulators are available in three delivery pressure ranges; 2-35" of water, and 0.8-2.7 psig and 2.7-5 psig. As a line regulator they have a maximum inlet pressure rating of 250 psig. The inlet and outlet connections of the regulator are 1/4" NPT female, but with the standard needle valve installed the outlet connection is 1/4" NPT male. If you do not desire the outlet valve add suffix "NV" to the part number.

HOW TO ORDER

Model	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge
Number	psig	psig	psig
3701	2-25" water	0-30" water	none
3702	2.7-5 psig	0-10 psig	none
3703	0.8-2.7 psig	0-3 psig	none

Two-stage General Purpose Regulators for Low Pressure Delivery

When source gas pressures exceed 250 psig, this hybrid regulator created by coupling a Series 3700 regulator with a Series 2401 single stage regulator is an ideal choice for such higher pressure applications.

MATERIALS OF CONSTRUCTION

First Stage: See model 2401 on page 44

2nd Stage: See above.

Model Number	Del. Press. Range psig	Del. Press. Gauge psig	Inlet Press. Gauge psig
2401HY3701-CGA*	2-25" water	0-30" water	0-4000 psig
2401HY3702-CGA*	2.7-5 psig	0-10 psig	0-4000 psig
2401HY3703-CGA*	0.8-2.7 psig	0-3 psig	0-4000 psig

^{*}Specify CGA connection when ordering. If you do not desire the standard outlet valve add the suffix "NV" to the part number.

GENERAL PURPOSE NON-CORROSIVE GAS 1-STAGE REGULATOR Series 2400

DESCRIPTION

The Series 2400 single stage regulators are specifically designed as an economical instrument for use in non-critical applications involving inert and non-corrosive gases. They are particularly suited to closely monitored applications. The neoprene diaphragm provides good sensitivity for pressure control. The Series 2400 should not be used in applications where inboard diffusion of atmospheric impurities water and oxygen or the outgassing of hydrocarbon based impurities will negatively impact the work being performed.

FEATURES

- · Neoprene diaphragm for sensitive pressure control.
- · Needle valve installed in outlet.
- One piece encapsulated seats.

APPLICATIONS

The Series 2400 regulators are ideal for use with inert, flammable, and hydrocarbon gases used in non-critical specialty gas applications.

MATERIALS OF CONSTRUCTION

Body: brass
Nozzles: brass
Seats: PTFE Teflon
Diaphragms: neoprene

Inlet Filter: nickel plated sintered bronze - 10 micron

SPECIFICATIONS

 $\begin{array}{lll} \text{Max. Inlet Pressure:} & 3000 \text{ psig} \\ \text{Operating Temp. Range:} & 0^{\circ} \text{ to } +140^{\circ} \text{ F} \\ \text{Body Inlet and Outlet:} & 1/4" \text{ NPT female} \\ \text{Valve outlet:} & 1/4" \text{ NPT male} \\ \text{Flow coefficient:} & C_{\text{V}} = 0.17 \end{array}$

NOTE: See pages 150-166 for gas data and equipment recommendations.

Model Number	Del. Press. Range psig	Del. Press. Gauge psig/kPa	Inlet Press. Gauge psig/kPa
2401-15-CGA*	0-15	0-30	0-4000
2401-50-CGA*	0-50	0-60	0-4000
2401-125-CGA*	0-125	0-150	0-4000
2401-250-CGA*	0-250	0-400	0-4000

^{*}Specify CGA Connection Number when ordering.

GENERAL PURPOSE NON-CORROSIVE GAS 2-STAGE REGULATOR Series 2420

DESCRIPTION

The Series 2420 two-stage regulators are specifically designed as an economical instrument for use in non-critical applications involving inert and non-corrosive gases. They are particularly suited to applications which will not be closely monitored and a constant delivery pressure is required from full to empty cylinder. The neoprene diaphragm provides very sensitive pressure control. The Series 2420 should not be used in applications where inboard diffusion of atmospheric impurities water and oxygen or the outgassing of hydrocarbon based impurities will negatively impact the work being performed.

FEATURES

- Neoprene diaphragm for sensitive pressure control.
- · Needle valve installed in outlet.
- One piece encapsulated seats.

APPLICATIONS

The Series 2420 regulators are ideal for use with inert, flammable, and hydrocarbon gases used in non-critical specialty gas applications when constant delivery pressure is required from full to empty cylinder.

MATERIALS OF CONSTRUCTION

Body: brass
Nozzles: brass
Seats: PTFE Teflon
Diaphragms: neoprene

Inlet Filter: nickel plated sintered bronze - 10 micron

SPECIFICATIONS

Max. Inlet Pressure:
Operating Temp. Range:
Body Inlet and Outlet:
Valve outlet:
Flow coefficient:

3000 psig 0° to +140° F 1/4" NPT female 1/4" NPT male $C_V = 0.15$

HOW TO ORDER

Model Number	Del. Press. Range psig	Del. Press. Gauge psig/kPa	Inlet Press. Gauge psig/kPa
2421-15-CGA*	0-15	0-30	0-4000
2421-50-CGA*	0-50	0-60	0-4000
2421-125-CGA*	0-125	0-150	0-4000
2421-250-CGA*	0-250	0-250	0-4000

^{*}Specify CGA Connection Number when ordering.

NOTE: See pages 150-166 for gas data and equipment recommendations.

LASER CUTTING PRESSURE REGULATOR Series 3870H

DESCRIPTION

The 3870H regulator is specifically designed to meet the high flow, high pressure assist gas requirements of the laser cutter. It has fast on-off-on response, high flow capacity, and delivers the pressures required for the job. Whether your source gas is cryogenic or high pressure, this regulator can handle the job. The regulator is actually two regulators in one body — a dome-loaded piston regulator with a sensitive diaphragm actuated dome loader built in.

FEATURES

- · Rapid on-off-on response even at high flow rates.
- 1/2" NPT female inlet and outlet connections.
- High flow capacity Cv = 0.55.
- Minimal delivery pressure decay (0.3 psi/100 psi).
- · Built-in dome loader regulator.
- Bonnet threaded to accept panel nut.
- Encapsulated seats with 10 micron filter.

SPECIFICATIONS AND MATERIALS OF CONSTRUCTION

Max. inlet pressure 3000 psig (optional

5500 psig available)

Outlet Pressure Ranges 0-250 psig, 0-500 psig, 0-1000 psig

Inlet and Outlet ports 1/2" NPT female Inlet and Outlet Gauge Ports 1/4" NPT female

Body brass

Dome Loader Diaphragm PTFE Teflon® coated neoprene

Seat & seals PTFE Teflon®

HOW TO ORDER

Model	Description			
	Del. Pressure	Del. Press. Gauge	Inlet Press. Gauge	
	psig	psig	psig	
3870H-250	0-250	0-400	0-4000	
3870H-500	0-500	0-600	0-4000	
3870H-1000	0-1000	0-2000	0-4000	

Options

Panel mount nut P/N 9100887

LASER WELDING GAS SUPPLY SYSTEMS

DESCRIPTION

Each of the manufacturers of laser gas welding systems has their own specifications for the gas transfer system. The systems presented here generally meet or exceed the requirements of virtually all of the manufacturers. The manual, semi-automatic, and fully automatic systems have worked very successfully in many laser applications and contain all of the basic components required to protect the laser and maintain gas purity and flow. If for any reason, one of these systems does not meet your requirements contact us to discuss a custom system that is correct for your laser.

FEATURES

- All high purity construction.
- Purge assemblies installed on each pigtail to ensure cylinderto-cylinder purity on change-outs. (Cylinder connections with integral check valves in place of purge assemblies are available as an option.)
- Built-in safety relief valve prevents laser over pressurization.
- Built-in 2 micron filter eliminate particulate contamination of the laser.
- Pigtails are 3' stainless steel flexible hose with stainless steel inner core to ensure contamination-free gas transfer and eliminate helium diffusion leakage.
- · Convenient wall mounting bracket provided.
- High purity brass pressure regulator(s) with stainless steel diaphragms included.
- Designed to provide continuous gas flow to laser during cylinder change-outs.

SPECIFICATIONS AND MATERIALS OF CONSTRUCTION

Max. inlet pressure 3000 psig
Inlet pressure gauges 0-4000 psig
Outlet pressure range 0-100 psig
Outlet pressure gauge 0-200 psig
Safety relief valve set @100 psig

Outlet line filter 2 micron sintered stainless steel

Body brass

Diaphragms stainless steel

Seats and seals Teflon, Tefzel, or Kel-F
Pigtails 316 stainless steel with
brass cylinder connections

Operating Temp. -40 to 140°F

Model*	Changeover Control
917-LASER-CGA-4610	manual system with purge assemblies on pigtails
917-LASER-CV-CGA	manual system with integral check valves, but no purge assemblies
914-LASER-CGA-4610	914 semi-automatic changeover manifold (see page 69) with purge assemblies
914-LASER-CV-CGA	914 semi-automatic changeover manifold (see page 69) with integral check valves, but no purge assemblies
918TS-LASER-CGA-4610	918TS Auto-Logic II changeover manifold (see page 64) with purge assemblies
918TS-LASER-CV-CGA	918TS Auto-Logic II changeover manifold (see page 64) with integral check valves, but no purge assemblies
919TS-LASER-CGA-4610	919TS Ultra-Logic changeover manifold (see page 66) with purge assemblies
919TS-LASER-CV-CGA	919TS Ultra-Logic changeover manifold (see page 66) with integral check valves, but no purge assemblies

^{*} Specify CGA connection when ordering.

Options**		
917PS-XXX	pressure switch alarm assembly (XXX – specify pressure setting desired 300 psig recommended).	
912-AVA	audio/visual alarm module for 917 gas transfer system (see page 74).	
914-3B	pressure switch alarm assembly (XXX – specify pressure setting desired 300 psig recommended).	
914-AVA	audio/visual alarm module for 914 changeover manifold (see page 74).	

^{**918}TS and 919TS changeover manifolds have a built-in alarm system as standard.

CRYOGENIC CONTAINER REGULATOR Series HL3300

DESCRIPTION

This chrome plated brass single stage regulator is ideal for controlling the gaseous withdrawal from cryogenic containers.

The regulator boasts a large stainless steel diaphragm for better control and a 0.37 Cv to provide high flow if required.

FEATURES

- Available in three delivery pressure ranges, 0-125, 0-350, and 0-500 psig.
- Maximum inlet pressure 3000 psig.
- One-piece encapsulated seat design with 10 micron filter to protect seat from particulate contamination.
- Inlet is required CGA connection or 1/4" NPT female.
- Outlet connection 1/4" NPT female.
- Cv = 0.37.

Body: Chrome plated brass forging Bonnet: Chrome plated brass forging Diaphragm: 302 stainless steel

Nozzle: brass

Seat & seals: PTFE Teflon

Filter: nickel plated sintered bronze Seat return spring: PH 17-7 stainless steel

HOW TO ORDER

Model Number	Del. Press. Range psig	Del. Press. Gauge psig
HL3300-125-CGA*	0-125	0-200
HL3300-350-CGA*	0-350	0-400
HL3300-500-CGA*	0-500	0-1000

^{*} For line regulator use with 1/4" NPT female inlet and outlet substitute "P4FF" for CGA.

OPTIONS:

1/4" compression outlet add "T4FS" to P/N.

SILENCED CRYOGENIC SAFETY RELIEF VALVE Series 8636 Whisper Valve®

DESCRIPTION

The Whisper Valve is a silenced safety device for use with cryogenic containers.

The valve solves the problem of the loud noise, over 100 dB, associated with the activation of the relief valve in cryogenic containers containing nitrogen, argon or carbon dioxide. Many users of gas in cryogenic containers complain to their suppliers that the loud activation noise scares their employees and causes work disruptions and results in damaged product.

The Whisper Valve is easily installed on the vent valve of any cryogenic container and silently relieves the container pressure slightly below the normally installed relief valve. Whisper Valve reduces the relief of gas pressure to a noise level of 40-50 dB under normal conditions. For reference the average library noise level is 40 dB.

The Whisper Valve also reduces the gas losses of your cryogenic container to average of less than 48 cubic feet over 24 hours.

Whisper Valves are available in four settings, 22, 230 psig, 350 psig, and 500 psig. Other settings available on request.

FEATURES

- Reduces cryogenic relief valve blow-off noise to 40-50 dB.
- Easily installs on any cryogenic argon, oxygen, or nitrogen container.
- Available in four ranges to prevent most container noisy blow-offs.
- · Reduces gas losses to less than 48 cubic feet per 24 hours.
- Convenient wall mount kit available.
- Standard CGA 295 inlet connection for nitrogen and argon.
- CGA 440 inlet connection for oxygen.

HOW TO ORDER

Model Number	Description
8636-22	Whisper valve for cryogenic containers with 22 psig relief setting
8636-230	Whisper valve for cryogenic containers with 230 or 235 psig relief setting
8636-350	Whisper valve for cryogenic containers with 350 psig relief setting
8636-500	Whisper valve for cryogenic containers with 500 psig relief setting
8636-KIT	Wall mount bracket, panel mount nut, and six-foot hose with CGA 295
8636-02-22	Whisper valve for cryogenic containers of oxygen with 22 psig relief setting
8636-02-230	Whisper valve for cryogenic containers of oxygen with 230 or 235 psig relief setting
8636-02-350	Whisper valve for cryogenic containers of oxygen with 350 psig relief setting
8636-02-500	Whisper valve for cryogenic containers of oxygen with 500 psig relief setting
8636-02-KIT	Wall mount bracket, panel mount nut, and six-foot hose with CGA 440

^{*} Also available for CO₂.

WHISPER VALVE TAKES THE POP OUT OF CRYOGENIC SAFETIES

LECTURE BOTTLE EQUIPMENT

Due to the small size and limited contents of lecture bottles, special equipment is recommended for use. This special equipment is described here and on the following page.

LECTURE BOTTLE REGULATORS SERIES 3900

The Series 3910 regulator is designed for use with non-corrosive, non-toxic gases in lecture bottles. The Series 3920 lecture bottle regulator is designed for use with corrosive, and/or toxic lecture bottle gases. These light weight, compact single stage regulators incorporate many features found in our larger high purity regulators.

FEATURES

- · Small compact design.
- · Needle valve installed on outlet.

SPECIFICATIONS

	Series 3910	Series 3900
Max. Inlet Pressure:	3000 psig	3000 psig
Operating Temp. Range:	0 to +140°F	-40 to +140°F
Flow Coefficient (Cv):	0.02	0.08
Body Inlet Connection:	1/8" NPT female	1/8" NPT female
Body Outlet Connection:	1/4" NPT female	1/8" NPT female
Outlet Valve Connection:	1/4" NPT male	1/8" NPT male

Series 3910

Series 3900

MATERIALS OF CONSTRUCTION

	Series 3910	Series 3920	Series 3900
Body:	chrome-plated brass	316 stainless steel	Aluminum
Internal Seals:	nylon	Teflon [®]	Teflon [®]
Seat:	polyurethane	Teflon [®]	Teflon®
Diaphragm:	neoprene	316 stainless steel	316 stainless steel
Filter:	50 micron sintered bronze	50 micron stainless steel	50 micron stainless steel
Bonnet:	chrome plated brass	anodized aluminum	anodized aluminum
Gauges:	chrome plated brass	stainless steel	brass
Outlet Valve:	chrome plated brass	stainless steel	brass

	Del. Press. Range	Del. Press. Gauge	Inlet Press. Gauge
Model Number	psig	psig	psig
3910-15-170	2-15	0-30	0-4000
3910-60-170	4-60	0-100	0-4000
3910-15-180	2-15	0-30	0-4000
3910-60-180	4-60	0-100	0-4000
3900-30-170	2-30	0-60	0-3000
3900-30-180	2-30	0-60	0-3000
3900-60-170	2-60	0-100	0-3000
3900-60-180	2-60	0-100	0-3000
T3920-30-180	2-30	0-60	0-3000
T3920-60-180	2-60	0-100	0-3000

LECTURE BOTTLE EQUIPMENT

LECTURE BOTTLE HOLDERS

Lecture bottles have rounded ends and require some means of support when in use. We provide two types of holders here that meet most requirements.

NON-TIP STAND - MODEL 475

This stand offers a convenient method of securing a lecture bottle on a table or lab bench. The stand is made of light weight brushed aluminum and, yet the large diameter base provides stability even when a regulator is installed on the bottle.

WALL MOUNT LECTURE BOTTLE BRACKET MODEL 480

This bracket is made of anodized aluminum and has spring clips that provide firm, secure support to the lecture bottle. The bracket is ideal for securing lecture bottles to lab cart or bench set-ups, in carrying cases for portable systems, or in storage cabinets.

LECTURE BOTTLE CONTROL VALVES

These valves are specifically designed for attachment to lecture bottles to dispense their contents. They do not control pressure and should only be used when the operator is in attendance.

475

480

MATERIALS OF CONSTRUCTION

	3990	3991	3992
Body	brass	brass	316 stainless steel
Stem	303 stainless steel	303 stainless steel	316 stainless steel
Packing	Teflon®	Teflon®	Teflon®
Tubing	hose barb	brass	316 stainless steel

Model	Inlet Connection	Outlet Connection
3990-CGA	Specify CGA 170 or 180	1/4" O.D. hose barb
3991-CGA	Specify CGA 170 or 180	1/4" compression fitting w/10" long brass tubing
3992-180	CGA 180	1/4" compression fitting w/10" long SS tubing

GAS CONTROLS FOR DISPOSABLE CYLINDERS Series 3960 – Fixed Flow Regulator for Non-Corrosive Gases

DESCRIPTION

These compact regulators are designed to provide a constant fixed flow rate of non-corrosive gases and mixtures from disposable cylinders fitted with a C-10 connection. If required they can also be provided with a standard CGA connection for other types of cylinders.

FEATURES

- Built-in on/off valve.
- Integral inlet and outlet connections provide convenient compact size.
- Outlet orifice and preset delivery pressure provide specific flow rate when on/off valve is opened.
- Pressure gauge monitors cylinder pressure.
- 40 micron inlet filter.

SPECIFICATIONS

Inlet pressure: 1000 psig max. with C10

3000 psig max. with CGA connection

Operating temperature: 0° to 160°F Inlet connection: C-10 (5/8"-18 UNF) Outlet connection: 3/16" hose barb

Cylinder pressure gauge: 1200 psig with C10

0-3000 psig with CGA connection

MATERIALS OF CONSTRUCTION

Body: nickel-plated brass

Piston: brass Seat: Teflon® Seals: Viton®

Gauge: stainless steel case, brass connection

HOW TO ORDER

Model No.*	Pre-Set Flow Rate
3960-02	0.25 liters/min
3960-05	0.50 liters/min
3960-10	1.0 liters/min
3960-15	1.5 liters/min
3960-20	2.0 liters/min
3960-25	2.5 liters/min
3960-50	5.0 liters/min
3960-60	6.0 liters/min

*If standard CGA connection is desired add CGA connection number to the model number, i.e. 3960-15-180.

GAS CONTROLS FOR DISPOSABLE CYLINDERS Series 3962 – Stainless Steel Fixed Flow Regulator for Corrosive Gases

DESCRIPTION

These compact regulators are designed to provide a constant fixed flow rate of gas mixtures containing corrosive gas components from disposable cylinders fitted with a C-10 connection. If required they can also be provided with a standard CGA connection for other types of cylinders.

FEATURES

- Built-in on/off valve.
- Integral inlet and outlet connections provide convenient compact size.
- Outlet orifice and preset delivery pressure provide specific flow rate when on/off valve is opened.
- Pressure gauge monitors cylinder pressure.
- 40 micron inlet filter.

SPECIFICATIONS

Inlet pressure: 1000 psig max. with C10

3000 psig max. with CGA connection

Operating temperature: 0° to 160°F Inlet connection: C-10 (5/8"-18 UNF) Outlet connection: 3/16" hose barb

Cylinder pressure gauge: 1200 psig with C10

0-3000 psig with CGA connection

MATERIALS OF CONSTRUCTION

Body: stainless steel Piston: stainless steel Seat: Teflon®

Seals: Viton®

Gauge: stainless steel

HOW TO ORDER

Model No.*	Pre-Set Flow Rate	
3962-02	0.25 liters/min	
3962-05	0.50 liters/min	
3962-10	1.0 liters/min	
3962-15	1.5 liters/min	
3962-20	2.0 liters/min	
3962-25	2.5 liters/min	
3962-50	5.0 liters/min	
3962-60	6.0 liters/min	

*If standard CGA connection is desired add CGA connection number to the model number, i.e. 3962-15-180.

GAS CONTROLS FOR DISPOSABLE CYLINDERS Series 3970 —Regulator for Non-Corrosive Gases

DESCRIPTION

These compact regulators are designed to provide a constant fixed flow rate of non-corrosive gases and mixtures from disposable cylinders fitted with a CGA 600 outlet connection. They provide both pressure and flow control. When regulator is supplied without 1/4" flow control hose barb the 3970 is an adjustable pressure regulator.

FEATURES

- Adjustable delivery pressure.
- · Integral needle valve for shut-off and to control flow.
- Integral CGA 600 connection provides compactness and minimal loss of gas during installation and removal.
- 0-300 psig inlet pressure gauge to monitor cylinder pressure.

SPECIFICATIONS

Inlet pressure: 300 psig max.
Operating temperature: 0° to 160°F

Inlet connection: CGA 600

Outlet connection: 1/4" NPT female or

1/4" hose barb with flow control orifice

Cylinder pressure gauge: 0-300 psig

Cv = 0.04

MATERIALS OF CONSTRUCTION

Body: aluminum Diaphragm: neoprene Seat: neoprene

CGA gasket: composite cork

Gauge: stainless steel case, brass connection

Model No.	Del. Press. Rang psig	e Outlet
3970	0-60	1/4" NPT female
3970HB	0-60	1/4" hose barb with flow control orifice

ADJUSTABLE FIXED FLOW REGULATOR Series 3980

DESCRIPTION

The 3980 series provides the control of the single fixed flow regulators with the advantage of being able to change flow rates as required for different applications. This regulator eliminates the need to have multiple regulators on-site. There are models suitable for use with non-corrosive gases and mildly corrosive gases. Commonly called the "click" regulator it has 12 flow positions, OFF, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 6.0, 7.0, and 8.0 slpm. NOTE: Flow rates are estimated. Actual flow rates will vary depending on gas service and pressure.

FEATURES

- 12 fixed flow settings.
- 0-3000 psig cylinder pressure gauge.
- Max. inlet pressure 3000 psig.
- Available with standard C-10 (5/8"-18 UNF) or a standard CGA cylinder connection.
- 3/16" hose barb outlet.
- 40 micron inlet filter.

MATERIALS OF CONSTRUCTION

3981 3982

Body: clear anodized aluminum

Piston: brass

Orifice plate: ceramic

Main valve seat: Teflon®

Piston seals: Viton®

Piston seals: Viton®

Piston seals: Viton®

Pressure gauge: SS case with brass socket Pressure gauge: stainless steel

Model	Description
3981	non-corrosive gas regulator with C-10 connection
3981-CGA*	non-corrosive gas regulator with standard CGA connection
3982	corrosive gas regulator with C-10 connection
3982-3K	corrosive gas regulator with C-10 connection rated for 3000 psig
3982-CGA*	corrosive gas regulator with standard CGA connection

^{*}Specify CGA connection when ordering.

DEMAND FLOW REGULATOR Series 3950

DESCRIPTION

This new single stage design using balanced valve stem technology is more sensitive than older two stage technologies providing g better performance even with high inlet pressures. This regulator is designed for use with instruments that use a pump to draw the calibration gas into the instrument. The 3950 series demand flow regulator provides the exact amount of calibration gas the instrument pump requires. This simple to use regulator makes calibration quick and easy by eliminating the need for sample bags, flowmeters, or special operator training.

FEATURES

- Precise delivery of calibration gas required by instrument pump.
- · New single stage balanced valve stem technology.
- · Simple easy to use operation.
- Various cylinder connections available: C-10, CGA 600, other CGAs.
- 40 micron inlet filter.

SPECIFICATIONS

Outlet hose barb for 3/16" ID hose Flow 0-3 slpm @ 3" of H₂O vacuum Inlet pressure gauge: 0-3000 psig with GCA connection 0-1200 psig with C10 connection

MATERIALS OF CONSTRUCTION

BodyClear anodized aluminumClear anodized aluminumBonnetclear anodized aluminumclear anodized aluminumDiaphragmBuna-NViton®

Main valve seat Viton® and Teflon® Viton® and Teflon®

Inlet pressure gauge stainless steel case with brass socket stainless steel case with stainless steel socket

Model	Description	
3951-C10	Demand Flow Regulator with C-10 inlet connection	
3951-600	Demand Flow Regulator with CGA 600 inlet connection	
3951-CGA	Demand Flow Regulator with selected CGA connection	
3952-C10	Demand Flow Regulator with C-10 inlet connection	
3952-CGA	Demand Flow Regulator with selected CGA connection	

SPECIALTY APPLICATION POINT OF USE PANELS

Mass Spec Distribution Panel Model 22660

DESCRIPTION

This panel provides mass spec users with all the necessary gas handling equipment to properly install and operate their new mass spectrometer. The gas distribution panel provides all of the necessary controls to feed both air and nitrogen to the mass spec at the proper pressures for optimum operation. The valve arrangement provides the user with the option of using nitrogen for all the functions instead of air for the exhaust gas, Gas 1 and Gas 2 functions in the event that compressed air is not available. The panel is compact and easy to install. Simply mount the panel at a convenient location and connect your gas lines using the compression fittings provided.

FEATURES

- Total high purity gas construction.
- Brass high purity line regulators.
- HL3300-125-580 regulator included for LN2 container.
- · Diaphragm valves.
- Valved for use with air and nitrogen or nitrogen only.
- 1/4" OD compression fitting outlet connections.
- 50 feet of 1/4" polyethylene tubing.
- System is mounted on a 23" high x 12" wide x 1/2" thick HDPE panel.

Generator Backup Panel Model 22687

DESCRIPTION

This panel is designed to automatically provide a reserve supply to a gas generator in the event of a power loss, or the generator cannot provide sufficient gas to the system. The system may be used with air, hydrogen, or nitrogen generators and are available constructed of brass or stainless steel. An alarm option is available.

FEATURES

- High purity two stage regulator to ensure constant delivery pressure as required.
- Stainless steel inner core flexible 3' pigtails with cylinder connections having integral check valves.
- · Provided on a stainless steel wall mounting bracket.

Model	Description
22687B-XXX-CGA*	Brass Generator Backup Panel
22687S-XXX-CGA*	Stainless Steel Generator Backup Panel
XXX- Specify delivery pressure	9
*Specify CGA connection whe	n ordering.
Options	
22657-AVA	Alarm Module

POINT OF USE PANELS Multiple Source Panels Series 223

Point of use panels provide a convenient organized method to deliver gas to your laboratory instruments or systems whether from a single source or multiple sources while providing individual pressure control for each application.

FEATURES

- High purity brass or stainless steel line regulators.
- Individual inlets and outlets for each regulator.
- · Horizontal or vertical configuration.
- HDPE panel.
- Inlet and outlet connections 1/4"stainless steel compression fittings.

HOW TO ORDER

223M-X- PPP

M = 1 for brass

4 for stainless steel

X = H for horizontal configuration

V for vertical configuration

Y = number of regulators

C = center inlet

PPP = delivery pressure of each regulator on the panel.

Show the range code for each regulator in order from

top to bottom or left to right.

25 for 0-25 psig

50 for 0-50 psig

100 for 0-100 psig

150 for 0-150 psig

Example:

2231-H-25-25-50-100 describes a brass four-regulator panel in the horizontal orientation with the first regulator on the left having a 0-25 psig delivery pressure range followed in order by three others: 0-25 psig, 0-50 psig, and 0-100 psig.

four-regulator horizontal panel configuration

single regulator panel

three-regulator vertical panel configuration

POINT OF USE PANELS Single Source Panels Series 233

FEATURES

- High purity brass or stainless steel line regulators.
- · One inlet with individual outlets for each regulator.
- Horizontal or vertical configuration.
- HDPE panel.
- Inlet and outlet connections 1/4" stainless steel compression fittings.

HOW TO ORDER

233M-X- PPP-C

M = 1 for brass

4 for stainless steel

X = H for horizontal configuration

V for vertical configuration

Y = number of regulators

C = center inlet

PPP = delivery pressure of each regulator on the panel.

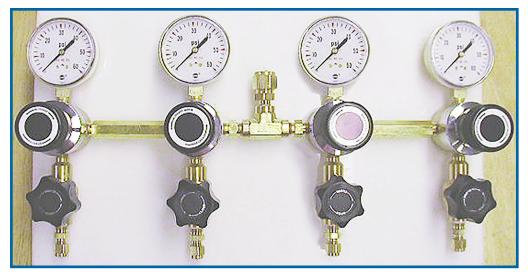
Show the range code for each regulator in order from

top to bottom or left to right.

25 for 0-25 psig

50 for 0-50 psig

100 for 0-100 psig

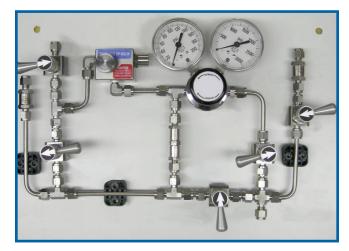

150 for 0-150 psig

Example:

2331-H-25-25-50-100-C describes a center inlet brass four-regulator panel in the horizontal orientation, with the first regulator on the left having a 0-25 psig delivery pressure range followed in order by three others: 0-25 psig, 0-50 psig, and 0-100 psig.

three-regulator panel – inlet may be from the left or the right

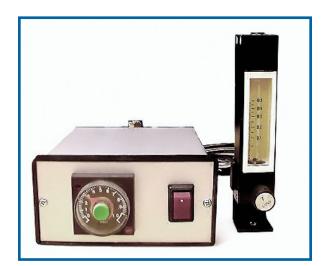
four-regulator panel with center inlet



CUSTOM SYSTEMS

Most of the components in this catalog are used in combination with other components in their final application. Often it is convenient to combine these components on a panel, in a cabinet, or some other system configuration prior to the shipment of the components. This service offers convenience and often saves both time and money while ensuring that the user has all of the capability he requires when the product is received.

To take advantage of this service provide us with a flow sketch of the system and a brief written commentary of the system requirements; pressures, flow rates, gas, desired materials of construction, purification requirements, etc. or contact our technical service personnel to discuss your needs.


Some typical systems are shown on this page.

Five-Valve Panel

Regulator Flowmeter Panel

Flowmeter with Timer

Gas Purifier Panel

Hydrogen Gas Cabinet with Controls

LEAK-TECTOR™ TESTING SOLUTION

DESCRIPTION

Leak-Tector is specially formulated for testing lines, cylinders, and systems carrying oxygen and other compressed gases for leaks. The formulation contains no oil, grease, fatty acids, ammonias, or any other ingredient that could combine with pure oxygen to form either a flammable or explosive mixture.

Leak-Tector is simple to use. Apply the solution to a connection or surface suspected of leaking and watch for bubble clusters. Large leaks form large bubble clusters. Very fine leaks form white foam that builds up for several minutes, making detection easy and certain. Solution dries clean with no greasy residue and does not need to be removed after testing. Tests have shown that Leak-Tector clearly detects leaks as small as one pound of gas in 100 years, a leak rate of 1.16 x 10-4 cc/sec of nitrogen.

Leak-Tector is available in convenient 8 oz. squeeze bottles or 1 gallon containers.

SPECIFICATIONS

Temperature range: +35° to +160°F Meets Air Force Spec. MIL-L-25567

Model	Description
LT-8	8 oz squeeze bottle of Leak-Tector
LT-8X12	case of 12 8 oz bottles of Leak-Tector
LT-1G	one gallon bottle of Leak-Tector
LT-1GX4	case of four one gallon bottle of Leak-Tector

LOW GAS PRESSURE ALARM Series 9900

DESCRIPTION

The Series 9900 complies with the requirements of NFPA 99 2002 paragraph 5.1.10.5.5 that mandates the continuous monitoring of purge gas while welding or brazing gas lines.

These alarms are ideal for any gas application where a decrease in gas pressure could be detrimental to the operation.

Rated for 3000 psig the Series 9900 can be installed between the cylinder valve and the user's pressure regulator or system. At low pressure, the Series 9900 provides both and audible and visual alert to the user when the container pressure reaches the pre-set level. Units are available in brass or stainless steel with the appropriate CGA connections for easy installation between an existing cylinder and regulator, or with pipe threads or compression fittings for permanent installation into a gas supply system.

Standard models require 110 VAC power. For remote locations or where power is not readily available there are battery-powered models that operate on a standard 9V battery.

FEATURES

- · Wide range of alarm pressure selection.
- · Available in brass or stainless steel.
- Available with CGA connections or 1/4" NPT female inlet and outlet.
- Complies with the requirements of NFPA 99 2002 paragraph 5.1.10.5.5.
- Choice of power source 110 VAC, 9V battery.
- Provides both an audio (~90 dB @ 10 feet) and a visual alarm.
- · Mating inlet and outlet connections.

Regulator sold separately.

HOW TO ORDER

(Replace the PSI in P/N with the desired activation pressure.)

(hopiaco alo rol mi ryli mar alo aconoa acaraalon processio)		
Model Number	Description	
9910-PSI-CGA	110 VAC brass unit with audio/visual alarm and silence button	
9911-PSI-CGA	9 volt brass unit with audio/visual alarm and on/off switch (no silence button)	
9910-PSI-P4FF	110 VAC brass unit with audio/visual alarm and silence button – 1/4" NPTF	
9911-PSI-P4FF	9 volt brass unit with audio/visual alarm and on/off switch (no silence button)	
9920-PSI-CGA	110 VAC SS unit with audio/visual alarm and silence button	
9921-PSI-CGA	9 volt SS unit with audio/visual alarm and on/off switch (no silence button)	
9920-PSI-P4FF	110 VAC SS unit with audio/visual alarm and silence button – 1/4" NPTF	
9921-PSI-P4FF	9 volt SS unit with audio/visual alarm and on/off switch (no silence button)	

CHANGEOVER MANIFOLD TUTORIAL

Many applications require a continuous supply of gas to the process, stopping the flow of gas during operations to replace empty cylinders is not an option. The laser welding operation is a perfect example of an application that may operate on a single 8 hour shift basis but requires continuous flow throughout the operating period. Stopping production to replace empty cylinders can be costly – time is money.

There are many other applications where the flow of gas must be maintained 24/7. Helium for gas chromatographs and carbon dioxide for incubators are two simple, but good examples where loss of gas flow can have very unwelcome results. These applications require continuous flow for long periods of time not only during working hours, but when the system is unattended in the evening and during weekends and holidays. Running a gas chromatograph out of helium carrier gas can result in costly repairs and days without analytical results. An incubator without carbon dioxide can result in destroyed samples and the loss of years of research.

WHAT IS A CHANGEOVER MANIFOLD?

A changeover manifold is a system of valves and pressure regulators that delivers gas to a process without gas flow interruption. Most changeovers consist of a regulator scheme that reduces the pressure in two stages to achieve a constant outlet pressure.

Users should be aware that there are systems offered that do not provide two stages of pressure reduction and that the resultant outlet pressure will fluctuate considerably as the system operates, thus requiring the addition of a line regulator down stream from the changeover to provide a consistent pressure to the process.

SELECTION CRITERIA FOR CHANGEOVER MANIFOLDS

Each application has a different set of operating parameters that must be evaluated and satisfied. Let's take a look at some key parameters that users need to understand when selecting a changeover manifold.

Automatic or semi-automatic? What's the difference?
 Some suppliers use semi-automatic and automatic interchangeably when describing a changeover manifold. In fact, they are two distinctly different systems.

A **semi-automatic** changeover normally operates by opposing pressure differential. It switches from the "in-service" side to the "reserve" side automatically, but requires an action by the operator to switch it back from the new "in-service" side to the "reserve side." Typically this is accomplished by flipping a knob, a lever, or operating a series of valves after replacing the empty cylinders. The model 914 and 916 are typical semi-automatic changeovers.

An **automatic** changeover manifold functions electronically. The only action required by an operator for this unit to reverse the changeover is to replace empty cylinders and to

re-pressurize the depleted side. The model 918TS and 919TS are typical fully automatic changeovers.

2. The gas supply source is important.

The gas supply source to a changeover may include any combination of the following:

- A standard high pressure cylinder, such as nitrogen or helium,
- · A cylinder of liquefied gas, such as carbon dioxide,
- A six pack, 12 pack, manifold of cylinders,
- A cryogenic container of argon, nitrogen, oxygen, or carbon dioxide,
- · A tube trailer.
- A bulk storage tank.

While you have all of the above choices and perhaps others, your choice of gas source drives your choice of changeover manifolds. If high pressure cylinders are always to be your source, you have the choice of virtually any automatic or semi-automatic changeover system. Substitute a cryogenic container on one side with a high pressure source on the other side and your choices narrow depending on the operating parameters of delivery pressure and flow.

Automatic changeovers like the **AUTO-LOGIC II** and **ULTRA-LOGIC** allow the user to start with high pressure cylinders on both sides, and then expand to a cryogenic source on one side and a high pressure source on the other side. If even higher consumption rates become required, users can easily switch to cryogenic sources on both sides. The automatic changeover may have a higher upfront cost but be more economical in the long term.

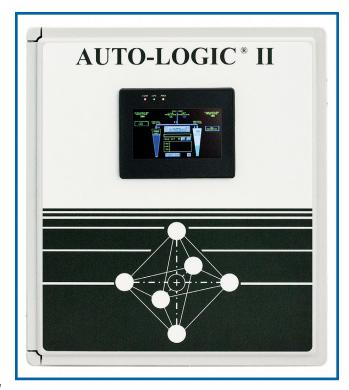
3. What is the maximum required flow?

This is often the most difficult parameter for the user to specify. Knowing the maximum flow is important for two reasons. First, you must ensure that the changeover has sufficient capacity to feed the process. A greatly oversized changeover may lead to premature failure. Second, you must ensure that the gas sources are sufficient to meet the operating parameters of the application.

4. Determine the desired gas source change out frequency. To determine the gas source frequency change out time, consider the flow rate, the total hours of operation, and the time period to obtain full containers to replace the empty side of the changeover.

SUMMARY

Whatever your requirements, be sure to consider all of the elements in choosing your changeover manifold. Proper planning up front will provide benefits and smooth operations for many years. It is a good idea to discuss your application details with your supplier to ensure that you choose the correct changeover manifold with respect to your application.



AUTO-LOGIC® II FULLY AUTOMATIC ELECTRONIC TOUCH SCREEN CHANGEOVER MANIFOLD

DESCRIPTION

This advanced electronically operated 918 Series AUTO-LOGIC II changeover manifold is truly fully automatic. It provides the user with simple, intuitive operation via a color touch screen – no buttons to push and no knobs to turn. Like its forerunner, the AUTO-LOGIC, users can switch from high pressure cylinders on both sides to low pressure cryogenic containers on one side and high pressure cylinders on the other side, or cryogenic containers on both sides with just a few screen touches. Once you have set the operating parameters, you need only change cylinders as necessary. The system takes care of everything else. There is no need to make pressure adjustments or flip a knob after the system has switched from one side to the other. Just replace the empty cylinders and open the valves. The system is now set to change in the opposite direction. These systems are truly automatic and hassle free. The AUTO-LOGIC II capabilities provide customers with the best changeover system to suit their current operation and future expanded requirements without having to buy another system.

The 918TS is available constructed with brass or stainless steel high purity gas components. It has digital pressure readouts for inlet pressures and outlet delivery pressure, built-in alarms, and dry contacts to operate external equipment, such as remote alarms or an auto-dialer. Entire system is housed in a NEMA 4X enclosure.

FEATURES

- Fully automatic, simple, hassle free operation via a color touch screen.
- Constant digital and graphic gas supplies on both sides.
- Delivery pressure monitor displays any unusual variances.
- High and low adjustable delivery pressure alarm settings.
- · Designed for high purity gas service.
- May be used with any type gas source.
- "Leak-Check monitoring alerts the user to low reserve side pressure of either high pressure or cryogenic containers while in standby via audible and visual alarms.
- "Gas-Check" feature ensures efficient use of gas supplies when cryogenic containers are in service.
- Built-in audio and visual alarm.
- External dry contacts provided to activate optional equipment or remote alarms.
- System housed in a NEMA 4X enclosure.
- Available in either brass or stainless steel construction.

SPECIFICATIONS

Max inlet pressure: 3000 psig Power required: 120 VAC/60Hz Outlet connection: 1/2" NPT female Inlet connections: 1/4" NPT female*

* When unit is ordered with accompaning pigtails the inlet connections will be the mating CGA connection of the pigtail.

AUTO-LOGIC® II FULLY AUTOMATIC ELECTRONIC TOUCH SCREEN CHANGEOVER MANIFOLD CONTINUED

HOW TO ORDER

Model	Description	Delivery Pressure
918TS-1-200	brass electronic high purity changeover manifold	25-200 psig
918TS-2- 200	stainless steel electronic high purity changeover manifold	25-200 psig
Options		
918TSE-email notifies red	ipient that a changeover has occurred. (Provide email address when ordering.)	
912-AVA audio/visual alar	m module for remote alarm	

AVD-45B auto dialer

914/918-HUB - this hub device allows for multiple dry contact connections to operate auxiliary devices

Pigtails for 918TS Changeover Manifolds (2 per set)

For Brass Manifolds	
918-FPB601-Y-CGA*	two flexible Teflon lined stainless steel braided pigtails with brass fittings and no check valves
918-FPB601-Y-CV-CGA*	two flexible Teflon lined stainless steel braided pigtails with brass fittings and check valves
918-FPB604-Y-CGA*	two flexible all stainless steel braided pigtails with brass fittings and no check valves
918-FPB604-Y-CV-CGA*	two flexible all stainless steel braided pigtails with brass fittings and check valves
For Stainless Steel Manifolds	
918-FP604-Y-CGA*	two flexible all stainless steel braided pigtails without check valves
918-FP604-Y-CV-CGA*	two flexible all stainless steel braided pigtails with check valves

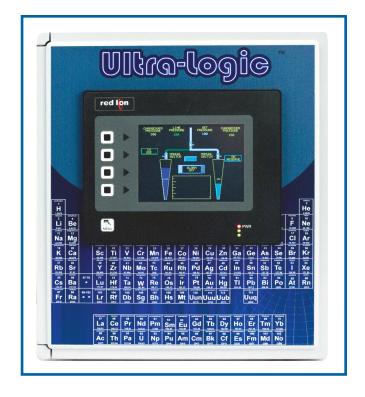
^{*} Specify CGA connection when ordering.

WARNING: The standard 919TS changeover unit is not suitable for use with flammable or corrosive gases. Units are available for use with a flammable, toxic, or corrosive gas. Such units are designed specifically for the intended gas to be controlled. Please contact us to discuss your specific requirement.

Y = pigtail length in feet.

ULTRA-LOGIC® - ADVANCED FULLY AUTOMATIC ELECTRONIC TOUCH SCREEN CHANGEOVER MANIFOLD Series 919TS

DESCRIPTION


The 919 Series Ultra-logic changeover manifold is an advanced version of the AUTO-LOGIC II. It provides the user with simple, intuitive operation via a color touch screen — no buttons to push and no knobs to turn. Like its forerunner, the AUTO-LOGIC II, users can switch from high pressure cylinders on both sides to low pressure cryogenic containers on one side and high pressure cylinders on the other side, or cryogenic containers on both sides with just a few screen touches. Once you have set the operating parameters, you need only change cylinders as necessary. The system takes care of everything else. There is no need to make pressure adjustments or flip a knob after the system has switched from one side to the other. Just replace the empty cylinders and open the valves. The system is now set to change in the opposite direction. These systems are truly automatic and hassle free.

The additional Ultra-logic capabilities provide customers with the best changeover system to suit their current operation and future expanded requirements without having to buy another system.

The 919TS is available constructed with brass or stainless steel high purity gas components. It has digital pressure readouts for inlet pressures and outlet delivery pressure, built-in alarms, and dry contacts to operate external equipment, such as remote alarms or an auto-dialer. Entire system is housed in a NEMA 4X enclosure.

FEATURES

- Fully automatic, simple, hassle free operation via a large color touch screen.
- Can be controlled via network.
- Provides full data logging capability for all functions to aid in 21CFR11 compliance.
- Operating parameters are password protected for multiple users.
- Constant digital and graphic gas supplies for both sides.
- Delivery pressure monitor displays any unusual variances.
- High and low adjustable delivery pressure alarm settings.
- · Designed for high purity gas service.

- May be used with any type gas source.
- "Leak-Check monitoring alerts the user to low reserve side pressure of either high pressure or cryogenic containers while in standby via audible and visual alarms.
- "Gas-Check" feature ensures efficient use of gas supplies when cryogenic containers are in service.
- Built-in audio and visual alarm.
- External dry contacts provided to activate optional equipment or remote alarms.
- System housed in a NEMA 4X enclosure.
- Available in either brass or stainless steel construction.

SPECIFICATIONS

Max inlet pressure: 3000 psig Power required: 120 VAC/60Hz Outlet connection: 1/2" NPT female Inlet connections: 1/4" NPT female*

* When unit is ordered with accompaning pigtails the inlet connections will be the mating CGA connection of the pigtail.

ULTRA-LOGIC® - ADVANCED FULLY AUTOMATIC ELECTRONIC TOUCH SCREEN CHANGEOVER MANIFOLD CONTINUED Series 919TS

HOW TO ORDER

Model	Description	Delivery Pressure
919TS-1-200	brass electronic high purity changeover manifold	25-200 psig
919TSP-1- 200	brass electronic high purity changeover manifold with automatic purging	25-200 psig
919TS-2-200	stainless steel electronic high purity changeover manifold	25-200 psig
Options	Califold Clots Gloca on a high party changes of maintain	

912-AVA audio/visual alarm module for remote alarm AVD-45B auto dialer

Pigtails for 919TS Changeover Manifolds (2 per set)

For Brass Manifolds		
919-FPB601-Y-CGA*	two flexible Teflon lined stainless steel braided pigtails with brass fittings and no check valves	
919-FPB601-Y-CV-CGA*	two flexible Teflon lined stainless steel braided pigtails with brass fittings and check valves	
919-FPB604-Y-CGA*	two flexible all stainless steel braided pigtails with brass fittings and no check valves	
919-FPB604-Y-CV-CGA*	two flexible all stainless steel braided pigtails with brass fittings and check valves	
For Stainless Steel Mani	ifolds	
919-FP604-Y-CGA*	two flexible all stainless steel braided pigtails without check valves	
919-FP604-Y-CV-CGA*	two flexible all stainless steel braided pigtails with check valves	

^{*} Specify CGA connection when ordering.

WARNING: The standard 919TS changeover unit is not suitable for use with flammable or corrosive gases. Units are available for use with a flammable, toxic, or corrosive gas. Such units are designed specifically for the intended gas to be controlled. Please contact us to discuss your specific requirement.

Y = pigtail length in feet.

HIGH PURITY SEMI-AUTOMATIC CHANGEOVER MANIFOLD Series 913

DESCRIPTION

The 913 Series is an upscale version of the 914 Series semi-automatic changeover manifold. Like the 914 it is constructed of high purity components and is suitable for use in both high purity and general purpose applications. Using pressure differential to change from the empty supply side of the changeover, to the full supply side of the changeover these manifolds can provide an uninterrupted supply of gas to your instrumentation or process. Units are available in both brass and stainless steel construction.

The units are housed in a NEMA4X box and are suitable for both indoor and outdoor installations. The box houses the gas controls, electronic control module, a pre-set safety relief valve with vent port with a 1/4" NPT female outlet connection. Status lights on the front provide for easy monitoring of gas supplies to the application (Green for full and Red for empty). The outlet connection is 1/2" NPT female. A 110 VAC power cord is provided. The package is completed with a set of two 3' stainless steel inner core flexible hose pigtails with check valves installed in the CGA cylinder connections.

Remote alarm functionality requires the specially designed 913-AVA alarm module powered by the base unit. The 913 or the 913-AVA will not work with any other alarm system.

SPECIFICATIONS

Max. inlet pressure 3000 psig Inlet ports 1/4" NPT female*

 C_V 0.08 standard (0.2 optional)

Operating temperature -40° to +165°F

28 lbs. Weight

* When unit is ordered with accompaning pigtails the inlet connections will be the mating CGA connection of the pigtail.

HOW TO ORDER

Description

Model

Model	Description
Brass Units	
913-1-25-CGA*	Brass construction, 0-25 psig delivery pressure range, two stainless steel 3' flexible hose pigtails with brass CGA connections having integral check valves
913-1-50-CGA*	Brass construction, 0-50 psig delivery pressure range, two stainless steel 3' flexible hose pigtails with brass CGA connections having integral check valves
913-1-100-CGA*	Brass construction, 0-100 psig delivery pressure range, two stainless steel 3' flexible hose pigtails with brass CGA connections having integral check valves
913-1-150-CGA*	Brass construction, 0-150 psig delivery pressure range, two stainless steel 3' flexible hose pigtails with brass CGA connections having integral check valves
Stainless Steel U	Inits
913-2-25-CGA*	Stainless steel construction, 0-25 psig delivery pressure range, two stainless steel 3' flexible hose pigtails with stainless steel CGA connections having integral check valves
913-2-50-CGA*	Stainless steel construction, 0-50 psig delivery pressure range, two stainless steel 3' flexible hose pigtails with stainless steel CGA connections having integral check valves
913-2-100-CGA*	Stainless steel construction, 0-100 psig delivery pressure range, two stainless steel 3' flexible hose pigtails with stainless steel CGA connections having integral check valves
913-2-150-CGA*	Stainless steel construction, 0-150 psig delivery pressure range, two stainless steel 3' flexible hose pigtails with stainless steel CGA connections having integral check valves
Options	
913-AVA	Alarm module
*Specify CGA cylin	nder connection required when ordering.

HIGH PURITY SEMI-AUTOMATIC CHANGEOVER MANIFOLD Series 914

DESCRIPTION

The Series 914 semi-automatic changeover manifold is another solution for providing an uninterrupted supply of gas to your instrumentation or process. It incorporates a specially machined two-regulator in one body that simplifies changeover operation and reduces the wall space required. The feed and line regulators are of high purity construction with stainless diaphragms and diffusion resistant construction capable of passing a helium leak rate test of 1x10-9.

Available in both brass and 316SS construction, the 914 Series is provided complete with changeover regulator and line regulator installed on a mounting bracket for easy installation.

Pigtails and/or manifold sections are ordered separately.

The manifold is assembled using the 914 central control section shown on this page and two manifold sections from pages 48 and 49 or a pigtail set from the list below to provide the supply banks. A simple two station semi-automatic manifold commonly used to ensure a continuous supply of carrier gas to a gas chromatograph employs a central control section with a pigtail installed on both inlets.

SPECIFICATIONS

Max. inlet pressure 3000 psig Inlet and Outlet ports 1/4" NPT female*

C_V 0.08 standard (0.2 optional)

Operating temperature -40° to +165°F Weight 7.75 lbs.

* When unit is ordered with accompaning pigtails the inlet connections will be the mating CGA connection of the pigtail.

HOW TO ORDER

Model**	Description	
Brass Central Control Section (header only - no pigtails)		
914-1-025	line regulator delivery range 0-25 psig	
914-1-050	line regulator delivery range 0-50 psig	
914-1-100	line regulator delivery range 0-100 psig	
914-1-150	line regulator delivery range 0-150 psig	
Stainless Ste	eel Central Control Section (header only - no pigtails)	
914-2-025	line regulator delivery range 0-25 psig	
914-2-050	line regulator delivery range 0-50 psig	
914-2-100	line regulator delivery range 0-100 psig	
914-2-150	line regulator delivery range 0-150 psig	
Optional Acc	essories	
914-3B		
914-3BEX	Brass pressure switches for flammable gases	
	(one each side)	
914-3S	Stainless Steel pressure switches (one each side)	
914-3SEX	Stainless Steel pressure switches for flammable gases	
	(one each side)	
914-AVA	Audio/visual alarm system	

^{**}Add "HF" to base part number for high flow unit

Pigtails Sets for Brass Changeover Manifolds (2 per set)

914-FP601-Y-CGA*	two flexible Teflon-lined stainless
	steel braided pigtails with brass
	fittings and no check valve
914-FP601-Y-CV-CGA*	two flexible Teflon-lined stainless
	steel braided pigtails with brass
	fittings and check valve
914-FPB604-Y-CGA*	two flexible all stainless steel braided
	pigtails with brass fittings and no
	check valve
914-FPB604-Y-CV-CGA*	two flexible all stainless steel braided
	pigtails with brass fittings and check valve

Pigtails Sets for Stainless Steel Changeover Manifolds

(2 per set)	
914-FP604-Y-CGA*	two flexible all stainless steel braided
	pigtails without check valve
914-FP604-Y-CV-CGA*	two flexible all stainless steel braided
	pigtails with check valve

^{*}Specify CGA connection when ordering.

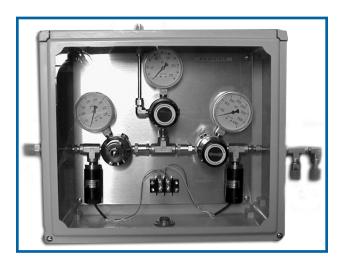
Y = pigtail length in feet.

914 AVA

ECONOMICAL HIGH PURITY SEMI-AUTOMATIC CHANGEOVER MANIFOLD Series 916 BX

The 916 BX Series semi-automatic changeover manifold provides an economic solution for providing an uninterrupted gas supply to your instrumentation or process when the working environment requires the changeover to be enclosed. The entire system is housed in a NEMA4x box. Available in brass or 316 stainless steel, the 916 Series offers the convenience of a simple flip knob to readjust pressures after a changeover and a line regulator to ensure a constant delivery pressure to your system.

A pressure switch alarm assembly is available to notify the user that a changeover has taken place, the manifold needs to be set to switch the other way, and the empty cylinders should be changed.


The system can simply be used with one pigtail on each side, or connected to larger manifolds such as those shown on pages 59 and 60. Pigtails and/or manifolds sections are ordered separately.

SPECIFICATIONS

Max. Operating Press. 3000 psig
Inlet and outlet ports: 1/4" NPT female*
Operating Temperature: -40°F to +165°F

Flow coefficient Cv 0.08

* When unit is ordered with accompaning pigtails the inlet connections will be the mating CGA connection of the pigtail.

916 BX

HOW TO ORDER

Model	Description
Brass Central Control	Section
(Control section only -	no pigtails)
916BX-1-025	line regulator delivery range 0-25 psig
916BX-1-050	line regulator delivery range 0-50 psig
916BX-1-100	line regulator delivery range 0-100 psig
Stainless Steel Centra	al Control Section
(Control section only -	no pigtails)
916BX-2-025	line regulator delivery range 0-25 psig
916BX-2-050	line regulator delivery range 0-50 psig
916BX-2-100	line regulator delivery range 0-100 psig
Options	
916-3B	brass pressure switch alarm assembly
	(one each side)
916-3BEX	brass pressure switch alarm assembly for flammable $$
	gases (one each side)
916-3S	stainless steel pressure switch alarm assembly
	(one each side)
916-3SEX	stainless steel pressure switch alarm assembly for
	flammable gases (one each side)
914-AVA	audio/visual alarm module
Pigtails for Brass Ma	nifolds
916-FP601-Y-CGA*	flexible Teflon-lined stainless steel braided pigtail
	with brass fittings and no check valve
916-FP601-Y-CV-CGA	
	with brass fittings and check valve
916-FPB604-Y-CGA*	flexible all stainless steel braided
	pigtail with brass fittings and no check valve
916-FPB604-Y-CV-CG/	A* flexible all stainless steel braided
	pigtail with brass fittings and check valve
Pigtails for Stainless	Steel Manifolds
916-FP604-Y-CGA*	flexible all stainless steel braided
	pigtail without check valve
916-FP604-Y-CV-CGA	
	pigtail with check valve

^{*}Specify CGA connection when ordering.

Y = pigtail length in feet.

914 AVA

ECONOMICAL HIGH PURITY SEMI-AUTOMATIC CHANGEOVER MANIFOLD Series 916 HF (High Flow) and 916 HP (High Pressure)

The 916 HF and HP Series semi-automatic changeover manifold provides a low cost solution for providing an uninterrupted gas supply to your process. Available in brass, the 916 Series offers the convenience of a simple flip knob to readjust pressures after a changeover and a line regulator to ensure a constant delivery pressure to your system.

A pressure switch alarm assembly is available to notify the user that a changeover has taken place, the manifold needs to be set to switch the other way, and the empty cylinders should be changed.

The system can simply be used with one pigtail on each side, or connected to larger manifolds such as those shown on pages 59 and 60. Pigtails and/or manifolds sections are ordered separately.

SPECIFICATIONS

Max. Operating Press. 3000 psig

Inlet and outlet ports: 916 HF 1/2" NPT female

916 HP 1/4" NPT female*

Operating Temperature: -40°F to $+165^{\circ}\text{F}$ Flow coefficient Cv for HP 0.08

for HF 0.55

* When unit is ordered with accompaning pigtails the inlet connections will be the mating CGA connection of the pigtail.

916 HF

916 HP

HOW TO ORDER

Model	Description
HP Brass Central Con	<u> </u>
(Control section only –	
	line regulator delivery range 0-500 psig
916HP-1-750	line regulator delivery range 0-750 psig
	line regulator delivery range 0-1000 psig
	line regulator delivery range 0-1500 psig
HF Brass Central Cont	trol Section
(Control section only –	no pigtails)
916HF-1-050	line regulator delivery range 0-50 psig
916HF-1-125	line regulator delivery range 0-125 psig
916HF-1-250	line regulator delivery range 0-250 psig
916HF-1-350	line regulator delivery range 0-350 psig
Options	
916-3B	brass pressure switch alarm assembly
	(one each side)
916-3BEX	brass pressure switch alarm assembly for flammable
	gases (one each side)
914-AVA	audio/visual alarm module
Pigtails for Brass Mar	nifolds
916-FP601-Y-CGA*	flexible Teflon-lined stainless steel braided pigtail
	with brass fittings and no check valve
916-FP601-Y-CV-CGA*	flexible Teflon-lined stainless steel braided pigtail
	with brass fittings and check valve
916-FPB604-Y-CGA*	flexible all stainless steel braided
	pigtail with brass fittings and no check valve
916-FPB604-Y-CV-CGA	A* flexible all stainless steel braided
	pigtail with brass fittings and check valve

^{*}Specify CGA connection when ordering.

Y = pigtail length in feet.

914 AVA

PROTOCOL STATIONS Series 917

DESCRIPTION

The 917 protocol station is designed to provide a convenient way to mount virtually any pressure regulator that has a CGA connection or 1/4" NPT female inlet. The wall mounting of a regulator makes changing cylinders safer and hassle-free, while protecting the regulator from damage during the changing process because the operator handles only the flexible pigtail.

The 917 series is available in brass or 316 stainless steel in both single cylinder and double cylinder configurations. Pressure regulators are connected to the system with regular CGA cylinder connections rather than be rigidly mounted; this mounting system provides the virtual universality of the 917 and makes changing a

regulator easy should it need to be replaced for any reason. A pressure switch alarm option is available to alert users that the cylinder in use is approaching empty. When check valves are selected they are integral with the CGA connection to the cylinder. All models are rated for 3000 psig operating pressure.

The 917H protocol station is designed for use with helium and hydrogen and mixtures containing them. This model maintains the economy of the brass unit, but replaces the Teflon-lined pigtail with an all stainless steel pigtail to eliminate the diffusion of these small molecule gases trough the Teflon lining.

MATERIALS OF CONSTRUCTION

917B

Bracket: stainless steel
Manifold block: brass
Flexible hose: Teflon-lined w/SS braid
CGA connections: brass
Check valves: brass with buna-N seals
Valves: brass diaphragm type

917H

stainless steel
brass
All stainless steel
brass
brass with buna-N seals
brass diaphragm type

917S

stainless steel stainless steel All stainless steel stainless steel SS with Viton seals SS diaphragm type

Regulator is not included and should be ordered separately. Pressure switch is optional.

PROTOCOL STATIONS CONTINUED Series 917

HOW TO ORDER

Model*	Description
917B-2-CGA	protocol station w/brass fittings and 2' pigtail
917B-3-CGA	protocol station w/brass fittings and 3' pigtail
917B-2-CV-CGA	protocol station w/brass fittings, 2' pigtail w/check valve
917B-3-CV-CGA	protocol station w/brass fittings, 3' pigtail w/check valve
917BV-2-CGA	protocol station w/brass fittings, isolation valve, and 2' pigtail
917BV-3-CGA	protocol station w/brass fittings, isolation valve, and 3' pigtail
917BV-2-CV-CGA	protocol station w/brass fittings, isolation valve, and 2' pigtail w/ check valve
917BV-3-CV-CGA	protocol station w/brass fittings, isolation valve, and 3' pigtail w/ check valve
917H-2-CGA	protocol station w/brass fittings and 2' stainless steel pigtail
917H-3-CGA	protocol station w/brass fittings and 3' stainless steel pigtail
917H-2-CV-CGA	protocol station w/brass fittings, 2' stainless steel pigtail w/check valve
917H-3-CV-CGA	protocol station w/brass fittings, 3' stainless steel pigtail w/check valve
917HV-2-CGA	protocol station w/brass fittings, isolation valve, and 2' stainless steel pigtail
917HV-3-CGA	protocol station w/brass fittings, isolation valve, and 3' stainless steel pigtail
917HV-2-CV-CGA	protocol station w/brass fittings, isolation valve, and 2' stainless steel pigtail w/ check valve
917HV-3-CV-CGA	protocol station w/brass fittings, isolation valve, and 3' stainless steel pigtail w/ check valve
917S-2-CGA	protocol station w/stainless steel fittings and 2' pigtail
917S-3-CGA	protocol station w/stainless steel fittings and 3' pigtail
917S-2-CV-CGA	protocol station w/stainless steel fittings, 2' pigtail w/check valve
917S-3-CV-CGA	protocol station w/stainless steel fittings, 3' pigtail w/check valve
917SV-2-CGA	protocol station w/stainless steel fittings, isolation valve, and 2' pigtail
917SV-3-CGA	protocol station w/stainless steel fittings, isolation valve, and 3' pigtail
917SV-2-CV-CGA	protocol station w/stainless steel fittings, isolation valve, and 2' pigtail w/ check valve
917SV-3-CV-CGA	protocol station w/stainless steel fittings, isolation valve, and 3' pigtail w/ check valve

*Specify CGA connection when ordering. For dual cylinder units, add prefix "D" to the model number, i.e. D917S-2-CV-660.

Options

P/N 4610-P4FF	brass tee purge assembly
P/N 4620-P4FF	stainless steel tee purge assembly
P/N 917B-XXX	brass pressure switch alarm assembly (XXX = desired alarm pressure setting)
P/N 917BEX-XXX	brass pressure switch alarm assembly for flammable gases (XXX = desired alarm pressure setting)
P/N 917S-XXX	pressure switch alarm assembly (XXX = desired alarm pressure setting)
P/N 917SEX-XXX	pressure switch alarm assembly for flammable gases (XXX = desired alarm pressure setting)

P/N 912-AVA audio visual alarm module

MANIFOLD ALARM ACCESSORIES

912-AVA Single Point Audio/Visual Alarm Module

FEATURES

- 70 dB audio alarm.
- Red light visual alarm.
- · Silence button.
- Operates on 110 VAC.

914-AVA Changeover Audio/Visual Alarm Module

FEATURES

- 70 dB audio alarm.
- Red light visual alarm for each side.
- Green in service light for each side.
- Silence button.
- Dry contacts for additional devices.
- · Operates on 110 VAC

AVD-45 Auto-Dialer

FEATURES

- Dials up to four numbers when alarm is activated to notify required individuals.
- On-site programmable message.
- Requires dedicated analog phone line.
- · Operates on 110 VAC.

914/918 HUB

FEATURES

Hubs allow users to add additional devices (up to 3 per hub) to each changeover. Requires 110 VAC. For use with 914, 918, and 919 Series changeover manifolds.

UPS Power Battery Backup – CS350

FEATURES

- · Maintains operation during power failure .
- Provides power to 918 and 919 changeovers for approximately 5 hours.
- Requires 110 VAC power source to maintain full charge while in standby and for recharging.

912HUB

FEATURES

This hub allows the addition of up to 3 devices to be connected to the pressure switch alarm of a 917 protocol station or 9900 series low gas pressure alarm. No power required.

EXCESS FLOW VALVES Series EFV

DESCRIPTION

The EFV Series are gas valves are designed to automatically shut off the flow of gas when flow exceeds a preset level. They are used to protect systems and/or people in the event of a line failure downstream of the valve. The Series consists of three valves that are remarkably flexible to meet a broad range of applications. All valves are set at the factory to customer specifications. Each valve has a built-in slide switch or knob to quickly rest the valve once the system leak has been repaired.

Compact EFV-C Range 30-200 psig

High Pressure EFV-HP Range 100-3000 psig

MATERIALS OF CONSTRUCTION

Wetted Parts*=X	Seals = Y	Trip Point = Z
A = 360 Brass	V = Viton®	Specify flow rate
B = 303 SS	N = neoprene	and operating pressure

^{*}Internal parts are 303 SS in all units E = EPDM

HOW TO ORDER

Model (choose X, Y, and Z from table above)

EFV-C-P2MM-X-Y-Z EFV-HP-P4MM-X-Y-Z EFV-HP-P4FF-X-Y-Z EFV-HP-P4FM-X-Y-Z EFV-HP-P4FM-X-Y-Z EFV-HS-P2MM-X-Y-Z

High Sensitivity EFV-HS Range 5-200 psig

CYLINDER CLEANROOM COVERS Series CYL-C

DESCRIPTION

These reusable cylinder covers are suitable for use in semiconductor, pharmaceutical, food processing, and laboratory areas where cleanliness is a must. The covers are fabricated from non-woven Tyvek® and polypropylene combination with a high-grade Velcro seal. Fabrication is done in a clean room environment. The upper area is large enough to accommodate a pressure regulator or other gas control device.

P/N	Description
CYL-C-9.55	Clean Room cylinder cover for T, K, A, H type cylinders*

^{*}Other sizes are available please provide cylinder dimensions.

DISPLAY PRESSURE SWITCH DPS Series

DESCRIPTION

The DPS is the ideal combination of pressure switch and transmitter with a pressure display. The settings in combination with a comprehensive set of options make this switch suitable for a wide range of demanding applications.

FEATURES

- · Analog output switchable to Volts or Ma
- Two switching outputs PNP
- Threefold overpressure resistance, measuring principle thin film on steel
- Display and electrical connection are independently rotatable 335°/343°

TECHNICAL DATA

Measuring principle	Thin film on steel	Media Temperature	-25°C+85°C
Inlet connections	1/4" NPTM	Ambient temperature	-25°C+85°C
Output signal	4-20mA, 0-5 VDC, 1-5 VCD	Pressure unit for display	bar, psi, MPa, kPa, m WC, mm WC
	0-10 VOC, Switch ABLE mA or V	Logger	Ring buffer: 3518 data points
Switching output	2 transistors PNP		Sampling time: 0.1999.9 x, Off (0)
Accuracy @ 25 C typ.	\pm 0.5% FS typ.		

Model	Measuring Range*
DSP-0400-P4M	0-400 psig
DSP-3000-P4M	0-3000 psig

^{*}Other pressure ranges available.

PRESSURE SWITCH Series PS500

DESCRIPTION

The PS500 series pressure switches are designed for high pressure applications up to 3000 psig. The switch features materials of construction that are compatible with a wide variety of gases (high purity, flammable, and many corrosives).

FEATURES

- Activation switch is UL recognized.
- May be set to activate to open or close for either declining or rising pressures.

SPECIFICATIONS

Max. Inlet Pressure: 3000 psig Set Pressure Range: 50-500 psig

Specify setting when ordering

Operating Temp. range: -40°F to +140°F Pressure Connection: 1/4" NPT male Electrical Rating: 4A-250VAC

Electrical Connection: 18" flying leads with

1/2" conduit connection

MATERIALS OF CONSTRUCTION

Body: 316 SS

Bonnet: clear anodized aluminum

Diaphragm 316 SS

Seal: Buna-N (Teflon® is an available option)

HOW TO ORDER

Model		
PS500-D-XXX	activates on decreasing pressure	
PS500-I-XXX	activates on increasing pressure	

*Specify activation pressure when ordering.

If optional Teflon® seal is required add suffix "T" to P/N.

PRESSURE TRANSDUCERS Model PT825

DESCRIPTION

The PT825 pressure transducers are a very convenient way to monitor the pressure of a system electronically. They are used in a large variety of applications including process monitoring, hydraulics, HVAC, and water treatment.

SPECIFICATIONS

Output: 0-5 VDC Input: 13-30 VDC Construction: stainless steel Inlet Connection: ¼" Male NPT

Model	Pressure Range	
PT825-0400	0-400 psig	
PT825-3000	0-3000 psig	

MANIFOLD TUTORIAL

Manifolds are used to connect two or more cylinders of gas together to increase the supply volume available to provide a continuous flow when one cylinder is not sufficient and a tube trailer or other bulk supply is not practical. Manifolds are also used when a single cylinder of gas is not capable of supplying the required flow rate required by a process.

WARNING: Never mix gases on a manifold. Only one type of gas should be connected to a manifold.

Manifolds are commonly fabricated in a single row configuration designed for wall mounting with a row of cylinders in line beneath or in front of it. Double row manifolds and other custom configurations are available on request.

Station valves are used to isolate individual cylinders on a manifold from service. Station valves are recommended for most laboratory applications as they are a valuable back-up device in the event of a leaking pigtail or a defective check valve. It is most important that station valves used in high purity gas service be of the diaphragm packless type to maintain gas purity. Many commercial manifolds use packed valves that may cause atmospheric impurities to enter the gas stream as contaminants.

Two types of **pigtails** are used to connect cylinders to the manifold header; rigid pigtails made of brass or stainless steel tubing, or flexible made of stainless steel braided hose with either Teflon-lining or stainless steel inner core. Teflon-lined pigtails are used for routine applications, while the stainless steel inner core pigtails are used for ultra high purity applications. One special note, either rigid pigtails or stainless steel inner core flexible pigtails are recommended for helium and hydrogen because these gases will diffuse through the wall of a Teflon®-lined pigtail.

Check valves on the cylinder end of each pigtail should always be installed on manifolds used for flammable, toxic, or corrosive gases. In some cases purge assemblies are installed to ensure that highly toxic gases are not released to the working environment during cylinder change outs.

Many applications require that gas always be supplied to the process and the flow can not be shut down to replace empty cylinders or must feed gas for long periods when the system is unattended, i.e. helium to a gas chromatography laboratory. In these instances a changeover manifold is the solution. Changeover manifold control sections available in this catalog (see pages 38-43, can be used with any of the multiple station manifolds or with a single pigtail on each side.

BRASS MANIFOLDS

FEATURES:

- · Diaphragm packless station valves for high purity.
- 3000 psig service pressure.
- · Cleaned for high purity service.
- Standard CGA 346 header pigtail connections when valves are installed, non-valve headers are provided with mating connections on the pigtails.

DESCRIPTION

These manifolds are constructed of 1/2" brass pipe silver-brazed at each joint. Station valves are the diaphragm packless type for high purity service and are installed with Teflon tape so that they may be easily replaced in the field if necessary. All header pigtail connections are CGA 346 to help ensure that pigtails are installed properly. A plug is inserted in the last tee to allow for the addition of future cylinder stations if required. Suitable brackets for mounting the manifold to a wall are provided.

SPECIFICATIONS

Header and Valves: brass

Pigtails: 24" flexible type 316 stainless steel

inner core with brass CGA connections.

Check valves: brass
Pressure rating: 3000 psig

Header outlet: mating connection to pigtail cylinder CGA

Stations: 10" on center

HOW TO ORDER

Model	Description
Middel	Description
910-1-X-CGA*-FPB604-2	single row manifold without station valves, but with check valves in the pigtails
910-2-X-CGA*-FPB604-2	single row manifold with station valves, but no check valves in pigtails
910-3-X-CGA*-FPB604-2	single row manifold with station valves and check valves in the pigtails.
920-1-X-CGA*-FPB604-2	double row manifold without station valves, but with check valves in the pigtails
920-2-X-CGA*-FPB604-2	double row manifold with station valves, but no check valves in pigtails
920-3-X-CGA*-FPB604-2	double row manifold with station valves and check valves in the pigtails.
•	nber by inserting the number of cylinders to be d in place of the X and specifying the CGA

OPTIONS

Flexible pigtails - 36" long - change suffix "2" to "3" Outlet connection - 1/2" NPT female - add suffix "P8F" Master shut off valve - add "MV" to P/N

STAINLESS STEEL MANIFOLDS

FEATURES:

- · Diaphragm packless station valves for high purity.
- 3000 psig service pressure(4500 and 6000 psig available).
- Cleaned for high purity service.
- Standard CGA 346 header pigtail connections when valves are installed, non-valve headers are provided with mating connections on the pigtails.

DESCRIPTION

These manifolds are constructed of 1/2" 316 stainless steel pipe and fittings heliarc welded at each joint. Station valves are the diaphragm packless type for high purity service and are installed with Teflon tape so that they may be easily replaced in the field if necessary. All header pigtail connections are CGA 346 to help ensure that pigtails are installed properly. A plug is inserted in the last tee to allow for the addition of future cylinder stations if required. Suitable brackets for mounting the manifold to a wall are provided.

SPECIFICATIONS

Header and Valves: 316 stainless steel

Pigtails: 24" flexible type 316 stainless steel inner

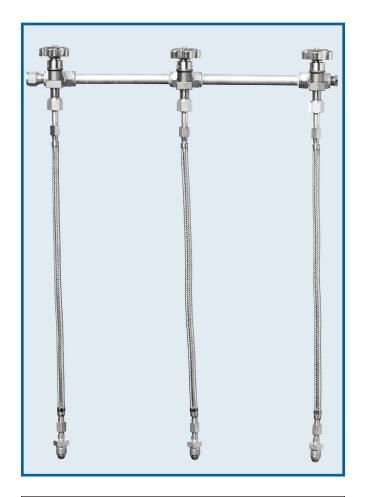
core w/ stainless steel CGA connections.

Check valves: 316 stainless steel

Pressure rating: 3000 psig

Header outlet: mating connection to pigtail cylinder CGA

Stations: 12" on center


HOW TO ORDER

Model	Description
911W-1-X-CGA*-FP604-2 valves,	single row manifold without station
	but with check valves in the pigtails
911W-2-X-CGA*-FP604-2	single row manifold with station valves, but no check valves in pigtails
911W-3-X-CGA*-FP604-2	single row manifold with station valves and check valves in the pigtails.
921W-1-X-CGA*-FP604-2	double row manifold without station valves, but with check valves in the pigtails
921W-2-X-CGA*-FP604-2	double row manifold with station valves, but no check valves in pigtails
921W-3-X-CGA*-FP604-2	double row manifold with station valves and check valves in the pigtails.

^{*} Complete the model number by inserting the number of cylinders to be connected to the manifold in place of the X and specifying the CGA connection.

OPTIONS

Flexible pigtails - 36" long - change suffix "2" to "3." Outlet connection - 1/2" NPT female - add suffix "P8F."

Manifolds for 4500 or 6000 psig service are also available.

FLOWMETER TUTORIAL

Flowmeters are used to measure the rate of flow of liquids or gases. They do not control the rate of flow unless they are equipped with a control valve or flow controller. There are two basic types of flowmeters; rotameters and electronic mass flowmeters. Mass flowmeters and mass flow controllers can be found on pages 89-93.

ROTAMETERS

Rotameters are a simple, precise and economical way to measure flow rates. They consist of a precision tapered glass tube containing one or more spherical floats. A measuring scale is etched on the glass tube. The diameter of the tube at the bottom, or inlet is approximately equal to the diameter of the float.

As fluid enters the tube, the float rises to a point where the area between the float and the tube wall is large enough to permit unrestricted flow, and the float is stationary. This position corresponds to a point on the tube scale and thus permits a reading of the rate of flow.

The capacity, or flow range of a tube can be varied by changing the float material. Materials of a lower density such as pyrex glass or sapphire give a lower flow capacity than materials of a higher density like tantalum or stainless steel (see Figure 1).

Rotameters, unlike mass flowmeters, are affected by temperature and pressure variation (see Figure 2). When equipped with a control valve on the inlet, readings are correct as long as the outlet pressure is equal to the pressure at which the tube was calibrated. When a valve is installed on the outlet, the tube calibration pressure must match the inlet pressure to the flowmeter unit.

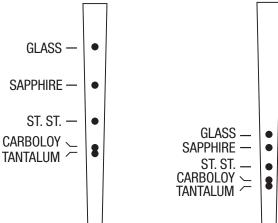


Figure 1 Relative positions of floats of various densities for the same rate of flow with 1 atmosphere outlet pressure.

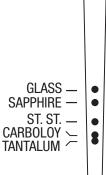


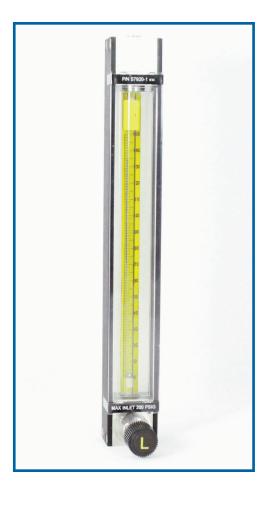
Figure 2 Effect of float position for the same rate of flow in Figure 1, but with increased pressure at the flowmeter outlet.

FLOWMETER - Series 7920

DESCRIPTION

The 7920 flowmeters provide the most accurate indication and precise control of fluids available for a wide range of applications. This versatile meter is functionally and dimensionally interchangeable with other current designs while incorporating many innovative features.

All 7920 glass metering tubes have integral float guides to assure the accuracy of $\pm 5\%$ of full scale. Glass and stainless steel floats are standard. The meters are available in a wide range of flows.


Front window incorporates a 1.5 X scale magnification factor for more accurate tube reading. End seals in the design are direct-acting and nonrotating for fast alignment and convenient service access.

APPLICATIONS

- · Carrier and fuel gas chromatography
- · Atomic absorption
- Semiconductor manufacture
- Chemical processing
- · General research and industrial uses

DESIGN FEATURES

- High resolution 150mm scale length.
- Many standard direct reading scales available.
- · Precision taper, fluted metering tube.
- Lowest available pressure drop via maximum flow path area increases available flow rates at low feed pressures.
- Standard front panel mounting requires minimum hardware easy installation, quick access.
- Available utility and high precision metering valves do not require special fittings.
- Simplified; direct acting non-rotating compression seal.
- 1/4" NPT female connections are standard.

MATERIALS OF CONSTRUCTION

End Blocks: Chrome plated Brass or 316 Stainless

"0" Rings & packing: Viton® - standard

Buna-N, EPR rubber and teflon

are available options

Side Plates: Anodized Aluminum

SPECIFICATIONS

Maximum Pressure: 200 psig

Temperature Range: -20°F to +250°F

-30°C to +120°C

Accuracy: $\pm 5\%$ of full scale

Repeatability: $\pm 0.25\%$ of scale reading

Series 7920 CONTINUED

Model	Material	Valve Type
B7920*	Brass	None
B7920V*	Brass	Standard
B7920HA*	Brass	High Accuracy
S7920	316 Stainless Steel	None
S7920V*	316 Stainless Steel	Standard
S7920HA*	316 Stainless Steel	High Accuracy

Each model includes one tube from the table below; specify your choice when ordering.

Uptions:	P/N SUTIX:
 1/4" hose barbs inlet and outlet - add suffix "4HB" 	4HB
 1/4" compression tube fittings inlet and outlet 	T4FF
 1/8" compression tube fittings inlet and outlet 	T2FF
Bench stand - Model 7920B	

HOW TO ORDER

Model -X-Y	
X = tube required	1, 2, 3, 4, 5, 6, 7, 8, 10
Y = optional fittings	4HB = hose bards
	T4FF = 1/4" compression
	T2FF = 1/8" compression
Example:	B7920V-2-T4FF is a brass unit with a
•	7920-2 flow tube and 1/4" compression
	fittings on inlet and outlet.

FLOWMETER TUBES

	Typical F	low Range*
Model	Float	Air scc/min.
7920-1	Glass St. Steel	8 - 47 14 - 138
7920-2	Glass St. Steel	9- 92 25- 264
7920-3	Glass St. Steel	37- 370 80- 816
7920-4	Glass St. Steel	82- 817 170- 1665
7920-5	Glass St. Steel	550- 2214 1070- 4494
7920-6	Glass St. Steel	610- 3780 1330- 7467
7920-7	Glass St. Steel	820- 8555 2090- 16493
7920-8	Glass St. Steel	2220- 23105 4190- 42860
7920-10	St. Steel	1.0- 100

now = all now	x correction factor
Gas	Correction Factors
air	1.00
acetylene	1.054
ammonia	1.304
argon	0.851
n-butane	0.706
carbon dioxide	0.811
carbon monoxide	1.017
ethane	0.981
ethylene	1.016
helium	2.689
hydrogen	3.810
methane	1.343
nitrogen	1.017
nitrous oxide	0.811
oxygen	0.951
propane	0.810

Selected Correction Factors

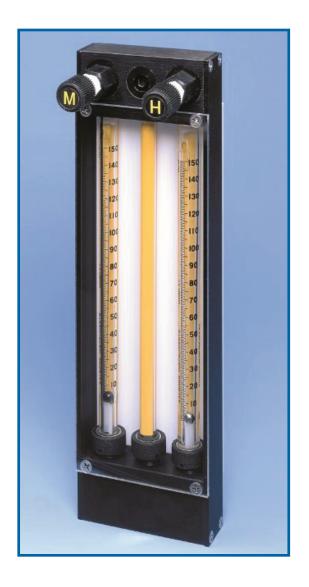
^{*}Actual flow rates will vary from one manufacturing lot to another. Calibration data is supplied for each tube shipped. All calibrations are for air @ 0 psig outlet and $70^{\circ}F$.

GAS PROPORTIONER Series 7950

The gas proportioner meters the flow of each of two gases and mixes them thoroughly in a special mixing tube to produce homogeneous two-component mixtures. Concentration accuracies of 10% of component value are maintained with a standard unit using typical calibration curves. (In a desired mixture of 1% of gas A and 99% of gas B, a concentration between .9% and 1.1% is maintained.) Individual units can be calibrated for non-corrosive gases to attain an accuracy of 5% of the component value. Individual calibration curves are supplied with these specially calibrated units.

The control valves are installed at the outlets making these gas proportioners back pressure compensated. The readings on the tubes are accurate regardless of the downstream pressure, so long as the inlet pressures are maintained at the levels for which the tubes were calibrated.

The unit is recommended for 50 psig pressure but can be used at any pressure between 10 and 200 psi.*


These proportioners are available in both aluminum and stainless steel construction. When ordering a gas proportioner, specify the composition of the desired mixture, the gases, the discharge rate, and inlet pressure in addition to the model number.

* For best performance, it is recommended that tubes have only one float.

HOW TO ORDER

All models include baseplate, mixing tube and two flowmeter tubes of your choice selected from page 83.*

* If unsure of correct tubes, provide the composition range of intended mixtures, total outlet flow and operating inlet pressure. We will select the tubes.

Model	Material	Valve	Connections
7951	Aluminum	Standard	1/8" NPT female
7951H	Aluminum	Standard	1/4" hose barb
7951T	Aluminum	Standard	1/4" compression
7952	Aluminum	High Accuracy	1/8" NPT female
7952H	Aluminum	High Accuracy	1/4" hose barb
7952T	Aluminum	High Accuracy	1/4" compression
7953	Stainless Steel	Standard	1/8" NPT female
7953H	Stainless Steel	Standard	1/4" hose barb
7953T	Stainless Steel	Standard	1/4" compression
7954	Stainless Steel	High Accuracy	1/8" NPT female
7954H	Stainless Steel	High Accuracy	1/4" hose barb
7954T	Stainless Steel	High Accuracy	1/4" compression

MULTI-TUBE UNITS AND MIXERS Series 7940 and 7941

The Series 7940 multitube flowmeters are available in either Aluminum or 316 Stainless Steel and in two basic configurations.

- 7940 Series has four flowmeter tubes with individual outlets to permit the metering of four separate gas streams. It comes complete with four tubes.
- 7941 Series mixers have three flowmeter tubes and a mixing tube with a single outlet to produce homogenous mixture of three gases to an accuracy of ±10%. The tubes have a single glass float and calibration curves for most common gases are available at no extra cost.
- All units are back pressure compensated by mounting the control valves on the outlet.
- All are available with a standard valve cartridge or a high accuracy valve to permit very accurate setting of low flow rates.
- All units are provided with a bench stand.

Connections: 1/8" NPTF or 1/4" tube fitting Maximum Inlet Pressure: 200 psig Operating Temperature: 20°F to 250°F Dimensions: 10"H x 4 1/4"W x 1 1/4"D

(not including base) Shipping Weight: 6 3/4 lbs.

Series 7940 4- Tube Flowmeter* (2 and 3 tube units are available on request)

Model*	Material	Valve	Connections
A7940	Aluminum	Standard	1/8" NPT female
A7940T	Aluminum	Standard	1/4" compression fitting
A7940HA	Aluminum	High Accuracy	1/8" NPT female
A7940THA	Aluminum	High Accuracy	1/4" compression fitting
S7940	316 Stainless Steel	Standard	1/8" NPT female
S7940T	316 Stainless Steel	Standard	1/4" compression fitting
S7940HA	316 Stainless Steel	High Accuracy	1/8" NPT female
S7940THA	316 Stainless Steel	High Accuracy	1/4" compression fitting

Series 7941 Mixing Units*

Model*	Material	Valve	Connections
A7941	Aluminum	Standard	1/8" NPT female
A7941T	Aluminum	Standard	1/4" compression fitting
A7941HA	Aluminum	High Accuracy	1/8" NPT female
A7941THA	Aluminum	High Accuracy	1/4" compression fitting
S7941	316 Stainless Steel	Standard	1/8" NPT female
S7941T	316 Stainless Steel	Standard	1/4" compression fitting
S7941HA	316 Stainless Steel	High Accuracy	1/8" NPT female
S7941THA	316 Stainless Steel	High Accuracy	1/4" compression fitting

^{*}Specify your choice of Flowmeter tubes from the table on page 83.

FLOWMETER Series 7965

The Series 7965 flowmeters use 65mm flow tubes with a single float. They are calibrated to read directly in SCCM, SLPM or SCFH of air. Correction factors are available for a number of common gases. The Series 7965 flowmeters are available in chrome plated brass or stainless steel.

SPECIFICATIONS

Maximum Inlet Pressure: 200 psig Temperature Range: -20° to +250°F

Valve: Standard or high accuracy needle valve Dimensions: 1 1/4"W x 5 1/2"H x 2 3/4"D

Accuracy: ±5% full scale

Repeatability: ±0.25% of scale reading Inlet and Outlet: 1/4" NPT female standard

FRAME WITH VALVE

Model	Material
7965B*	Chrome plated brass with standard valve
7965BHA*	Chrome plated brass with high accuracy valve
7965S*	316 Stainless Steel with standard valve
7965SHA*	316 Stainless Steel with high accuracy valve

^{*}Select flow tube from table on right.

HOW TO ORDER

Model – X – Y	
X=tube required Y=optional fittings	
Example: 7965B-J03G-T4FF	

Options:	P/N Suffix:
 1/4" hose barbs inlet and outlet - add suffix "4HB" 	4HB
 1/4" compression tube fittings inlet and outlet 	T4FF
 1/8" compression tube fittings inlet and outlet 	T2FF
Bench stand - Model 7920B	

65MM TUBE CUBE SELECTION

Tube Number	Float Material	Flow Range*†
J07G	glass	0.7-7 sscm
J15G	SS	5-50 sccm
J15S	SS	7-75 sccm
J15ST	glass	10-100 sccm
J13ST	SS	13-130 sccm
J03C	carboloy	25-250 sccm
J10ST	carboloy	50-500 sccm
J01G	glass	100-1000 sccm
J04G	glass	0.1-1 slpm
J75T	SS	0.2-2 slpm
J03G	glass	0.5-5 slpm
J02ST	SS	1-10 slpm
J11ST	SS	1-16 slpm
J01ST	SS	2-25 slpm
J03ST	SS	4-40 slpm
J05G	glass	0.2-2.2 SCFH
J18G	glass	0.5-6 SCFH
J019ST	SS	1-10 SCFH
J61ST	SS	2-18 SCFH
J18ST	SS	3-25 SCFH
J102ST	SS	5-50 SCFH
J14G	SS	10-90 SCFH
J02C	corboloy	10-150 SCFH

^{*}Other ranges available.

[†]All calibrations are for air @ 0 psig outlet and 70°F.

ECONOMIC MACHINED ACRYLIC FLOWMETER Series 7923

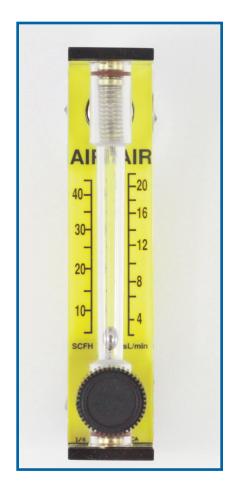
The Series 7923 acrylic flowmeters are an ideal low cost tool for measuring flow rates of inert and non-reactive gases. The 1/8" female standard inlet and outlet connections are contained in brass inserts to ensure a leak-free connection to prevent cracking of the acrylic body. A needle valve to control the flow rate is included. Flowmeters have a dual scale for air in SLPM and SCFH.

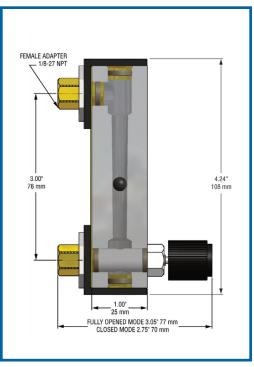
SPECIFICATIONS

Maximum inlet pressure: 100 psig Maximum operating temperature: 150°F

Accuracy: ±5% full scale

Inlet and Outlet: 1/8" NPT female standard on 3" centers


Seals: buna-N


Model	Flow Ran SLPM	ge (Air)* SCFH	Float
7923-1V01	0-1.4	0-2.8	glass
7923-1V02	0-2.5	0-5.5	SS
7923-1V03	0-3.5	0-7.0	carboloy
7923-1V08	0-8.5	0-18.0	glass
7923-1V16	0-16.0	0-32.5	ŠS
7923-1V22	0-22.0	0-45.0	carboloy
7923-1V50	0-50.0	0-100.0	SS

^{*}All calibrations are for air @ 0 psig outlet and 70°F.

Options:

- 1/4" hose barbs inlet and outlet add suffix "4HB."
- 1/4" compression tube fittings inlet and outlet add suffix "T4FF."
- 1/8" compression fitting inlet and outlet add suffix "T2FF."

LARGE FLOW ACRYLIC FLOWMETERS Series 7974 & 7975

The Series 7974 and 7975 acrylic flowmeters are useful in a wide varied of applications involving non-corrosive gases where flow rates exceed those of traditional laboratory models. All units have direct reading scales in either liters/minute or cubic feet/minute of air. Correction factors for other gases can be provided.

FEATURES

- · Easy to read scales.
- Air ranges from 14 lpm to 3400 lpm (0.5 to 100 scfm).
- Durable one-piece clear acrylic construction.
- Optional built-in cartridge type valve available.

MATERIALS OF CONSTRUCTION

Body: clear acrylic

Fittings: 7974 series - brass

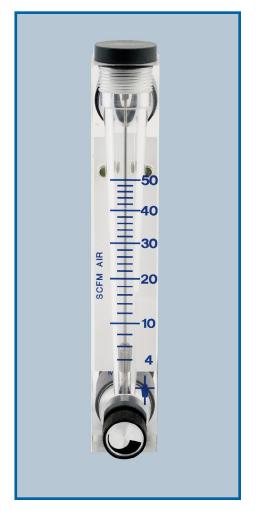
7975 series - PVC

Valve: brass Seals: Buna-N

SPECIFICATIONS

Max. Operating Pressure: 100 psig Operating Temp. Range: 0° to +150° F

Body Inlet and Outlet: 7974 - 1/4" NPT female

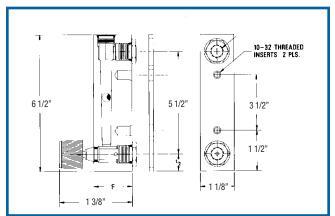

7975 - 1" NPT female

Accuracy: 7974 Series - ±3% of full scale

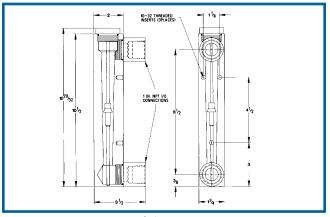
7975 Series - ±2% of full scale

Series 7974

Series 7975


HOW TO ORDER

Model Number	Flow Range*
B7974-1	0.5- 5 SCFM
B7974-2	1- 10 SCFM
B7974-3	2- 20 SCFM
B7974-4	14- 140 lpm
B7974-5	30- 280 lpm
B7974-6	60- 560 lpm


Option: Inlet needle valve - add suffix "V" to model number, i.e. 7974V-1 *All calibrations are for air @ 0 psig outlet and 70°F.

Model Number	Flow R	ange*
7975-1	3- 25	SCFM
7975-2	4- 50	SCFM
7975-3	10- 100	SCFM
7975-4	100- 700	lpm
7975-5	100-1400	lpm
7975-6	400-3400	lpm

Option: Inlet needle valve - add suffix "V" to model number

Series 7974

Series 7975

MASS FLOW TUTORIAL

INTRODUCTION

Like variable area flowmeters, electronic mass flow equipment measures and controls the flow of gases. Unlike variable area flowmeters mass flow equipment measurement is not compromised by the variation of pressure or temperature within stated limits of each unit. The technology of mass flow measurement offers a host of solutions to gas control and the possibility of preparing gas mixtures on site in the laboratory or in the manufacturing process. Accuracy is generally $+\ 1\%$ FS compared to $+\ 5\%$ fS for a variable area meter.

MASS FLOW PRINCIPLE OF OPERATION

Metered gases are divided into two laminar flow paths, one through the primary flow conduit, and the other through a capillary sensor tube. Both flow conduits are designed to ensure laminar flows and therefore the ratio of their flow rates is constant.

Two precision temperature sensing windings on the sensor tube are heated, and when flow takes place, gas carries heat from the upstream to the downstream windings. The resultant temperature differential is proportional to the change in resistance of the sensor windings.

A Wheatstone bridge design is used to monitor the temperature dependent resistance gradient on the sensor windings which is linearly proportional to the instantaneous rate of flow.

Output signals of 0 to 5Vdc and 4 to 20mA are generated indicating mass molecular based flow rates of the metered gas.

Flow rates are unaffected by temperature and pressure variations within stated limitations.

MASS FLOWMETERS

A mass flowmeter consists of a transducer and a readout like the unit picture here. Mass flow units are factory calibrated with an NIST traceable certified systems, have a high level of leak integrity (normally 10-9sccs helium) and can be fitted with a totalizer that provides the current flow rate and the total volume of gas passed over time.

MASS FLOW CONTROLLERS

A mass flow controller is a mass flow transducer combined with an electronic control valve. A typical mass flow controller is pictured here. With the control valve the user is able to set and maintain a specified flow rate regardless of pressure and temperature variations within the designated limitations of the device. The mass flow controller has all the features of a mass flowmeter with regard to calibration, leak integrity, and totalizing.

ELECTRONIC MASS FLOWMETERS Series A820

DESCRIPTION

The Series A820 electronic mass flowmeters are compact, self-contained units designed to indicate the flow rate of gases. Unlike variable area meters, flow rates are unaffected by variations in temperature and pressure within specified limits. The mechanical layout of the design includes an LCD readout built into the top of the transducer. This readout module is tiltable over 90 degrees to provide optimum reading comfort. The readout is connected by a standard modular plug, and is readily removable and extended for remote reading installations. Units are available in aluminum or stainless steel.

FEATURES

- · Rigid metal construction.
- Maximum operating pressure 1000 psig.
- NIST traceable calibration certification.
- Leak integrity 1 X 10⁻⁹ sccm helium.
- 0-5 VDC or 4-20mA signals.
- · Built-in tiltable readout display in engineering units.
- · Circuit protection.
- Totalizer option available.

SPECIFICATIONS

Accuracy: ±1% of full scale, including linearity for gas temperatures of 59°F to 77°F and pressures of 5 to 60 psia

Repeatability: $\pm 0.5\%$ of full scale

Response time: Generally 2 seconds to within $\pm 2\%$ of actual flow

Temperature coefficient: 0.15% of full scale/C
Pressure coefficient: 0.01% of full scale/psi

Maximum pressure drop: 0.04 to 3.23 psid depending on flow range

Gas and ambient Temp: 32° to 122°F

Output signals: Linear 0-5 VDC (1000 ohms min load impedance) or

4-20 mA (0-250 ohms loop resistance)

Transducer input power: 12 VDC; 200 mA of maximum

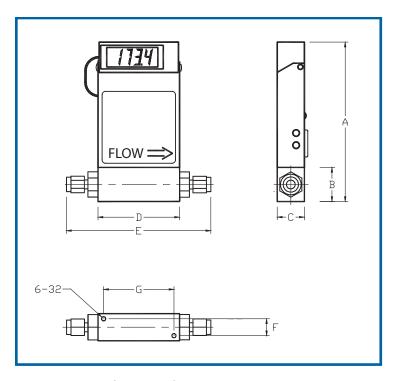
Time constant: 800 ms

Materials in fluid contact: Aluminum units: anodized aluminum, 316 SS, brass, Viton o-rings

Stainless steel units: 316 SS and Viton o-rings

Attitude sensitivity: No greater than + 15 degrees from horizontal to vertical:

Standard calibration is in horizontal position.


Connections: 1/4" compression fittings

Leak integrity: 1 X 10⁻⁹ sccm of helium maximum to the outside environment

CE compliant: EN 55011 class, class B: EN50082-1

ELECTRONIC MASS FLOWMETERS CONTINUED Series A820

A820 Dimensions			
	Up to 10 slpm	15 to 50 slpm	
Α	5.60	5.98	
В	1.00	1.37	
С	1.00	1.25	
D	3.00	4.13	
<u>E</u>	5.02	6.15	
F	0.69	0.69	
G	2.69	2.63	
Н	4.50	4.88	

Series A820C Dimensional Drawing

HOW TO ORDER

A820-W-X-Y-Z

(Select W, X, Y, and Z parameters from the table below. Also when ordering specify the gas, inlet pressure and operating temperature for the calibration.)

•	,			
T = Totalizer	(insert T if totalize	r is required)		
W = material:	A = aluminum			
	S = stainless stee	I		
X = Seals:	V = Viton®			
	B = Buna-N			
	E = EPR			
	T = TBFE/KALREZ			
Y = flow range: Specify flow a	and gas as shown in	example below. U	se table below as a guide to	standard ranges for air.
	0-10 sccm	0-500 sccm	0-15 slpm	
	0-20 sccm	0-1 slpm	0-20 slpm	
	0-50 sccm	0-2 slpm	0-30 slpm	
	0-100 sccm	0-5 slpm	0-40 slpm	
	0-200 sccm	0-10 slpm	0-50 slpm	
Z = Output signal:	V = 0-5 VDC			
	A = 4-20 mA			
Example: A820(T)-A-V-(50CF)	H)-(gas)-Y			
A820(T)-A-V-100LP	'M-N ₂ -Y			
Example: A820(T)-A-V-(50CF)	0-50 sccm 0-100 sccm 0-200 sccm V = 0-5 VDC A = 4-20 mA H)-(gas)-Y	0-2 slpm 0-5 slpm	0-30 slpm 0-40 slpm	

ELECTRONIC MASS FLOW CONTROLLERS Series A810

DESCRIPTION

The Series A810 electronic mass flow controllers are compact, self-contained units designed to indicate and control a set flow rate of gas. They are unaffected by temperature and pressure variations within specified limits. The mechanical layout of the design includes an LCD readout built into the top of the transducer. This readout module is tiltable over 90 degrees to provide optimum reading comfort. The readout is connected by a standard modular plug, and is readily removable and extended for remote reading installations. Units are available in aluminum or stainless steel.

FEATURES

- Rigid metal construction.
- Maximum operating pressure 1000 psig.
- NIST traceable calibration certification.
- Built-in set point control.
- Leak integrity 1 X 10⁻⁹ sccm helium.
- 0-5 VDC or 4-20mA signals.
- Built-in tiltable readout display in some models.
- · Circuit protection.
- Totalizer option available.
- 50 ∆P max.

SPECIFICATIONS

Accuracy: ±1.5% of full scale, including linearity for gas temperatures of 59°F to 77°F and pressures of 5 to 60 psia

Repeatability: $\pm 0.5\%$ of full scale

Response time: Generally 2 seconds to within ±2% of actual flow

Temperature coefficient: 0.15% of full scale/C Pressure coefficient: 0.01% of full scale/psi

Maximum pressure drop: 1.06 to 8.0 psid depending on flow range

Maximum pressure differential: 50 psi Gas and ambient Temp: 41° to 122°F

Output signals: Linear 0-5 VDC (1000 ohms min load impedance) or 4-20 mA (0-250 ohms loop resistance)

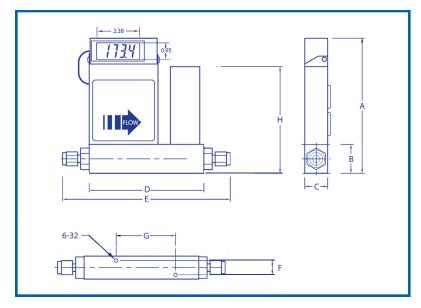
Transducer input power: 11-26V; 800 mA

Materials in fluid contact: Aluminum units: anodized aluminum, 316 SS, brass, Viton o-rings

Stainless steel units: 316 SS and Viton o-rings

Attitude sensitivity: No greater than + 15 degrees from horizontal to vertical:

Standard calibration is in horizontal position.


Connections: 1/4" compression fittings. Higher flow rate units may have different connections.

Leak integrity: 1 X 10⁻⁹ sccm of helium maximum to the outside environment

CE compliant: EN 55011 class, class B: EN50082-1

ELECTRONIC MASS FLOW CONTROLLERS CONTINUED Series A810

A810 Dimensions

	Up to 20 slpm	30 to 50 slpm
A	5.60	5.98
В	1.00	1.37
С	1.00	1.25
D	4.27	5.19
E	6.29	7.21
F	0.69	0.69
G	2.69	2.63
H	4.50	4.88

Series A810 Dimensional Drawing

HOW TO ORDER

A810-W-X-Y-Z

(Select W, X, Y, and Z parameters from the table below. Also when ordering specify the gas, inlet pressure and operating temperature for the calibration.)

•	,			
T = Totalizer	(insert T if totaliz	er is required)		
W = material:	A = aluminum			
	S = stainless ste	el		
X = Seals:	V = Viton®			
	B = Buna			
	E = EPR			
	$T = Teflon^{\mathbb{R}}$			
Y = flow range: Specify	flow and gas as shown i	n example below. Use	table below as a guide to stand	ard ranges for air.
	0-10 sccm	0-500 sccm	0-15 slpm	-
	0-20 sccm	0-1 slpm	0-20 slpm	
	0-50 sccm	0-2 slpm	0-30 slpm	
	0-100 sccm	0-5 slpm	0-40 slpm	
	0-200 sccm	0-10 slpm	0-50 slpm	
Z = Output signal:	V = 0-5 VDC			
. •	A = 4-20 mA			

Example: A810(T)-A-V-(50CFH)-(gas)-Y A810(T)-A-V-100LPM-N₂-Y

GAS PURIFIERS-Model 8010 (for pressure applications up to 3000 psig)

DESCRIPTION

The model 8010 replaceable cartridge gas purifier is useful in many laboratory and industrial applications where the introduction of oil and/or water can result in poor performance or equipment shut-down. It is not uncommon to find varying levels of these impurities in some industrial gases and occasionally even in specialty carrier gases. The small daily operating costs are easily justified by the prevention of a system shut-down and the subsequent cleaning and/or repair costs.

The units are especially useful in GC carrier gas lines to ensure that undesirable moisture does not enter the instrument. Water can contribute to inaccurate results and the rapid deterioration of expensive chromatography column separation phases.

The model 8010 purifier shell must be used in conjunction with specially designed replaceable cartridges.

Models 8010-1, 8010-2, or 8010-3 are filled with various adsorbents. Model 8010-4 contains a 5 micron sintered bronze filter element. These are described below. These cartridges are shipped in hermetically sealed cans in a dry nitrogen atmosphere with convenient screw caps for easy opening. This improved packaging ensures full retention of capacity in storage until the time of use.

MATERIALS OF CONSTRUCTION

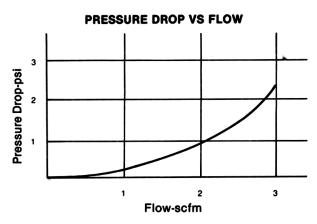
Shell body: anodized aluminum Shell head: nickel plated brass

O-ring seal: buna-N

Cartridges:* 8010-1 Molecular Sieve 13x

8010-2 Molecular Sieve 4A 8010-3 Activated Charcoal 8010-4 Sintered Bronze 8010-5 Molecular Sieve 3A 8010-6 Molecular Sieve 5A

Other materials available on request.


*0-ring seal is buna-N

SPECIFICATIONS

Max. Operating Pressure: 3000 psig (500 psig for oxygen)

Operating Temperature: -40° to +165°F. Inlet and Outlet Ports: 1/4" NPT female Dimensions: 2" dia. x 5 3/4" long Weight with Cartridge: 1.5 lbs. Dew Point Achievable: -100°F.

Model	Description	Absorption Capacity	General Application
8010	Purifier Shell Only		
8010-1	Molecular Sieve 13x	6.5 grams water	Removal of oil & water
8010-2	Molecular Sieve 4A	7.2 grams water	Removal of water from inert gases and saturated hydrocarbons
8010-3	10-3 Activated Charcoal (Warning: Do not use with oxygen concentrations in excess of 21%)		Removal of heavy hydrocarbons acetone level control in acetylene used for atomic absorption
8010-4	5 micron sintered bronze element (c	ther micron sizes available)	Particulate removal
8010-5	Molecular Sieve 3A		Removal of water from unsaturated hydrocarbons such as acetylene
8010-6	Molecular Sieve 5A		

GAS PURIFIERS-Model 8000A (high capacity units)

DESCRIPTION

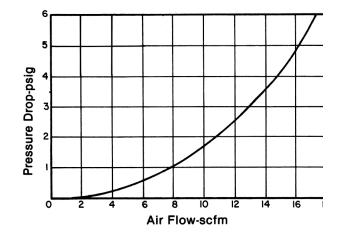
The model 8000A replaceable cartridge gas purifier is similar to the Model 8010 but is designed for higher capacities and a lower working pressure. The Model 8000A is constructed of a machined aluminum shell that accepts a large capacity cartridge. This shell may be permanently mounted when installed in the gas line and can be serviced without disturbing the line connections. Spring pressure holds the replaceable cartridge tightly against the bottom gasket to prevent the gas to be purified from bypassing the cartridge. The side inlet is located at the bottom of the unit oriented 90° from the outlet located at the top of the unit.

The model 8000A purifier shell must be used in conjunction with specially designed replaceable cartridges (Model 8000-1, 8000-2, or 8000-3) filled with various adsorbents. These are described below. These cartridges are shipped in hermetically sealed cans with convenient pull-tab ends for easy opening. This improved packaging ensures full retention of capacity in storage until the time of use.

MATERIALS OF CONSTRUCTION

Shell body: anodized aluminum

Gaskets: buna-N


Cartridges: 8000-1 Molecular Sieve 13x

8000-2 Molecular Sieve 4A 8000-3 Activated Charcoal 8010-5 Molecular Sieve 3A 8010-6 Molecular Sieve 5A

SPECIFICATIONS

Max. Operating Pressure: 1500 psig Operating Temperature: -40° to +200°F. Inlet and Outlet Ports: 1/4" NPT female Dimensions: 4 1/2" dia. x 15 9/16" long

Weight with Cartridge: 12.4 lbs. Dew Point Achievable: -100°F.

Model	Description	Absorption Capacity	General Application
8000A	Purifier Shell Only		
8000-1	Molecular Sieve 13x	126 grams water	Removal of oil and water from inert gases and saturated hydrocarbons
8000-2	Molecular Sieve 4A	134 grams water	Removal of water
8000-3	Activated Charcoal (Warning: Do not use with oxygen concentrations in excess of 21%)		Removal of heavy hydrocarbons acetone level control in acetylene used for atomic absorption
8000-5	Molecular Sieve 3A		Removal of water from unsaturated hydrocarbons such as acetylene
8000-6	Molecular Sieve 5A		

OXYGEN TRAPS Series 6300

DESCRIPTION

These Series 6300 oxygen traps contain a highly active, metal-containing, inert supported reagent filled into a one-piece aluminum container. The trap is capable of reducing the oxygen content of a gas stream down to 99.99998% of its original concentration. Each unit is filled under a heated flow of ultra high purity helium to eliminate the need for extensive purging prior to GC or GC/MS operation.

The Series 6300 units are ideal for use with hydrogen and inert carrier gases commonly used with TC and FID gas chromatographs as well as argon-methane mixtures used with electron capture gas chromatographs. The all metal housing virtually eliminates contamination and resultant signal noise that often occur with traps constructed of other materials. These units can also be used to treat carbon monoxide, carbon dioxide, alkanes, alkenes, aliphatic hydrocarbon gases and low boiling point aromatics, like benzene and toluene.

FEATURES

- · Reduces oxygen levels to less than 15ppb.
- Scrubbing agent sphere size optimized to achieve maximum surface area and capacity to provide twice the surface area and capacity of "look-alike" units.
- Filter design and aspect ratio prevents channeling and promotes even flow and efficient scrubbing.
- Inlet and outlet fitted with 40 micron stainless steel frits.
- · All metal construction.
- Bed material treated with ultra high purity helium.
- Operating pressure: 250 psig
- Oxygen removal capacity: 6300 525 mg

6350 4200 mg

• Dimensions: 6300 1.25" 0.D. x 11.25" long

6350 2 3/8" O.D. x 17" long

HOW TO ORDER

Model	Connections
6300-2*	1/8" tubing compression
6300-4*	1/4" tubing compression
6350-8*	1/2" tubing compression
8012C	mounting clip
8050C	mounting clip for 6350

*Available with stainless steel compression fittings - add "SS" to part number.

Gas traps should be mounted in a vertical position to ensure proper contact of the gas with the adsorbent. Use model 8012C mounting clip with 6300 Series oxygen trap.

8012C Mounting Clip

INDICATING MOISTURE TRAPS Series 8012, 8020, and 8040, 8050

DESCRIPTION

These units are designed to remove water, oil and organics from gases commonly used as gas chromatography carrier gases. They are constructed from Lexan® polycarbonate tubing with aluminum end caps sealed with Viton® o-rings, except for the 8050 which has a solid aluminum housing and is thus non-indicating. All units are filled with a mixture of molecular sieve 13X and indicating molecular sieve 4A. These are the highest capacity molecular sieves available and the preferred choice for gas drying. The blue indicating sieves turn buff color at 20% relative humidity.

FEATURES

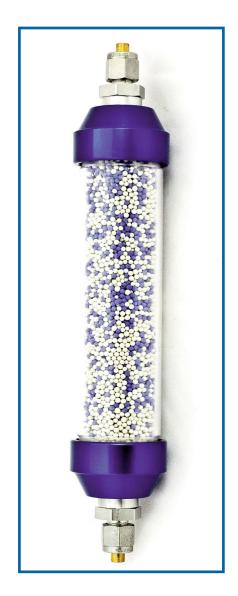
- Reduces water to less than 20 ppb.
- Available in 3 sizes (120cc, 200cc, 400cc, 1600cc) that can easily be refilled.
- Inlet and outlet o-ring sealed connectors are equipped with 40 micron sintered stainless steel frits to prevent particulates from entering your system.
- Mixed spherically shaped 13X and 4A adsorbents provides superior bed packing with less resistance to flow.
- Mounting clip available for convenient installation.

Moisture removal capacity: 8012 21.6 grams 36.0 grams 8020

8040 72.0 grams 8050 132 grams

· Dimensions: 1.5" O.D. x 9.0" long 8012-2 or -4

> 8020-2 or -4 1.5" O.D. x 12.5" long 8040-2 or -4 1.75" O.D. x 17.5" long 8050-8 2 3/8" O.D. x 17" long


8012, 8020, 8040 125 psig Working Pressure:

8050 250 psig

HOW TO ORDER

Model	Capacity	Connections
8012-2*	120 cc	1/8" tubing compression fittings
8012-4*	120 cc	1/4" tubing compression fittings
8020-2*	200 cc	1/8" tubing compression fittings
8020-4*	200 сс	1/4" tubing compression fittings
8040-2*	400 cc	1/8" tubing compression fittings
8040-4*	400 cc	1/4" tubing compression fittings
8040R	400 cc	Provides enough for three 120 cc,
		two 200 cc, or one 400 cc refill
8050-8*+	735 cc	1/2" tubing compression fitting
8050R	1500 cc	provides enough for two refill
8012C		for mounting 8012 and 8020 units
8040C		for mounting 8040 units only
8050C		for mounting 8050 units only

⁺⁸⁰⁵⁰ is a non-indicating trap

8012C Mounting Clip

Gas traps should be mounted in a vertical position to ensure proper contact of the gas with the adsorbent. Use model 8012C, 8040C or 8050C mounting clip with 8012, 8020 and 8040 Series moisture traps.

^{*}Available with stainless steel compression fittings - add "SS" to part number.

CO2 TRAP Series 6400

DESCRIPTION

The 6400 Series carbon dioxide trap is designed to remove CO2 gas from air, argon, helium, hydrogen, or nitrogen. The trap body is constructed of borosilicate glass with nickel plated end fittings with stainless steel sintered frits.* The absorption media is a formulation of sodium hydroxide and calcium hydroxide with an high absorptive capacity and indicating properties. Typically, this material will absorb 15-20% of its weight in carbon dioxide before the material is saturated and needs to be replaced. Replacement is indicated when the normally white color of the material turns violet. If moisture is detrimental to your system, a moisture trap should be installed down stream from this unit to adsorb water evolved from the absorption of the carbon dioxide (see page 69.)

*Units with stainless steel fittings are also available. Add"SS" to part number.

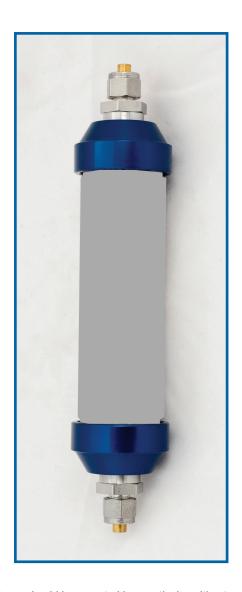
FEATURES

- Removes carbon dioxide to less than 0.5 ppm.
- Inlet and outlet fitted with 40 micron stainless steel frits.
- Reaction with carbon dioxide indicted by color change from white to violet.
- Inlet and outlet connections are 1/4" or 1/8" stainless steel compression fittings.
- Operating pressure: 125 psig max.
- CO2 removing capacity: 6410 45 grams CO2

6425 90 grams CO2

• Dimensions: 6410 1.5" O.D. x 12.5" long

6425 1.75" O.D. x 16.5" long


8012C Mounting Clip

8040C Mounting Clip

HOW TO ORDER

Model	Description	End Fittings
6410-2	carbon dioxide trap - 100 cc	1/8" compression
6410-4	carbon dioxide trap - 100 cc	1/4" compression
8012C	mounting clip for 6410 trap	
6425-2	carbon dioxide trap - 250 cc	1/8" compression
6425-4 carbon dioxide trap - 250 cc 1/4" compress		1/4" compression
8040C	mounting clip for 6425 trap	

Gas traps should be mounted in a vertical position to ensure proper contact of the gas with the adsorbent. Use model 6400C or 8040C mounting clip with 6400 Series carbon dioxide trap.

HYDROCARBON TRAPS Series 8200

DESCRIPTION

These units are designed to remove organics, such as alcohols, aromatics, chlorinated hydrocarbons, esters, ethers, hydrocarbons, and ketones from air, hydrogen, and inert carrier gases used in gas chromatography. They are constructed of aluminum and filled with extremely high surface area coconut shell based activated carbon.

The 8200 is a refillable purifier. Since impregnated carbons do not readily desorb all compounds, we recommend that the units be changed or refilled on a regular schedule using our 8200R refill kit that provides enough material for two charges of an 8200 or the 8250R which provides one charge of an 8250.

FEATURES

- Removes organics from air, hydrogen, and inert carrier gases.
 Does not remove light hydrocarbons like methane.
- Highly active coconut shell based carbon efficiently removes many types of hydrocarbon compounds.
- All metal housing.
- Refillable 200 cc or 1600 cc capacity.
- 40 micron filters on the inlet and outlet.
- Mounting clip available for convenient installation.
- Working pressure: 250 psig.
- Dimensions: 8200 1.5" O.D. x 12.5" overall length
 8250 2 3/8" O.D. x 17" overall length

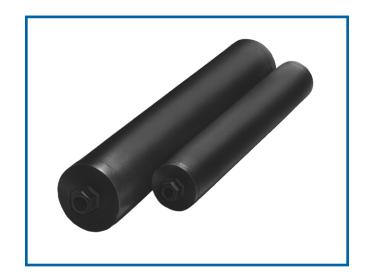
HOW TO ORDER

Model	Connections	
8200-2*	1/8" tubing compression fittings	
8200-4*	1/4" tubing compression fittings	
8250-8*	1/2" tubing compression fittings	
8250R	Refill kit - contains 3 charge	
8200R	Refill kit - contains 2 charges	
8012C	Mounting clip	
8050C	Mounting clip for 8250	

^{*}Available with stainless steel compression fittings - add "SS" to part number.

8012C Mounting Clip

Gas traps should be mounted in a vertical position to ensure proper contact of the gas with the adsorbent. Use model 8012C mounting clip with 8200 Series hydrocarbon trap.


OXYGEN REMOVING PURIFIER FOR HYDROGEN Series 6210

DESCRIPTION

The Series 6210 Purifiers remove oxygen from hydrogen by catalytic action. They are capable of removing up to 1% oxygen from a hydrogen stream down to a level of less than 1ppm. This reaction is normally accomplished at room temperature. At higher oxygen impurity concentrations, somewhat elevated temperatures may be experienced depending on operating conditions.

The purification is carried out by the formation of water from the oxygen impurity and the hydrogen background. If water presents a problem in your system it is suggested that a Model 8010 or 8000 purifier be installed in the system after the Series 6210 unit (see pages 94 and 95.)

The catalytic materials do not require regeneration and will function indefinitely providing that they are not contaminated. Sulfur and halogens are the primary contaminants of concern.

11011 100	HOW TO OTIDEIT					
Model	Max. Flow SCFH	Max. Oper. Press. psig	Connections female	Dimensions inches		
6210-10	10	2000	1/4" compression	1.05" dia. x 9.5" long		
6210-25	25	2200	1/4" compression	1.32" dia. x 14.5" long		
6210-50	50	1200	1/4" compression	1.66" dia. x 15" long		
6210-100	100	1400	1/4" compression	2.38" dia. x 15.5" long		
6210-200	200	1300	1/4" compression	2.88" dia. x 19.5" long		
6210-500	500	900	1/2" compression	4 0" dia x 23" long		

MOLECULAR SIEVES

DESCRIPTION

Molecular sieves have a wide variety of uses in gas and chemical purification processes. We offer Types 3A, 4A, 5A, and 13X beads in a variety mesh sizes in the standard container sizes shown below. Custom packaging is also available.

Beads offer some distinct advantages over pellets that are offered by competitors.

- Beads provide a greater surface area per cubic foot resulting in more efficient adsorption for equivalent sized beds.
- Beads are stronger than pellets, thus they maintain their size and shape for more efficient adsorption.
- Beads do not create dust to the degree that pellets do; this results in a cleaner system with less frequent clogging of system filters.
- Beads offer an equivalent pressure drop to pellets.

Molecular Sieve 3A Formula $K_{12}[(AlO_2)_{12}].X H_2O$

The potassium form of the Type A Crystal structure, is an alkalai metal alumino-silicate. Type 3A is used for drying polar liquids such as ethanol and methanol and the dehydration of unsaturated hydrocarbons such as acetylene, butadiene, and propylene.

Molecular Sieve 4A Formula Na₁₂[(AlO₂)₁₂].X H₂O

The sodium form of the Type A Crystal structure, is an alkalai metal alumino-silicate. Type 4A is used for drying inert gases and saturated hydrocarbons, such as methane, ethane, and propane.

Molecular Sieve 5A Formula Ca₄,5Na₃[(AlO₂)₁₂].X H₂O

The calcium form of the Type A Crystal structure, is an alkalai metal alumino-silicate. Type 5A is used for separating normal paraffins from branched-chain and cylic hydrocarbons through a selective adsorption process.

Molecular Sieve 13X Formula Na₈₆[(AlO₂)₈₆(SiO₂)₁₀₆].X H₂O

The sodium form of the Type X Crystal structure, is an alkalai metal alumino-silicate. Type 13X is used for general drying of inert gases and saturated hydrocarbons, purification of air through removal of water and carbon dioxide, and the removal of H2S and mercaptans from natural gas.

			T	уре	
Quantity		3A	4A	5A	13X
1/16" beads	8 x 12 mesh				
1 x 1 lb.		MS1-3A001	MS1-4A001	MS1-5A001	MS1-13X001
6 x 1 lb		MS1-3A6X1	MS1-4A6X1	MS1-5A6X1	MS1-13X6X1
1 x 5 lbs.		MS1-3A005	MS1-4A005	MS1-5A005	MS1-13X005
4 x 5 lbs.		MS1-3A4X5	MS1-4A4X5	MS1-5A4X5	MS1-13X4X5
1 x 25 lbs.		_	_	_	MS1-13X025
1 x 30 lbs.	MS1-3A030	MS1-4A030	MS1-5A030		
1 x 55 lbs.		_	_	_	MS1-13X055
1 x 60 lbs.	MS1-3A060	MS1-4A060	MS1-5A060		
1/8" beads	4 x 8 mesh				
1 x 1 lb.		MS2-3A001	MS2-4A001	MS2-5A001	MS2-13X001
6 x 1 lb		MS2-3A6X1	MS2-4A6X1	MS2-5A6X1	MS2-13X6X1
1 x 5 lbs.		MS2-3A005	MS2-4A005	MS2-5A005	MS2-13X005
4 x 5 lbs.		MS2-3A4X5	MS2-4A4X5	MS2-5A4X5	MS2-13X4X5
1 x 25 lbs.		_	_	_	MS2-13X025
1 x 30 lbs.	MS2-3A030	MS2-4A030	MS2-5A030		
1 x 55 lbs.		_	_	_	MS2-13X055
1 x 60 lbs.	MS2-3A060	MS2-4A060	MS2-5A060		

FILTER APPLICATIONS

GAS CHROMATOGRAPHY

Particulates in an instrument carrier gas stream can reduce the overall performance of laboratory analytical work. Removing particles can reduce background noise levels and enhance instrument accuracy and precision.

PHARMACEUTICAL MANUFACTURING

The capability of these filters to remove bacteria and other particulate matter enables pharmaceutical manufacturers to install a filter in gas lines to those systems requiring process, purge, or blanket gases, thus ensuring a virtually sterile gas atmosphere.

PNEUMATIC OPERATED DEVICES

Because of the small orifices normally associated with these devices, they often malfunction and require frequent servicing. Installation of a particulate filter in the air or nitrogen feed lines helps to ensure longer trouble free operation, thus reducing down-time.

SEMICONDUCTOR MANUFACTURING

With increasing levels of device density the effect of particulate contamination becomes more damaging to potential yields. Semiconductor manufacturers install these filters in virtually all their gas lines to reduce the effects of particulates and improve their production yields.

TEFLON® MEMBRANE GAS LINE FILTER 0.003 MICRONS Series 5010

The Teflon® medium in this filter efficiently traps particles down to 0.003 microns. These units may be installed in gas lines supplied by cylinders or bulk sources. Both the materials and manner of construction render the Series 5010 units compatible with a wide variety of gases.

FEATURES

- 99.999999% efficient at 0.003 micron level.
- Filter medium porous PTFE Teflon® membrane.
- All welded 316L stainless steel construction.
- Internal finish less than 10 R_a.
- 0.5 sq. ft. filter area provides high particle retention capacity.
- Excellent compatibility with a wide variety of gases.
- Helium leak tested to 1 x 10⁻⁹ cc/sec.

SPECIFICATIONS

Filtration: 99.9999999% @ 0.003 microns Max. Operating Pressure: 250 psig @ 250°F.

Max. Operating Temperature: 250°F.

Max. Flow: 200 slpm @ 5 psi ΔP with 30 psig inlet

		Connect	Dimensions		
Type of End	Model			Length	Diameter
Connection	Number	Inlet**	Outlet**	Inch	Inch
Standard Pipe	5010-P4FF	1/4 " NPT female	1/4" NPT female	3.58	2.0
Tubing	5010-T4FF	1/4" tubing compression	1/4" tubing compression	3.82	2.0
Compression	5010-T8FF	1/2" tubing compression	1/2" tubing compression	5.17	2.0
VCR® Compatible	5010-V4MM	1/4" face seal male	1/4" face seal male	3.73	2.0
Face Seal					

^{**}Other end fitting configurations available on request.

DEPTH GAS FILTERS - 0.01 MICRONS Series 7010

DESCRIPTION

The Series 7010 depth filters are the workhorses of laboratories and many high purity industrial processes. They are routinely used in critical gas lines and as pre-filters to extend the lifetime of more expensive filtration units. They are designed to provide high filtration efficiency at an economical cost.

The Series 7010 filters employ a microporous fiberglass media held in a 316 stainless steel all welded housing. They are available in two sizes that accommodate most flow requirements.

FEATURES

- 99.9999% filtration efficiency at 0.01 micron level.
- All welded 316 stainless steel construction provides compatibility with a variety of gases.
- Long service life particles are collected in the filter matrix throughout the depth of the filter.
- Helium leak tested to 1 x 10⁻⁹ cc/sec.

SPECIFICATIONS

Filtration: 99.9999% @ 0.01 microns Max. Operating Pressure: 250 psig @ 250°F Operating Temperature: 0° to 750°F.

		Connection	Dimens	Max. Flow@		
Type of End	Model			Inches		5 PSI ∆P
Connection	Number	Inlet**	Outlet**	Length	Dia.	Inlet SLPM
Standard Pipe	7010-P4FF	1/4 " NPT female	1/4" NPT female	2.68	2.0	50
Tubing	7010-T4FF	1/4" tubing compression	1/4" tubing compression	3.125	2.0	50
VCR® Compatible	7010-V4MM	1/4" face seal male	1/4" face seal male	3.125	2.0	50
Face Seal						

^{**}Other end fitting configurations available on request.

HIGH EFFICIENCY COALESCING FILTER Series 7300

DESCRIPTION

These filters are ideal for removing liquid and solid contaminates, such as water, oil, and particulates, from air and inert gas streams. They are an excellent choice for purifying the air from oil lubricated compressors. Housing are constructed of aluminum with porting from 1/4" NPT female to 3" NPT female. A large range of flow rates are accommodated by this variety of size.

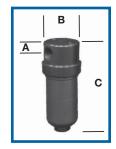
FILTER ELEMENTS

Coalescer Type 70C: These elements have an efficiency rating of 95% against 0.1 micron particles and aerosols. They are a good choice for general purpose applications requiring clean compressed gas for powering valves, cylinders, air tools, etc.

Coalescer Type 50C: These elements have an efficiency rating of 99.99% against 0.1 micron particles and aerosols and should be used for the most demanding applications requiring a high quality clean gas. For the best performance, a Type 70C coalescer should be used as a pre-filter to the 50C.

Adsorption Type CC: Coalescing filters can only remove the oil and water present in gas lines as liquid aerosols. They cannot remove the small fraction of oil present as a true vapor or water vapor. Type CC cartridges are vapor adsorption filters which will remove such gaseous contamination. It is important to remember that Type CC cartridges must always be preceded by a Type 50C coalescing pre-filter.

FEATURES


- · Complete removal of oil, water and solids.
- · High flow rates with low pressure drop.
- Low cost, completely disposable filter elements.
- · Wide selection of sizes.
- Available with manual or fully automatic drains.

MATERIALS OF CONSTRUCTION

Housing aluminum Seals Buna-N

Internals models 7315, 7360 - nylon

models 7370, 7380, 7385, 7390, 7395 SS/aluminum

SPECIFICATIONS

Max. operating pressure: 500 psig Max. operating temperature: 240°F

Elements P/N

			1714		
-	12-32-70C	25-127-70C	38-152-50C	51-476-50C	
	12-32-50C	25-127-50C	38-152-CC**	51-476-CC**	
	12-32-CC**	25-178-70C	51-230-70C	63-762-70C	
	25-64-70C	25-178-50C	51-230-50C	63-762-50C	
	25-64-50C	25-178-CC**	51-230-CC**	63-762-CC**	
	25-64-CC**	38-152-70C	51-476-70C		

^{*}CC cartridges are not used with automatic drains.

HIGH EFFICIENCY COALESCING FILTER CONTINUED Series 7300

HOW TO ORDER (Filter housings and filter elements are ordered as separate items.)

Model	Port Size	Max.	Drain type	Dime	ensions (in	ches)	Filter Element P/N	
		Pressure psig		Α	В	C	(inches)	
7315A-P4FF	1/4" NPTF	500	manual	0.39	1.57	4.72	12-32-xxx*	
7360A-P4FF	1/4" NPTF	500	manual	0.61	2.74	6.50	25-64-xxx*	
7360A-P8FF	1/2" NPTF	500	manual	0.61	2.74	6.50	25-64-xxx*	
7360AF-P4FF	1/4" NPTF	250	automatic	0.61	2.74	6.94	25-64-xxx*	
7360AF-P8FF	1/2" NPTF	250	automatic	0.61	2.74	6.94	25-64-xxx*	
7370A-P8FF	1/2" NPTF	500	manual	0.61	2.74	10.38	25-178-xxx*	
7370AF-P8FF	1/2" NPTF	250	automatic	0.61	2.74	10.38	25-127-xxx*	
7380A-P12FF	3/4" NPTF	1500	manual	1.34	4.33	12.09	38-152-xxx*	
7380AF-P12FF	3/4" NPTF	250	automatic	1.34	4.33	12.09	38-152-xxx*	
7380A-P16FF	1" NPTF	1500	manual	1.34	4.33	12.09	38-152-xxx*	
7380AF-P16FF	1" NPTF	250	automatic	1.34	4.33	12.09	38-152-xxx*	
7385A-P24FF	1.5" NPTF	1000	manual	1.57	5.51	17.24	51-230-xxx*	
7385AF-P24FF	1.5" NPTF	250	automatic	1.57	5.51	17.24	51-230-xxx*	
7390A-P32FF	2" NPTF	1000	manual	1.57	5.51	24.92	51-476-xxx*	
7390AF-P32FF	2" NPTF	250	automatic	1.57	5.51	24.92	51-476-xxx*	
7395A-P48FF	3" NPTF	250	manual	2.56	7.48	42.32	63-762-xxx*	
7395AF-P48FF	3" NPTF	250	automatic	2.56	7.48	42.32	63-762-xxx*	

^{*} Select element from table on previous page.

AIR FLOW RATES IN SCFM AT 2 PSI PRESSURE DROP

Housing	Line	Element				Air Li	ne Pressure	(psig)			
Model	Size	Grade	2	15	30	60	100	150	200	250	500
		70C	3.0	6.0	9	14	23	31	46	47	91
7315A	1/4"	50C	1.0	2.0	3	4	6	9.0	12	13	25
		CC	1.0	2.0	3	4	6	9.0	12	13	25
7360A		70C	6	11	16	26	44	58	88	89	173
and	1/4" or	50C	3	6	8	13	21	29	42	45	87
7360AF	1/2"	CC	6	6	8	13	21	29	42	45	87
7370A		70C	8	13	19	32	50	68	100	106	209
and	1/2"	50C	6	10	15	25	40	55	80	83	
7370AF		CC	6	10	15	25	40	55	80	83	163
7380A		70CS	28	33	47	77	122	167	244	261	502
and	3/4" or	50CS	13	25	36	61	99	134	194	203	406
7380AF	1"	CC	13	25	36	61	99	134	194	203	406
7385A		70CS		79	116		314	460	628	667	1334
and	1 1/2"	50CS		38	56		151	209	302	319	650
7390A		70CS	205	425	670	910	1160	1400	2010	2620	3230
and	2"	50CS	51	106	167	230	290	350	505	655	810
7395A		70CS	99	174	285	441	708	975	1416	1508	
and	3"	50CS	70	128	250	319	511	708	1022	1091	

STAINLESS STEEL HIGH EFFICIENCY COALESCING FILTER Series 7130 and 7140

DESCRIPTION

These filters are ideal for removing liquid and solid contaminates, such as water, oil, and particulates, from air, inert, and reactive gas streams. They are an excellent choice for purifying gas streams containing corrosive components. These filters fitted with a Type K fluorocarbon resin element are particularly suited for use in gas streams where highly reactive gases are being analyzed, since these elements exhibit very low levels of adsorption. Housing are constructed without welds of 316L stainless steel. They are available with porting of 1/4" NPT female and 1/2" NPT female.

FILTER ELEMENTS

Coalescer Type 70K: These elements have an efficiency rating of 95% against 0.1 micron particles and aerosols. They are a good choice for general purpose applications requiring clean compressed gas.

Coalescer Type 50K: These elements have an efficiency rating of 99.99% against 0.1 micron particles and aerosols and should be used for the most demanding applications requiring a high quality clean gas. For the best performance, a Type 70K element should be used as a pre-filter to the 50K.

Stainless Steel Type 01: These elements are constructed of sintered stainless steel or stainless steel mesh. They are especially useful in highly contaminated gas streams as they may be cleaned and reused. They are available in filtering efficiencies of 1, 10, 25 and 100 microns.

FEATURES

- Complete removal of solid and liquid contaminates from gas streams.
- · High flow rates with low pressure drop.
- Selection of non-reactive or stainless steel filter elements.
- Wide selection of sizes.
- Relatively low internal volume.

MATERIALS OF CONSTRUCTION

Housing 316L stainless steel

Seals Viton

SPECIFICATIONS

Max. operating pressure: 1500 psig

HP models 3000 psig

Max. operating temperature: 400°F

STAINLESS STEEL HIGH EFFICIENCY COALESCING FILTER CONTINUED Series 7130 and 7140

HOW TO ORDER (Filter housings and filter elements are ordered as separate items.)

Model	Port Size	Drain Port	Max.	Dime	ensions (in	ches)	Filter Element P/N		
			Pressure (psig)	Α	В	C			
7130-P4FF	1/4" NPTF	1/4" NPTF	1500	0.59	2.36	4.80	25-64-xxx* or SS-130-xx*		
7132-P8FF	1/2" NPTF	1/4" NPTF	1500	0.59	2.36	4.80	25-64-xxx* or SS-130-xx*		
7132HP-P8FF	1/2" NPTF	1/4" NPTF	3000	0.59	2.52	5.04	25-64-xxx* or SS-130-xx*		
7140-P4FF	1/4" NPTF	1/4" NPTF	1500	0.59	2.36	9.29	25-178-xxx* or SS-140-xx*		
7142-P8FF	1/2" NPTF	1/4" NPTF	1500	0.59	2.36	9.29	25-178-xxx* or SS-140-xx*		
7142HP-P8FF	1/2" NPTF	1/4" NPTF	3000	0.59	2.52	9.53	25-178-xxx* or SS-140-xx*		

^{*} Select element from table below.

Elements

P/N	P/N
25-64-70K	SS-130-xx **
25-64-50K	SS-140-xx **
25-178-70K	** Select micron size desired
25-178-50K	

**Size Suffix	Micron Size	
01	1	
10	10	
25	25	
100	100	

AIR FLOW RATES IN SCFM AT 1.5 PSI PRESSURE DROP

FILTER HOUSINGS USING ELEMENT SIZES 25-64 OR SS-130

	Element Gra	de				I	Air Pressu	re (psig)			
Model	Fluorocarbon	SS	15	30	60	100	150	250	500	1500	3000
	50K, 50C	01	64	125	160	256	354	546	1091	3248	-
7130 Series	70K, 70C	10	87	221	221	354	488	754	1508	4466	-

FILTER HOUSINGS USING ELEMENT SIZES 25-148 OR SS-140

	Element Gr	Element Grade			Air Pressure (psig)							
Model	Fluorocarbon	SS	15	30	60	100	150	250	500	1500	3000	
	50K, 50C	01	10	15	25	40	55	83	163	488	988	
7140 Series	70K, 70C	10	13	19	32	50	68	106	209	627	1247	

IN-LINE FILTER Series 7500

In-line Filter - Series 7500

FEATURES

- Compact in-line design with large filtration area.
- · Sintered 316 stainless steel element.
- Choice of 1, 2, 5, 10, 50, or 100 micron filter element.

SPECIFICATIONS

Operating Pressure: Brass: 3000 psig

316 SS: 6000 psig*

Operating Temp.: Brass: -30°F to 275°F

316 SS: -15°F to 400°F

MATERIALS OF CONSTRUCTION

Model	Body	Seals	Filter Element
7510	brass	Buna-N	316 stainless steel
7520	316 SS	Viton	316 stainless steel

HOW TO ORDER

Model	Inlet and Outlet Connections
7510-X-P4MM	1/4" NPT male x 1/4" NPT male
7510-X-P4FF	1/4" NPT female x 1/4" NPT female
7510-X-T4FF	1/4" compression x 1/4" compression
7510-X-P8MM	1/2" NPT male x 1/2" NPT male
7510-X-P8FF	1/2" NPT female x 1/2" NPT female
7520-X-P4MM	1/4" NPT male x 1/4" NPT male
7520-X-P4FF	1/4" NPT female x 1/4" NPT female
7520-X-T4FF	1/4" compression x 1/4" compression
7520-X-P8MM**	1/2" NPT male x 1/2" NPT male
7520-X-P8FF**	1/2" NPT female x 1/2" NPT female

Other end fitting configurations are available.

X - Specify filter element 1, 2, 5, 10, 50, or 100 microns.

* 2 micron filter operating pressure is 3000 psig.

** 2 micron filter not available in 1/2" units.

GAS HEATERS Series 6284

DESCRIPTION

The series 6284 gas heaters when installed between the cylinder and the regulator are designed to reduce the problem of regulator icing that is associated with high flow withdrawal rates of some gases due to their expansion from high pressure to low pressure.

This thermostatically controlled heater will not overheat the gas and can be left unattended without any gas flow. A pilot light indicates when the thermostat is closed and the heating element is operative.

SPECIFICATIONS

Material: Steel case with black oxide finish

covering a solid brass body

Max. flow: 90 cubic feet/hour

Voltage: 115 volt single phase 60 hz, 200 watts

provided through a 5-foot grounded cord

with molded plug.

Heating Range: Thermostat between 160° - 190°F.

Outer case temperature 85°F

Dimensions: 6-5/8" overall length, 2-1/2" diameter.

Weight: 2 pounds

Model	Application	
6284-320	Carbon Dioxide	
6284-326	Nitrous Oxide	
6284-580	Argon	

AUTOMATIC ELECTRIC GAS HEATERS For Compressed Gases Series 1000

DESCRIPTION

Many liquefied gases cool dramatically under even moderate flow conditions due to the heat of vaporization when the liquid is converted to gas. This effect causes "freezing" in pressure regulators and other equipment resulting in pressure and flow fluctuations. These thermostatically controlled heaters maintain a constant temperature within close limits regardless of load variations, thus assuring a uniform temperature and constant gas flow at all times. All units are completely automatic and can be left on indefinitely, even under no-flow conditions without damage.

APPLICATIONS

- · Welding Operations
- Hospitals/Anesthegeology
- Bottling Plants/Wineries
- Foundries
- Food Packaging
- Semiconductor
- Gas Freeze-up Applications

FEATURES:

- Prevents regulator freeze-up.
- Thermostatically controlled.
- Double protection against thermal or electrical overload.
- Continuous high pressure tubing –no internal joints.
- · Working pressures up to 4600 psig.
- · Completely dry heat exchange medium is aluminum.
- · Heavily insulated cabinet remains "cool."
- Can be left on, even under no-flow conditions.
- Unlike ambient devices, not affected by adverse atmospheric conditions.
- · Flow can be in either direction, without loss of efficiency.
- C.S.A. Approved.
- One year guarantee on material and workmanship.

SPECIFICATIONS

- 11" high x 5.5" wide x 4.25" deep
- 5/16" x .049 continuous copper tubing
- 5/16" x .049 304 stainless tubing optional
- Working pressure: up to 2500 psig (stainless steel: 4600 psig)
- 11 lbs. actual weight; 13 lbs. shipping weight
- 6' 3-wire UL/CSA cord
- 120/240 volts A.C., single phase
- 8.3/4.2 amps (1000 watts)
- Mounting holes 3" on center

CAPACITY (FOR CARBON DIOXIDE, CO 2)**

- Heating: 1000 CFH; 17 CFM; 467 liters/minute; 115 lbs./hr. (Heating valves are based on initial gas temperature of 0°F and outlet temperature of 170°F)
- Vaporizing: 184CFH; 3 CFM; 84 liters/minute; 22 lbs./hr. (Vaporization valves are based upon initial liquid temperature of 0°F and outlet temperature of 170°F)
- ** Capacities for other gases will vary, depending on their specific heat.

HOW TO ORDER

1. Select basic model

Model	Number Description
1000	1000 watts, 120 volts A.C., copper tubes
SS1000	1000 watts, 120 volts A.C., stainless steel tubes
SS1000A	Same as SS1000, but with adjustable thermostat

2. Select fittings (add to end of basic model #)

Fittings	Suffix Description
-320	CGA 320 female x male (Carbon Dioxide, CO ₂)
-326	CGA 326 female x male (Nitrous Oxide, N ₂ O)
-580	CGA 580 male x female (Nitrogen, N ₂)
-4	1/4" NPT male x male (brass)
<u>-4SS</u>	1/4" NPT male x male (stainless)

Other fittings available on request.

CYLINDER HEATING SYSTEM HB120 Series

DESCRIPTION

The HB-120 heater is an electrical appliance which supplies supplemental heat to replace the heat of evaporation normally lost when a liquefied gas changes state from liquid to gas inside steel cylinders. Freezing typically occurs with a change of state from liquid to gas is made at a rate faster than the liquid can absorb ambient heat. The use of a heater increases the speed at which the gas may be discharged from the cylinder.

The heater is designed to heat the lower part of the cylinder where freezing usually occurs. For larger flows the use of multiple heaters spaced over the length of the cylinder may be required.

The use of a single HB120 strap is ideal for preventing condensation of low volatility components in gas mixtures to help ensure that the mixture remains homogenous.

An insulating blanket is available to aid in ensuring that the heat is transferred into the cylinder and to aid in holding the heat on the cylinder.

Each heating belt is thermostatically controlled to 130°F to prevent overheating of the cylinder.

The heater has an adjustable Velcro® strap making it easy to apply band to cylinders with diameters of 8" to 10".

SPECIFICATIONS

- 500 watt heating capacity.
- Thermostatically controlled to 130°F.
- Power 120VAC/60Hz.
- Dimensions 27" long x 8" wide.
- · Weight less than 1 pound.

Model Number	Description
HB120A	cylinder heater with 4' power cord
	and 130°F thermostat
HB120-BLK	insulating blanket 48" high x 36" wide

GAS CYLINDER WARMING BLANKETS Series CWB-130

DESCRIPTION

The Series CWB-130 cylinder warming blankets are used to warm cylinders of gas mixtures to maintain a uniform composition. They are particularly useful when the mixture contains low vapor pressure components that may partially condense and change the mixture composition if exposed to lower temperatures, thus making the mixtures analysis unreliable. These blankets are a combination of cylinder heater and insulating blanket. The blanket creates a convection current in the cylinder to maintain a homogenous composition by heating the lower portion of the cylinder more than the upper portion. Models available for both hazardous and non-hazardous areas. Sizes available to accommodate 15", 10", 9", and 8" diameter cylinders. Optional cylinder base insulation pads valve cover are available to further reduce heat loss.

SPECIFICATIONS

- · Self-regulating grounded heating element.
- Power rating: 75 watts, 0.45 amps.
- Power: 120 VAC, 5-60 Hz standard, 220 VAC optional.
- 2" thick side and 0.5" top insulation of moisture and oil resistant rigid fiberglass to create insulation jacket.
- Velcro® fasteners for ease of installation.
- CSA approved (optional ATEX approval available).
- Power cord: non-hazardous area 10 foot SJOW cord hazardous area – 10 foot Teck 90 cable.
- Hazardous area rating: Class 1, Division 1, Groups B, C, & D.

Model	Description		
For non-hazardous areas			
CWB-130-8	warming blanket for 8" X 48" aluminum cylinders		
CWB-130-9	warming blanket for 9" X 51" steel cylinders		
CWB-130-15	warming blanket for 15" X 43" steel cylinders		
For hazardous areas			
CWB-130H-8	warming blanket for 8" X 48" aluminum cylinders		
CWB-130H-9	warming blanket for 9" X 51" steel cylinders		
CWB-130H-15	warming blanket for 15" X 43" steel cylinders		
Accessories for both types of blankets			
130FP-9	insulating floor pad for 8" and 9" diameter cylinders		
130FP-15	insulating floor pad for 15" diameter cylinders		

ELECTRONIC CYLINDER SCALES FOR LIQUEFIED AND CRYOGENIC GASES

FEATURES

- Controller has large 1" high LCD digital display in water resistant housing.
- Rugged load cell weighing technology with 300, 500, or 1000 pound capacity.
- Weight resolution up to 0.1 pound.
- Accuracy 0.1% of full scale.
- · Built-in visual alarm and audible alarm with silence function.
- · Built-in solid state relay.
- 0-100% of full scale tare weight adjustment.
- 0-100% of full scale alarm set point adjustment.
- · Both large and small platform sizes available.
- Easy unit conversion from pounds to kilograms.

DESCRIPTION

The pressure of a liquefied gas remains constant as material is withdrawn as long as a liquid phase remains in the cylinder. When the liquid phase is exhausted the pressure drops very quickly and the cylinder empties without warning. This phenomenon renders a cylinder pressure gauge virtually useless. A similar situation arises when using cryogenic containers of liquid nitrogen, oxygen, and argon. The only way to monitor the contents of a cylinder of liquefied gas or a cryogenic container is by weight.

The Series 620 and 320 electronic scales are designed to give a positive indication of the amount of product remaining in the cylinder as material is being withdrawn. These units allow the user to electronically subtract the tare weight of the cylinder so that only the net contents can be read directly. The built-in alarm can be set for any weight value from 0-100% of the scales capacity. The units provide a red LED visual alarm and an audible alarm with silence function. An integral solid state relay is provided for the activation of external alarms or other equipment when the alarm set point is reached.

The scales are ruggedly constructed using one or more load cells in a sturdy stainless steel and/or aluminum diamond plate platform with mechanical stops at 150% of capacity to prevent damage.

320 Series

620G-300

The model 620G-300 with a capacity of 300 pounds has a 9.5" x 9.5" stainless steel platform that accommodates most compressed gas cylinders. For larger diameter cylinders, the 320DL-500 is available with a capacity of 500 pounds has a 36" x 36" diamond plate steel platform. The model 320ML-1000 has a 1000 pound capacity and accommodates cryogenic containers with its 36" x 36" aluminum diamond plate steel platform. A ramp is available for each model so that cylinders can easily be rolled on and of the scale platform without lifting.

APPLICATIONS

Recommended for use with all liquefied and cryogenic containers in applications where running out of gas will cause a serious disruption in operations or a loss of product.

Model	Total Capacity Pounds	Resolution pounds	Platform Dimensions
620G-300	300	0.1	9.25" w x 9.25" d x 1.5" h
320DL-500	500	0.1	36" w x 36" d x 1-7/8" h
320ML-1000	1000	0.2	36" w x 36" d x 1-7/8" h
620R	ramp for 620G		9" w x 5.5" d x 1.5" h
320RL	ramp for 320DL & 320ML		36" w x 18" d x 1-7/8" h

CYLINDER SCALE FOR LIQUEFIED GASES Model 900

FEATURES

- · Heavy duty 16 gauge.
- Stainless steel cover.
- Dual dial scale pounds and kilograms.
- · Color-coded easy to read dial.

DESCRIPTION

The pressure of a liquefied gas remains constant as material is withdrawn as long as a liquid phase remains in the cylinder. When the liquid phase is exhausted the pressure drops very quickly and empties without warning. This phenomenon renders a cylinder pressure gauge virtually useless. The only way to monitor the contents of a cylinder containing a liquefied gas is by weight.

The Model 900 cylinder scale is designed to give a positive indication of the amount of product remaining in the cylinder. It allows the user to subtract the tare weight of the cylinder so that the net contents can be read directly. A color coded dial reads in pounds and kilograms. A non-skid ramp is available to make loading cylinders convenient and easy.

The scale is ruggedly constructed and features a stainless steel cover for durability.

APPLICATIONS

Recommended for use with all liquefied gases such as carbon dioxide, ammonia, nitrous oxide, fluorocarbons, hydrogen sulfide, sulfur dioxide, propane and heavier hydrocarbon gases.

SPECIFICATIONS

Tare weight range: 150 lbs. (0-68 kg.)
Product weight range: 0-150 lbs. (0-68 kg.)

Total capacity: 300 lbs (136 kg.) in 10 lb. (5 kg.) divisions.

Readability: 1 lb. (0.5 kg.) by estimation Dimensions: 10 3/4" x 10 1/2" x 1 3/4" high

Model	Description
900	Scale with non-skid ramp
900-5	Scale only
900-6	Ramp only

900-6 Scale Ramp

FLASH ARRESTOR SERIES 8491 – BRASS

DESCRIPTION

The new 8491 Series re-settable flashback arrestors offer four (4) safety devices in each unit. Safety features include protection against flashbacks with a wide range of mixtures of oxygen or air with flammable gases including hydrogen, acetylene, methane, and LPG gases. The design includes a built-in non-return (check) valve to stop reverse flow and a thermal shut off which stops gas flow in the event a of hose or pipe line fire. An easily re-settable pressure control stops gas flow in the event of reverse flow or a flashback that creates 10 psig back pressure. This feature alerts the user that a reverse flow or a flashback of greater than 10 psig has occurred. These units are easily re-set by pulling up on the pressure control ring (shown at right), no disassembly of the gas line or special tools are needed. The 8491 Series high flow capacity makes them suitable for a broad range of applications (see flow table). Units are UL listed and meet ISO 5175, EN 730, BS 6158, and AS 4603 standards.

FEATURES

- 100% flashback tested after assembly.
- · UL listed and meets strict international standards .

UL Approved Working Pressures:

Acetylene @15.0 psig

Hydrogen/oxygen @50.0 psig

Hydrogen/air @150.0 psig

LPG @50.0 psig

Oxygen @143.0 psig

- Alerts user by shutting off gas flow in the event of a reverse flow or flashback exceeding 10 psig back pressure (captures back pressure in the housing, no flame or gas is exhausted to the atmosphere).
- Stainless steel flame barrier positively extinguishes flame within the housing.
- Checks reverse flow and provides positive shut-off of reverse flow over 10 psig.
- Thermal cut-off @ 165°C.
- Built-in 100 micron stainless steel sintered filter on inlet.
- High flow capacity (see flow performance table).

MATERIALS OF CONSTRUCTION

Body: Alloy 360 brass Internals: brass

Flame barrier: stainless steel Elastomers: Neoprene

WORKING PRESSURE

Gas	Pressu	ire psig	
	UL	BAM	
Acetylene	15.0	22.0	
Hydrogen/oxygen	50.0	58.0	
Hydrogen/air	150.0	-	
Methane/LPG	50.0	72.0	
Oxygen	143.0	217.0	

FLOW PERFORMANCE

Inlet Press. psig	Air Flow SCFH	
7.3	231.0	
14.5	465.0	
21.8	725.0	
36.3	1041.0	
2.5	1933.0	

		Conne	ctions
Model	Gas Service	Inlet	Outlet
8491-F	flammables	1/4" NPT female	1/4" NPT female
8491-0	oxidizers	1/4" NPT female	1/4" NPT female
8491-FL	flammables	9/16-18 LH female	9/16-18 LH male
8491-0R	oxidizers	9/16-18 RH female	9/16-18 RH male

STAINLESS STEEL FLASH ARRESTOR Model 8492-P4FM

DESCRIPTION

The model 8492 is an ideal choice where stainless steel is desired as the material of construction. It my be used on flammable gases other than those approved by UL providing the materials of construction are compatible. When installed in a line containing a flammable gas these units will prevent reverse flow, stop, and extinguish a flashback. The unit shuts off the flow of gas in the event of a flashback or reverse flow in excess of 7 psig. Re-setting is automatic when the down stream pressure is relieved. There is no need to open the gas line and no disassembly or special tools are required.

FEATURES

- UL listed for:
 Acetylene @15.0 psig
 Hydrogen/air @ 50.0 psig
 LPG @50.0 psig
 Oxygen @143.0 psig.
- May be used on compatible corrosive flammable gases.
- Reusable can be reused after a flashback without opening the system or removing from service.
- Stainless steel flame barrier positively extinguishes flame within the housing.
- Checks reverse flow and provides positive shut-off of reverse flow over 7 psig.
- · Thermal cut-off.
- · Built-in 100 micron filter on inlet.
- · High flow capacity.

MATERIALS OF CONSTRUCTION

Body: 316L stainless steel Internals: stainless steel Flame barrier: stainless steel Elastomers: Neoprene

WORKING PRESSURE

Gas	Pressu	re psig
	UL	BAM
Acetylene	15.0	22.0
Hydrogen/oxygen	50.0	58.0
Hydrogen/air	150.0	-
Methane/LPG	50.0	72.0
Oxygen	143.0	217.0

FLASHBACK APPROVALS

ISO 5175. BS 6158 EN 730 (BAM/DIN) AS 4603

FLOW PERFORMANCE

Inlet Press. psig	Air Flow SCFH
7.3	231.0
14.5	465.0
21.8	725.0
36.3	1041.0
2.5	1933.0

Model	Gas Service	Connect	ions
		Inlet	Outlet
8492-P4FM-F	flammables	1/4" NPT female	1/4" NPT male
8492-P4FM-0	oxidizers	1/4" NPT female	1/4" NPT male

PURGE ASSEMBLIES

DESCRIPTION

The installation of a purge assembly on the inlet of your pressure regulator, pigtail inlet, or gas control system is highly recommended anytime a toxic, corrosive, flammable, or ultra high purity gas is to be used in the system. Purge assemblies perform the following multiple functions in your gas system during cylinder change-overs:

- Eliminate the release of toxic, corrosive, or flammable gases into the workplace.
- Maintain the integrity of an ultra high purity system.
- Protect equipment in corrosive gas service from exposure to moisture, thus preventing destructive corrosion.

DEEP PURGE VALVE SYSTEM Series 4800

DESCRIPTION

The Series 4800 deep purge valve system provides the ultimate in purging capability in a compact design with a very small internal volume. These units can be used in a wide variety of applications where contamination must be avoided during cylinder changeovers.

The deep purge valve system is an ideal accessory installed between the cylinder and the regulator of ultra high purity carrier lines for gas chromatography systems that cannot tolerate even a minimum amount of oxygen and moisture that can enter the system during cylinder changeovers.

The deep purge valve system can be used with gas mixtures containing reactive components to ensure that no moisture enters the sampling system to cause deterioration of the reactive components that can lead to concentration inaccuracies. Use of the 4820 also provides protection from the release of toxic gases into the atmosphere during cylinder changeovers.

	Material of	Connections				
Model	Construction	Valve Type	Inlet	Outlet	Outlet	
4820-P4FF	stainless steel	multi-turn	1/4" NPT female	1/4" NPT female		
4820-P4FM	stainless steel	multi-turn	1/4" NPT female	1/4" NPT male	(3" nipple)	
4820-CGA	stainless steel	multi-turn	specify CGA	1/4" NPT male	(3" nipple)	
4821-P4FF	stainless steel	90° lever	1/4" NPT female	1/4" NPT female		
4821-P4FM	stainless steel	90° lever	1/4" NPT female	1/4" NPT male	(3" nipple)	
4821-CGA	stainless steel	90° lever	specify CGA	1/4" NPT male	(3" nipple)	
4822-CGA	stainless steel	multi-turn	specify CGA	mating CGA		
4823-CGA	stainless steel	90° lever	specify CGA	mating CGA		

TEE PURGE ASSEMBLIES Series 4500

DESCRIPTION

The Series 4500 tee purge assemblies are designed to be installed between the cylinder valve and the pressure regulator. They enable the user to purge the system through the regulator with an inert gas.

The Series 4500 units feature multi-turn diaphragm packless valves and a check valve installed on the purge gas inlet. They are rated for 3000 psig.

HOW TO ORDER

Model	Material of Construction
4510-CGA*	brass
4520-CGA*	stainless steel
4550-CGA*	monel® and Al-Si-Bronze

^{*}Specify CGA connection required when ordering.

Series 4500

TEE PURGE ASSEMBLIES Series 4600

DESCRIPTION

The Series 4600 tee purge assembly was designed for use with inert gases such as argon, helium, and nitrogen. When installed either on the inlet to a pressure regulator or on the cylinder end of a pigtail they are an ideal device for purging the cylinder inlet connection after cylinder changeover to eliminate the introduction of oxygen and water to the system. These tee purges conveniently use the gas in the cylinder for purging.

The Series 4600 can be constructed either with multi-turn or 90° lever actuated diaphragm packless valves. This entire assembly is designed to pass a helium leak rated of 1 x 10^{-8} sccm. They are rated for 3000 psig.

Series 4600

Mat. of	f Connections	
Constr.	Inlet	Outlet
brass	1/4" NPT female	1/4" NPT female
brass	1/4" NPT female	1/4" NPT female
brass	specify CGA	1/4" NPT female
brass	specify CGA	1/4" NPT female
brass	specify CGA	1/4" NPT male
brass	specify CGA	1/4" NPT male
brass	specify CGA	mating CGA
brass	specify CGA	mating CGA
SS	1/4" NPT female	1/4" NPT female
SS	1/4" NPT female	1/4" NPT female
SS	specify CGA	1/4" NPT female
SS	specify CGA	1/4" NPT female
SS	specify CGA	1/4" NPT male
SS	specify CGA	1/4" NPT male
SS	specify CGA	mating CGA
SS	specify CGA	mating CGA
	brass ss ss ss ss ss ss	brass 1/4" NPT female brass 1/4" NPT female brass specify CGA specify CGA specify CGA ss 1/4" NPT female ss specify CGA

^{*}Specify CGA connection required when ordering.

MINIATURE FORGED NEEDLE VALVES Series 8100

DESCRIPTION

These valves are used in a wide variety of industrial and laboratory applications. They offer excellent flow control and both the brass and stainless steel models have Teflon® packing.

SPECIFICATIONS

Max. operating pressure: brass 3000 psig

stainless steel 6000 psig Monel[®] 3500 psig

Operating temperature range: -65° to 100°F

Flow coefficient(C_V): brass 0.048

stainless steel 0.48 Monel[®] 0.24

HOW TO ORDER

Model		Pattern	Connections	
Brass	316 SS	Monel		
8111	8121		Straight	1/8" NPT male
8112	8122	8152	Straight	1/4" NPT male
8113	8123		Straight	1/4" compression

CHECK VALVES Series 8400

DESCRIPTION

Check valves prevent the return flow of gas, thus keeping foreign substances out of lines, regulators, and cylinders located upstream of the valve.

These valves are a spring loaded design with the spring on the high pressure side to protect it from foreign substances. The positive stop prevents over-stressing of the spring by sudden surges of gas pressure. An o-ring at the valve seat provides quick, efficient sealing.

HOW TO ORDER

Model	Materials of Construction	Cracking Pressure PSIG	End Connections	Operating Pressure PSIG
8410V	Brass body, Viton® o-ring, st. st. spring	~ 1	1/4" NPT female	3000
8410V-5-P4MM	Brass body, Viton® o-ring, st. st. spring	~ 5	1/4" NPT male	3000
8420E	316 st. st., EPR o-ring, st. st. spring	~ 1	1/4" NPT female	3000
8420V	316 st. st., Viton® o-ring, st. st spring	~ 1	1/4" NPT female	3000
8420V-5-P4MM	316 st. st., Viton® o-ring, st. st spring	~ 5	1/4" NPT male	6000
8450V	Monel® , Viton® o-ring, st. st. spring	~ 1	1/4" NPT female	3000

Note: Check valves with other o-ring materials are available.

HIGH PURITY DIAPHRAGM PACKLESS VALVES Series 8300

DESCRIPTION

The multiple metal diaphragm design and Kel-F® seat are the key elements to the high purity success of these valves. They are available in a variety of styles and fitting configurations to meet virtually any application.

The 90° lever operated option provides the inherent benefits of a diaphragm packless valve with the quick open/close action and easily identifiable operational status of a lever actuated valve.

FEATURES

- Metal diaphragm packless construction for diffusion resistant operation.
- Capable of passing a helium leak-rate test to 10⁻¹⁰cc/sec.
- Available in multiple turn and 90° lever operated designs.

APPLICATIONS

The Series 8300 valves are recommended whenever the diffusion of atmospheric gases and moisture into a gas system is undesirable. They are a must in all ultra high purity gas transfer systems, particularly those used for gas chromatography carrier gases, samples, and calibration standards.

MATERIALS OF CONSTRUCTION

	Series 8310	Series 8320
Body	Brass	316 Stainless Steel
Seat	Kel-F®	Kel-F®
Diaphragm	Stainless Steel	Stainless Steel

SPECIFICATIONS

Operating pressure: brass - 3000 psig

stainless steel - 3000 psig

Operating temperature range: -65° to 150°F

Flow coefficient(C_V): 0.13

		Conn	ections
Model*	Actuation	Inlet	Outlet
8310-P4FF	Multi-turn	1/4" NPT female	1/4" NPT female
8310L-P4MF	Multi-turn	1/4" NPT male long	1/4" NPT female
8310-P4MM	Multi-turn	1/4" NPT male	1/4" NPT male
8310-T4FF	Multi-turn	1/4" compression	1/4" compression
8311-P4FF	90° lever	1/4" NPT female	1/4" NPT female
8311L-P4MF	90° lever	1/4" NPT male long	1/4" NPT female
8311-P4MM	90° lever	1/4" NPT male	1/4" NPT male
8311-T4FF	90° lever	1/4" compression	1/4" compression
8320-P4FF	Multi-turn	1/4" NPT female	1/4" NPT female
8320L-P4MF	Multi-turn	1/4" NPT male long	1/4" NPT female
8320-P4MM	Multi-turn	1/4" NPT male	1/4" NPT male
8320-T4FF	Multi-turn	1/4" compression	1/4" compression
8321-P4FF	90° lever	1/4" NPT female	1/4" NPT female
8321L-P4MF	90° lever	1/4" NPT male long	1/4" NPT female
8321-P4MM	90° lever	1/4" NPT male	1/4" NPT male
8321-T4FF	90° lever	1/4" compression	1/4" compression

^{*}Other end connection configurations available on request.

RELIEF VALVES Series 8600

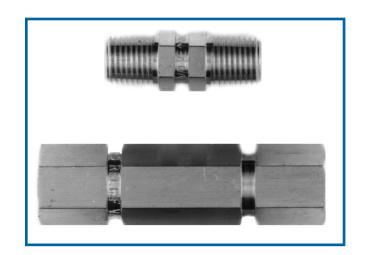
DESCRIPTION

These easily field adjustable relief valves provide for the protection of equipment components installed in systems where they may be exposed to over pressurization due to the failure of another component or an operator error.

FEATURES

- · Working pressure to 3000 psig.
- Wide range of pressure adjustment.
- 100% tested for crack and reseal performance.
- · Available in brass and stainless steel.

Maximum Working Pressure @ 70°F: 3000 psig


Flow Coefficient (C_v): 0.35 Temperature Rating:

with Buna-N o-ring -10 to 250°F.

with Viton® o-ring -10 to 375°F.

O-ring Material: brass Buna-N

stainless steel Viton®

Model	Material	Adjustable Range	Connections
			inlet x outlet
3614-3-P4MM	brass	3-20 psig	1/4" NPT male x 1/4" NPT male
8614-20-P4MM	brass	20-65 psig	1/4" NPT male x 1/4" NPT male
3614-65-P4MM	brass	65-175 psig	1/4" NPT male x 1/4" NPT male
3614-175-P4MM	brass	175-350 psig	1/4" NPT male x 1/4" NPT male
8614-350-P4MM	brass	350-600 psig	1/4" NPT male x 1/4" NPT male
3614-3-P4FF	brass	3-20 psig	1/4" NPT female x 1/4" NPT female
3614-20-P4FF	brass	20-65 psig	1/4" NPT female x 1/4" NPT female
614-65-P4FF	brass	65-175 psig	1/4" NPT female x 1/4" NPT female
614-175-P4FF	brass	175-350 psig	1/4" NPT female x 1/4" NPT female
614-350-P4FF	brass	350-600 psig	1/4" NPT female x 1/4" NPT female
624-3-P4MM	stainless	3-20 psig	1/4" NPT male x 1/4" NPT male
624-20-P4MM	stainless	20-65 psig	1/4" NPT male x 1/4" NPT male
624-65-P4MM	stainless	65-175 psig	1/4" NPT male x 1/4" NPT male
8624-175-P4MM	stainless	175-350 psig	1/4" NPT male x 1/4" NPT male
624-350-P4MM	stainless	350-600 psig	1/4" NPT male x 1/4" NPT male
624-3-P4FF	stainless	3-20 psig	1/4" NPT female x 1/4" NPT female
3624-20-P4FF	stainless	20-65 psig	1/4" NPT female x 1/4" NPT female
624-65-P4FF	stainless	65-175 psig	1/4" NPT female x 1/4" NPT female
3624-175-P4FF	stainless	175-350 psig	1/4" NPT female x 1/4" NPT female
3624-350-P4FF	stainless	350-600 psig	1/4" NPT female x 1/4" NPT female

MANUAL CONTROL VALVES Series 8500

DESCRIPTION

Manual controls are designed for direct connection to a compressed gas cylinder valve outlet. They provide a simple means of transferring the contents of a cylinder to another system or vessel. They **DO NOT** control pressure and should never be used without an operator in attendance at all times.

Four models are presented here with the following basic design features:

- Maximum inlet pressure 3000 psig.
- Teflon® packing for smooth leak-free operation.
- Finger-tip control of flow from only a few cc per minute to very rapid withdrawal.

HOW TO ORDER

Series 8520 - 303 Stainless Steel

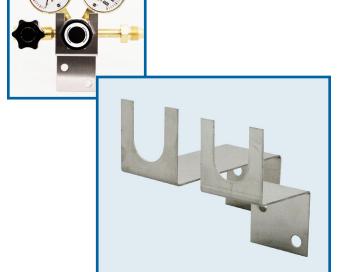
Model	Outlet Connection
8520H*	1/4" hose barb
8520T*	1/4" compression fitting
8520PF*	1/4" NPT female

^{*}Specify CGA connection number when ordering.

Series 8523 - 303 Stainless Steel with 0-3000 psig Cylinder Pressure Gauge

•		
Model	Outlet Connection	
8523H*	1/4" hose barb	
8523T*	1/4" compression fitting	
8523PF*	1/4" NPT female	
*Specify CGA con	nection number when ordering.	

Series 8550 - Monel®


Model	Outlet Connection
8550H*	1/4" hose barb
8550T*	1/4" compression fitting
8550PF*	1/4" NPT female

^{*}Specify CGA connection number when ordering.

EASY-MOUNT REGULATOR BRACKET Series EZ3000

This bracket allows either single stage or two stage regulators to be mounted or removed without removing the adjusting knob or resetting the delivery pressure provided the regulator is supplied by the factory with the panel mount nut installed. The bracket will accommodate any bar stock panel mountable regulator shown in this catalog.

Model	Description
EZ3100	For single stage regulators
EZ3200	For two stage regulators

GAS DETECTION SYSTEMS Fixed Installation Type — Beacon 110, Beacon 200, Beacon 410A, and Beacon 800

DESCRIPTION

Gas detection should not be complicated. The Beacon™ Series is gas detection simplified. The Beacon™ Series are powerful, low cost fixed system controllers for one, two, or up to eight points of gas detection. They are microprocessor controlled, versatile, simple to install and operate, and priced to be the industry's best value single and multiple gas detection controllers.

The wide variety of sensor heads available for the Beacon Series can provide protection for many of the gases commonly used in industry or laboratories today. A comprehensive list of available detectors is provided below.

Sensors can be mounted directly at the Beacon[™] housing, or can be wired remote from the controller. The digital displays have backlighting and simultaneous readout of the gas type(s) and concentration(s). The bottom mounted wiring hubs make wiring easy. An external reset switch allows alarms to be silenced from outside the controller housing.

With 10 or 12 amp rated relays, the Beacon Series can be wired directly to a variety of devices like horns, buzzers, or lights eliminating the need for costly external relays from the controller to devices.

The Beacon™ Series is housed in a NEMA 4X rated case for a weather tight seal. This case design complies with the new lock out / tag out standard and can be fully secured. An external reset switch allows the alarm to be silenced from outside of the controller housing. The Beacon™ units ship complete with a wall mounting kit for easy installation.

FEATURES

- Low cost versatile solution!!
- Compact, weatherproof, NEMA 4X enclosure.
- 115 VAC or 12 VDC operation.
- Long life sensors (2+ years typical).
- Accepts LEL/0 2 /H 2 S/CO direct wire sensors (Beacon 110, 200, and 410A).
- · Accepts any 4-20 mA transmitter.
- Audible alarm with reset button.
- Three programmable alarm levels.
- · Built-in trouble alarm with relay.
- Relay rating 10 or12 amps, form C.
- Provides 4-20 mA output.

INDUSTRY APPLICATIONS

- Laboratories
- Semiconductor manufacturing facilities
- Petrochemical plants & refineries
- Water & wastewater treatment plants
- · Pulp & paper mills
- Gas, telephone, & electric utilities
- Parking garages
- · Manufacturing facilities

ABOUT SENSORS

The sensor is the actual device that is sensing the gas. Three sensor types are available for use with the Beacon Series Controller: direct wire, gas diffusion, and sample draw. Sensors typically last 2 to 4 years, but can last for a longer or shorter time depending on the nature of the application.

GAS DETECTION SYSTEMS Fixed Installation Type – Beacon 110, Beacon 200, Beacon 410A, and Beacon 800

DIRECT WIRE DETECTORS

Direct wire detectors are hard wired diffusion sensors to the controller and do not require a transmitter. They are, therefore, more economical than detectors requiring a transmitter. Direct wire detectors can only be used with the Beacon 110, 200, and 410A controllers. While the choice of gases is limited for hard wire detectors they can be an economical choice when available. In general, the use of a transmitter is preferred for distances over 300' to 500' to simplify calibration.

SAMPLE DRAW DETECTORS

Sample draw detectors have an integral pump, which draws the surrounding air to the detector. They are the preferred choice when used in larger areas where there is no specific point at which one can expect a gas leak. All sample draw detectors used with the Beacon Series have transmitters.

HOW TO ORDER

When ordering a Beacon system please specify the following components:

- 1. Controller part number (see list below)
- Detector assemblies required. Provide gas, detection range from the list below so that we can provide the best combination for your application.

Model	Description
72-2110RK	Beacon 110 single point controller
72-2102RK	Beacon 200 two point controller
72-2104A	Beacon 410A four point controller
72-2108RK	Beacon 800 eight point controller

DIFFUSION DETECTORS

Diffusion detectors rely on the natural flow of air to bring the sample to the detection head. These are an excellent choice for gas cabinets or other forced flow environments where the detector is situated in a constant air flow from the potential gas release to the detector. All diffusion type detectors used with the Beacon Series have transmitters.

TRANSMITTERS

Most sensors require a transmitter to amplify the sensor signal, and to convert the gas sensor signals into a standardized output, such as 4-20 mA, for transmitting the signal to a controller. The transmitter is usually in close proximity to the sensor, and zero and span adjustments must be done at the transmitter. Note that some sensors and controllers do not require the use of a transmitter for LEL or Oxygen detection (Beacon 110, 200, and Beacon 410A), and also one is not needed for short distance wiring of H2S or CO sensors for the Beacon 110, 200, and Beacon 410A. All transmitters used with the Beacon Series are operated from 24 VDC, and utilize either 2 or 3 wires. In general, even if a sensor can be used with out a transmitter, the use of a transmitter is often preferred for distances over 300' to 500' to simplify calibration.

Measurable Gases	Standard	Diffusion Detector	Sample Draw Detector	Sensors For			
	Range	Assembly	Assembly	110	200	410A	800
Ammonia NH3	0 - 75 ppm	GD-K88AI-NH3	GD-70D-NH3	Χ	Χ	Χ	Χ
Carbon Dioxide CO2	0-5000 ppm	61-1007RK-02	-	Χ	Χ	Χ	-
Carbon Dioxide CO2	0-5000 ppm	65-2397RK-02	-	Χ	Χ	Χ	Χ
Carbon Monoxide (XP) CO	0 - 300 ppm	65-2336RK	-	Χ	Χ	Χ	Χ
Chlorine CL2	0 - 3 ppm	GD-K88AI-CL2	GD-70D-CL2	Χ	Χ	Χ	Χ
Combustibles (XP) LEL	0 - 100 %	61-1000RK	-	Χ	Χ	Χ	_
Combustibles (4-20mA) (XP) LEL	0 - 100 %	65-2405RK	-	Χ	Χ	Χ	Χ
Hydrogen (Direct) H2	0 - 2000 ppm	65-2442RK-2000	-	Χ	Χ	Χ	-
Hydrogen (Specific) H2LEL	0 - 100%	61-1001RK	-	Χ	Χ	Χ	_
Hydrogen Chlorine HCL	0 - 15 ppm	GD-K88AI-HCL	GD-70D-HCL-15	Χ	Χ	Χ	Χ
Hydrogen Sulfide H2S	0 - 1 ppm	-	GD-70D-H2S-01	Χ	Χ	Χ	Χ
Hydrogen Sulfide H2S	0 - 100 ppm	65-2331RK	-	Χ	Χ	Χ	Χ
Nitrogen Dioxide NO2	0 - 15 ppm	GD-K88AI-NO2	GD-70D-N02-15	Χ	Χ	Χ	Χ
Oxygen (4-20mA) 02	0 - 25 %	65-2322RK	-	Χ	Χ	Χ	Χ
Oxygen (Direct) 02	0 - 25 %	65-2497RK	-	Χ	Χ	Χ	_
Sulfur Dioxide S02	0 - 6 ppm	GD-K88AI-S02	GD-70D-S02	Χ	Χ	Χ	Χ

Detectors for many other gases are available. Tell us your requirements.

SF6 LEAK DETECTOR Model 3-033-R002

DESCRIPTION

The remarkable sensitivity of this hand held unit allows the user to detect sulfur hexafluoride to levels equivalent to 0.1 oz/year (3 grams/year). An advanced microprocessor is the heart of this unit. Its digital signal processing provides excellent management of the circuitry and sensing tip signal. The microprocessor monitors the sensing tip and battery voltage levels 4000 times per second, compensating for even the most minor fluctuations in signal. This translates into a stable and dependable tool in almost any environment.

Convenience features have been incorporated into the 3-033-R002 to enhance its operation. Seven levels of sensitivity provide and increase of 64 times from level 1 to level 7. Unique tri-color LEDs show a progressive and wide range of leak size indication, communicate the sensitivity level, and provide a true voltage indication of battery power level. A tactile keypad controls all functions. The housing design provides the user with a secure grip and control and places the visual indicators in direct sight during use.

FEATURES

- Microprocessor control with advanced signal processing.
- · Seven sensitivity levels.
- Tactile keypad controls.
- · Real-time SF6 sensitivity adjustment.
- Battery test function with battery voltage indication.
- True mechanical pumping ensures positive air flow through the sensing tip.
- Cordless and portable.
- 14" flexible stainless steel probe.
- · Built-in mute feature.

SPECIFICATIONS

Power supply: 3V DC - two "C" cell alkaline batteries.
 Max. Sensitivity: 0.1 oz/year (3 grams/year) SF6

Operating temperature: 30° to 125° F.

Life: Approximately 30 hours normal use

Response time: InstantaneousReset time: one second

Warm-up time: Approximately 2 seconds

Unit weight: 1.2 poundsDimensions: 9" x 2.5" x 2.5"

Model	Description
3-033-R002	SFL Leak Detector
	Replace sensing tip
XP-2	Maintenance Kit
	(3 sensing tips and 3 tip protectors)

MINI GAS LEAK DETECTOR Model 21-070

DESCRIPTION

The model 21-070 gas leak detector easily and quickly pinpoints gas leaks emitting from pressurized systems. Using a thermal conductivity detector with signal amplification, the instrument is zeroed in ambient air and responds to any gas mixture with a thermal conductivity different from that of air. The instrument is highly sensitive, having an intrinsically high signal to noise ratio with amplification that provides a maximum usable sensitivity.*

The model 21-070 can be operated with little or no training. Turn it on, zero, probe for leaks: its that simple. As the instrument probe passes over the leak, a sample is drawn into the conductivity cell. When a leak is discovered a signal is registered on the LED bar graph. No messy soap solution, so system contamination

CAUTION

This leak detector in NOT designed to be used to determine leaks of combustible gases. It is designed to determine low level leaks of any gas having a different thermal conductivity than air. Utilizing this property it is, therefore, not specific to any gas or vapor. A combustible gas leak detector should be used for determination of combustible gas leaks in possible hazardous conditions.

SPECIFICATIONS

Detector: thermal conductivity w/thermistors

Readout: LED bar graph with yellow and red segments

Line Voltage: 115 V, 60 Hz

Battery: Rechargeable NiCCd, 7.2 V/800 mAh

Battery Life: 3.5 hours; may be recharged to 95% in 1 hour

Dimensions: 3.25" W x 1.75" H x 5.25" L

Weight: Instrument 1.05 lbs Charger 0.61 lbs

*SENSITIVITY

Helium	1.0 x 10 ⁻⁵ cc/sec
Argon	1.0 x 10 ⁻⁴ cc/sec
C002	1.0 x 10 ⁻⁴ cc/sec
Refrigerant	1.0 x 10 ⁻⁴ cc/sec

Model	Description
21-070	mini gas leak detector
59-050	carrying case

WELDING PURGE MONITOR Model PE-100

DESCRIPTION

The PE-100 is an advanced instrument to detect the level of oxygen in purging gas to indicate when the oxygen content is at a satisfactory level to weld. The exact oxygen level is provided, thus preventing the excessive use of purge gas to ensure that the weld will be oxidation free. The monitor provides a continuous oxygen level readout during welding to detect unforeseen purge problems that can cause low quality welds.

The monitor may also be used to check confined spaces for safe oxygen levels before personnel enter the area and while they are working.

PE-100 has an innovative push button auto-calibration feature that allows the user to calibrate at atmospheric oxygen levels and again at the lowest oxygen reading for increased accuracy.

FEATURES

- Oxygen Detection range 0.01 to 20.94%
- Push button self-calibration
- Low battery indicator
- Low sensor indicator
- · Large digit readout
- Optional Tripod mount
- Quick connect/disconnect fittings for gas purge tubing

SPECIFICATIONS

Detection range: 0.01 to 20.94% oxygen Accuracy: At 20.0% = +0.2%

At 2% = +0.02%

Approx. Dimensions: 7.8" high x 3.7" wide x 2.5" deep

Power: 2 AA batteries Weight: 7.4 ounces

HOW TO ORDER

PE-100 welding purge monitor in rugged carrying case includes: SS probe for sampling, two meter sampling hose, sampling bulb, carrying strap for neck or wrist, 2 AA batteries, and user instruction book.

KITAGAWA GAS DETECTION SYSTEM

DESCRIPTION

The Kitagawa Gas Pump and detector tube system is a simple, inexpensive, on the spot means of gas sampling and analysis. With a minimum of training, non-technical employees can perform day to day industrial hygiene screenings, perform QC analysis for process control, and many other analyses. There are over 300 detector tubes covering a long list of gases and concentrations.

The Kitagawa system has been developed to be a reliable method of on the spot gas analysis. It has been constantly improved to ensure accuracy and simplicity of use. An accurate analysis can be obtained in a few minutes.

With a single stroke of the Kitagawa pump fitted with a selected detector tube an accurate analytical result can be read directly from the detector tube scale without the use of any other instrumentation.

FEATURES

- A complete sampling and analysis system for determining the concentration of gases and vapors on the spot.
- Only two components required sampling pump and detector tube.
- No calibration required.
- · No batteries required.
- · Low cost per analysis.
- May be used in hazardous classification areas.
- Over 300 detector tubes available.
- Manufactured with ultra-high purity reagents.
- Scale on each tube provides a direct reading of the concentration.
- Detector tubes have a thin plastic coating to prevent shattering and dispersement of reagents in the event of breakage.
- Most analyses require only one pump stroke.

SA-10-AP20 One Hand Operation Switch

AP-20 Air Sampling Pump Kit

B-191 Tube Tip Cutter

AS-1 Air Flow Indicator determines the velocity and direction of air flow.

EQUIPMENT AND TUBES ARE SHOWN PAGES 127-131

HOW TO ORDER

P/N	Description
AP-20	Aspirating pump with carrying case, two rubber tube connectors, a container of lubricant, and an instructions sheet.
SGD-BK-346	Consists of a pressure regulator-flowmeter with CGA 346 cylinder connection, the specially calibrated flowmeter that provides ease of measuring carbon monoxide, carbon dioxide, oil mist, oxygen, and water vapor, an adjustable wrench, a timer, a tube tip cutter, and instruction manual. Note: Detector tubes are not included and must be ordered separately.
SGD-BK-590	Consists of a pressure regulator-flowmeter with CGA 590 cylinder connection, the specially calibrated flowmeter that provides ease of measuring carbon monoxide, carbon dioxide, oil mist, oxygen, and water vapor, an adjustable wrench, a timer, a tube tip cutter, and instruction manual. Note: Detector tubes are not included and must be ordered separately.
SGD-BK-P4M	Consists of a pressure regulator-flowmeter with 1/4" NPT male inlet connection, the specially calibrated flowmeter that provides ease of measuring carbon monoxide, carbon dioxide, oil mist, oxygen, and water vapor, an adjustable wrench, a timer, a tube tip cutter, and instruction manual. Note: Detector tubes are not included and must be ordered separately.
SGD-BK-SCUBA	Consists of a pressure regulator-flowmeter with a standard scuba yoke connection with a bleeder valve, the specially calibrated flowmeter that provides ease of measuring carbon monoxide, carbon dioxide, oil mist, oxygen, and water vapor, an adjustable wrench, a timer, a tube tip cutter, and instruction manual. Note: Detector tubes are not included and must be ordered separately.
AS-1	Air flow indicator kit. Spot test system to determine the direction of air flow. Kit consists of aspirating bulb, carrying case and one box of No. 300 tubes.
SA-10	One-hand operation switch. This device is useful for sampling on a ladder or narrow spaces where two-hand operation of the pump is not practical.
B-191	Tube tip cutter – provides a safer means of removing tube tips. Pieces do not scatter and are accumulated in the container body.
ВООК	Kitagawa detector tube handbook.

COMPRESSED BREATHING AIR TEST TUBES

600SP	Carbon monoxide - Breathing air, 5-100 ppm
601SP	Carbon dioxide - Breathing air, 100-3000 ppm
602SP	Oil mist - Breathing air, 0.3-5 mg/m ³
603SPA	Water vapor - Breathing air, 20-160 mg/m ³
604SP**	Oxygen - Breathing air, 2-24%

^{**}A 50 ml plastic syringe and a 1 meter vinyl tube are optionally necessary.

DETECTOR TUBES FOR DISSOLVED SUBSTANCES IN SOLUTION

10 tubes per box	
200SA	Sulphide ion, 2-1000 ppm
200SB	Sulphide ion, 0.5-10 ppm
201SA	Chloride ion, 10-2000 ppm
201SB	Chloride ion, 3-200 ppm
203S	Copper ion, 1-100 mg/L
204S	Cyanide ion, 0.2-5 ppm
205SL	Salinity, 0.01-0.8%
234SA	Free residual chlorine, 0.4-5 ppm

SGD-BK-CGA Compressed Breathing Air Sampling Kit

ALPHABETICAL DETECTOR TUBE LIST

DETECTOR	TUBES 10 tubes per box except as noted	Model #	Description
133A	Acetaldehyde, 0.004-1.0% (concentration chart method)	141SA*	Carbon disulfide, 30-500 ppm
133SB	Acetaldehyde, 5-140 ppm	141SB*	Carbon disulfide, 0.8-50 ppm
216S	Acetic Acid, 1-50 ppm	100	Carbon monoxide, 5-1000 ppm
216S	Acetic anhydride, 1-15 ppm		(concentration chart method)
102SA	Acetone, 0.1-5.0%; Tetrahydrofuran	106B	Carbon monoxide in the presence of
102SC	Acetone, 0.01-4.0%		ethylene, 10-1000 ppm
102SD		106C	Carbon monoxide in the presence of ethylene and nitrogen oxides,
1023D 101S	Acetyloge 50 1000 ppm		10-1000 ppm
280S*	Acetylene, 50-1000 ppm	106S	Carbon monoxide, 10-250 ppm
2003	Acetylene-Ethylene, C2H2 20-300 ppm; C2H4 200-2000 ppm	106SA	Carbon monoxide, 5-2000 ppm
136	Acrolein, 0.005-1.8%	106SC	Carbon monoxide, 1-50 ppm
216S	Acrylic acid, 1-50 ppm	106SH	Carbon monoxide, 0.1-2.0%
128SA	Acrylonitrile, 0.1-3.5%	106SS	Carbon monoxide, 30-500 ppm
128SB	Acrylonitrile, 10-500 ppm	106UH	Carbon monoxide, 0.1-20%
128SC	Acrylonitrile, 1-120 ppm	147S*	Carbon tetrachloride, 0.5-60 ppm
128SD		239S*	Carbonyl sulfide, 5-60 ppm
300	Acrylonitrile, 0.2-20 ppm	109SA	Chlorine, 1-40 ppm
	Air flow indicator tube	109SB	Chlorine, 0.1-10.0 ppm
184S	Allyl alcohol, 10-160 ppm	109U	Chlorine, 0.05-2 ppm
132SC(1)*	Allyl chloride, 0.1-12.0 ppm	116	Chlorine dioxide, 1-20 ppm
105SA	Ammonia, 0.5-10%	178SB*	Chlorobenzene, 1-140 ppm
105SB	Ammonia, 50-900 ppm	152S*	Chloroform, 23-500 ppm
105SC	Ammonia, 5-260 ppm	172S*	Chloropicrin, 0.05-16.0ppm
105SE	Ammonia, 1-200 ppm	169S*	Chloroprene, 0.5-20 ppm
105SD	Ammonia, 0.2-20 ppm	132SC(3)*	m-Chlorotoluene, 0.1-12.0 ppm
105SH	Ammonia, 0.5-30%	132SC(4)*	o-Chlorotoluene, 0.1-12.0 ppm
105SM	Ammonia, 0.1-1.0%	132SC(5)*	p-Chlorotoluene, 0.1-12.0 ppm
181S	Aniline, 1-30 ppm	183U	Cresol, 0.5-25.0 ppm
140SA	Arsine, 5-160 ppm	190U(1)	Crotonaldehyde, 5-500 ppm
121U	Arsine, Phosphine, 0.05-2.0 ppm	111U(4)	Cumene, 10-1000 ppm
190U(6)	Benzaldehyde, 5-500 ppm	115S	Cyclohexane, 0.01-0.6%
118SB*	Benzene, 5-200 ppm	206U	Cyclohexanol, 5-500 ppm
118SC	Benzene, 1-100 ppm	197U	Cyclohexanol, 2-100 ppm
118SD*	Benzene, 0.1-75 ppm	197U(1)	Cyclohexanone, 2-100 ppm
118SE*	Benzene, 0.2-80 ppm	111U(5)	Cyclohexene, 10-1000 ppm
132SC(2)*	Benzyl chloride, 0.1-12.0 ppm	105SD	Cyclohexylamine, 1-20 ppm
114	Bromine, 1-20 ppm	111U(6)	Decahydronaphthalene,10-1000 ppm
157SB(1)	Bromochloromethane, 0.4-80 ppm	111U(7)	n-Decane,10-1000 ppm
157SB(2)	Bromoform, 0.4-80 ppm	190U	diacetone alcohol, 10-250 ppm
168SA	Butadiene, 0.03-2.6%	242S	Diborane, 0.02-5.0 ppm
168SB	Butadiene, 30-600 ppm	105SD	Dibutylamine, 2-20 ppm
168SC	Butadiene, 2.5-100 ppm	2148	o-Dichlorobenzene, 5-100 ppm
168SD*	Butadiene, 0.5-10.0 ppm	215S	p-Dichlorobenzene, 10-150 ppm
221SA	n-Butane, 0.05-0.6%	235S*	1,1-Dichioroethane, 10-160 ppm
190U	1-Butanol, 5-100 ppm	230S*	1,2-Dichioroethane, 5-50 ppm
189U	2-Butanol, 4-300 ppm	223S*	2,2-Dichloroethyl ether, 2-30 ppm
138U	Butyl acetate, 10-400 ppm	132SC(6)*	1,1-Dichloroethylene, 0.1-12.0 ppm
139SB	Butyl acetate, 0.01-1.0%	145S*	1,2-Dichloroethylene, 5-400 ppm
211U	Butyl acrylate, 5-60 ppm	180S*	Dichloromethane, 10-1000 ppm
105SD	Butylamine, 1-20 ppm	157SB(3)	1,2-Dichloropropane, 0.4-80 ppm
190U	Butyl cellosolve, 10-1000 ppm	132SC(7)*	1,3-Dichloropropane, 0.1-12.0 ppm
111U(1)	Butyl ether, 10-1000 ppm	194S*	1,3-Dichloropropane, 10-500 ppm
130U	tert-Butyl mercaptan, 0.5-10 ppm		
111U(2)	Butyl methacrylate, 10-1000 ppm	190U(2)	Dicyclopentadiene, 5-500 ppm
111U(3)	tert-Butyl methyl ether, 10-1000 ppm	2225*	Diethyl amine, 1-20 ppm
216S	Butyric acid, 3-60 ppm	111U(8)	Diethyl benzene,10-1000 ppm
126B	Carbon Dioxide, 0.01-0.7%	107SA	Diethyl ether, 0.04-1.4%
126SA	Carbon dioxide, 0.1-5.2%	107U	Diethyl ether, 20-400 ppm
126SB	Carbon dioxide, 0.05-1.0%	105SD	Diisopropyl amine, 1-16 ppm
126SF	Carbon dioxide, 100-4000 ppm	229S	N,N-Dimethylacetamide, 5-70 ppm
126SG	Carbon dioxide, 0.02-1.4%	227S	Dimethyl amine, 1-20 ppm
126SH	Carbon dioxide, 1-20%	105SD	N,N-Dimethylaniline, 0.5-9 ppm
126UH	Carbon Dioxide, 5-50%	123S	Dimethyl ether, 0.01-1.2%

ALPHABETICAL DETECTOR TUBE LIST CONTINUED

W.A. Denderly (Communic) 1-30 ppm 131	Model #	Description	Model #	Description
1991 Discana, 0.10-1-00 ppm 1388 Sosbuly acatala, 0.01-1-14% 1598 Discana, 0.05-2-5% 153U Sosbuly acatala, 0.11-14% 1699 1690 1188 Sosbuly acatala, 0.11-14% 1699 1690 1188 Sosbuly acatala, 0.11-14% 1699 1690 1		•		•
1938 Dissane, D. 05-2.0% 150V				
1925 Epichardydrine, 5-50 ppm		* * * * * * * * * * * * * * * * * * * *		•
1115A				
1110				
1045A				
2275				-
Elly berman, 10-500 ppm				
1575B4 Elhy Incomide. 0.4-80 ppm 190U Soprene. 1-16 ppm 190U Elhy cellososive acetale. 5-150 ppm 1395B Sopropyl acetale. 10-100 ppm 150B Elhylece. 0.1-100 ppm 150B Elhylece. 0.1-100 ppm 150B Elhylece. 0.1-100 ppm 150U Sopropyl acetale. 10-100 ppm 150U Sopropyl acetale. 10-100 ppm 150U Sopropyl acetale. 10-100 ppm 150B Sopropyl elher. 10-100 ppm 122SA Elhylene oxide. 9-10-10-10 ppm 125B Sopropyl elher. 10-100 ppm 122SA Elhylene oxide. 9-10-10 ppm 142S Mercury vapor. 0.1-10 mg/m³ 122SM Elhylene oxide. 9-10-10 ppm 142S Mercury vapor. 0.1-10 mg/m³ 122SM Elhylene oxide. 9-10 ppm 142S Mercury vapor. 0.1-10 mg/m³ 122SM Elhylene oxide. 9-10 ppm 111SA Mercury vapor. 0.1-10 mg/m³ 122SM Elhylene oxide. 9-10 ppm 111SA Mercury vapor. 0.1-10 mg/m³ 1				
Biffy cellosolve, 5-500 pm		*		
Ethyl callosolve acatals, 5-150 pm	. ,			
Ethylene, 0.1-100 ppm (color intensity)				
1685				
Ethylene glycol, 20-250 mg/m³		* * * * * * * * * * * * * * * * * * * *		
2325A'				
22258 Ethylene glycol, 3-40 mg/m³			. ,	
1225A			. ,	
1225C				
1225L				
1225 Ethylene oxide, 0.1-14.0 ppm		2 11		• • • • • • • • • • • • • • • • • • • •
Ethylene oxide, 5-100 ppm				The state of the s
165SA				
Ethyl mercaptan, 2.5-80 ppm				
130U				
111U(8)				-
1715A* Formaldehyde, 20-1500 ppm 119U Methyl alcohol, 20-1000 ppm 1715B* Formaldehyde, 1-35 ppm 2275 Methylamine, 1-20 ppm 105SD n-Methyl anilar, 1-20 ppm 105SD n-Methyl anilar, 1-20 ppm 105SD n-Methyl anilar, 0.5-6 ppm 157JS Methyl bromide, 3-70 g/m³ 125XA Furan, 0.01-4.0% 157SA Methyl bromide, 3-70 g/m³ 125XA Furan, 0.01-4.0% 157SA Methyl bromide, 3-70 g/m³ 125XA Furan, 0.01-4.0% 157SA Methyl bromide, 0.4-80 ppm 110S Gasoline, 0.05-0.6% 237S(1) Methyl butyl ketone, 5-120 ppm 187S General hydrocarbons, 50-1400 ppm 190U Methyl cyclohexane, 100-1600 ppm 113SB Heptane, 100-2000 ppm 160S Methyl cyclohexane, 100-1600 ppm 113SB n-Hexane, 0.05-1.32% 113SB Methyl cyclohexane, 100-1600 ppm 113SC n-Hexane, 5-900 ppm 199U Methyl cyclohexane, 100-1600 ppm 113SC n-Hexane, 5-800 ppm 198U Methyl cyclohexane, 100-1600 ppm 122SA Methyl ethyl ketone, 0.05-5.0% 137U Hydrogen, 0.05-0.8% 139SB Methyl ethyl ketone, 0.05-5.0% 137SA* Hydrogen chloride, 20-1200 ppm 176S* Methyl ethyl ketone, 20-1500 ppm 172SA* Hydrogen chloride, 20-1200 ppm 176S* Methyl iodide, 2-40 ppm 178SB* Hydrogen cyanide, 0.01-3.0% 122SA Methyl iodide, 2-40 ppm 178SB* Hydrogen cyanide, 0.5-100 ppm 15SU Methyl isobutyl ketone, 5-100 ppm 16XSA Hydrogen cyanide, 0.5-100 ppm 16XSA Methyl isobutyl ketone, 5-100 ppm 16XSA Hydrogen cyanide, 0.5-100 ppm 16XSA Methyl isobutyl ketone, 5-100 ppm 10XSC Hydrogen sulfide, 0.5-4 g/100 cf				
1718B' Formaldehyde, 1-35 ppm	. ,			•
1715C				
216S				
122SA				
238S Furfuryl alcohol, 2-25 ppm 1578B Methyl bromide, 0.4-80 ppm				
110S Gasoline, 0.05-0.6% 237S(1) Methyl butyl ketone, 5-120 ppm 187S General hydrocarbons, 50-1400 ppm 190U Methyl Cellosolve, 5-500 ppm 113SB Heptane, 100-2000 ppm 160S Methyl chloroform, 15-400 ppm 113SA n-Hexane, 0.05-1.32% 113SB Methyl cyclohexane, 100-1600 ppm 113SB n-Hexane, 50-1400 ppm 199U Methyl cyclohexane, 100-1600 ppm 113SC n-Hexane, 5-800 ppm 198U Methyl cyclohexanole, 2-100 ppm 113SC n-Hexane, 5-800 ppm 198U Methyl cyclohexanole, 2-100 ppm 129S Hydrazine, 0.05-10 ppm 122SA Methyl ethyl ketone, 0.05-5.0% 137U Hydrogen, 0.05-0.8% 133SB Methyl ethyl ketone, 0.05-5.0% 137U Hydrogen chloride, 20-1200 ppm 176SS Methyl ethyl ketone, 20-1500 ppm 178SB Hydrogen chloride, 0.4-40 ppm 176S Methyl isobutyl ketone, 20-1500 ppm 112SA Hydrogen cyanide, 0.5-100 ppm 15SU Methyl isobutyl ketone, 0.01-0.6% 142SB Hydrogen cyanide, 0.5-100 ppm 15SU Methyl isobutyl ketone, 0.01-0.6% 142SS Hydrogen cyanide, 0.3-8 ppm 111U(10) Methyl isobutyl ketone, 5-300 ppm 15SS Methyl isobutyl ketone, 5-300 ppm 164SH Methyl mercaptan, 5-140 ppm 167S Hydrogen selenide, 1.600 ppm 164SH Methyl mercaptan, 0.5-100 ppm 120GR Hydrogen selenide, 1.600 ppm 130U Methyl mercaptan, 0.5-100 ppm 120GR Hydrogen sulfide, 0.05-0.4 gr/100 cf 184S Methyl mercaptan, 0.5-100 ppm 120GR Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.75-300 ppm 115SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-100 ppm 153U Napthalene, 10-1000 ppm 120SC Hydrogen sulfide, 0.5-100 ppm 120SD Hydrog		•		
187S General hydrocarbons, 50-1400 ppm 190U Methyl Cellosolve, 5-500 ppm 113SB Heptane, 100-2000 ppm 160S Methyl cyclohexane, 100-1600 ppm 113SA n-Hexane, 0.05-1.32% 113SB Methyl cyclohexane, 100-1600 ppm 113SB n-Hexane, 50-1400 ppm 199U Methyl cyclohexano, 5-200 ppm 113SC n-Hexane, 5-800 ppm 198U Methyl cyclohexanone, 2-100 ppm 219S Hydrazine, 0.05-10 ppm 122SA Methyl ethyl ketone, 0.05-5.0% 137U Hydrogen chloride, 20-1200 ppm 139SB Methyl ethyl ketone, 0.01-1.4% 173SB* Hydrogen chloride, 20-1200 ppm 139U Methyl ethyl ketone, 0.01-1.60 112SB Hydrogen cyanide, 0.01-3.0% 122SA Methyl isobutyl ketone, 0.01-0.6% 112SB Hydrogen cyanide, 0.01-3.0% 122SA Methyl isobutyl ketone, 0.01-0.6% 112SB Hydrogen cyanide, 0.5-100 ppm 155U Methyl isobutyl ketone, 5-300 ppm 112SC Hydrogen cyanide, 0.5-100 ppm 164SA Methyl isobutyl ketone, 5-300 ppm 15SS Hydrogen sulfide, 0.5-10.0 ppm 164SA Methyl mercaptan, 5-140 ppm				
113SB			. ,	
113SA		•		
113SB		• • • • • • • • • • • • • • • • • • • •		
113SC n-Hexane, 5-800 ppm 198U Methyl cytohexanone, 2-100 ppm 219S Hydrazine, 0.05-10 ppm 122SA Methyl ethyl ketone, 0.05-5.0% 137U Hydrogen, 0.05-0.8% 139SB Methyl ethyl ketone, 0.01-1.4% 173SA* Hydrogen chloride, 0.4-40 ppm 139U Methyl ethyl ketone, 20-1500 ppm 173SB* Hydrogen cyanide, 0.01-3.0% 122SA Methyl isobutyl ketone, 0.01-0.6% 112SB Hydrogen cyanide, 0.5-100 ppm 155U Methyl isobutyl ketone, 5-300 ppm 112SC* Hydrogen gevanide, 0.3-8 ppm 111U(10) Methyl isobutyl ketone, 5-300 ppm 147S Hydrogen peoxide, 0.5-10.0 ppm 164SA Methyl mercaptan, 5-140 ppm 247S Hydrogen selenide, 1-600 ppm 130U Methyl mercaptan, 5-140 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl mercaptan, 0.5-10 ppm 120GT Hydrogen sulfide, 0.025-0.4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.05-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SB Hydrogen sulfide, 0.05-0.09m 153U Napthalene, 10-100 ppm <				
219S				
137U Hydrogen, 0.05-0.8% 139SB Methyl ethyl ketone, 0.01-1.4% 173SA* Hydrogen chloride, 20-1200 ppm 139U Methyl lethyl ketone, 20-1500 ppm 173SB* Hydrogen chloride, 0.4-40 ppm 176S* Methyl iodide, 2-40 ppm 112SA Hydrogen cyanide, 0.01-3.0% 122SA Methyl isobutyl ketone, 0.01-0.6% 112SB Hydrogen cyanide, 0.5-100 ppm 155U Methyl isobutyl ketone, 5-300 ppm 112SC* Hydrogen cyanide, 0.3-8 ppm 111U(10) Methyl isothiocyanate, 10-1000 ppm 156S Hydrogen fluoride, 0.17-30 ppm 164SA Methyl mercaptan, 5-140 ppm 247S Hydrogen peoxide, 0.5-10.0 ppm 164SH Methyl mercaptan, 5-0-1000 ppm 167S Hydrogen sulfide, 1.600 ppm 130U Methyl mercaptan, 0.5-10 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SB Hydrogen sulfide, 0.05-16% 224SA Monoethanol amine, 0.5-50 ppm 120SE Hydrogen sulfide, 1-60 ppm 10SSD Morpholine, 2-22 ppm </td <td></td> <td>* **</td> <td></td> <td></td>		* **		
173SA* Hydrogen chloride, 20-1200 ppm 139U Methyl ethyl ketone, 20-1500 ppm 173SB* Hydrogen chloride, 0.4-40 ppm 176S* Methyl iodide, 2-40 ppm 112SA Hydrogen cyanide, 0.01-3.0% 122SA Methyl isobutyl ketone, 0.01-0.6% 112SB Hydrogen cyanide, 0.5-100 ppm 155U Methyl isobutyl ketone, 5-300 ppm 112SC* Hydrogen cyanide, 0.3-8 ppm 111U(10) Methyl isobutyl ketone, 5-300 ppm 156S Hydrogen fluoride, 0.17-30 ppm 164SA Methyl mercaptan, 5-140 ppm 247S Hydrogen peoxide, 0.5-10.0 ppm 164SH Methyl mercaptan, 5-140 ppm 167S Hydrogen selenide, 1-600 ppm 130U Methyl mercaptan, 0.5-10 ppm 120GR Hydrogen sulfide, 0.025-0.4 gy/100 cf 184S Methyl methacrylate, 10-160 ppm 120GT Hydrogen sulfide, 0.25-4 gy/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.05-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SC Hydrogen sulfide, 0.05-40 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm				
1738B* Hydrogen chloride, 0.4-40 ppm 176S* Methyl iodide, 2-40 ppm 112SA Hydrogen cyanide, 0.01-3.0% 122SA Methyl isobutyl ketone, 0.01-0.6% 112SB Hydrogen cyanide, 0.5-100 ppm 155U Methyl isobutyl ketone, 5-300 ppm 112SC* Hydrogen cyanide, 0.3-8 ppm 111U(10) Methyl isobutyl ketone, 5-300 ppm 156S Hydrogen fluoride, 0.17-30 ppm 164SA Methyl isothiocyanate, 10-1000 ppm 247S Hydrogen peoxide, 0.5-10.0 ppm 164SH Methyl mercaptan, 5-140 ppm 167S Hydrogen selenide, 1-600 ppm 130U Methyl mercaptan, 50-1000 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl methacrylate, 10-160 ppm 120SG Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.05-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbo				
112SA Hydrogen cyanide, 0.01-3.0% 122SA Methyl isobutyl ketone, 0.01-0.6% 112SB Hydrogen cyanide, 0.5-100 ppm 155U Methyl isobutyl ketone, 5-300 ppm 112SC* Hydrogen cyanide, 0.3-8 ppm 111U(10) Methyl isobutyl ketone, 5-300 ppm 156S Hydrogen fluoride, 0.17-30 ppm 164SA Methyl mercaptan, 5-140 ppm 247S Hydrogen peoxide, 0.5-10.0 ppm 164SH Methyl mercaptan, 50-1000 ppm 167S Hydrogen selenide, 1-600 ppm 130U Methyl mercaptan, 0.5-10 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl methacrylate, 10-160 ppm 120ST Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.05-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000		, 11		, , , , , , , , , , , , , , , , , , , ,
112SB Hydrogen cyanide, 0.5-100 ppm 155U Methyl isobutyl ketone, 5-300 ppm 112SC* Hydrogen cyanide, 0.3-8 ppm 111U(10) Methyl isothiocyanate, 10-1000 ppm 156S Hydrogen fluoride, 0.17-30 ppm 164SA Methyl mercaptan, 5-140 ppm 247S Hydrogen peoxide, 0.5-10.0 ppm 164SH Methyl mercaptan, 50-1000 ppm 167S Hydrogen selenide, 1-600 ppm 130U Methyl metracrylate, 10-160 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl styrene, 10-500 ppm 120ST Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.005-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 0.5-40 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 25-2000 ppm 153U Napthalene, 10-100 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SB Nitrogen dioxide, 0.5-30.0 ppm				
112SC* Hydrogen cyanide, 0.3-8 ppm 111U(10) Methyl isothiocyanate, 10-1000 ppm 156S Hydrogen fluoride, 0.17-30 ppm 164SA Methyl mercaptan, 5-140 ppm 247S Hydrogen peoxide, 0.5-10.0 ppm 164SH Methyl mercaptan, 50-1000 ppm 167S Hydrogen selenide, 1-600 ppm 130U Methyl mercaptan, 0.5-10 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl methacrylate, 10-160 ppm 120GT Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.05-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UT Hydrogen sulfide, 2.5-40% 1		, , ,		
156S Hydrogen fluoride, 0.17-30 ppm 164SA Methyl mercaptan, 5-140 ppm 247S Hydrogen peoxide, 0.5-10.0 ppm 164SH Methyl mercaptan, 50-1000 ppm 167S Hydrogen selenide, 1-600 ppm 130U Methyl mercaptan, 0.5-10 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl methacrylate, 10-160 ppm 120GT Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.05-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SA Nitrogen dioxide, 20-1000 ppm 120UH Hydrogen sulfide, 2-20% 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A <t< td=""><td></td><td></td><td></td><td></td></t<>				
247S Hydrogen peoxide, 0.5-10.0 ppm 164SH Methyl mercaptan, 50-1000 ppm 167S Hydrogen selenide, 1-600 ppm 130U Methyl mercaptan, 0.5-10 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl methacrylate, 10-160 ppm 120GT Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.05-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120UH Hydrogen sulfide, 2-20% 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; </td <td></td> <td></td> <td>, ,</td> <td></td>			, ,	
167S Hydrogen selenide, 1-600 ppm 130U Methyl mercaptan, 0.5-10 ppm 120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl methacrylate, 10-160 ppm 120GT Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.005-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm; 174A Nitrogen oxide and dioxide, NO 10-300 ppm;		, , , , , , , , , , , , , , , , , , , ,		
120GR Hydrogen sulfide, 0.025-0.4 gr/100 cf 184S Methyl methacrylate, 10-160 ppm 120GT Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.005-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2.5-40% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm; NO2 1-40 ppm		, , , , , , , , , , , , , , , , , , , ,		
120GT Hydrogen sulfide, 0.25-4 gr/100 cf 193S Methyl styrene, 10-500 ppm 120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.005-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2-20% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm; NO2 1-40 ppm				
120SB Hydrogen sulfide, 0.75-300 ppm 111U(11) Mineral turpentine, 10-1000 ppm 120SC Hydrogen sulfide, 0.005-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2-20% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm; NO2 1-40 ppm				
120SC Hydrogen sulfide, 0.005-0.16% 224SA Monoethanol amine, 0.5-50 ppm 120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2-20% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm; NO2 1-40 ppm				
120SD Hydrogen sulfide, 1-60 ppm 105SD Morpholine, 2-22 ppm 120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2-20% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm; NO2 1-40 ppm			, ,	
120SE Hydrogen sulfide, 0.5-40 ppm 153U Napthalene, 10-100 ppm 120SF Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2-20% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm; NO2 1-40 ppm				• • • • • • • • • • • • • • • • • • • •
Hydrogen sulfide, 25-2000 ppm 129 Nickel carbonyl, 20-700 ppm 120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2-20% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm;				
120SH Hydrogen sulfide, 0.1-4.0% 233S Nitric acid vapor, 1-20 ppm 120SM Hydrogen sulfide, 0.05-1.2% 117SA Nitrogen dioxide, 20-1000 ppm 120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2-20% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; 282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm;		, , , , , , , , , , , , , , , , , , , ,		
120SMHydrogen sulfide, 0.05-1.2%117SANitrogen dioxide, 20-1000 ppm120UHydrogen sulfide, 0.2-6.0 ppm117SBNitrogen dioxide, 0.5-30.0 ppm120UHHydrogen sulfide, 2-20%117SD*Nitrogen dioxide, 0.1-1.0 ppm120UTHydrogen sulfide, 2.5-40%174ANitrogen oxide and dioxide, NO 10-300 ppm;282SHydrogen sulfide-Mercaptans, H2S 1-30 ppm;NO2 1-40 ppm				
120U Hydrogen sulfide, 0.2-6.0 ppm 117SB Nitrogen dioxide, 0.5-30.0 ppm 120UH Hydrogen sulfide, 2-20% 117SD* Nitrogen dioxide, 0.1-1.0 ppm 120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; NO2 1-40 ppm				
120UHHydrogen sulfide, 2-20%117SD*Nitrogen dioxide, 0.1-1.0 ppm120UTHydrogen sulfide, 2.5-40%174ANitrogen oxide and dioxide, NO 10-300 ppm; NO2 1-40 ppm282SHydrogen sulfide-Mercaptans, H2S 1-30 ppm;NO2 1-40 ppm				
120UT Hydrogen sulfide, 2.5-40% 174A Nitrogen oxide and dioxide, NO 10-300 ppm; NO2 1-40 ppm				
282S Hydrogen sulfide-Mercaptans, H2S 1-30 ppm; NO2 1-40 ppm				
		R•SH 0.5-5 ppm		

ALPHABETICAL DETECTOR TUBE LIST CONTINUED

Model #	Description	Model #	Description
174B*	Nitrogen oxide and dioxide, NO 10-300 ppm;	103SB	Sulfur dioxide, 0.02-0.3%
	NO2 1-40 ppm	103SC	Sulfur dioxide, 20-300 ppm
175SA	Nitrogen oxides, 20-250 ppm	103SD	Sulfur dioxide, 1-60 ppm
175SH	Nitrogen oxides, 100-2500 ppm	103SE	Sulfur dioxide, 0.25-10 ppm
175U	Nitrogen oxides, 0.5-30 ppm	103SF	Sulfur dioxide, 0.02-0.3%
111U(12)	n-Nonane, 10-1000 ppm	103SG	Sulfur dioxide in Carbon dioxide, 0.1-25 ppm
186	Organic gas checker	103SF*	Sulfur dioxide in flue gas, 0.0203%
186B	Organic gas qualitative detector tube	244U	Sulphuric acid, 0.5-5 mg/m ³
159SA*	Oxygen, 2-24%	135SA	Tetrachloroethylene, 5-300 ppm
159SB*	Oxygen, 2-24% (for explosion hazard areas)	135SB	Tetrachloroethylene, 0.2-10 ppm
159SC*	Oxygen, 1.5-24% (non-heating type)	135SG	Tetrachloroethylene, 0.1-2.0%
281S*	Oxygen, 02 2-10%; CO2 1-20% (separation measurement)	135SM	Tetrachloroethyene for process control, 50-1250 ppm
182SA	Ozone, 50-1000 ppm	243U	Tetraethoxysilane, 5-200 ppm
182SB	Ozone, 2.5-100 ppm	102SA	Tetrahydrofuran, 0.2-5.0%
182U	Ozone, 0.025-3.0 ppm	162U	Tetrahydrofuran, 20-400 ppm
113SB	Pentane, 50-1000 ppm	190U(5)	Tetrahydrothiophen, 5-500 ppm
210U	Pentyl acetate, 10-200 ppm	124SA	Toluene, 10-500 ppm
105SD	Pentylamine, 2-22 ppm	124SB	Toluene, 2-100 ppm124SH
183U	Phenol, 0.5-25.0 ppm		Toluene, 100-3000 ppm
146S	Phosgene, 0.1-20 ppm	105SD	o-Toluidine, 2-22 ppm
121SA	Phosphine in acetylene, 20-800 ppm	105SD	p-Toluidine, 2-20 ppm
121SB	Phosphine in acetylene, 5-90 ppm	236S*	1,1,2-Trichloroethane, 10-100 ppm
121SC	Phosphine, 20-1400 ppm	236S(1)*	1,1,2-Trichloroethane, 10-100 ppm
121SD	Phosphine, 0.25-20.0 ppm	134SA	Trichloroethylene, 5-300 ppm
121SH	Phosphine, 100-3200 ppm	134SB	Trichloroethylene, 0.2-36.8 ppm
121U	Phosphine, 0.05-2.0 ppm	134SG	Trichloroethylene, 0.05-2.0%
121SS	Phosphine for fumigation, 200-6000 ppm	132SC(8)*	Trichlorotoluene, 0.1-12.0 ppm
125SA	Propane, 0.02-0.5%	213S	Triethylamine, 1-20 ppm
190U(4)	1-Propanol, 5-500 ppm	222S	Trimethylamine, 1-20 ppm
216SC	Propionic acid 3-50 ppm	111U	1,2,4-Trimethyl benzene, 10-1000 ppm
139SB	Propyl acetate, 0.01-1.4%	113SB	2,2,4 Trimethyl pentane, 100-4000 ppm
151U	Propyl acetate, 20-1000 ppm	216S	n-Valeric acid, 3-70 ppm
105SD	Propylamine, 1-20 ppm	237S	Vinyl acetate, 5-120 ppm
185S	Propylene, 50-1000 ppm	132SA	Vinyl chloride, 0.05-1.0%
122SC(2)	Propylene glycol, 1-15 ppm	132SB	Vinyl chloride, 5-500 ppm
163SA	Propylene oxide, 0.05-5.0%	132SC	Vinyl chloride, 0.1-12.0 ppm
122SC(1)	Propylene oxide, 1-15 ppm	177SA	Water vapor, 1.7-33.8 mg/L
219S(1)	Pyridine, 0.05-10 ppm	177U	Water vapor, 0.05-2.0 mg/L
105SD	Pyridine, 0.5-10 ppm	177UL	Water vapor, 3-80 LB/MMCF
240S	Silane, 0.5-50 ppm	177UR	Water vapor, 2-12 LB/MMCF
158S	Styrene, 2.5-300 ppm	143SA	Xylene, 5-1000 ppm
158S(1)	Styrene, 2.5-300 ppm	143SB	Xylene, 5-200 ppm
158SB*	Styrene, 1-100 ppm	*Each box cont	ains tubes for 5 measurements
103SA	Sulfur dioxide, 0.1-3.0%		

COMPRESSED BREATHING AIR TEST TUBES

600SP Carbon monoxide - Breathing air, 5-100 ppm 601SP Carbon dioxide - Breathing air, 100-3000 ppm 602SP Oil mist - Breathing air, 0.3-5 mg/m³ 603SPA Water vapor - Breathing air, 20-160 mg/m³ 604SP** Oxygen - Breathing air, 2-24%

**A 50 ml plastic syringe and a 1 meter vinyl tube are optionally necessary.

DETECTOR TUBES FOR DISSOLVED SUBSTANCES IN SOLUTION

10 tubes per box 200SA Sulphide ion, 2-1000 ppm Sulphide ion, 0.5-10 ppm 200SB 201SA Chloride ion, 10-2000 ppm 201SB Chloride ion, 3-200 ppm 203S Copper ion, 1-100 mg/L 204S Cyanide ion, 0.2-5 ppm 205SL Salinity, 0.01-0.8% 234SA Free residual chlorine, 0.4-5 ppm

CYLINDER HOLDING DEVICES

OSHA regulations require compressed gas cylinders to be secured from toppling when in storage or in use. The devices shown here will help you comply with these regulations.

WALL MOUNT CYLINDER HOLDER - MODEL 400

This cast aluminum cylinder holder provides an easy way to secure cylinders to a wall, in a gas storage cabinet, or other stable surface. The holder is attached with bolts or lag screws using the pre-formed holes 7 inches apart. The holder can be used with cylinders from 4 to 14 inches in diameter. Cylinders are held firmly in place with a nylon strap fitted with a sturdy buckle, with an optional steel chain and hook, or both strap and chain

Model	Description
400	Wall mount cylinder holder with strap
400C	Wall mount cylinder holder with chain and hook
400CS	Wall mount cylinder holder with strap, chain and hook
400 RS	Replacement strap.

BENCH TYPE CYLINDER HOLDER - MODEL 420

This holder is designed to prevent toppling of cylinders when they are next to a lab or work bench and cannot be secured to a wall. The special screw clamp holds securely to a table top without marring the surface. The holder can be used with cylinders from 4 to 14 inches in diameter. Cylinders are held firmly in place with a nylon strap fitted with a sturdy buckle, with an optional steel chain and hook, or with both strap and chain.

Model	Description
420	Bench mount cylinder holder with strap
420C	Bench mount cylinder holder with chain and hook
420CS	Bench mount cylinder holder with strap, chain and hook
400 RS	Replacement strap.

SMALL CYLINDER STAND Model 450

DESCRIPTION

This stand provides increased stability to cylinders with diameters of 4" to 7-3/8". It is constructed of stainless steel. Four thumb screws hold the stand securely to the cylinder. Stand height is 10".

LECTURE BOTTLE HOLDERS

Lecture bottles have rounded ends and require some means of support when in use. We provide two types of holders here that meet most requirements.

NON-TIP STAND -MODEL 475

This stand offers a convenient method of securing a lecture bottle on a table or lab bench. The stand is made of light weight brushed aluminum, yet the large diameter base provides stability even when a regulator is installed on the bottle.

WALL MOUNT LECTURE BOTTLE BRACKET - MODEL 480

This bracket is made of anodized aluminum and has spring clips that provide firm, secure support to the lecture bottle. The bracket is ideal for securing lecture bottles to lab cart or bench set-ups, in carrying cases for portable systems, or in storage cabinets

LARGE CYLINDER STAND Model 460

DESCRIPTION

This stand provides increased stability to cylinders with a diameter of 7"-9.5" in situations where it is not possible to secure the cylinder to a wall or a bench with the model 400 or 420 cylinder holders. The cylinder can be rolled on and off with ease and is firmly held in place or quickly released by the cylinder holding band. With this unique design the cylinder rests on a steel plate and uses the cylinder's own weight to help keep the cylinder and stand stable and eliminate unsafe cylinder "ride up" that is common in some competitive models. Constructed of steel painted green.

Dimensions: 18" x 18" x 12.5" high

Weight: 13 lbs.

480

133

CYLINDER FLOOR STANDS Series 465

Available in two and three cylinder models, these floor stands are designed and built to provide safe storage of compressed gas cylinders with diameters up to 12" when a wall, post or bench is not available to the secure the cylinder. Fully welded construction from 11 gauge and heavier plate steel and a quality epoxy powder paint finish provide structural integrity and long service life. Surfaces coming in contact with the cylinders are protected with vinyl edge guards. Cylinders are held securely in place with 1.5" polypropylene straps with steel cinch buckles. Shipped assembled via UPS.

Model	Description	Dimensions	Weight
465-2	Two cylinder floor stand	28" wide x 30" high x 12" deep	41 lbs
465-3	Three cylinder floor stand	40" wide x 30" high x 12" deep	56 lbs

"GAS STATION" PROCESS STANDS Series 495

DESCRIPTION

There are many situations where it would be more convenient to locate gas cylinders and distribution systems near the process, but away from a wall or other secure fixture. The "Gas Station" solves this problem. It can be located in any open area and support two or three cylinders and the associated gas distribution equipment. The stand is secured to the floor with bolts through the four pre-drilled holes provided in the base. Cylinders sit on the base plate and are securely held to the steel frame with sturdy nylon belts. A changeover manifold or other distribution equipment can be conveniently mounted to the plate above the cylinders. Unit is painted gray. The unit is shipped unassembled via UPS. Assembly is easily accomplished in 10-15 minutes.

HOW TO ORDER

Model 495-2 Two Cylinder Gas Station

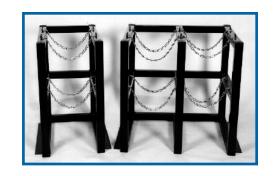
Dimensions: 28" W x 72 1/2" H x 12" D

Weight: 56 pounds

Model 495-3 Three Cylinder Gas Station

Dimensions: 40" W x 72" H x 12" D

Weight: 78 pounds



CYLINDER STORAGE RACKS Series 490

FEATURES

- Safe cylinder restraint
- Organized gas cylinder storage
- Simple installation

- Uses space efficiently
- · Removable and relocatable

DESCRIPTION

The storage of compressed gas cylinders to comply with Federal, State and Local regulations often presents a number of problems. These new cylinder storage racks can help organize your cylinder storage and help you comply with the myriad of regulations.

Because the frame is predrilled to accommodate anchoring the rack to the floor they are ideal for situations where cylinder must be located away from a wall or other securing fixture. Racks are available in standard sizes to hold one to nine cylinders. Custom racks are available. Standard rack configurations are shown below.

The unique design of square steel tubing (2" x 2") components welded together to form the frame provides the rigidity necessary to allow the frame to be constructed without a bottom. This allows cylinders to be rolled into the frame without lifting.

Racks are provided with either single or dual restraint steel chains to secure the cylinders. Single restraint racks secure the individual cylinders with a chain for each cylinder located at the top of the rack. Dual restraint models have a set of chains for each cylinder at 15" and 30" from the floor.

Racks are finished with a black powder coating to provide long lasting protection. These cylinder storage racks meet the requirements of the National Fire Protection Association, National Fire Codes, Uniform Fire Codes, Uniform Building Codes and Seismic Zone 4 Restraint Regulations, Compressed Gas Association, and OSHA.

HOW TO ORDER (other configurations available on request)

odel	Description	Nominal Dimensions
ngle restraint n	nodels	
0-111	1 cyl wide x 1 cyl deep	16" W x 16" D x 30" H
0-121	2 cyl wide x 1 cyl deep	30" W x 16" D x 30" H
)-131	3 cyl wide x 1 cyl deep	44" W x 16" D x 30" H
)-112	1 cyl wide x 2 cyl deep	16" W x 26" D x 30" H
)-122	2 cyl wide x 2 cyl deep	30" W x 26" D x 30" H
0-132	3 cyl wide x 2 cyl deep	44" W x 26" D x 30" H
0-113	1 cyl wide x 3 cyl deep	16" W x 38" D x 30" H
0-123	2 cyl wide x 3 cyl deep	30" W x 38" D x 30" H
)-133	3 cyl wide x 3 cyl deep	44" W x 40" D x 30" H
l Restraint Mo	odels	
-211	1 cyl wide x 1 cyl deep	16" W x 16" D x 30" H
-221	2 cyl wide x 1 cyl deep	30" W x 16" D x 30" H
)-231	3 cyl wide x 1 cyl deep	44" W x 16" D x 30" H
-212	1 cyl wide x 2 cyl deep	16" W x 26" D x 30" H
)-222	2 cyl wide x 2 cyl deep	30" W x 26" D x 30" H
)-232	3 cyl wide x 2 cyl deep	44" W x 26" D x 30" H
-213	1 cyl wide x 3 cyl deep	16" W x 38" D x 30" H
-223	2 cyl wide x 3 cyl deep	30" W x 38" D x 30" H
)-233	3 cyl wide x 3 cyl deep	44" W x 40" D x 30" H

All cylinder racks must ship motor freight.

Gas cylinder restraint and storage

490-111

490-112

490-121

490-113

490-123

490-122

490-211

490-131

490-213

490-212

490-222

490-221

490-231

490-223

GAS SAFETY STORAGE CABINETS Series 7000

DESCRIPTION

Gas safety storage cabinets are designed to provide local exhaust gas control to enhance the safety of storing or using hazardous gases. The use of gas cabinets provides a convenient way to achieve separation of gases by their classifications to satisfy both national and local fire and building codes.

When connected to a suitable exhaust system, air is drawn though the cabinet ensuring that any gas leakage is carried away and does not accumulate in the storage or work area. The cabinets can be fitted with manifolds or other gas controls so that both the cylinder and the control system are enclosed. When operators access the controls through the access window and a proper exhaust system is in operation, the cabinet has the capacity to allow 150-200 linear feet per minute of air to pass across the open window face to ensure that workers are not exposed.

FEATURES

- All welded construction using 11 gauge steel, epoxy painted.
 Texture finish outside, smooth finish on inside of cabinet.
- Exhaust vent located on top of cabinet is 6" diameter x 3" high.
- 165° F. sprinkler head with bee's wax coating located in cabinet top.
- Cylinder brackets accommodate 7"-9" diameter cylinders.
 The brackets can move vertically and horizontally for precise pigtail alignment.
- Self-latching and closing window(s) with 1/4" thick wire glass.
- Self-latching and closing door(s) with bottom louvers and flush mounted stainless steel paddle latch(es). Optional keyed latches available.
- · All stainless steel fasteners.
- Meets or exceeds the Uniform Fire Code.

HOW TO ORDER

OPTIONS:

Model	Description	
7100	one cylinder cabinet	
7200	two cylinder cabinet	
7300	three cylinder cabinet	
7400	four cylinder cabinet	

Model

•	Keyed door latch(es)	7000-1
•	Keyed window latch(es)	7000-2

Adjustable small cylinder shelf
 Fusible link to close door louvers
 7000-3
 7000-4

CABINET PHYSICAL DATA

Model	Cylinder	Dimensions*		Door	Weight	Exhaust Flow
	Capacity	Outside		Opening		Required (SCFM)
7100	one	18'w x 18"d x 72"h		16"w x 70"h	235 lbs.	175
7200	two	24"w x 18"d x 72"h		22"w x 70"h	283 lbs.	250
7300	three	36"w x 18"d x 72"h	left	22"w x 70"h	331 lbs.	450
			right	16"w x 70"h		
7400	four	48"w x 18"d x 72"h	left	22"w x 70"h	391 lbs.	600
			riaht	22"w x 70"h		

^{*}Overall cabinet height including exhaust vent is 75".

CYLINDER HAND TRUCKS

These hand trucks are specially designed to hold and easily transport heavy compressed gas cylinders by persons of moderate strength. They feature arc welded tubular steel construction for strength. All models roll quietly and smoothly on large semi-pneumatic or solid rubber tired wheels and casters for better maneuverability over rough or uneven surfaces. Trucks are finished with green, scratch resistant, high gloss, electrostatically applied, oven baked powder coat.

This unit is designed to handle one T or K type cylinder. It has two 4" rear casters, that fall into place when in use, to provide greater stability. The operator carries no load and has greater control over the truck. The rear wheel assembly is easily returned to the retracted position for storage. The cylinder is held securely on the truck by a safety chain.

MODEL 6214 TWO CYLINDER HAND TRUCK

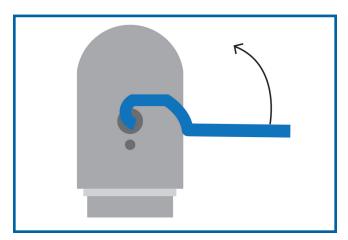
Designed to handle two T or K type cylinders the 6214 has longer handles for ease of mobility and good load control. Retractable 4" rear casters drop into place when needed for extra load handling safety or collapse and lock into the frame for storage. The truck has dual binding chains for extra security and solid 10" rubber front wheels.

SPECIAL CYLINDER WRENCHES

MODEL 90001A

This universal cylinder wrench has 3 openings (3/4", 1-1/8", 1-1/4") for tightening the various cylinder valve connections and most commonly used gas connections. Not non-sparking.

MODEL 90002


This wrench is a basic 3/8" square for opening cylinder valves that do not have hand wheels, such as chlorine and hydrogen sulfide.


MODEL 90003

The special configuration of this wrench provides an easy method of opening extra tight, hand wheel operated cylinder valves and removing difficult cylinder caps.

Remove difficult cylinder caps

Open tight valves easily

316 STAINLESS STEEL FLEXIBLE HOSES Series 601, 604, and 605

DESCRIPTION

Series 601 hoses are constructed of 1/4" I.D. teflon® lined stainless steel braid, rated for 3000 psig. The 601 hoses are fitted with 1/4" NPT brass end connections; they make excellent economical manifold pigtails.

The Series 604 hoses are constructed of double braided stainless steel, fitted with stainless steel 1/4" NPT end connections, rated for 3000 psig, and cleaned for oxygen service.

SERIES 601

- 1/4" I.D. Teflon® lined 316 stainless steel braided hose
- Rated for 3000 psig
- 601 1/4" NPT female x 1/4" NPT female 601MF 1/4" NPT male x 1/4" NPT female
- Cleaned for oxygen service.

SERIES 604 AND 605

- 1/4" I.D. 316 stainless steel fitting and inner core with 304SS or 321SS double braided hose. (605 Series has protective outer armor to provide greater safety and kink resistance.)
- Rated for 3000 psig
- 1/4" NPT female or male stainless steel end connections
- Cleaned for oxygen service.

SPECIAL HOSES

We can provide any of the hoses on this page in different lengths and with a wide variety of end fittings.

HOW TO ORDER

Model	Length	Model	Length	Model	Length
601-2	2.0 feet	604MF-2	2.0 feet	605M-2	2.0 feet
601MF-2	2.0 feet	604-3	3.0 feet	605MF-2	2.0 feet
601-3	3.0 feet	604M-3	3.0 feet	605-3	3.0 feet
601MF-3	3.0 feet	604MF-3	3.0 feet	605M-3	3.0 feet
601-6	6.0 feet	604-6	6.0 feet	605MF-3	3.0 feet
601MF-6	6.0 feet	604M-6	6.0 feet	605-6	6.0 feet
604-2	2.0 feet	604MF-6	6.0 feet	605M-6	6.0 feet
604M-2	2.0 feet	605-2	2 O feet	605MF-6	6.0 feet

CRYOGENIC TRANSFER HOSES - Series 607C

- 1/2" I.D. 316 stainless steel double braided hose with 304SS protective outer armor to provide greater safety and kink resistance
- Rated for 2150 psig
- 1/2" 45° flare female stainless steel connections (CGA 295) or 5/8" 45° flare (CGA 440) for oxygen
- · Cleaned for oxygen service.

HOW TO ORDER

Model		Length
607C-4	for nitrogen and argon	4.0 feet
607C-6	for nitrogen and argon	6.0 feet
607C-4-440	for oxygen	4.0 feet
607C-6-440	for oxygen	6.0 feet

SPECIAL HOSES

We can provide any of the hoses on this page in different lengths and with a wide variety of end fittings.

PRESSURE GAUGES

DESCRIPTION

The selection of brass, stainless steel, and monel[®] gauges presented here represent those used on pressure regulators offered in this catalog. They can be used as repair parts or for installation in other systems.

FEATURES

- 1/4" NPT lower male connection.
- · Cleaned for oxygen service brass and stainless steel only.

HOW TO ORDER

BRASS WITH BRASS CASE - 2 1/2" DIA.

Model	Pressure Range - psig
9131-4PM-0015RL	0-30 (15RL)
9131-4PM-0030	0-30
9131-4PM-0060	0-60
9131-4PM-0100	0-100
9131-4PM-0200	0-200
9131-4PM-0400	0-400
9131-4PM-2000	0-2000
9131-4PM-6000	0-6000
9131-4PM-7500	0-7500

316 STAINLESS STEEL WITH STAINLESS STEEL CASE - 2 1/2" DIA.

Model	Pressure Range - psig
9132-4PM-3030	30" 0-30
9132-4PM-0030	0-30
9132-4PM-0060	0-60
9132-4PM-0100	0-100
9132-4PM-0200	0-200
9132-4PM-0400	0-400
9132-4PM-1000	0-1000
9132-4PM-2000	0-2000
9132-4PM-3000	0-3000
9132-4PM-6000	0-6000
9132-4PM-10000	0-10000

MONEL® WITH STAINLESS STEEL CASE - 2 1/2" DIA.

Model	Pressure Range - psig
9133-4PM-0100	0-100
9133-4PM-0300	0-300
9133-4PM-1000	0-1000
9133-4PM-3000	0-3000

Other sizes and ranges available.

GAUGES WITH FACE SEAL FITTINGS

DESCRIPTION

On some high purity regulators the gauges are connected to the regulator body by using face seal fittings rather than NPT threads.

FEATURES

- 1/4" female face seal connection.
- Dual scale dial psig/bar.
- Cleaned for oxygen service.

HOW TO ORDER

316 stainless steel with stainless steel case 2" dia.

Model	Pressure Range
9122-4VF-3030	30" vac 0-30 psig (-1.0 - 2 bar)
9122-4VF-3060	30" vac 0-60 psig (-1.0 - 4 bar)
9122-4VF-3100	30" vac 0-100 psig (-1.0 - 7 bar)
9122-4VF-0200	0-200 psig (0-14 bar)
9122-4VF-0400	0-400 psig (0-28 bar)
9122-4VF-1000	0-1000 psig (0-70 bar)
9122-4VF-4000	0-4000 psig (0-280 bar)

CGA CYLINDER CONNECTIONS

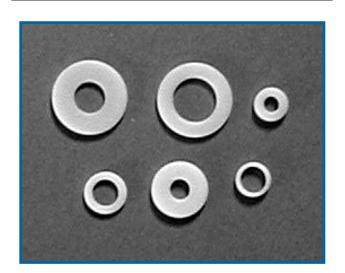
DESCRIPTION

The standard cylinder connections shown in the table below convert CGA cylinder valve outlets to 1/8" NPT male, or 1/4" NPT male, or 1/4" face seal male.

Caution: When changing the gas service of a regulator or gas system by changing the cylinder connections, the regulator or system must be thoroughly cleaned prior to the introduction of the new gas. It is strongly recommended that you consult with your supplier before attempting any conversion to confirm that the intended conversion can indeed be performed safely, or that such equipment be returned to your supplier for conversion.

HOW TO ORDER

Order by CGA No. and description, i.e. "CGA 350 brass cylinder connection". "X" indicates availability.


CGA	Chrome	Brass	St. St.	St. St.	Monel®
No.	Brass	1/4" NPT	1/4" NPT	1/4" Face Seal	1/4" NPT
170	Χ*		Х*	_	-
180	Χ*	Χ*	X*	_	Χ*
240	_	_	Χ	_	_
280	_	Χ	Χ		
290	_	_	Χ	_	_
296	Χ	Χ	_	Χ	-
300		Χ			
320	Χ	Χ	Χ	_	
326	Χ	Χ	Χ	Χ	_
330	_	Χ	Χ	Χ	Χ
346	Χ	Χ	Χ	_	_
347	_	_	Χ	_	_
350	Χ	Χ	Χ	Χ	_
510	Χ	Χ	Х	Χ	_
540	Χ	Χ	Χ	Χ	_
580	Χ	Χ	Χ	Χ	_
590	Χ	Χ	Χ	Χ	_
622	_	Χ	Χ	_	_
626	_	_	Χ	_	_
660	_	Χ	Χ	Χ	Х
670	_	_	Χ	Х	Х
677	_	_	Χ	_	_
678	_	_	Χ	Χ	
679			Χ	Χ	Χ
680	_	Χ	Х		
695		Χ	Χ	_	
702	_		Χ	_	
703	_	Χ	Χ	_	
705	_		Χ	_	

^{*}Fitting has 1/8" NPT male instead of 1/4" NPT male

CGA CONNECTIONS GASKETS

Some standard connections and all DISS connections require a gasket to achieve a leak-free connection. Gaskets should be changed each time the connection is attached to the cylinder valve.

Model	Description
CGA110WA	Teflon gasket for CGA 110 & 679
CGA170WA	Teflon gasket for CGA 170
CGA180WA	Teflon gasket for CGA 180
CGA 240 WA	Teflon gasket for CGA 240
CGA320/330WA	Teflon gasket for CGA 320 & 330
CGA660/670WA	Teflon gasket for CGA 660 & 670
CGA 678/680WA	Teflon gasket for CGA 678 & 680
CGA679PB	Lead washer for CGA 679
CGA 705WA	Teflon gasket for CGA 705
DISS-NI	Nickel gasket for CGA 632 thru 726
DISS-K	Kel-F gasket for CGA 632 thru 726

UHP (DISS) CYLINDER CONNECTIONS

DESCRIPTION

This special group of cylinder connections was developed through the cooperation of industry and the Compressed Gas Association for use with ultra purity gases primarily used in conjunction with semiconductor chip manufacturing applications. The sealing surfaces are similar to a face seal connection used with tubing and they require either a nickel gasket or Kel-F gasket to achieve a seal. They are only available in stainless steel.

FEATURES

· Available with in three mating connection styles:

1/4" face seal male 1/4" NPT male

1/4" tube stub.

• ·Supplied as a set nut, nipple, and nickel gasket.

DISS GASKETS

All DISS connections require a gasket to achieve a leak-free connection. Gaskets should be changed each time the connection is attached to the cylinder valve.

HOW TO ORDER

Model	Description
DISS-NI	Nickel gasket for CGA 632 thru 726
DISS-K	Kel-F gasket for CGA 632 thru 726

HUW TO UKDEK	
Model	Description
DISS632-P4M	632 x 1/4" NPT male
DISS632-V4M	632 x 1/4" male face seal
DISS632-T4S	632 x 1/4" tube stub
DISS634-P4M	634 x 1/4" NPT male
DISS634-V4M	634 x 1/4" male face seal
DISS634-T4S	634 x 1/4" tube stub
DISS636-P4M	636 x 1/4" NPT male
DISS636-V4M	636 x 1/4" male face seal
DISS636-T4S	636 x 1/4" tube stub
DISS638-P4M	638 x 1/4" NPT male
DISS638-V4M	638 x 1/4" male face seal
DISS638-T4S	638 x 1/4" tube stub
DISS640-P4M	640 x 1/4" NPT male
DISS640-V4M	640 x 1/4" male face seal
DISS640-T4S	640 x 1/4" tube stub
DISS642-P4M	642 x 1/4" NPT male
DISS642-V4M	642 x 1/4" male face seal
DISS642-T4S	642 x 1/4" tube stub
DISS712-P4M	712 x 1/4" NPT male
DISS712-V4M	712 x 1/4" male face seal
DISS712-T4S	712 x 1/4" tube stub
DISS714-P4M	714 x 1/4" NPT male
DISS714-V4M	714 x 1/4" male face seal
DISS714-T4S	714 x 1/4" tube stub
DISS716-P4M	716 x 1/4" NPT male
DISS716-V4M	716 x 1/4" male face seal
DISS716-T4S	716 x 1/4" tube stub
DISS718-P4M	718 x 1/4" NPT male
DISS718-V4M	718 x 1/4" male face seal
DISS718-T4S	718 x 1/4" tube stub
DISS720-P4M	720 x 1/4" NPT male
DISS720-V4M	720 x 1/4" male face seal
DISS720-T4S	720 x 1/4" tube stub
DISS722-P4M	722 x 1/4" NPT male
DISS722-V4M	722 x 1/4" male face seal
DISS722-T4S	722 x 1/4" tube stub
DISS724-P4M	724 x 1/4" NPT male
DISS724-V4M	724 x 1/4" male face seal
DISS724-T4S	724 x 1/4" tube stub
DISS726-P4M	726 x 1/4" NPT male
DISS726-V4M	726 x 1/4" male face seal
DISS726-T4S	726 x 1/4" tube stub

INSTRUMENT GRADE PIPE FITTINGS

Pipe fittings are commonly used in constructing gas handling systems to join operating components together in a rigid configuration instead of compression fittings. They are well suited to high purity, high pressure, or high vacuum applications. All of the fittings shown below have a minimum pressure rating of 3000 psig. Some stainless steel fittings may be rated at higher operating pressures.

HOW TO ORDER

BRASS P/N	STAINLESS STEEL P/N	DESCRIPTION
Male Hex Nipple (For	r connecting female pipe threads)	
2-2MHN-B	2-2MHN-SS	1/8" NPT male x 1/8" NPT male
4-2MHN-B	4-2MHN-SS	1/4" NPT male x 1/8" NPT male
4-4MHN-B	4-4MHN-SS	1/4" NPT male x 1/4" NPT male
8-4MHN-B	8-4MHN-SS	1/2" NPT male x 1/4" NPT male
8-8MHN-B	8-8MHN-SS	1/2" NPT male x 1/2" NPT male

Male Hex Long Nipple (For connecting female pipe threads at extended lengths)

4-4MHLN-2.0-B	4-4MHLN-2.0-SS	1/4" NPT male x 1/4" NPT male (2" long)
4-4MHLN-2.5-B	4-4MHLN-2.5-SS	1/4" NPT male x 1/8" NPT male (2.5" long)
4-4MHLN-3.0-B	4-4MHLN-3.0-SS	1/4" NPT male x 1/4" NPT male (3.0" long)
4-4MHLN-4.0-B	4-4MHLN-4.0-SS	1/4" NPT male x 1/4" NPT male (4.0" long)

Female Hex Coupling (for connecting male pipe threads)

	 •	•
2-2FHC-B	2-2FHC-SS	1/8" NPT female x 1/8" NPT female
4-2FHC-B	4-2FHC-SS	1/4" NPT female x 1/8" NPT female
4-4FHC-B	4-4FHC-SS	1/4" NPT female x 1/4" NPT female
8-4FHC-B	8-4FHC-SS	1/2" NPT female x 1/4" NPT female
8-8FHC-B	8-8FHC-SS	1/2" NPT female x 1/2" NPT female

Reducing Bushing (for joining pipe threads of different sizes)

4-2RB-B	4-2RB-SS	1/4" NPT male x 1/8" NPT female
8-4RB-B	8-4RB-SS	1/2" NPT male x 1/4" NPT female

Reducing Adapter (for joining pipe threads of different sizes)

4-2RA-B	4-2RA-SS	1/4" NPT female x 1/8" NPT male
8-4RA-B	8-4RA-SS	1/2" NPT female x 1/4" NPT male

INSTRUMENT GRADE PIPE FITTINGS CONTINUED

HOW TO ORDER

BRASS P/N	STAINLESS STEEL P/N	DESCRIPTION	
Male Elbow (for con	necting female pipe threads at right	angles)	
2-2ME-B	2-2MEL-SS	1/8" NPT male x 1/8" NPT male	
4-4ME-B	4-4MEL-SS	1/4" NPT male x 1/4" NPT male	

2-2FE-B	2-2FE-SS	1/8" NPT female x 1/8" NPT female
4-4FE-B	4-4FE-SS	1/4" NPT female x 1/4" NPT female

Street Elbow (for connecting male to female pipe threads at right angles)

	•		
2-2SE-B	2-2SE	-SS 1/8"	NPT male x 1/8" NPT female
4-4SE-B	4-4SE	E-SS 1/4"	NPT male x 1/4" NPT female

Female Tee (for connecting male pipe threads in a "T" configuration)

2-2-2FT-B	2-2-2FT-SS	1/8" NPT female all ends
4-4-4FT-B	4-4-4FT-SS	1/4" NPT female all ends

Male Tee (for connecting male pipe threads in a "T" configuration)

2-2-2MT-B	2-2-2MT-SS	1/8" NPT male all ends
4-4-4MT-B	4-4-4MT-SS	1/4" NPT male all ends

Street Tee (for connecting pipe threads in a "T" configuration female x male x male)

4-4-4ST-B 4-4-4ST-SS 1/4" NPT male x 1/4" NPT female x 1/4" female

Male Branch Tee (for connecting pipe threads in a "T" configuration male x female x male)

4-4-MBT-B 4-4-MBT-SS 1/4" NPT male x 1/4" NPT female x 1/4" female

Pipe Cross (for making a 4-way connection of male pipe threads)

4FX-B 4FX-SS 1/4" NPT female all ends

Hollow Hex Pipe Plug (to plug a female pipe thread)

2РНН-В	2PHH-SS	1/8" NPT male
4PHH-B	4PHH-SS	1/4" NPT male

COMPRESSION FITTINGS FOR METAL TUBING

Compression fittings are commonly used with metal tubing in constructing gas handling systems using tubing. They are particularly suited to high purity, high pressure, or high vacuum applications. They need no special tools, welding, or soldering and can be made and remade repeatedly.

Please note that the tubing size designation in the ordering information below refers to the outside diameter of the tubing. Also, only the most common fittings are listed here; many other connections are available on request.

HOW TO ORDER

STAINLESS STEEL P/N	DESCRIPTION	
re (For connecting female ni		
3 (1 of conficcing female p	pe threads to tubing)	
2MSC2N-316	1/8" compression x 1/8" NPT male	
2MSC4N-316		
4MSC2N-316		
4MSC4N-316	1/4" compression x 1/4" NPT male	
4MSC8N-316	1/4" compression x 1/2" NPT male	
8MSC4N-316		
8MSC8N-316	1/2" compression x 1/2" NPT male	
tors (for connecting male pi	pe threads to tubing)	
2FSC2N-316	1/8" compression x 1/8" NPT female	
2FSC4N-316	1/8" compression x 1/4" NPT female	
4FSC2N-316	1/4" compression x 1/8" NPT female	
4FSC4N-316	1/4" compression x 1/4" NPT female	
4FSC8N-316	1/4" compression x 1/2" NPT female	
8FSC4N-316	1/2" compression x 1/4" NPT female	
8FSC8N-316	1/2" compression x 1/2" NPT female	
r connecting female pipe thi	reads to tubing at right angles)	
2MSEL2N-316	1/8" compression x 1/8" NPT male	
2MSEL4N-316	•	
4MSEL2N-316		
4MSEL4N-316	1/4" compression x 1/4" NPT male	
for connecting male pipe th	reads to tubing at right angles)	
2FSFI 2N-316	1/8" compression x 1/8" NPT female	
	•	
4FSEL4N-316	1/4" compression x 1/4" NPT female	
ng tubing)		The party of
2SC2-316	1/8" compression x 1/8" compression	
4SC4-316	1/4" compression x 1/4" compression	
ı (for joining tubing of differ	ent sizes)	
4RU2-316	1/4" compression x 1/8" compression	
8RU4-316	1/2" compression x 1/4" compression	
ı (for connecting tubing thro	ough a panel or bulkhead)	
2BC2-316	1/8" compression x 1/8" compression	
4BC4-316	1/4" compression x 1/4" compression	
8BC8-316	1/2" compression x 1/2" compression	
or joining tubing at right ang	lles)	
2EE2-316	1/8" compression x 1/8" compression	
4EE4-316	1/4" compression x 1/4" compression	
8EE8-316	1/2" compression x 1/2" compression	
cining tubing in "T" configu	rations)	
oining tubing in "T" configu	,	
2ET2-316		
	1/8" compression all ends 1/4" compression all ends	
	4MSC2N-316 4MSC4N-316 4MSC4N-316 8MSC4N-316 8MSC8N-316 8MSC8N-316 2FSC2N-316 2FSC2N-316 4FSC2N-316 4FSC4N-316 4FSC8N-316 8FSC8N-316 8FSC8N-316 7 connecting female pipe the 2MSEL2N-316 4MSEL2N-316 4MSEL4N-316 4MSEL4N-316 4MSEL4N-316 4FSEL2N-316 2FSEL2N-316 2FSEL2N-316 4FSEL4N-316 4FSEL4N-316 4FSEL4N-316 4FSEL4N-316 4FSEL4N-316 4FSEL4N-316 1 (for joining tubing of differ 4RU2-316 8RU4-316 1 (for connecting tubing through the 2BC2-316 4BC4-316 8BC8-316 1 (for joining tubing at right ang 2EE2-316 4EE4-316	4MSC2N-316

THE CONTROL AND SAFE HANDLING OF COMPRESSED GASES DVD


We have created this 118 minute video to provide you with an understanding of the basic principles of handling and controlling compressed gases and cryogenic liquids. The video is segmented into chapters so that the viewer may go to any of the primary subjects quickly without having to go through the complete presentation. This video is a "must" for any company's training library.

DISC ONE

Chapter 1.0 Basic Safe Handling Rules for Cylinder Gases Understanding the Compressed Gas Cylinder Chapter 2.0 Chapter 3.0 Cylinder Storage and Security Chapter 4.0 Cryogenic Liquids Chapter 5.0 Personal Protection Gas Monitoring The Most Common OSHA Violations Chapter 6.0

DISC TWO

D.00 111	•	
Chapter	7.0	The Proper Selection and Use of Pressure Regulators
Chapter	8.0 8.1 8.2 8.3	Delivery Systems Protocol Stations Changeover Manifolds Discharge Manifolds
Chapter	9.0	All About Transfer Lines
Chapter	10.0	Purging for Purity and Safety
Chapter	11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7	Accessory Equipment Valves Flowmeters Flash Arrestors Low Pressure Alarms Cylinder Heaters and Warmers Cylinder Hand Trucks Purifiers and Filters
Chapter	12.0	Application Equipment Summary

GAS SAFETY AND MATERIAL COMPATIBILITY DATA CHART

This data has been compiled from the best information available and is offered as a guide to proper material selection. The data presented are generalized for average conditions of temperature and pressure. The user should always investigate the characteristics of the gas being handled and take all the proper precautions. Our technical staff will be pleased to give free advice and technical information on any gas or chemical product of interest.

	HAZARDS FOR HUMANS						M	ATER	ALS (OF COI	CTION	
	Total	[s /s	intrable Corre	sive	Cor	Det Bra	.55 St86	/ s / jst	Mor Mor	Kel® Kel	18 11 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jr®
GAS	70°	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00.	All	\ CO.	, 810	/ SN	Su	Mo	1 to.	/ (%)	SPECIAL CHARACTERISTICS
Acetylene		\(\)		R	N	R	R	R		R	R	Do not use at pressures exceeding 15psig
Air				R	R	R	R	R	R	R	R	
Ammonia	♦	\langle	\Q	R	N	N	Х	R		R	R	Causes stress cracking of copper and copper alloys
Argon				R	R	R	R	R		R	R	
Arsine*	♦	\lambda		Х	N	Х	Х	R		R	R	Highly toxic, excessive exposure may have delayed effect
Boron Trichloride	♦		♦	N	Χ	Х	Χ	Χ	Х	R	R	
Boron Trifluoride	♦		\Q	Х	R	R	R	R	R	R	R	
1-3, Butadiene		\lambda		R	R	R	R	R		R	R	
Butane		\lambda		R	R	R	R	R		R	R	
Butenes		\lambda		R	R	R	R	R		R	R	
Carbon Dioxide				R	R	R	R	R		R	R	
Carbon Monoxide	♦	\lambda		R	R	R	R	R		R	R	
Carbonyl Sulfide	♦	\lambda		R	N	N	Х	R		R	R	Treat as Hydrogen Sulfide, affects central nervous system
Chlorine	♦		♦	N	N	N	Χ	Χ	Χ	R	R	Very toxic and damaging to the respiratory system
Cyanogen*	♦	\langle		Х			R	R		R	R	Treat as cyanides
Deuterium		\Q		R	R	R	R	R		R	R	
Dimethylamine	♦	\Q	\Diamond	Х	N	N	R	R		Χ	R	Attacks copper and copper alloys rapidly.
Dimethyl Ether		\lambda		R	R	R	R	R		R	R	
Ethane		\lambda		R	R	R				R	R	
Ethyl Chloride	♦	\lambda				R	R	R		R	R	
Ethylene		\lambda		R	R	R	R	R		R	R	
Ethylene Oxide	♦	\Q			N	N	R	R		R	R	Exposure of liquid on skin or clothing can cause dermatitis
Fluorine*	♦		\Diamond	R	R	Х		R	R	N	Χ	Strong oxidant, can ignite combustible materials and metals
Helium				R	R	R	R	R		R	R	
Hydrogen		\Q		R	R	R	R	R		R	R	
Hydrogen Bromide	♦		♦	N	Χ	N	Χ	Χ	Χ	R	R	Steel or stainless steel serviceable in dry liquid or gas service
Hydrogen Chloride	♦		\lambda	N	Χ		Х	Х	Χ	R	R	Steel or stainless steel serviceable in dry liquid or gas service
Hydrogen Fluoride*	♦		♦	Х	R	R	R	R		R	R	Exposure can attack skin, bones and fingernails
Hydrogen Selenide	♦	\lambda		N	N	N	Х	R		R	R	Extremely toxic, odor deadens the olfactory nerves
Hydrogen Sulfide*	♦	\(\)		N	N	N	Х	R		R	R	Odor deadens olfactory nerves, can cause paralysis
Isobutane		\lambda		R	R	R	R	R		R	R	
Isobutylene		\lambda		R	R	R	R	R		R	R	
Krypton				R	R	R	R	R		R	R	

^{*}It is recommended that users thoroughly familiarize themselves with the specific properties of this gas.

LEGEND

 \Diamond - Primary Hazard

N - Not Recommended

R - Recommended

X - Depends on conditions

GAS SAFETY AND MATERIAL COMPATIBILITY DATA CHART

	HAZARDS FOR HUMANS						M	ATER	IALS (OF COI	NSTRU	UCTION
			nable	cine	inum				Mor Mor	, so /		
GAS	TOXI	Flag	inable Com	Mil	hinum	Big.	s stee	Stail	,iless s	16/ ₈	(® \ 1811	CDECIAL QUADACTERISTICS
Methane		\Diamond				n	п	n		n	R	SPECIAL CHARACTERISTICS
	♦	_ •		R	R	R	R	R		R		
Methyl Acetylene		\lambda		R	N	Х	R	R		R	R	
Methyl Bromide	♦	\lambda		Х	R	R	R	R		R	R	
Methyl Chloride	♦	\Diamond		N	Χ	R	R	R		R	R	Forms explosive compounds with aluminum
Methyl Mercaptan	♦	\Diamond		R	N	Χ	R	R		R	R	
Monoethylamine	♦	\Diamond		Х	N	N	R	R		Χ	R	Attacks copper and copper alloys rapidly
Monomethylamine	\Diamond	\Diamond		Х	N	N	R	R		Χ	R	Attacks copper and copper alloys rapidly
Neon				R	R	R	R	R		R	R	
Nitric Oxide	♦		\Diamond	R	N	N	Χ	R	N	R	R	Readily reacts with Oxygen to form Nitrogen Dioxide
Nitrogen				R	R	R	R	R		R	R	
Nitrosyl Chloride	♦		◊	N	N	N	N	N	R		R	Very corrosive, attacks most metals except nickel
Nitrous Oxide				R	R	R	R	R		R	R	·
Oxygen*				R	R	R	R	R		R	R	Strong oxidant, ignites combustible matter spontaneously
Phosgene	♦		\lambda	N	N	N	Χ	Х	R	R	R	Very toxic
Phosphine*	♦	\lambda		R	Х	Х	R	R		R	R	Highly toxic, high concentrations are pyrophoric
Propane		\Diamond		R	R	R	R	R		R	R	
Propylene		\Diamond		R	R	R	R	R		R	R	
Silane*		\rightarrow		R	R	R	R	R		R	R	Pyrophoric
Silicon Tetrafluoride	♦		\lambda	R	R	R	R	R		R	R	. ,,
Sulfur Dioxide				R	R	R	R	R		R	R	
Sulfur Hexafluoride			•	R	R	R	R	R		R	R	
Sulfur Tetrafluoride			♦	R	R	R	R	R		R	R	
Trimethylamine			· ·	R	N	N	R	R		Х	R	Attacks copper and copper alloys rapidly
Xenon		v		R	R	R	R	R		R	R	Account coppor and coppor anojo rapidij

^{*}It is recommended that users thoroughly familiarize themselves with the specific properties of this gas.

All data presented are considered accurate and reliable but supplier assumes no liability or responsibility of any kind.

LEGEND

 \Diamond - Primary Hazard

N - Not Recommended

R - Recommended

X - Depends on conditions

GAS DATA & EQUIPMENT RECOMMENDATIONS

The following information is provided as a guide to assist you in selecting the correct gas control for use with each of your cylinder gases. The listing is divided into three distinct groups - Pure Gases, Pure Gases in Lecture Bottles, and Two-Component Gas Mixtures.

To use this guide, simply locate the gas or gas mixture you are using within the appropriate group. The tables for Pure Gases and Pure Gases in Lecture Bottles have their information initially arranged alphabetically by the gas of interest, and then secondarily alphabetized by the specific grade of that gas. The information in the Two-Component Gas Mixtures table is listed first alphabetically by minor component and then alphabetically by the balance gas, or major component. For example, 2% Ammonia, 98% Helium would be listed first under Ammonia (the minor component), then under "In Helium" (the balance gas) within the Ammonia grouping.

Across from each individual listing you will find that product's normal corresponding valve outlet connection number (CGA Connection), the recommended regulator model, and a reference page number directing you to the page in our catalog where additional information and complete specifications on that regulator can be found. In the Pure Gas Table you will also find certain physical properties of the gas, such as chemica Iformula, molecular weight, vapor pressure (liquefied gases), specific gravity and specific volume. In certain cases, where pressure reduction is not desired or required, such as with very low pressure products such as borontrichloride, a manual control valve has been recommended instead of a pressure regulator. Please remember that Manual Control Valves control flow, not pressure.

You should note that the recommendations contained herein are valid, and generally preferred for the more common applications of the products indicated; and consideration has been given to safety, materials compatibility, as well as to convenience and suitability for these common applications. However, the recommendations shown may not be the only models that are suitable, and your specific application may have subtleties that would indicate that a different selection is a more preferable choice. If you need assistance in making your selection, or wish to confirm that your choice is correct, please contact us.

If you are using a product that is not listed within these tables, please do not hesitate to contact us to discuss your requirements.

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
A		10.7				110001111101111111111111111111111111111	
Acetylene (C ₂ H ₂)	26.038	_	0.91 at 32 F	14.5	F10	04044	00
Atomic Absorption					510	3101A	26
Commercial Grade, 98.0%					510	3101A	26
Purified					510	3101A	26
Technical					510	3101A	26
Air	28.975	_	1.00	13.3			
Blended Air (<99.999)					590	2401 or 2421	44, 45
CO Free					590	3101 or 3201	26, 27
Compressed Air (<99.999)					346	2401 or 2421	44, 45
Dry (<99.999)					346/590*	2401 or 2421	44, 45
High Pressure (3500 psig)					347	3800V or 3860TB	40, 41
High Pressure (6000 psig)					702	3800V or 3860TB	40, 41
Hydrocarbon Free					346/590*	3101 or 3201	26, 27
USP (<99.999)					346/950*	2401 or 2421	40, 41
Ultra Pure Carrier					590	3201	27
Ultra Zero					590	3201	27
Vehicle Emission Zero					590	3201	27
V.O.C. Free Air					590	3201	27
Zero					346/590*	3201	27
Allene (C ₃ H ₄)	40.065	116.7	1.415 at 68 F	9.6	510	3103	26

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
Ammonia (NH ₃)	17.031	114.1	0.597	22.7			
Anhydrous			0.00.		705	3403	28
Electronic					660	3403	28
Nitride					660	3403	28
Research					660	3403	28
Semiconductor Purity					660/720*	3403	28
SFC Grade					660	3403	28
ULSI Purity					660/720*	3403	28
Ultra High Purity					660/720*	3403	28
Argon (Ar)	39.948	1.378	9.68				
Grade 6™					580	3201	27
High Pressure (3500 psig)					680	3800V or 3860TB	40, 41
High Pressure (6000 psig)					677	3800V or 3860TB	40, 41
High Purity					580	3201	27
Oxygen Free					580	3201	27
Prepurified					580	3201	27
Research					580	3201	27
Semiconductor Purity					580	3201	27
Sputtering					580	3201	27
ULSI Purity					580	3201	27
					580	3201	27
Ultra High Purity							
Ultraplus™					580	3201	27
Ultra Pure Carrier					580	3201	27
Zero					580	3201	27
Arsine (AsH ₃)	77.946	05	2.69	5.0			
Electronic					350/632*	3403	28
ULSI Purity					350/632*	3403	28
Boron Trichloride (BCl ₃)	117.169	4.4	4.03	3.3			
CP					660	3472	35
Electronic					660	3472	35
Semiconductor Purity					660/634*	3472	35
VLSI Etchant					660	3472	35
Boron Trifluoride (BF ₃)	67.805		2.387	5.7			
CP					330	3470	35
1,3 Butadiene (C ₄ H ₆)	54.092	21.4	1.915 at 60 F	6.9			
CP					510	3103	26
High Purity (Inhibited)					510	3103	26
Instrument					510	3103	26
Research					510	3103	26
Butane (C ₄ H ₁₀)	58.123	16.3	2.110 at 68 F	6.4			
CP					510	3103	26
Instrument					510	3103	26
Technical					510	3103	26
n-Butane See Butane iso-Butane See Isobutane							
1-Butene (C ₄ H ₈)	56.108	23.5	1.937	6.7			
						04.00	0.0
CP					510	3103	26
					510 510	3103 3103	26

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
cis-2-Butene (C ₄ H ₈)	56.108	13	1.997 at 68 F	6.7			
High Purity					510	3103	26
Technical					510	3103	26
trans-2-Butene (C ₄ H ₈)	56.108	15	1.997 at 68 F	6.7			
High Purity					510	3103	26
Technical					510	3103	26
(cis & trans) 2-Butene (C ₄ H ₈) Technical	56.108	14	1.997 at 68 F	6.7	510	3103	26
iso-Butylene See Isobutylene							
Carbon Dioxide (CO ₂)	44.011	830	1.522	8.76			
Anaerobic		300		•	320	3101	26
Bone Dry (<99.999)					320	2401	44
CP (<99.999)					320	2401	44
Commercial					320	2401	44
Electronic					320	3101	26
Instrument (Coleman)					320	3101	26
					320		
Precision Aquarator®						3101	26
Research					320	3101	26
SFC Grade					320	3101	26
SFE O O O O STA					320	3101	26
Spectra-Clean®, Grade 5™					320	3101	26
USP (<99.999)					320/940*	2401	44
Carbon Monoxide (CO)	28.010	_	0.968	13.8			
CP					350	2421	45
Commercial					350	2421	45
Research					350	2421	45
Technical (<99.999)					350	2421	45
Ultra High Purity					350	3201	27
Carbon Tetrafluoride - See Halocart	oon 14						
Carbonyl Sulfide (COS)	60.070	160	2.10 at 68 F	6.4			
					330	3403	28
Chlorine (Cl ₂)	70.906	85.3	2.473 at 68 F	5.4			
High Purity					660	3472	35
Research					660	3472	35
Semiconductor Purity					660/728*	3472	35
ULSI Purity					660/728*	3472	35
Ultra High Purity					660/728*	3472	35
Cyclopropane (C ₃ H ₆)	42.081	75.0	1.453 at 68 F	9.2			
					510	3103	26
Deuterium (D ₂₎	4.032	_	0.139 at 32 F	95.9			
CP					350	3201	27
Research					350	3201	27
Dichlorosilane (H ₂ SiCl ₂)	101.010	9.1	3.52 at 77 F	3.83			
Electronic					678	3403	28
Semiconductor Purity					678/636*	3403	28
ULSI Purity					678/636*	3403	28
Ultraplus™					678/636*	3403	28

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
Dimethylamine (C ₂ H ₂ N)	45.085	11.3	1.557 at 77 F	8.6	705	3403 or 8520	28, 121
						0 100 01 0020	20, 121
Dimethyl Ether (C ₂ H ₆ O)	46.069	62.3	1.59	8.4	510	3103	28
2,2-Dimethylpropane (C ₅ H ₁₂) Research	72.151	7.0	2.49 at 77 F	5.3	510	3103	26
Ethane (C ₂ H ₈)	30.07	544	1.047 at 60 F	12.8			
CP					350	3102	27
Research					350	3102	27
Technical					350	3102	27
Ultra High Purity					350	3102	27
Ethyl Acetylene (C ₄ H ₆)	54.092	8.5	1.93 at 77 F	7.2			
					510	3103A	26
Ethyl Chloride (C ₂ H ₅ Cl)	64.515	5.3	2.22 at 68 F	6.0			
High Purity					300	8520	121
Ethylene (C ₂ H ₄)	28.054		0.978 at 32 F	13.8			
CP CP					350	3101	26
Polymer Grade					350	3101	26
Research					350	3101	26
Technical					350	2401	44
Ethylene Oxide (C ₂ H ₄ O)	44.054	6.5	1.52	8.78			
99.90%					510	8520	121
Halocarbon 12 (CCl ₂ F ₂)	120.914	70.2	4.26	3.14			
(Dichlorodifluoromethane)					660	3103	26
Halocarbon 13 (CCIF ₃)	104.459	458.7	3.70	3.61			
(Chlorotrifluoromethane)					320/660*	3102	27
Halocarbon 13B1 (CBrF ₃)	148.910	189	5.30	2.6			
(Bromotrifluoromethane)					320/660*	3103	26
Halocarbon 14 (CF ₄)	88.005	_	3.038	4.39			
(Tetrafluoromethane) Electronic					320/660*	3501	29
Semiconductor Purity					320/580*	3501	29
Ultraplus TM					320/660*	3501	29
VLSI					580	3501	29
	100.000	0.4	0.00 -+ 00 5	0.5			
Halocarbon 21 (CHCl ₂ F) (Dichlorofluoromethane)	102.923	8.4	3.82 at 68 F	3.5	660	8520	121
Halocarbon 22 (CHCIF ₂)	86.469	123	3.08	4.4			
(Chlorodifluoromethane)					660	3103	26
Halocarbon 23 (CHF ₃)	70.014	635	2.43	5.5			
(Trifluoromethane)					000	0404	00
Technical					660	3101	26
Ultraplus TM					320/660*	3101	26
99.90%					320/660*	2401	44

PURE GASES

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
Halocarbon 114 (C ₂ Cl ₂ F ₄)	170.922	12.9	5.93 at 77 F	2.3			
(1,2-Dichlorotetrafluoroethane)					660	3103	26
Halocarbon 115 (C ₂ ClF ₅) (Chloropentafluoroethane)	154.467	102	5.569	2.4	660	3103	26
Halocarbon 116 (C ₂ F ₆)	138.012	430.3	4.773	2.8			
(Hexafluoroethane)						3102	26
99.90%					320/660*	2401	44
Semiconductor Purity					660	3102	26
Halocarbon 142B (C ₂ H ₃ CIF ₂)	100.496	27.8	3.63	3.68			
(1-Chloro-1,1-Difluoroethane)					510	3103	26
Halocarbon 152A (C ₂ H ₄ F ₂)	66.05163	2.36	5.85				
(1,1-Difluoroethane)					510	3103	26
Halocarbon C-318 (C ₄ F ₈)	200.031	25	7.33	1.85			
(Octafluorocyclobutane)					660	3103	26
Halocarbon 500	100.1	82.3	3.5	3.82			
(73.8 wt.% Halocarbon 12							
26.2 wt.% Halocarbon 152A)					660/510*	3103	26
Halocarbon 502	111.63	132.2	3.87	3.45			
(48.8 wt.% Halocarbon 22							
51.2 wt.% Halocarbon 115)					320/660*	3103	26
Halocarbon 503	87.247	613	3.07	4.3			
(60 wt.% Halocarbon 23							
40 wt.% Halocarbon 13)					320	2401	44
Halocarbon 1113 (C CIF ₃)	116.47	62	4.13	3.30			
(Chlorotrifluoroethylene)					510	3103	26
Halocarbon 1132A (CH ₂ F ₂)	64.035	518	2.21 at 77 F	6.0			
(1,1-Difluoroethylene)					350	2401	44
Helium (He)	4.003	_	0.138	96.7			
Carrier Grade					580	3201	27
Chromatographic					580	3201	27
ECD Grade					580	3201	27
Grade 6™					580	3201	27
High Pressure (3500 psig)					680	3800V or 3860TB	40, 4
High Pressure (6000 psig)					677	3800V or 3860TB	40, 4
High Purity					580	3201	27
Oxygen Free					580	3201	27
Research					580	3201	27
Semiconductor Purity					580	3201 or 3501	27, 29
Ultra High Purity					580	3201	27
Ultraplus™					580	3201	27
Ultra Pure Carrier					580	3201	27
ULSI					580	3201 or 3501	27, 29
USP (<99.999)					580/930*	2421	45

154

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
Hexafluoropropylene (C ₃ F ₆)	150.023	85	5.18 at 68 F	2.58			
					660	3103	26
Hydrogen (H ₂)	2.016	_	0.0696	191.7			
Carrier Grade					350	3201	27
Extra Dry (<99.999)					350	3201	27
High Pressure (3500 psig)					695	3800V or 3860TB	40, 41
High Pressure (6000 psig)					703	3800V or 3860TB	40, 41
High Purity					350	3101 or 3201	26, 27
Prepurified					350	3101 or 3201	26, 27
Purified					350	3101 or 3201	26, 27
Research					350	3201 or 3501	27, 29
Semiconductor Purity					350	3201 or 3501	27, 29
ULSI Purity					350	3201 or 3501	27, 29
					350		
Ultra High Purity						3201	27
Ultraplus™					350	3201	27
Ultra Pure Carrier					350	3201	27
Zero					350	3201	27
Hydrogen Bromide (HBr)	80.912	320	2.812 at 77 F	4.8			
Grade 2.8™					330	3471	35
ULSI Purity					330/634*	3471	35
Hydrogen Chloride (HCI)	36.461	613	1.268 at 68 F	10.6			
Electronic	00.101	0.0	00 at 00 .		330	3471	35
Research					330	3471	35
Technical					330	3471	35
ULSI Purity					330/634*	3471	35
Ultra High Purity					330/634*	3471	35
					330/034	3471	
Hydrogen Selenide (H ₂ Se)	80.976	124.9	2.80 at 77 F	4.8			
Research					660	3403	28
Semiconductor Purity					350/632*	3403	28
ULSI Purity					350/632*	3403	28
Hydrogen Sulfide (H ₂ S)	34.076	252	1.189 at 59 F	11.23			
CP CP					330	3402	28
Research					330	3402	28
Technical					330	3402	28
Isobutane (C ₄ H ₁₀)	58.124	30.7	2.01	6.5			
CP	JO.124	3U.1	2.01	0.0	510	3103	26
Instrument					510		
						3103	26
Research					510	3103	26
Technical					510	3103	26
Isobutylene (C ₄ H ₈)	56.108	24.3	1.997	6.7			
CP					510	3103	26
High Purity					510	3103	26
Research					510	3103	26
Isopentane (C ₅ H ₁₂)	72.151	-3.2	2.48				
CP		0.2			510	8520	121
					310	5525	121

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
Krypton (Kr)	83.800		2.899	4.6			
Purified					580	3101 or 3201	26, 27
Research					580	3101 o 3201	26, 27
Methane (CH ₄)	16.043	_	0.554 at 32 F	23.7			
Commercial					350	2401 or 2421	44, 45
CP					350	2401 or 2421	44, 45
High Pressure (3500 psig)					695	3800V or 3860TB	40, 41
High Pressure (6000 psig)					703	3800V or 3860TB	40, 41
Instrument					350	3101 or 3201	26, 27
Purified					350	3101 or 3201	26, 27
Research					350	3101 or 3201	26, 27
Technical					350	2401 or 2421	44, 45
Ultra High Purity					350	3101 or 3201	26, 27
Ultra Pure					350	3101 or 3201	26, 27
Methyl Bromide (CH ₃ Br)	94.939	13	3.355 at 77 F	4.1			
monly bronniae (ongbr)	34.303	10	0.000 at 77 1	7.1	330/320*	8520	121
Methyl Chloride (CH ₃ Cl)	50.488	58.7	1.74 at 32 F	7.6	510/660*	3403	28
Methyl Mercaptan (CH ₃ SH)	48.107	15	1.66 at 68 F	8.0			
wichiyi wicicaptan (ongon)	40.107	13	1.00 at 00 1	0.0	330	3403 or 8520	28, 121
Monomethylamine (CH ₃ NH ₂)	31.058	28.8	1.08 at 68 F	12.1			
					705	3403 or 85201	28, 121
Natural Gas (CH ₄)	17.656		0.55	24.0			
					350	2401 or 2421	24, 25
Neon (Ne)	20.183	_	0.696	19.2			
CP					580	3101 or 3201	26, 27
First Run					580	3101 or 3201	26, 27
High Purity					580	3101 or 3201	26, 27
Research					580	3101 or 3201	26, 27
Ultra High Purity					580	3101 or 3201	26, 27
Ultra Pure					580	3101 or 3201	26, 27
Nitric Oxide (NO)	30.006		1.04	1.04			

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
Nitrogen (N ₂)	28.013		0.967	13.8			
ECD Grade	20.013		0.507	13.0	580	3201	27
Extra Dry (<99.999)					580	3201	27
Grade 6 TM					580	3201	27 27
						3800V or 3860TB	
High Pressure (3500 psig)					680		40, 41
High Pressure (6000 psig)					677	3800V or 3860TB	40, 41
High Purity					580	3201	27
Low Oxygen					580	3201	27
NF-High Purity					580/960*	3201	27
Oxygen Free					580	3201	27
Prepurified (<99.999)					580	2421	44
Research					580	3201	27
Semiconductor Purity					580	3201 or 3501	27, 29
Ultra High Purity					580	3201	27
Ultra Plus™					580	3201	27
Ultra Pure Carrier					580	3201	27
Ultra Zero Ambient Monitoring Zero)				580	3201	27
Vehicle Emission Zero					580	3201	27
VOC Free Nitrogen					580	3201	27
Zero					580	3201	27
Nitrogen Dioxide (NO ₂)	46.005	0.0 psig	1.58	4.7			
CP					660	8520	121
Nitrous Oxide (N ₂ 0)	44.013	745	1.53 at 68 F	8.7			
Atomic Absorption					326	2401	44
CP					326	2401	44
Electronic Grade					326	3101 or 3401	26, 28
High Purity					326	3101	26
Industrial					326	2401	44
Research					326	3101	26
Semiconductor Purity					326/712*	3101 or 3401	26, 28
SFC Purity					326	3101 01 3401	26, 26
•							
Technical					326	2401	44
Ultra High Purity					326/712*	3101	26
Ultraplus™					326	3101	26
USP					326/910*	2401	44
Sulfur Dioxide (SO ₂)	64.063	34.4	2.262	5.9			
Anhydrous					660	3403	28
Commercial					660	3403	28
Sulfur Hexafluoride (SF ₆)	146.051	320	5.11 at 68 F	2.5			
Commercial		0_0	J 1 41 00 1	0	590	2401	44
CP					590	2401	44
Electronic					590	3102 or 3402	26, 28
Etchant					590	3102 or 3402	26, 28
Grade 3 TM					590		20, 20 44
						2401	
Grade 4 TM					590	2401	44
Instrument Purity					590	3102	26
					F	0400	
SFC					590	3102	26
					590 590 590	3102 3102 or 3402 3102 or 3402	26 26, 28 26, 28

Gas Grade	Mol. Weight	Vapor Pressure (psig at 70°F)	Specific Gravity (Air-1)	Specific Volume (ft3/lb. at 70°F)	CGA Connection Number	Equipment Recommendation	Page #
Sulfur Tetrafluoride (SF ₄) Technical	108.058	140	3.783 at 68 F	3.6	330	3471	35
Trimethylamine (C ₃ H ₉ N)	59.112	13.3	2.087 at 68 F	6.4	705	3403 or 8520	28, 121
Vinyl Methyl Ether (C ₃ H ₆ O)	58.080	10.6	1.99 at 68 F	6.7	290	3401	28
Xenon (Xe) Purified Research	131.300	_	4.560	2.9	580 580	3101 or 3201 3101 or 3201	26, 27 26,27

Gas Grade	CGA Connection Number	Equipment Recommendation	Page #
Air			
Zero	170	3900	50
Dry	170/180*	3910	50
Allene	170	3910	50
Ammonia Anhydrous, 99.99%	110/180*	T3920	50
Argon			
Prepurified Ultra High Purity	170/180* 180	3910 3900	50 50
Boron Trichloride CP	180	3992-180	51
Boron Trifluoride CP	180	T3920	50
1, 3 Butadiene			
CP Instrument	170 170	3910 3910	50 50
Butane			
CP	170	3910	50
Instrument	180	3910	50
1-Butene			
CP	170	3910	50
cis-2-Butene Technical	170	3910	50
trans-2-Butene			
Technical	170	3910	50
(cis & trans) 2-Butene Technical	170	3910	50
Carbon Dioxide			
Bone Dry	170/180*	3910	50
CP	180	3910	50
Carbon Monoxide	170	2010	
Commercial CP	170 170/180*	3910 3910	50
Research	180	3900	50 50
Carbonyl Sulfide			
our bony. Our lide	180	T3920	50
Chlorine		T0000	
High Purity Ultra High Purity	110/180* 180	T3920 T3920	50 50
Cyclopropane			
	170	3910	50

Gas Grade	CGA Connection Number	Equipment Recommendation	Page #
Deuterium			
CP	170/180*	3900	50
Dimethylamine	180	T3920	50
Dimethyl Ether	170	3910	50
Ethane CP	170/180*	3910	50
Ethyl Chloride CP	170	3992-170	51
Ethylene			
CP Technical	170/180* 170	3910 3910	50 50
Ethylene Oxide			
	180	3991-180	51
Halocarbon 12 (Dichlorodifluoromethane)	170	3991	51
Halocarbon 13 (Chlorotrifluoromethane)	180	3991	51
Halocarbon 14 (Tetrafluoromethane)	170	3910	50
Halocarbon 22 (Chlorodifluoromethane)	170	3910	50
Halocarbon 114 (1,2-Dichlorotetrafluoroethane)	170	3910	50
Halocarbon 142B (1-Chloro-1, 1-Difluoroethane)	170	3910	50
Halocarbon C-318 (Octafluorocyclobutane)	170	3910	50
Halocarbon 1113 (Chlorotrifluoroethylene)	170	3910	50
Helium High Purity	170/180*	3900	50
Hexafluoropropylene	170	3910	50
Hydrogen Prepurified	170/180*	3910	50
Purified Ultra High Purity	170 180	3910 3900	50 50
Hydrogen Bromide			
	110/180*	T3920	50

	CGA		
Gas Grade	Connection	Equipment	Page
	Number	Recommendation	#
Hydrogen Chloride			
Electronic	180	T3920	50
Technical	110/180*	T3920	50
Hydrogen Fluoride			
CP	180	3992-180	51
99.90%	180	3992-180	51
Hydrogen Sulfide			
CP	110/180*	T3920	50
Isobutane			
CP	170	3910	50
Instrument	170	3910	50
Isobutylene			
CP	170	3910	50
Krypton			
Research	180	3900	50
Methane			
CP	170/180*	3910	50
Instrument	180	3900	50
Purified	170	3910	50
Technical	170	3910	50
Ultra High Purity	170	3900	50
Ultra Pure	170	3900	50
Methyl Bromide	170	3992-170	51
Mathyd Chlorida			
Methyl Chloride	110/170/180*	3992	51
Methyl Mercaptan			
monty moroaptan	180	2992	51
Monomethylamine			
·	110/180*	3992	51
Nitrogen			
Prepurified	170/180*	3910	50
Ultra High Purity	170/180*	3900	50
Nitrous Oxide			
CP	170	3910	50
Oxygen			
Extra Dry	170/180*	3910	50
Zero	170	3900	50
Phosphorous Pentafluoride	330	T3920	50
Propane			
CP	170	3910	50
Instrument	170/180*	3900	50
monumont	170/100	0000	50

Gas Grade	CGA Connection Number	Equipment Recommendation	Page #
Propylene			
CP	170/180*	3910	50
Sulfur Dioxide			
Anhydrous	180	T3920	50
Sulfur Hexafluoride			
CP	170	3910	50
Sulfur Tetrafluoride			
	110/180*	T3920	50
Trimethylamine			
	180	3992	50
Vinyl Bromide			
	180	3992	51
Vinyl Methyl Ether			
	180	3992	51

Minor Component	CGA Connection	Page	
Balance Gas	Number	Equipment Recommendation	#
Acetaldehyde			
In Helium	350	3401 or 3501	28, 29
In Nitrogen	350	3401 or 3501	28, 29
Acrylonitrile			
In Helium	350	3401 or 3501	28, 29
In Nitrogen	350	3401 or 3501	28, 29
Ammonia			
In Air	660/705*	3401 or 3501	28, 29
In Argon	705	3401 or 3501	28, 29
In Helium	705	3401 or 3501	28, 29
In Hydrogen	330/660/705*	3401 or 3501	28, 29
In Nitrogen	330/660/705*	3401 or 3501	28, 29
Argon		0404 0004	00.07
In Helium	580	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	580	3101 or 3201	26, 27
In Oxygen	296	3101 or 3201	26, 27
Benzene	500	0101 0001	00.07
In Air	590	3101 or 3201	26, 27
In Helium In Nitrogen	350 350	3101 or 3201 3101 or 3201	26, 27 26, 27
Butane			
In Air	590	3101 or 3201	26, 27
In Argon	350	3101 or 3201	26, 27
In Helium	350	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	350	3101 or 3201	26, 27
Carbon Dioxide			
In Air	580/590*	3101 or 3201	26, 27
In Argon	580	3101 or 3201	26, 27
In Carbon Monoxide	350	3101 or 3201	26, 27
In Helium	580	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	580	3101 or 3201	26, 27
In Oxygen	296/540*	3101 or 3201	26, 27
Carbon Disulfide			
In Argon	330	3401 or 3501	28, 29
In Helium	330	3401 or 3501	28, 29
In Nitrogen	330	3401 or 3501	28, 29
Carbon Monoxide			
In Air	590	3101 or 3201	26, 27
In Argon	350	3101 or 3201	26, 27
In Helium	350	3101 or 3201	26, 27
In Hydrogen	050	0404 - 2004	00.07
In Nitrogen	350	3101 or 3201	26, 27
Carbonyl Sulfide	350	3101 or 3201	26, 27
In Argon	330	3401 or 3501	28, 29
	220	0.404 64.0004	20 20
In Helium In Nitrogen	330 330	3401 or 3501 3401 or 3501	28, 29 28, 29

Minor Component	CGA Connection Equipment		
Balance Gas	Number	Recommendation	Page #
Chlorine			
In Argon	660	3470	35
In Helium	660	3470	35
In Nitrogen	330/660*	3470	35
Ethane			
In Air	590	3101 or 3201	26, 27
In Argon	350	3101 or 3201	26, 27
In Helium	350	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	350	3101 or 3201	26, 27
Ethanol			
In Nitrogen	350	3101 or 3201	26, 27
Ethylene			
In Air	590	3101 or 3201	26, 27
In Argon	350	3101 or 3201	26, 27
In Helium	350	3101 or 3201	26, 27
In Nitrogen	350	3101 or 3201	26, 27
Ethylene Oxide	500	2401 or 2501	00.00
In Air	590	3401 or 3501	28, 29
In Nitrogen	350	3401 or 3501	28, 29
Halocarbon 12	500	0404 0004	00.07
In Air	590	3101 or 3201	26, 27
In Argon	580	3101 or 3201	26, 27
In Helium In Nitrogen	580 580	3101 or 3201 3101 or 3201	26, 27 26, 27
		0101 01 0201	20, 21
Helium In Argon	580	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	580	3101 or 3201	26, 27
In Oxygen	296	3101 or 3201	26, 27
Hexane			
In Air	590	3101 or 3201	26, 27
In Argon	350	3101 or 3201	26, 27
In Helium	350	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	350	3101 or 3201	26, 27
Hydrogen			
In Air	590	3101 or 3201	26, 27
In Argon	350	3101 or 3201	26, 27
In Helium	350	3101 or 3201	26, 27
In Nitrogen	350	3101 or 3201	26, 27
Hydrogen Chloride			
In Argon	330	3470	35
In Helium	330	3470	35
In Nitrogen	330	3470	15
Hydrogen Cyanide			
In Helium In Nitrogen	350	3470	35
	350	3470	35

Balance Gas	Connection Number	Equipment Recommendation	Page #
Hydrogen Cyanide			
In Helium	350	3470	35
In Nitrogen	350	3470	35
Hydrogen Sulfide			
In Air	330	3401 or 3501	28, 29
In Argon	330	3401 or 3501	28, 29
In Helium	330	3401 or 3501	28, 29
In Hydrogen	330	3401 or 3501	28, 29
In Methane	330	3401 or 3501	28, 29
In Nitrogen	330	3401 or 3501	28, 29
Isobutane			
In Air	590	3101 or 3201	26, 27
In Argon	350	3101 or 3201	26, 27
In Helium	350	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	350	3101 or 3201	26, 27
Methane			
In Air	590	3101 or 3201	26, 27
In Argon	350	3101 or 3201	26, 27
In Helium	350	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	350	3101 or 3201	26, 27
Methanol In Nitrogen	350	3101 or 3201	26, 27
Methyl Mercaptan			
In Helium	330/350*	3401 or 3501	28, 29
In Nitrogen	330/350*	3401 or 3501	28, 29
Moisture			
In Argon	580	3101 or 3201	26, 27
In Helium	580	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Nitrogen	580	3101 or 3201	26, 27
Nitric Oxide			
In Argon	660	3401 or 3501	28, 29
In Helium	660	3401 or 3501	28, 29
In Nitrogen	660	3401 or 3501	28, 29
Nitrogen			
In Argon	580	3101 or 3201	26, 27
In Helium	580	3101 or 3201	26, 27
In Hydrogen	350	3101 or 3201	26, 27
In Oxygen	296	3101 or 3201	26, 27
Nitrogen Dioxide			
In Air	660	3401 or 3501	28, 29
In Argon	660	3401 or 3501	28, 29
In Helium	660	3401 or 3501	28, 29
In Nitrogen	660	3401 or 3501	28, 29
Nitrous Oxide			
Nitrous Oxide In Air In Nitrogen	590 590	3101 or 3201 3101 or 3201	26, 27 26, 27

	CGA				
Minor Component	Connection	Equipment	Page		
Balance Gas	Number	Recommendation	#		
Oxygen					
In Argon	**	3101 or 3201	26, 27		
In Helium	**	3101 or 3201	26, 27		
In Nitrogen	**	3101 or 3201	26, 27		
Pentane					
In Air	590	3101 or 3201	26, 27		
In Argon	350	3101 or 3201	26, 27		
In Helium	350	3101 or 3201	26, 27		
In Hydrogen	350	3101 or 3201	26, 27		
In Nitrogen	350	3101 or 3201	26, 27		
Propane					
In Air	590	3101 or 3201	26, 27		
In Argon	350	3101 or 3201	26, 27		
In Helium	350	3101 or 3201	26, 27		
In Hydrogen	350	3101 or 3201	26, 27		
In Nitrogen	350	3101 or 3201	26, 27		
Propylene					
In Air	590	3101 or 3201	26, 27		
In Argon	350	3101 or 3201	26, 27		
In Helium	350	3101 or 3201	26, 27		
In Hydrogen	350	3101 or 3201	26, 27		
In Nitrogen	350	3101 or 3201	26, 27		
Sulfur Dioxide					
In Air	330/660*	3401 or 3501	28, 29		
In Argon	660	3401 or 3501	28, 29		
In Helium	660	3401 or 3501	28, 29		
In Nitrogen	330/660*	3401 or 3501	28, 29		
Sulfur Hexafluoride					
In Air	590	3101 or 3201	26, 27		
In Argon	580	3101 or 3201	26, 27		
In Helium	580	3101 or 3201	26, 27		
In Nitrogen	580	3101 or 3201	26, 27		
Toluene					
In Air	350	3101 or 3201	26, 27		
In Helium	350	3101 or 3201	26, 27		
In Nitrogen	350/510*	3101 or 3201	26, 27		
Vinyl Chloride					
In Air	590	3401 or 3501	28, 29		
In Helium	350	3401 or 3501	28, 29		
In Nitrogen	350	3401 or 3501	28, 29		

^{**}CGA 590 when oxygen concentration is \leq 23%. CGA 296 when oxygen concentration is >23%.

NUMERICAL INDEX

CYL-C. 75 900 Series. 113 3992 Series. 51 DPS. 76 910 Series. 79 4500 Series. 117 EVF Series. 75 911 Series. 80 4600 Series. 117 Kitagawa 127-121 912-MJA. 74 4800 Series. 110 MS-1 Series. 101 912-MJA. 74 4800 Series. 102 MS-2 Series. 101 913 Series. 68 611 L4 133 3-033-R002. 124 914 Series. 69 6210 Series. 100 LT-16. 61 914-MVA. 74 6210 Series. 100 12-32 Series. 104 914-JASER. 47 6284 Series. 100 11-70. 125 916 Series. 70,71 6330 Series. 96 52 Series. 104 917 Series. 70,71 6330 Series. 98 25 Series. 107 917-LASER. 47 7000 Series. 133 25 Series. 107	Model or Series	Page	Model or Series	Page	Model or Series	Page
EFV Series 7.5 911 Series 80 4600 Series 1.17 Kitagawa 127-121 912-AVA 74 4800 Series 1.17 Kitagawa 127-121 912-AVA 74 4800 Series 1.10 MS-1 Series 101 913 Series 68 66 114 1.33 0-033-R002 1.24 914 Series 69 620 Series 1.00 MS-2 Series 1.01 913 Series 68 66 114 1.33 0-033-R002 1.24 914 Series 69 620 Series 1.00 LT-16 61 914-AVA 74 6214 1.33 LT-8 6.61 914-AVA 74 6224 Series 1.00 LT-18 6.61 914-AVA 74 6224 Series 1.00 LT-18 70 1.25 916 Series 70, 71 6330 Series 96 E21-070 1.25 916 Series 70, 71 6330 Series 96 E21-070 1.25 916 Series 70, 72 6400 Series 98 E25-65 Series 1.04 917 Series 72 6400 Series 98 E25-65 Series 1.07 917-LASER 47 7000 Series 133 Series 1.07 917-LASER 47 7000 Series 133 Series 1.07 917-LASER 47 7130 Series 1.06 AVD-45 74 919TS Series 66 7140 Series 1.06 E1 Series 94 919TS-LASER 47 7130 Series 1.06 E1 Series 94 919TS-LASER 47 7300 Series 1.06 E1 Series 1.15 92 Series 80 79 7500 Series 1.06 E1 Series 1.15 927 Series 80 79 7500 Series 1.06 E3 Series 1.04 1000 Series 1.09 79209 Series 82 E3 Series 1.01 1000 Series 1.09 79209 Series 82 E3 Series 1.01 2.25 Series 80 799 7500 Series 1.08 E3 Series 1.01 2.00 Series 1.09 79209 Series 82 E3 Series 1.01 2.00 Series 1.09 79209 Series 82 E3 Series 1.01 2.00 Series 1.09 79209 Series 82 E3 Series 1.01 2.25 Series 97 97 500 Series 98 E2 Series 1.23 2.420 Series 45 7940 Series 88 E4 Series 1.25 2.25 Series 97 97 500 Series 98 E4 Series 1.25 2.25 Series 97 97 500 Series 98 E4 Series 1.25 2.25 Series 97 97 500 Series 98 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 Series 99 90 Series 99 E4 Series 99 90 90 Series 99 90 90 Series 99 E4 Series 99 90 90 Series 99 90 90 Serie	CYL-C	75	900 Series	113	3992 Series	51
MS-1 Series	DPS	76	910 Series	79	4500 Series	117
Kitagawa 127-121 912-AVA 74 4800 Series 1.101 1.	EFV Series	75	911 Series	80	4600 Series	117
MS-1 Series. 101 912HUB. 74 5010 Series. 102 MS-2 Series. 101 913 Series. 68 6114 138 3-033-R002 124 914 Series. 69 69 6210 Series. 100	Kitagawa	127-121	912-AVA	74		
MS-2 Series						
3-033-R002 124 9 14 Series 69 €210 Series .100 LT-16 61 914-AWA .74 6214 .138 LT-8						
LT-1G						
LT-8						
12-32 Series						
21-070						
25 Series 104 917 Series 72 6400 Series 98 25-65 Series 107 917-LASER 47 7000 Series 137 38 Series 104 918TS 64 7010 Series 108 38 Series 104 918TS LASER 47 7130 Series 106 40 VD-45 74 919TS Series 66 7140 Series 106 51 Series 94 919TS LASER 47 7300 Series 106 59-050 125 920 Series 79 7500 Series 105 61 Series 115 921 Series 80 7920 Series 22 63 Series 101 2400 Series 44 7923 Series 87 72 Series 101 2400 Series 44 7923 Series 87 72 Series 123 2420 Series 45 7940 Series 85 7E-100 126 Ez3000 Series 141 7941 Series 88 HB120 110 3100 S						
25-65 Series 107 917-LASER. 47 7000 Series. 137 25-178 Series 107 918TS .64 7010 Series. 103 38 Series. 104 918TS-LASER. .47 7130 Series. 106 AVD -45 .74 919TS-LASER. .47 7300 Series. 106 51 Series. .94 919TS-LASER. .47 7300 Series. 106 51 Series. .94 919TS-LASER. .47 7300 Series. 106 61 Series. .115 .921 Series. .80 .7920 Series. .28 65 Series. .104 1000 Series. .109 .7920 Series. .82 65 Series. .101 .2400 Series. .44 .7923 Series. .87 72 Series. .123 .2420 Series. .45 .7940 Series. .85 75 Series. .123 .2420 Series. .45 .7940 Series. .85 HB120. .110 .3100 Series. .141 .7941 Series. .86 <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>				,		
25-178 Series						
38 Series. 104 918TS-LASER. 47 7130 Series. 106 AVD-45. 74 919TS Series. 66 7140 Series. 106 51 Series. 94 919TS-LASER. 47 7300 Series. 105 59-050. 125 920 Series. 79 7500 Series. 108 61 Series. 115 921 Series. 80 7920 Series. 82 63 Series. 104 1000 Series. 109 7920 Series. 82 65 Series. 101 2400 Series. 44 7923 Series. 87 72 Series. 123 2420 Series. 45 7940 Series. 85 FE-100. 126 Ez3000 Series. 141 7941 Series. 85 78 FE-101. 110 3100 Series. 26 7950 Series. 87 130FP-9. 111 3101 Series. 27 7945 Series. 87 130FP-15. 111 320 Series. 27 7945 Series. 88 SWB-130 Series.						
AVD-45						
51 Series. .94 919TS-LASER. 47 7300 Series. 105 59-050 .125 920 Series. .79 7500 Series. .108 61 Series. .115 921 Series. .80 7920 Series. .82 63 Series. .104 1000 Series. .109 7920B. .83, 86 65 Series. .101 2400 Series. .44 7923 Series. .87 72 Series. .123 .2420 Series. .45 7940 Series. .85 75 Per 100 .126 E73000 Series. .141 .7941 Series. .85 76 Per 100 .126 E73000 Series. .26 .7950 Series. .85 75 Per 100 .110 .3100 Series. .26 .7950 Series. .85 78 HB120 .111 .3101 Series. .26 .7950 Series. .84 73 10FP 9 .111 .3101 Series. .27 .7974 Series. .88 CWB-130 Series. .111 .3200 Series. .27 .7974 Series. .						
59-050 125 920 Series 79 7500 Series 108 61 Series 115 921 Series 80 7920 Series 82 63 Series 104 1000 Series 109 7920B 83 86 65 Series 101 2400 Series 44 7923 Series 87 72 Series 123 2420 Series 45 7940 Series 85 75 FE-100 126 EZ3000 Series 141 7941 Series 85 75 FE-100 126 EZ3000 Series 141 7941 Series 85 HB120 110 3100 Series 26 7950 Series 84 130FP-9 111 3101 Series 32 7965 Series 87 310 Series 111 H13300 Series 27 7974 Series 88 SS-130 Series 117 3400 Series 28 8000 Series 97 SS-140 Series 117 3401 Series 28 8000 Series 95 SS-140 Series						
61 Series						
63 Series						
65 Series						
72 Series 123 2420 Series 45 7940 Series 85 PE-100 126 EZ3000 Series 141 7941 Series .85 HB120 .110 3100 Series .26 7950 Series .84 130FP-9 .111 3101L Series .32 7965 Series .87 130FP-15 .111 3200 Series .27 7974 Series .88 CWB-130 Series .111 HL3300 Series .48 7975 Series .88 SS-140 Series .117 3400 Series .28 8000 Series .95 SS-140 Series .117 3401 Series .33 8010 Series .95 233 Series .58 .3450 Series .30 8012 Series .97 233 Series .59 .3451 Series .34 8020 Series .97 233 Series .59 .3470 Series .35 .8040 Series .99 230 Series .112 .3470 Series .29 .8050 Series .99						,
PE-100 126 EZ3000 Series 141 7941 Series .85 HB120 110 3100 Series .26 7950 Series .84 130FP-9 111 3101L Series 32 7965 Series .87 130FP-15 111 3200 Series 27 7974 Series .88 CWB-130 Series 111 HL3300 Series .48 7975 Series .88 SS-130 Series .117 3400 Series .28 8000 Series .95 SS-140 Series .117 3401 Series .33 8010 Series .95 S2-140 Series .58 .3450 Series .30 .8012 Series .94 223 Series .58 .3450 Series .30 .8012 Series .94 320 Series .59 .3451 Series .34 .8020 Series .99 320 Series .12 .3470 Series .35 .8040 Series .99 400 Series .132 .3550 Series .21 .86 420 Series						
HB120						
130FP-9 111 3101L Series 32 7965 Series 87 130FP-15 111 3200 Series 27 7974 Series 88 CWB-130 Series 111 HL3300 Series 48 7975 Series 88 SS-130 Series 117 3400 Series 28 8000 Series 95 SS-140 Series 117 3401L Series 33 8010 Series 94 223 Series .58 3450 Series 30 8012 Series 97 233 Series .59 3451L Series 34 8020 Series 99 320 Series .59 3451L Series 34 8020 Series 99 320 Series .59 3451L Series 34 8020 Series 99 320 Series .112 3470 Series .29 8050 Series .99 320 Series .12 3500 Series .29 8050 Series .99 400 Series .132 3500 Series .29 8050 Series .99 420 Series<						
130FP-15						
CWB-130 Series 111 HL3300 Series 48 7975 Series 88 SS-130 Series 117 3400 Series 28 8000 Series 95 SS-140 Series 117 3401 Series 33 8010 Series 94 223 Series 58 3450 Series 30 8012 Series 97 233 Series 59 3451 Series 34 8020 Series 99 320 Series 112 3470 Series 35 8040 Series 99 CS350 74 3500 Series 29 8050 Series 99 400 Series 132 3550 Series 31 8060 Series 86 420 Series 132 3700 Series 42,43 8100 Series 86 420 Series 133 3800V Series 40 8200 Series 99 460 133 3800V Series 40 8200 Series 118 470 133 3832 Series 34 8490 Series 114 475 51,133						
SS-130 Series 117 3400 Series 28 8000 Series .95 SS-140 Series 117 3401L Series .33 8010 Series .94 223 Series .58 3450 Series .30 8012 Series .97 233 Series .59 3451L Series .34 8020 Series .99 320 Series .112 3470 Series .35 8040 Series .99 CS350 .74 .3500 Series .29 .8050 Series .99 400 Series .132 .3550 Series .31 .8060 Series .86 420 Series .132 .3700 Series .42,43 .8100 Series .18 450 .133 .3800 Series .40 .8200 Series .18 450 .133 .3830 Series .44 .8300 Series .19 465 Series .134 .3831H Series .36 .8400 Series .119 470 .133 .3832 Series .38 .8491 Series .114 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
SS-140 Series 117 3401L Series 33 8010 Series 94 223 Series 58 3450 Series 30 8012 Series 97 233 Series 59 3451L Series 34 8020 Series 99 320 Series 112 3470 Series 35 8040 Series 99 320 Series 112 3470 Series 29 8050 Series 99 400 Series 132 3550 Series 31 8060 Series 99 400 Series 132 3550 Series 31 8060 Series 86 420 Series 132 3700 Series 42, 43 8100 Series 86 420 Series 133 3800 Series 40 8200 Series 118 450 133 3830 Series 34 8300 Series 119 465 Series 134 3831H Series 36 8400 Series 119 465 Series 134 3831H Series 36 8400 Series 114 475 51, 133 3832 Series 37 8492 15 480 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
223 Series .58 3450 Series 30 8012 Series .97 233 Series .59 3451L Series .34 8020 Series .99 320 Series .112 .3470 Series .35 8040 Series .99 CS350 .74 .3500 Series .29 .8050 Series .99 400 Series .132 .3550 Series .31 .8060 Series .86 420 Series .132 .3700 Series .42, 43 .8100 Series .86 420 Series .133 .3800V Series .42, 43 .8100 Series .99 460 .133 .3800V Series .40 .8200 Series .99 465 Series .134 .3831H Series .36 .8400 Series .118 470 .133 .3832 Series .38 .8491 Series .114 475 .51, 133 .3833 Series .37 .8492 .15 480 .51, 133 .3835 Series .39 .8500 Series .121 490 Series .136 .3860 Series .41 .8600 Series .121						
233 Series 59 3451L Series 34 8020 Series 99 320 Series 112 3470 Series 35 8040 Series 99 CS350 74 3500 Series 29 8050 Series 99 400 Series 132 3550 Series 31 8060 Series 86 420 Series 132 3700 Series 42,43 8100 Series 118 450 133 3800V Series 40 8200 Series 99 460 133 3830 Series 34 8300 Series 118 470 133 3831H Series 36 8400 Series 118 470 133 3832 Series 38 8491 Series 114 475 51, 133 3833 Series 37 8492 15 480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 121 490 Series 136 3870H Series						
320 Series 112 3470 Series 35 8040 Series 99 CS350 .74 3500 Series .29 8050 Series .99 400 Series .132 3550 Series .31 8060 Series .86 420 Series .132 3700 Series .42, 43 8100 Series .118 450 .133 3800V Series .40 8200 Series .99 460 .133 3830 Series .34 8300 Series .119 465 Series .134 3831H Series .36 8400 Series .118 470 .133 3832 Series .38 8491 Series .118 475 .51, 133 3833 Series .37 8492 .15 480 .51, 133 3835 Series .39 8500 Series .121 490 Series .136 3860 Series .41 8600 Series .121 495 Series .135 3870H Series .46 8636 Series .49 PS500 Series .17 3900 Series .50 9122 Series .141 60						
CS350 74 3500 Series 29 8050 Series 99 400 Series 132 3550 Series 31 8060 Series 86 420 Series 132 3700 Series 42, 43 8100 Series 118 450 133 3800V Series 40 8200 Series 99 460 133 3830 Series 34 8300 Series 119 465 Series 134 3831H Series 36 8400 Series 119 470 133 3832 Series 38 8491 Series 118 475 51, 133 3833 Series 37 8492 15 480 51, 133 3833 Series 37 8492 15 480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 17 3900 Series						
400 Series 132 3550 Series 31 8060 Series 86 420 Series 132 3700 Series 42, 43 8100 Series 118 450 133 3800V Series 40 8200 Series 99 460 133 3830 Series 34 8300 Series 119 465 Series 134 3831H Series 36 8400 Series 118 470 133 3832 Series 38 8491 Series 114 475 51, 133 3833 Series 37 8492 15 480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 135 3870H Series 46 8636 Series 49 PS500 Series 140 3910 Series 50 9122 Series 141 604 Series 140 3910 Series 50 9131 Series 141 605 Series 1						
420 Series 132 3700 Series 42, 43 8100 Series 118 450 133 3800V Series 40 8200 Series 99 460 133 3830 Series 34 8300 Series 119 465 Series 134 3831H Series 36 8400 Series 118 470 133 3832 Series 38 8491 Series 114 475 51, 133 3833 Series 37 8492 15 480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 135 3870H Series 46 8636 Series 49 PS500 Series 140 3910 Series 50 9122 Series 141 601 Series 140 3910 Series 50 9132 Series 141 604 Series 140 3920 Series 50 9132 Series 141 605 Series						
450 133 3800V Series .40 8200 Series .99 460 133 3830 Series .34 8300 Series .119 465 Series 134 3831H Series .36 8400 Series .118 470 133 3832 Series .38 8491 Series .114 475 .51, 133 3833 Series .37 8492 .15 480 .51, 133 3835 Series .39 8500 Series .121 490 Series .136 3860 Series .41 8600 Series .121 495 Series .135 3870H Series .46 8636 Series .49 PS500 Series .77 3900 Series .50 9122 Series .141 601 Series .140 3910 Series .50 9131 Series .141 604 Series .140 3920 Series .50 9132 Series .141 605 Series .140 3950 .56 9133 Series .141 607C Series .140 3960 Series .52 9900 Series .62 620G-						
460 133 3830 Series 34 8300 Series 119 465 Series 134 3831H Series 36 8400 Series 118 470 133 3832 Series 38 8491 Series 114 475 51, 133 3833 Series 37 8492 15 480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 77 3900 Series 50 9122 Series 141 601 Series 140 3910 Series 50 9131 Series 141 604 Series 140 3920 Series 50 9132 Series 141 605 Series 140 3950 56 9133 Series 141 607C Series 140 3960 Series 52 9900 Series 62 620G-300 112 3962 Series 53 22660 57 620R 112 397				•		
465 Series. 134 3831H Series 36 8400 Series 118 470 133 3832 Series 38 8491 Series 114 475 51, 133 3833 Series 37 8492 15 480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 77 3900 Series 50 9122 Series 141 601 Series 140 3910 Series 50 9131 Series 141 604 Series 140 3920 Series 50 9132 Series 141 605 Series 140 3950 56 9133 Series 141 607C Series 140 3960 Series 52 9900 Series 62 62G-300 112 3962 Series 53 22660 57 620R 112 3970 54 22687 57 A810 92 3980 Series						
470 133 3832 Series 38 8491 Series 114 475 51, 133 3833 Series 37 8492 15 480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 77 3900 Series 50 9122 Series 141 601 Series 140 3910 Series 50 9131 Series 141 604 Series 140 3920 Series 50 9132 Series 141 605 Series 140 3950 56 9133 Series 141 607C Series 140 3960 Series 52 9900 Series 62 62G-300 112 3962 Series 53 22660 57 620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
475 51, 133 3833 Series 37 8492 15 480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 77 3900 Series 50 9122 Series 141 601 Series 140 3910 Series 50 9131 Series 141 604 Series 140 3920 Series 50 9132 Series 141 605 Series 140 3950 56 9133 Series 141 607 Series 140 3960 Series 52 9900 Series 62 620G-300 112 3962 Series 52 9900 Series 62 620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 90002 139						
480 51, 133 3835 Series 39 8500 Series 121 490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 77 3900 Series 50 9122 Series 141 601 Series 140 3910 Series 50 9131 Series 141 604 Series 140 3920 Series 50 9132 Series 141 605 Series 140 3920 Series 50 9132 Series 141 607 Series 140 3950 56 9133 Series 141 607 Series 140 3960 Series 52 9900 Series 62 620G-300 112 3962 Series 53 22660 57 620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 90002 139						
490 Series 136 3860 Series 41 8600 Series 120 495 Series 135 3870H Series 46 8636 Series 49 PS500 Series 77 3900 Series 50 9122 Series 141 601 Series 140 3910 Series 50 9131 Series 141 604 Series 140 3920 Series 50 9132 Series 141 605 Series 140 3950 56 9133 Series 141 607C Series 140 3960 Series 52 9900 Series 62 620G-300 112 3962 Series 53 22660 57 620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 90002 139		,				
495 Series 135 3870H Series .46 8636 Series .49 PS500 Series .77 3900 Series .50 9122 Series .141 601 Series .140 3910 Series .50 9131 Series .141 604 Series .140 3920 Series .50 9132 Series .141 605 Series .140 3950 .56 9133 Series .141 607C Series .140 3960 Series .52 9900 Series .62 620G-300 .112 3962 Series .53 22660 .57 620R .112 3970 .54 22687 .57 A810 .92 3980 Series .55 90001A .139 A820 .90 3990 Series .51 90002 .139		,				
PS500 Series .77 3900 Series .50 9122 Series .141 601 Series .140 3910 Series .50 9131 Series .141 604 Series .140 3920 Series .50 9132 Series .141 605 Series .140 3950 .56 9133 Series .141 607C Series .140 3960 Series .52 9900 Series .62 620G-300 .112 3962 Series .53 22660 .57 620R .112 3970 .54 22687 .57 A810 .92 3980 Series .55 90001A .139 A820 .90 3990 Series .51 90002 .139						
601 Series 140 3910 Series 50 9131 Series 141 604 Series 140 3920 Series 50 9132 Series 141 605 Series 140 3950 56 9133 Series 141 607C Series 140 3960 Series 52 9900 Series 62 620G-300 112 3962 Series 53 22660 57 620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 90002 139						
604 Series 140 3920 Series 50 9132 Series 141 605 Series 140 3950 56 9133 Series 141 607C Series 140 3960 Series 52 9900 Series 62 620G-300 112 3962 Series 53 22660 57 620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 90002 139						
605 Series 140 3950 .56 9133 Series .141 607C Series 140 3960 Series .52 9900 Series .62 620G-300 112 3962 Series .53 22660 .57 620R 112 3970 .54 22687 .57 A810 .92 3980 Series .55 90001A .139 A820 .90 3990 Series .51 90002 .139						
607C Series 140 3960 Series 52 9900 Series 62 620G-300 112 3962 Series 53 22660 57 620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 90002 139						
620G-300 112 3962 Series 53 22660 57 620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 90002 139						
620R 112 3970 54 22687 57 A810 92 3980 Series 55 90001A 139 A820 90 3990 Series 51 90002 139						
A810						
A82090 3990 Series51 90002						
PT825						

USEFUL CONVERSION FACTORS

Multiply	ly By To Obtain		Dew Poin	Dew Point – Moisture Content		
	Temperature		Dew Point —— °F	Moisture, ppm (vol/vol.)		
°Fahrenheit (F) + 459.72	1	°F Absolute, or Rankine		0.1		
°Fahrenheit (F) - 32	5/9	°Celsius (C)				
°Celsius (C) + 273.16	1	°C Absolute, or Kelvin (K)				
°Celsius (C) +17.78	1.8	°Fahrenheit (F)		1.00		
°Rankine (R) - 459.72	1	°Fahrenheit (F)	-104	1.08		
°Kelvin (K) - 273.16	1	°Celsius (C)		1.18		
	Pressure			1.29		
Atmospheres	760	Millimeters of Mercury		1.40		
Autiospileres	29.921	Inches of Mercury		1.53		
	33.93	Feet of Water		1.66		
	10332	kg/m ²		1.81		
	14.696	lbs.sq. in (psi)		1.96 2.15		
	2216.2	lbs./sq. ft.		2.15		
	1.0133	Bars		2.55		
	1.0332	kg/cm ²		2.76		
Centimeters of Mercury	5.3524	Inches of Water		3.00		
	0.4460	Feet of Water		3.28		
	0.1934	lbs./sq. in. (psi)				
	27.854	lbs./sq. ft.		3.84		
	135.95	kg/m ²	88	4.15		
Feet of Water	0.02947	Atmospheres	-87	4.50		
	0.4335	lbs./sq. in. (psi)	-86	4.78		
	62.378	lbs./sq. ft.		5.3		
Inches of Mercury	0.03342	Atmospheres		5.7		
	13.60	Inches of Water		6.2		
	1.133	Feet of Water		6.6		
	0.4912	lbs./sq. in. (psi)		7.2		
	70.727	lbs./sq. ft.		7.8		
	345.32	kg/m²		8.4 9.1		
Inches of Water	0.03609	lbs./sq. in. (psi)		9.1		
	5.1981	lbs./sq. ft.		10.5		
	25.38	kg/m ²		11.4		
Kilograms per square	0.9678	Atmospheres		12.3		
Centimeter (kg/cm ²)	14.22	lbs./sq. in. (psi)		13.3		
Kilograms per square	0.00142	lbs./sq. in. (psi)		14.3		
Meter (kg/m ²)	0.20482	lbs./sq. ft.	-71	15.4		
,	0.00328	Feet of Water	-70	16.6		
	0.1	g/cm ²	-69	17.9		
	9.80665	Pascals	-68	19.2		
Kilopascals	0.00987	Atmospheres		20.6		
	0.29613	Inches of Mercury (60°F)		22.1		
	0.33456	Feet of Water		23.6		
	101.97162	kg/m ²		25.6		
	0.14504	lbs./sq. in. (psi)		27.5		
	20.88543	lbs./sq. ft.		29.4		
	0.01000	Bars		31.7 34.0		
	0.01020	kg/cm ²		34.0		
Pounds per	70.31	g/cm ²	B.J. B.	ou Milliam Dougout		
square inch (psi)	2.036	Inches of Mercury (60°F)		er Million – Percent		
	2.311	Feet of Water	1 pp			
	6.8948	Kilopascals	10 pp			
	Flow		100 pp. 1000 pp.			
Cubic Centimeters/min	0.000035	cubic feet/min	1000 pp	m = 1.0%		
Ouble Gentimeters/IIIII	0.00033	cubic feet/hour	100000 pp			
	0.0021	liters/min	1000000 pp			
Cubio Foot/hour	471.947					
Cubic Feet/hour		cubic centimeters/min liters/min		Volume		
	0.4719		O.E. 5 1			
Out to Franklania	0.0166	cubic feet/min	Cubic Feet	28317 Cubic Centimeters		
Cubic Feet/min	60	cubic feet/hour		28.32 Liters		
	28.316	liters/min		0.0283 Cubic Meters 1728 Cubic Inch		
1.11	28317	cubic centimeters/min		1120 GUDIG HIGH		
Liters/min	1000	cubic centimeters/min				
	0.035	cubic feet/min				
	2.119	cubic feet/hour	<u> </u>			