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A B S T R A C T

This paper proposes an approach to select a maintenance strategy from a predefined set of choices considering
the decision maker’s behavioral risk profile. It is assumed that the damage state is characterized by a continuous
state parameter probabilistically inferred from observable sensor data. This work applies an engineering
application of consequence-based decision-making incorporating the acceptable risk intensity of the decision-
maker, i.e., the decision-maker’s (individual or an organization) valuation of the outcome of a decision, using a
risk profile model. The utility of a decision-maker is subjective, and this paper considers the fact that different
decision-makers mentally assign a different importance factor (the utility) to the seriousness or urgency to take
necessary actions with the increasing intensity of structural damage. The approach herein incorporates a layer
of human psychology on selecting appropriate maintenance strategies that not only depend on the posterior
distribution of unmeasurable damage state but also consider the behavioral risk profile of the decision-maker.
The collective decision-making of an organization consisting of many individuals is also investigated. The
approach is exemplified in a case study involving life cycle monitoring of a miter gate, part of a lock system
enabling navigation of inland waterways.
1. Introduction

Structural health monitoring (SHM) is the process of collecting
in-situ data from an in-service structure and mining that data for infor-
mation that informs decisions about the structure’s state of health [1,2].
Such health information is then used for a variety of reasons typ-
ically related to operational or maintenance actions throughout the
structure’s life cycle. Due to the many sources of variability and/or
noise that infuse this SHM ‘‘data-to-decision’’ workflow, the process
of inferring the damage state from sensor measurements and making
decisions regarding it is inherently probabilistic. A successful SHM
workflow, therefore, requires in-situ data acquisition, feature extraction
from the measurement data that will be used to perform the infer-
ence, probabilistic modeling of the features (and corresponding damage
state), and subsequently evaluating some form of hypothesis on the
features to make risk-informed decisions about the actions to be taken.

One of the most important classes of actions that SHM is designed
to inform is maintenance planning. This paper focuses on risk-informed
decision-making in SHM and proposes an approach to choose a series
of maintenance actions (which may comprise an overall maintenance
strategy) from a predefined set of choices, usually under the constraints
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of meeting a safety requirement and preserving cost-effectiveness. The
maintenance actions constituting this set – the decision space – are
assigned corresponding discrete labels, ratings, or indices that map
to various degrees of damage relating to a limit state. As an exam-
ple which will be exploited as a case study in this work, the U.S.
Army Corps of Engineers (USACE) considers an operational conditional
assessment (OCA) rating protocol consisting of five discrete damage
labels: (A (excellent), B (good), C (fair), D (poor), F (failing), and CF
(complete failure)) for its miter gate structures (discussed later in de-
tail). These ratings are generally commensurate with increased overall
damage state [3], and in turn the state parameters. In our present
case study example, considering the monitoring and maintenance of
USACE miter gate structures, the state parameter measuring ‘‘health’’
is a measure of the loss of boundary contact between the miter gate
itself and its supporting wall quoin block at the bottom of the gate,
hereafter referred to as the gap length. In the most unsophisticated case,
the structure can be assigned a rating, which is used interchangeably
with the term label, purely based on various mutually exclusive and
collectively exhaustive ranges of true gap length values. For instance,
the structure might be rated A if the true gap length value ranges
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from 0–30 inches; similarly, the structure might be rated CF for a gap
greater than 180 inches [4]. This assignment could be made by either
an inspector/engineer or organizationally determined by USACE; in
either case, it may be informed by formal predictive limit-state analysis,
prior expert experience, historical practice, or some combination.

Establishing maintenance policies usually has three major chal-
lenges. First, it requires establishing damage/state parameter(s) that
is/are reflective of the structure’s health. Unlike the demonstration
problem that we consider in this paper, where the damage is quantified
by a single well-defined damage parameter (gap length), it is usually
not so straightforward to find these damage parameters and their
relationship to the overall health of the structure. This requires running
high-fidelity finite element models and obtaining macro/global damage
parameters (or features). This paper assumes that the global/macro
damage parameter(s) exist(s). Second, these damage parameters are
continuous quantities that evolve with time and, for the purposes of
establishing the maintenance policy, they require obtaining discrete
structural health labels/ratings that are related to the damage parame-
ter(s) (e.g., the OCA ratings A, B, C, D, F, and CF label in the case of the
miter gate structure). If the labels are related to the damage parameter
(gap value for the miter gate) as described in the simple example
above, it is easy to define a unique maintenance action for each label
(and consequently a strategy over the set of actions). However, such a
simple label assignment system suffers from two major drawbacks: (1)
it requires obtaining the exact value of the true damage parameter (like
gap length value for the miter gate), which is typically impossible, and
(2) it is a very rudimentary way of defining a label obtained by explicit
discretization of the continuous state parameter. Third, having decided
on the meaning of the indexing labels, the question then remains on
how to design optimal maintenance policies for each of these labels.

As discussed in [5], in practice consequence-based decision-making
often relies on subjective and experience-based expert elicitation of
the probable structural state (usually defined by discrete labels). Such
probabilistic assessments can be erroneous, especially when there is
little to no prior experience or observation prior to a limit state such
as catastrophic failure. Such assessments can lead to biased conser-
vative and uneconomical maintenance decisions over the life of the
structure. Furthermore, as discussed in [6], traditional conditioned-
based maintenance practices require regular periodic inspections. In the
initial to intermediate life of the structure, most inspections confirm
that the structure does not need significant repairs. Therefore, it is
crucial to develop a decision-making framework that is adaptive to the
updated structural state to recommend necessary maintenance actions,
and at the same time save cost by not recommending any unnecessary
inspections, especially in the early operational life of the structure.

Inspection and maintenance planning is a very broad and widely
researched area. Several contributions in the literature have focused
their attention on building optimal inspection and maintenance plan-
ning for various structures subjected to different forms of damage
like pipelines subjected to external corrosion [7], nuclear power plant
steam generators subjected to multiple degradation mechanisms [8],
water main breaks in distribution networks [9], systems subjected to
stress corrosion cracking [10], optimal inspection planning for pipeline
network [11], inspection model for defense and military systems [12],
offshore wind turbine subjected to operational fatigue [13], railway
track-bed maintenance [14], data-driven predictive maintenance for
automobiles [15], to name a few. Establishing optimal inspection and
maintenance policy initiates by building a physics-based model that is
capable of simulating the structure’s life cycle when subjected to vary-
ing environmental conditions. This allows for stimulating the degra-
dation of the structure over time. Among all the choices of inspection
and maintenance policies, an optimal maintenance strategy maximizes
the benefit for the least cost. This entire process consists of four
major steps: degradation modeling, maintenance effect modeling, main-
tenance policy elaboration, and performance assessment [16]. This
2

requires investigating the impact of several policies on the degradation
curve and estimation of remaining useful life. Needless to say that this
entire process is computationally intensive. Recent progress in compu-
tational speed, and the application of Machine Learning on building
a reasonably accurate digital twin for faster evaluation of degradation
curves [17,18], has catalyzed research in numerous areas of optimal
maintenance like condition-based maintenance policy [19], the im-
pact of imperfect maintenance [20,21], impact of uncertain inspection
data and condition rating protocol [4], maintenance planning multi-
components system [22,23], inspection and maintenance for multi-state
systems [24,25], maintenance for 𝑘-out-of-𝑛 systems [26,27], to name
a few. The works by Fauriat et al. [28] and Lin et al. [29] utilize
the Value of Information as a metric to guide the inspection policies
such that the cost acquired over the life of the structure is minimal.
Vega et al. [30] discuss the application of data analytics and machine
learning to maintenance decision-making for civil infrastructure. Yang
et al. [31,32] discuss optimal sensor design with the target of obtaining
measurement data based on which a maintenance policy could be effec-
tively implemented. The paper by Lam et al. [6] focuses on developing
a decision-policy that considers the current structural health as an input
to decide the future upcoming inspection.

In this paper, we focus on developing a framework where a finite
number of maintenance actions are to be proposed and executed (each
associated with a discrete label), but at the same time, the framework
to design and choose the maintenance actions and overall strategy
must account for the continuous and uncertain nature of the updated
state parameter, as well as take into account the updated state of
the structure (updated by utilizing the sensor measurements obtained
through an SHM system). Another novelty of this paper is that it
integrates the risk profile of the decision-maker (or the acceptable risk
intensity that the organization demands, or by which the application is
regulated), thereby quantifying the subjective component of decision-
making. Proposing an integrated consequence-based decision-making
framework is one of the primary focuses and contributions of this paper.
We propose an approach to choosing a maintenance strategy on an
economic basis that minimizes the consequence/regret of making a
decision (i.e., choosing which maintenance action to pick among the
available options) given the probability distribution of the inferred state
parameter that indicates the degree of damage. Doing so requires three
essential ingredients:

1. The first ingredient requires some bounding assumptions on the
problem at hand. We assume that the state parameter sufficiently
describes the degree of structural damage, and other than the
state parameter, no other quantity is needed to describe the
structural health (at least to the extent that it is assumed suf-
ficient to make a decision and take an action). We also assume
that the state parameter is unknown and is described by its prob-
ability density function. Therefore, the results and methodology
presented in this paper are limited to such a class of prob-
lems where the state parameter is well-defined and continuous.
Moreover, the demonstration problem considers a scalar state
parameter. Therefore, the methodology presented is focused on
a single state variable and could only in theory be extended to
a multi-dimensional state parameter case. In the absence of any
external maintenance, because the damage spontaneously and
irreversibly increases over time, the state parameter must also
have monotonically increasing (or decreasing, depending upon
how it is defined) characteristics. To capture all the possible de-
grees of damage (the possible range of gap values in the present
demonstration case), we need to consider the consequence of
choosing a particular maintenance action for all the possible
realizations of the state parameter. For example, choosing to do
nothing (take no action) when the gap value for the miter gate is
sufficiently large may be disastrous, whereas performing a costly
repair when the gap value is sufficiently small is uneconomical.

The consequence cost or regret function is uniquely defined for
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each maintenance strategy and is essentially weights assigned to
the damage intensity (or the true state parameter). The conse-
quence cost function is arrived at for each maintenance action by
estimating various costs associated with maintenance downtime,
inspection, repair, replacement, and, in case of complete failure,
life safety, and capital losses, and by investigating the state
parameter evolution model using the high-fidelity finite element
model.

2. The second ingredient is the requirement to arrive at the proba-
bility distribution of the state parameter. Since the state parame-
ter is assumed to be only indirectly observable (the most generic
case of all), it is probabilistically inferred from measurable sen-
sor data using Bayesian inference.

3. Once the consequence cost functions for all the maintenance
actions are defined, and once we have a reliable method to infer
the posterior distribution of the state parameter, the third ingre-
dient is the exploitation of expected utility theory to choose the
optimal maintenance set of actions (refer to [33,34]). When the
data is broadly available, the available data can be used directly
to infer the probability distribution of the state parameter(s).
For structural engineering applications such as the current case
study where the experimental data is scarce (and unavailable
in the damaged states), the posterior distribution of the state
parameter may be obtained from a calibrated finite element
model or a physics-informed digital surrogate using Bayesian
inference [35]. We use a finite element model to generate the
observable data (that is local strain gauge measurements) in this
paper.

As a byproduct of optimally choosing a maintenance strategy, we also
propose an approach to classify the structural state discretely. It is
convenient for engineers to assess the state of the structure discretely
(e.g., undamaged, moderately damaged, and critically damaged). For
simple problems where the possible discrete states of the structure have
well-defined physical definitions and sufficient examples of all realized
states, the state assessment is done using a statistical classifier, i.e., a
typical detection type problem. Defining the classifiers objectively re-
quires a large amount of data (more specifically, features) that span
the target damage states of interest, and supervised learning may be
employed to define the classifiers. However, unlike a well-defined de-
tection type problem encountered in data science, objectively defining
a mutually exclusive and exhaustive set of discrete structural states is
challenging since the structure evolves continuously and the state of the
structure is inherently a continuous quantity. In the case of the SHM
system installed on a complex structure with numerous sensors and
a continuous degree of damage, such objective well-defined classifiers
may not necessarily be obtainable. This is because, in practice, features
are very unlikely to be obtained in all possible classification states
(especially higher damage or failed states). We tackle this limitation by
exploiting the fact that each maintenance action is associated with or
designed for a label that represents a level of damage. These labels can
be used as a proxy for discrete state classifiers. We exploit the following
facts: (a) unlike a structural state that is inherently a continuous quan-
tity, the maintenance strategies are countable; (b) the consequence cost
function associated with each maintenance action label is implicitly
designed by considering a level of damage; thus, choosing an optimal
maintenance strategy allows us to reasonably use the associated labels
as a proxy to discrete state classifiers.

Although the consequence cost function for a set of maintenance
actions may be estimated reasonably by the structural asset owner/
operator, the actual decisions made are inherently affected by the bi-
ases and heuristics of the decision-maker (e.g., an inspection engineer)
or are risk-weighted [36]. Not only is the behavioral risk profile of an
individual decision-maker affected by his/her biases, but also by any
organizational values and priorities. Additionally, as discussed in [37],
3

although difficult to precisely define, an organization has a risk profile
based on its alignment with values, priorities, or regulations. For ex-
ample, high-consequence organizations like nuclear power plants must
be extremely risk-averse towards danger of core meltdown due to high
public safety consequences (see [38]). A well-designed SHM system can
be instrumental in obtaining reliable information regarding structural
health. However, utilizing this information to select the course of
action depends on the qualification, competence, and experience of
the engineer as well as the values, priorities, and guidelines set by an
organization or regulations by which the organization must abide.

This decision-making scenario under uncertainty motivates us to
model and investigate the effect of decision-maker’s risk profile on
decision-making. We achieve this by accounting for the decision-
maker’s utility, i.e., the their evaluations about the outcome of an
action, using risk profiles in the decision-making process. The utility
of a decision-maker is subjective and hence considers the fact that
different decision-makers mentally assign a different importance factor
(or in economic terms, the utility or risk-intensity) to the seriousness
or urgency of a given state in order to take necessary actions commen-
surate with the intensity of structural damage. The approach herein
incorporates a layer of human psychological behavior on selecting
appropriate maintenance strategies that not only depend on the struc-
tural state (probabilistically quantified by the posterior distribution
of the damage parameter) but also consider the risk profile of the
interpreting decision-maker(s). In the case of an organization, which
might be comprised of many decision-makers, we also investigate the
collective decision-making behavior of the organization. The collective
performance of the organization depends on the distribution of the risk
profiles of the agents it employs (which in turn are impacted partly
by the organization’s values, policies, and decision-making guidelines).
This paper does not elaborate on ways to psychologically evaluate and
define an individual’s risk profile, nor does it detail a methodology to
evaluate the risk profile of an organization; such a thing is based on
a complex array of its values, motto, operational capabilities, overall
competency of the management, the negative impact of bureaucracy
and loss of productivity in the case of large organizations, experience
and qualification of the employees, and corporate greed, to name a
few (see [37]). We approach this problem by modeling the spectrum
of risk profiles (or utility functions) of various decision-makers that
form the organization and investigating the impact of different cases
of risk intensities on decision-making. Assuming that an organization
is as good as its employees in an average sense, the organizational risk
profile is then defined based on the weighted average consequences of
the decisions made by the employees.

Decision theory enjoys a very rich history (refer to [39]) that
dates back to the work in probability theory by Blaise Pascal and
Pierre de Fermat, and the work of Bernoulli [40] on decision-making
under uncertainty. As demonstrated by the Petersburg paradox (see
Chapter 7 of [41]), people do not maximize expected monetary value
while making decisions. Bernoulli [40] suggested that the decision-
maker maximizes the expected value of a cardinal utility function that
represents the strength of preference for certain outcomes. The sound
theoretical foundation of expected utility theory lies in the work of
John von Neumann and Oskar Morgenstern [33] on game theory and
economic behavior. However, the expected utility theory assumed that
the decision-makers are rational. This theory was extended to prospect
theory (a theory of the psychology of choice) and finally to cumulative
prospect theory (a model for descriptive decision under risk and un-
certainty) by Amos Tversky and Daniel Kahneman [42,43] who also
included the irrationality and heuristic biases of the decision-maker.

Many engineering applications involve decision-making under un-
certain, risk-bearing scenarios. Several research efforts have been made
to adopt the expected utility theory and other decision-making models
in decision analysis for engineering applications. A paper by Gardoni
et al. [44] mentions that most engineering decision-making is math-
ematically modeled through three different methods: life cycle cost

analysis, expected utility theory, or cumulative prospect theory. As is one
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of the main focuses of this paper, Gardoni et al. [44] points to the fact
that the decision-maker’s preference and risk behavior plays a crucial
role in the outcome of decision analysis. A number of works [45,46]
dealt with considering and modeling risk-aversiveness in the decision-
making process. Faber et al. [47–50] investigated the decision-making
under uncertainty in SHM and structural reliability problems. More
recently, approaches quantifying the economic benefit of using an SHM
system (refer to [51–54]) have been investigated by using value of
information theory [55] in conjuncture with expected utility theory.
Bolognani et al. [56] extend the application of prospect theory to
include irrationality in decision-making for the SHM application.

As far as the applications of probability theory are concerned within
the field of civil engineering, the readers are referred to an excellent
book (especially the last two chapters) by Benjamin and Cornell [57].
We cautiously note that in this paper, we stick to the expected utility
framework and incorporate the risk-perception of the decision-makers
using a non-linear logarithmic utility function.

As introduced above, we consider for our case study a miter gate
structure, an important component of the lock systems used for inland
waterway navigation [58,59]. The USACE spends billions of dollars in
maintaining and operating this infrastructure, where the unscheduled
shutdown of these assets and dewatering for inspection or repair is very
costly [3,60,61]. The potential for SHM to help facilitate maintenance
and operations appears highly promising. Within the navigation lock
systems, miter gates are one of the most common locking gates used;
their most common failure mechanisms include long-term corrosion
and loss of load-transferring contact in the quoin block, as discussed
above [62]. As many of these structures have been operational for
over 50 years, many are presently potentially operating with higher
risk without engineers knowing their real structural residual strength
capacity; current practice involves engineering elicitation via inspec-
tion, followed by lock closures if the inspection so warrants. Since this
process is based on the varied experience and interpretation of field
engineers, it bears high uncertainty and variability [63]. The use of
an SHM system coupled with a framework that decides an optimal
maintenance strategy considering the various levels of risk intensity
could lead to reduced life cycle costs including an effective increase in
remaining useful life. We note that each engineering-based decision-
making problem requires customized rules/policy that considers the
problem at hand. Therefore, the proposed framework is focused on
the application of consequence-based decision-making for miter gate
structures and the principles can only, in theory, be extended to other
more complex problems.

The rest of the paper is arranged as follows. Section 2 reviews
the general framework of expected utility theory. Section 3 describes
the demonstration case study and general decision-making framework
that we propose. Section 4 first describes the maintenance actions and
their associated consequence cost functions, and then it details the
individual and organizational risk profiles. Section 5 presents posterior
decision analysis to determine the maintenance strategy and label
the structure considering individual and organizational risk behavior.
Finally, Section 6 concludes the paper.

2. Consequence-based decision-making framework

Consider an SHM based decision-making problem where the de-
cision to be made (like choosing a maintenance action) depends on
the uncertain state parameter(s) denoted by a random variable 𝛩 and
defined over the state-parameter space 𝛺𝛩. The decision space (for
example: set of different maintenance actions, or equivalently, the set
of the corresponding damage labels) is represented by 𝛺𝐷. In general,
𝛺𝐷 and 𝛺𝛩 can be discrete or continuous. However, suitable to the
present application, we assume that the decision space 𝛺𝐷 and the
state parameter(s) space 𝛺𝛩 are discrete and continuous, respectively,
such that 𝛺𝐷 = {𝑑0, 𝑑1,… , 𝑑𝑛} and 𝜃 ∈ 𝛺𝛩. Here, the elements of 𝛺𝐷,
i.e., 𝑑 ∈ 𝛺 for 𝑖 ∈ {1, 2,… , 𝑛}, represent a damage label that has a
4

𝑖 𝐷 a
corresponding maintenance action associated with (or designed for) it.
We attempt to answer the question: For a given probability distribution
of the state parameter(s), what rating must be assigned to the structure that
leads to an optimal maintenance strategy?

To answer this question directly, we first define uncertainty in
state parameter(s) 𝜃 by its probability density function 𝑓𝛩(𝜃). Let 𝜃true
represent the true value(s) of state parameter(s), and we assume that they
cannot be measured. The numerical value of 𝜃true falls in the domain

𝛩. To predict the optimal decision, we need to minimize average loss
or expected risk (also called the Bayes risk functional) arising as a
consequence of making the decision. To arrive at Bayes risk, we define
consequence/regret cost function 𝐿

(

𝑑𝑖, 𝜃true
)

that defines the total loss
r regret as a consequence of making decision 𝑑𝑖 considering all the
ossible values of true state parameter(s) 𝜃true ∈ 𝛺𝛩. It gives an extrinsic
ost involved with decision-making. The expected loss or the Bayes risk
prior is then defined as

prior(𝑑𝑖) = 𝐸𝛩
[

𝐿
(

𝑑𝑖, 𝜃true = 𝜃
)]

= ∫𝛺𝛩

𝐿
(

𝑑𝑖, 𝜃true = 𝜃
)

𝑓𝛩(𝜃) d𝜃,∀𝑖 ∈ {1, 2,… , 𝑛}. (1)

he optimal decision, denoted by 𝒹prior ∈ 𝛺𝐷, is the one that minimizes
he Bayes risk, or

prior = argmin
𝑑𝑖

𝛹prior(𝑑𝑖). (2)

e observe that 𝑓𝛩(𝜃) embeds our prior knowledge of state parame-
er(s) 𝜃 before any additional information is available (for example,
btained using sensors in SHM). Obtaining the optimal decision using
q. (2) is called a prior decision analysis.

We now consider a scenario where additional information (sensor
easurements) is available. For sake of argument, we assume that new

nformation is obtained by a mechanism 𝑧 (for example an SHM sys-
em). The newly acquired measurements are assumed to be uncertain
s the sensor data is subjected to noise. Therefore, in the Bayesian
iewpoint, sensor measurements are modeled as a random variable,
enoted by 𝑋𝑧. Let 𝛺𝑋𝑧

represent continuous measurement space, such
hat 𝑥𝑧 ∈ 𝛺𝑋𝑧

, where 𝑥𝑧 is a realization of the random variable 𝑋𝑧.
he subscript 𝑧 denotes the mechanism by which new information
as acquired. Installing information gathering system incurs an intrinsic
ost 𝐶(𝑧). Therefore, sum total of the extrinsic and the intrinsic cost
unctions 𝐿𝑧(𝑑𝑖, 𝜃true) = 𝐶(𝑧) + 𝐿(𝑑𝑖, 𝜃true) is used for further decision
nalysis. With the availability of additional information, we define
ayes risk 𝛹𝑧 for posterior decision analysis as:

𝑧(𝑑𝑖) = 𝐸𝛩𝑋𝑧

[

𝐿𝑧(𝑑𝑖, 𝜃true)
]

= 𝐸𝑋𝑧

[

𝐸𝛩|𝑋𝑧

[

𝐿𝑧(𝑑𝑖, 𝜃true = 𝜃)
]

]

= ∫𝛺𝑋𝑧

𝑓𝑋𝑧
(𝑥𝑧)𝑅𝑧(𝑑𝑖; 𝑥𝑧) d𝑥𝑧; (3)

here,

𝑧(𝑑𝑖; 𝑥𝑧) = 𝐸𝛩|𝑋𝑧

[

𝐿𝑧(𝑑𝑖, 𝜃)
]

= ∫𝛺𝛩

𝐿𝑧(𝑑𝑖, 𝜃true = 𝜃)𝑓𝛩|𝑋𝑧
(𝜃|𝑥𝑧) d𝜃. (4)

n the equation above, 𝑅𝑧(𝑑𝑖; 𝑥𝑧) represents conditional risk. It repre-
ents expected value of loss as a consequence of making a decision
onsidering the posterior distribution of state parameter(s) 𝑓𝛩|𝑋𝑧

(𝜃|𝑥𝑧)
conditioned on new information acquired through the mechanism 𝑧)
hich is essentially the updated distribution of state parameter(s) 𝜃
fter new information 𝑥𝑧 is available. With this understanding, we can
rite the Bayes risk and the optimal decision 𝒹𝑧 as

𝑧(𝑑𝑖) = 𝐸𝑋𝑧

[

𝑅𝑧(𝑑𝑖; 𝑥𝑧)
]

; (5a)

𝑧 = argmin
𝑑𝑖

𝑅𝑧(𝑑𝑖; 𝑥𝑧). (5b)

e assume that the new information should be such that it brings
n observer closer to the true state parameter(s) relative to what
as reflected in the prior knowledge of state parameter(s). With this

ssumption, the decision obtained using Eq. (5) is better than the
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decision obtained by prior analysis using Eq. (2) because additional
information 𝑥𝑧 reduces uncertainty and brings one closer to the true
state parameter(s). Utilizing equation set (5) to obtain the optimal
decision is referred to as posterior decision analysis. The subscript (.)prior
nd (.)𝑧 in Bayes risk and optimal decision are meant for prior and
osterior decision analysis (using information obtained through the
echanism 𝑧), respectively.

The posterior probability distribution 𝑓𝛩|𝑋𝑧
(𝜃|𝑥𝑧) remains to be

valuated. We realize that the posterior 𝑓𝛩|𝑋𝑧
(𝜃|𝑥𝑧) is non-causal. State

arameter(s) can be thought of as a cause with measurement being
ts effect. In this regard, inferring the state parameter(s) (cause) given
he measurement (effect) is non-causal. We use Bayes theorem to write
𝛩|𝑋𝑧

(𝜃|𝑥𝑧) in a more desirable and causal form:

𝛩|𝑋𝑧
(𝜃|𝑥𝑧) =

𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃)𝑓𝛩(𝜃)
𝑓𝑋𝑧

(𝑥𝑧)
=

𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃)𝑓𝛩(𝜃)

∫𝛺𝛩
𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜏)𝑓𝛩(𝜏)d𝜏

. (6)

As discussed before, the likelihood 𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃) is relatively easier to
calculate than the posterior 𝑓𝛩|𝑋𝑧

(𝜃|𝑥𝑧). The likelihood can be easily
obtained using the forward simulated model of the system that yields
𝑥𝑧 for a given value of 𝜃 (for example, the finite element model yield-
ing measurements 𝑥𝑧 for a given damage level 𝜃). Alternatively, the
measurements 𝑥𝑧 can be obtained for various instances of the damage
parameter 𝜃 experimentally. The data set (𝑥𝑧, 𝜃) obtained through a
lab-based experimental testing can then be used to obtain the like-
lihood 𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃). Numerical techniques like Markov Chain Monte
Carlo (MCMC), and Sequential Monte Carlo (SMC), or transitional
MCMC [64] can be used for Bayesian inference. The following section
presents and discusses the demonstration problem concerning the miter
gate structure.

3. Demonstration problem

3.1. Problem description

To demonstrate the application of concepts discussed so far, we
consider an example problem of the Greenup miter gate maintained and
managed by USACE located on the Ohio River, USA. Fig. 1 shows a lock
and the miter gate system (image adapted from the USACE website and
Eick et al. [65]). Loss of contact between the vertical side of a gate and
the supporting concrete wall (boundary-related damage) is the most
commonly observed damage mechanism in such systems [3,62,63].
This loss of contact is manifested by the formation of a gap between
the gate and the wall quoin blocks at bottom of the gate. The amount
(or length) of this loss of contact is referred to as gap length in this
aper. Therefore, we treat the gap length as a scalar continuous state
arameter 𝜃 ∈ 𝛺𝛩 (refer to Fig. 2), such that 𝛺𝛩 = [𝜃min, 𝜃max].
ere, 𝜃min is the lower bound of the gap length, and 𝜃max is the upper

bound of the gap length which indicates that the gate is critically
damaged and failure is imminent. This value is suggested by the USACE
engineers based on their experience and past inspection data. In many
cases, data related to the failure of the structure may not be available
because the decision-makers are risk-averse and they do not want to
see a gap length large enough leading to failure. In such scenarios,
a physics/mechanics-based high-fidelity numerical simulation should
be performed to estimate 𝜃max. Based on feedback from USACE field-
ngineers [62], the upper bound of the gap length can be considered as
max = 180 inches for gates that have similar structural characteristics
s the Greenup miter gate. If no value of 𝜃min is specified, it can be

taken as 0 in (indicating pristine state of the gate). Unlike non-binary
ating protocols used by USACE, i.e. (A, B, C, D, F, and CF ), to build

our framework, we use a rather simplified binary labeling system that
5

consists of two discrete damage labels/index of the miter gate, such that
the decision space reduces to 𝛺𝐷 = {𝑑0, 𝑑1}, where the binary decisions
re

0 ∶label indicating that the gate is undamaged with
excellent operational capacity,
and requires no maintenance;

1 ∶label indicating that the gate is damaged,
is not safely operational,
and requires maintenance.

(7)

The physical location of the gap appearance is in part of the gate
hat is always submerged underwater during operational conditions.
herefore, loss of contact length cannot be directly observed and mea-
ured during operational conditions, and the gap length becomes our
nknown parameter. This unknown parameter can be estimated (or
nferred) from other indirect measurements of some kind available
t distributed locations on the structure. The Greenup miter gate is
quipped with an array of strain gauges indicated by red dots in Fig. 2.
hese strain gauge readings are recorded in real-time and are used
s the set of measurements that will be used to infer the gap length.
e simulate our data acquisition process using a detailed high-fidelity

inite element model (FEM) of the Greenup miter gate previously
alidated in the undamaged condition of the gate with available actual
train gauge readings [62]. When the miter gate is first deployed, the
ap length is reasonably assumed to be zero, under the assumption
f no deployment problems. A FEM of the pristine miter gate needs
o be constantly updated (as a live digital twin) as and when new
nformation from the strain gauge sensor array is obtained. Because

very limited amount of actual data is available from Greenup, we
urn to a physics/mechanics-based FEM of the miter gate (see Fig. 2)
s the ground truth surrogate for data. In that regard, we assume
hat there are no measurement biases and that the sensor readings
re subject to random unbiased noise. As with any such model, its
epresentative predictive value is only as good as its validation based on
he real structure that it represents. In this case, the FEM was previously
alidated for the Greenup miter gate in the undamaged condition,
s mentioned earlier, but modeling of damage formation of the gap
tself could not be validated on actual data from the gate in a known
amaged condition, so modeling bias error in the damage state could
reep into the process. That does not change or otherwise invalidate
he demonstration of the proposed approach or its utility, but rather it
rovides caution on interpreting the specific results for this case beyond
he demonstration of the overall approach. Since the data is acquired
rom the strain-gauge array constituting the SHM system, from here on,
denotes the SHM system. The posterior distribution 𝑓𝛩|𝑋𝑧

(𝜃|𝑥𝑧) of the
ap length given the strain sensor measurements is then obtained using
ayesian inference discussed in the next Section 3.2. Here, 𝑋𝑧 denotes
random variable that represents the measurement obtained from the

ensors deployed in the SHM system, with 𝛺𝑋𝑧
representing the space

f those measurements.

.2. Inferring the gap length using Bayesian inference

As discussed in the previous section, the state parameter is the gap
ength 𝜃, and the measurement vector 𝑥𝑧 ∈ 𝛺𝑋𝑧

is the strain recorded
t 𝑁sg(𝑧) number of strain gauges. Therefore, 𝑋𝑧 is a random vector.
he red dots in Fig. 2 show the locations of the 𝑁sg(𝑧) = 46 strain
auges considered for the simulation. The measurements obtained from
he strain-gauges are used to infer the gap length 𝜃 using Eq. (6) that
e recall below for the sake of continuity

𝛩|𝑋𝑧
(𝜃|𝑥𝑧) =

𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃)𝑓𝛩(𝜃)
𝑓𝑋𝑧

(𝑥𝑧)
. (8)

In the equation above, 𝑓𝛩(𝜃) is the prior probability distribution,

𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃) is the likelihood function, and 𝑓𝛩|𝑋𝑧

(𝜃|𝑥𝑧) is the posterior
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Fig. 1. An example of a lock and miter gate system.
Fig. 2. Physics-based model of miter gate and the bearing gap.
probability distribution that needs to be evaluated. In the context
of inferring 𝜃, the evidence 𝑓𝑋𝑧

(𝑥𝑧) is just a normalizing constant.
Therefore, Eq. (8) can be written as

𝑓𝛩|𝑋𝑧
(𝜃|𝑥𝑧) ∝ 𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃)𝑓𝛩(𝜃). (9)

The distribution 𝑓𝛩(𝜃) reflects the prior knowledge about the parameter
𝜃 before any new information (or measurements) are obtained. As-
suming only basic geometric constraints on the gap length, we assume
the prior gap length to be a uniform distribution spanning over 𝛺𝛩 =
[𝜃min, 𝜃max], such that

𝑓𝛩(𝜃) =
{

(𝜃max − 𝜃min)−1 𝜃 ∈ 𝛺𝛩;
0 otherwise. (10)

To evaluate the posterior distribution using Eq. (9) requires the likeli-
hood function. Constructing the likelihood function 𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃) requires
a model of the measurement process. In this paper, we use the following
measurement model

𝑥𝑧 = ℎ𝑧(𝜃true, 𝑢) +𝑤𝑧. (11)

In the equation above, 𝑥𝑧 = (𝓍𝑧1,𝓍𝑧2,… ,𝓍𝑧𝑁sg(𝑧)) ∈ 𝛺𝑋𝑧
is a re-

alization of the random vector 𝑋𝑧 consisting of 𝑁sg(𝑧) static strain
measurements for a given water heads at each side of the miter
gate, where 𝓍 represents the strain value corresponding to the 𝑖th
6

𝑧𝑖
strain gauge. The quantity ℎ𝑧(𝜃, 𝑢) defines the true strain gauge ar-
ray response obtained by the finite element model for the true gap-
length value 𝜃true when subjected to the input loading 𝑢 (consisting
of upstream and downstream water heads), such that ℎ𝑧(𝜃true, 𝑢) =
(𝒽𝑧1(𝜃true, 𝑢),𝒽𝑧2(𝜃true, 𝑢),… ,𝒽𝑧𝑁sg(𝑧)(𝜃true, 𝑢)). Here, 𝒽𝑧𝑖(𝜃true, 𝑢) repre-
sents the true strain value of the 𝑖th strain gauge when the true
gap-length value is 𝜃true and 𝑢 is the input loading. The input loading
𝑢 = (ℎup, ℎdown) consists of the hydro-static load on the gate, where
ℎup and ℎdown represents the hydro-static head in the upstream and the
downstream respectively. Finally, the random vector 𝑊𝑧 with a real-
ization 𝑤𝑧 = (𝓌𝑧1,… ,𝓌𝑧𝑁sg(𝑧)) represent the measurement noise/error
vector, where 𝓌𝑧𝑖 denotes the error between the measurement output
and finite element predicted response corresponding to the 𝑖th strain
gauge. We assume that 𝑊𝑧 follows a zero-mean Gaussian distribu-
tion with independent components, i.e., the noise/error terms of all
𝑁sg(𝑧) strain gauges are assumed to be statistically independent. In
addition, we assume that all strain gauges have the same noise/error
standard-deviation 𝜎strain, such that

𝑓𝑊𝑧
(𝑤𝑧 = (𝓌𝑧1,… ,𝓌𝑧𝑁sg(𝑧))) =

𝑁sg(𝑧)
∏

𝜙
(

𝓌𝑧𝑖
)

. (12)

𝑖=1 𝜎strain
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Using the measurement model defined in Eq. (11), and the description
of noise in Eq. (12), the likelihood can be written as

𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃) =
𝑁sg(𝑧)
∏

𝑖=1
𝜙
(

𝓍𝑧𝑖 −𝒽𝑧𝑖(𝜃, 𝑢)
𝜎strain

)

. (13)

Having defined the prior distribution and the likelihood function
n Eq. (10) and (13), we note that the posterior distribution cannot
e obtained analytically using Eq. (8). This is because the relationship
etween the gap length 𝜃 and the strain measurements 𝑥𝑧 is highly
onlinear and only available numerically through the finite element
imulation. One can rely on numerical approximation techniques like
arkov chain Monte Carlo (MCMC) methods or sequential Monte
arlo (SMC) methods to solve the inference problem (refer to [64,66–
8]). However, these numerical techniques demand evaluation of the
ikelihood function 𝑓𝑋𝑧|𝛩(𝑥𝑧|𝜃) at numerous values of 𝜃. Evaluating the
ikelihood using Eq. (13) at each value of 𝜃 requires running the finite
lement model ℎ𝑧. Thus, the process of Bayesian inference becomes
xtremely computationally expensive while using high-fidelity finite
lement models, such as in this work. Consequently, we employ the
ransitional Markov chain Monte Carlo (TMCMC) algorithm to perform
ayesian inference. The inherent architecture of the TMCMC algorithm
llows for parallel computing and hence is ideal for inference when
ealing with computationally expensive high-fidelity FE models. The
lgorithmic details of the TMCMC can be found in [64,67–69]. Besides,
MCMC has been applied to the miter gate model in [66]. Note that the
MCMC algorithm is closely related to the class of SMC algorithms.

We simulate strain measurement data numerically. For simulating
uch data, we obtain response of the FE model ℎ𝑧(𝜃true, 𝑢) parameterized

by a fixed chosen value of 𝜃true subjected to a fixed chosen input
loading 𝑢 = (ℎup-true, ℎdown-true). The finite element strain response is
now corrupted with zero-mean Gaussian noise of standard deviation
𝜎strain-true to simulate strain measurement noise. This noise corrupted
finite element response is now used as the measurement data 𝑥𝑧. For
he posterior analysis in Section 5, we consider five sets of measurement
ata resulting in five cases of a posterior distribution. Parameter values
sed to simulate five sets of measurement data are shown in Table 4.
uring inference, it is assumed that the input loading corresponding to
ach of these cases (cases 1–5) is known accurately, i.e., ℎup = ℎup-true,
nd ℎdown = ℎdown-true. This is a valid assumption since the height
f water upstream ℎup and downstream ℎdown can be easily measured
ith fairly high certainty. On the other hand, the standard deviation of
easurement noise 𝜎strain is extremely difficult to quantify accurately
hen using real measurement data. To mimic this real-world scenario,

strain in Eq. (12) is set to some non-true value for each case while
nferring the gap length 𝜃, i.e., 𝜎strain ≠ 𝜎strain-true for each case.

. Cost function and risk profiles

.1. Maintenance actions

Let 𝑀0 and 𝑀1 represent the actions associated with the labels 𝑑0
rating the structure as undamaged) and 𝑑1 (rating the structure as
amaged), respectively. That is, if the structure is labeled/rated as 𝑑𝑖,
ith 𝑖 ∈ {0, 1}, then we perform the maintenance 𝑀𝑖, such that

0 ∶ Do nothing;

1 ∶ Shutdown, inspect, and repair or replace
if required based on the inspection results.

(14)

hoosing either 𝑀0 or 𝑀1 will have an associated consequence cost
epending on what the true state of the structure is. For instance,
hoosing 𝑀0 for a newly-constructed gate (with the true gap length
alue being zero or negligibly small) is obviously an optimal decision.
n the other hand, the same maintenance action 𝑀0 can lead to
atastrophic consequences when the true value of gap length is close to

(implying a heavily damaged gate near critical failure). Similarly,
7

max e
hoosing 𝑀1 for a pristine gate is unnecessary, while it may be an
ptimal decision when the gate is approaching critical failure (with a
arger value of the true gap length). The next section proposes the base
onsequence cost functions.

.2. Base consequence cost function

Tversky [70] noted that in order to simplify the choice between
lternatives, people often disregard components that the alternatives
hare and focus on the components that distinguish them, a phe-
omenon referred to as the isolation effect[42]. The isolation effect also
mplies that the carrier of value is the change of wealth, rather than
inal asset positions that include current wealth, the observation first
ade by Markowitz [71]. In the maintenance action selection problem

t hand, the isolation effect translates to the fact that when designing
he consequence cost function, we only consider the consequence of
hoosing a particular action and ignore the current value of the asset.
ince our decision-making preferences depend on this relative change
n value, we use the consequence cost in isolation to (or by ignoring)
he current value of the asset (the miter gate).

Recall the prior and posterior decision-making using Eqs. (2) and
5a), respectively. Since the state parameter is described probabilisti-
ally, it is necessary to consider all the possible realizations of the state
arameter in the decision-making process. This is achieved by evaluat-
ng the value of Bayes risk for each choice of maintenance actions as
n expected value of consequence cost. Let 𝐿(𝑑0, 𝜃true) and 𝐿(𝑑1, 𝜃true)
enote the consequence costs of performing the maintenance actions
0 and 𝑀1, respectively, where the true degree of damage is defined

y 𝜃true. The consequence cost or regret function 𝐿(𝑑𝑖, 𝜃true) is defined
for each maintenance strategy 𝑀𝑖 (corresponding to the label 𝑑𝑖) and
it weighs an impact of choosing a maintenance action 𝑀𝑖 for all the
possible true degrees of damage 𝜃true ∈ 𝛺𝛩. For example, choosing
to do nothing (𝑀0) when 𝜃true = 100 inches is more consequential
than doing nothing (𝑀0) when 𝜃true = 50 inches. That is, 𝐿(𝑑0, 𝜃true =
00 inches) > 𝐿(𝑑0, 𝜃true = 50 inches).

he functional form of the consequence cost function 𝐿(𝑑0, 𝜃true): In the
bsence of any external action or maintenance (i.e., 𝑀0), the damage
f the structure is a spontaneous and irreversible thermodynamic
rocess [72]. Therefore, for 𝑀0, the consequence function 𝐿(𝑑0, 𝜃true)
hould assign a higher relative consequence weights for a higher
elative damage level. That is, 𝐿(𝑑0, 𝜃true) should have monotonically
ncreasing functional form. We assume that the consequence cost
(𝑑0, 𝜃true) bears a linear functional form (simplest form of monotoni-
ally increasing function) bounded by the cost of doing nothing for the
xtreme cases of damage.

he functional form of the consequence cost function 𝐿(𝑑1, 𝜃true): Action
1 is a sequential maintenance strategy. A simple example of the
aintenance strategy 𝑀1 might be:

1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Shutdown, inspection,
and no repairs 𝜃true ∈ [𝜃min, 𝜃1)

Shutdown, inspection,
and minor repairs 𝜃true ∈ [𝜃1, 𝜃2)

Shutdown, inspection,
and moderate repairs 𝜃true ∈ [𝜃2, 𝜃3)

Shutdown, inspection,
and major repairs/replacement 𝜃true ∈ [𝜃3, 𝜃max]

ue to the sequential nature of 𝑀1, its cost increases as the damage
ntensity increases. An appropriate functional form for the consequence
unction 𝐿(𝑑1, 𝜃true) would be a piecewise increasing step function.
nstead of evaluating the costs to these sequential actions, we simply
valuate the cost to perform the maintenance 𝑀 when the gate is
1
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Table 1
Decision cases and their consequence-costs for the extreme values of the gap length 𝜃true.

True state parameter 𝜃true = 𝜃min True state parameter 𝜃true = 𝜃max

Label/Rating: 𝑑0
Action: 𝑀0

𝐿(𝑑0 , 𝜃min) = 𝛼min 𝐿(𝑑0 , 𝜃max) = 𝛼max

Label/Rating: 𝑑1
Action: 𝑀1

𝐿(𝑑1 , 𝜃min) = 𝛽min 𝐿(𝑑1 , 𝜃max) = 𝛽max
Fig. 3. Cost functions 𝐿(𝑑𝑖 , 𝜃true), 𝑖 ∈ {0, 1}.
undamaged (i.e., 𝐿(𝑑1, 𝜃true = 0)), and for the case when the gate is
damaged (i.e., 𝐿(𝑑1, 𝜃true = 180 inches)). The consequence of perform-
ing maintenance 𝑀1 for any generic value of 𝜃true is approximately
estimated by a linear function bounded by the consequence costs for
extreme cases of damage.

Consequence cost for extreme cases of damage: We estimate the real cost
for both the maintenance strategies considering the extreme values of
true gap length (𝜃true = 𝜃min = 0 inches and 𝜃true = 𝜃max = 180 inches).
We do this because the extreme values of the gap have interpretable
physical meaning. The value of 𝜃true = 0 inches indicates that the
gate is pristine, and the value of 𝜃true = 180 inches indicates that the
gate is severely damaged and a critical failure is incipient. Under such
damage conditions, the economical consequence of choosing a main-
tenance action can be reasonably evaluated since the consequences
of decision-making are well-defined. When the gap length is zero, or
𝜃true = 𝜃min = 0 inches, the gate is in pristine condition. Therefore, for
𝜃true = 0 inches, rating the gate as undamaged, or 𝑑0, and doing nothing
(or choosing action 𝑀0) is an optimal decision and costs nothing,
i.e. 𝐿(𝑑0, 0) = 𝛼min = 0. However, for a pristine gate, performing
the action 𝑀1 leads to unnecessary cost (denoted by 𝐿(𝑑1, 0) = 𝛽min)
due to down-time economic losses and inspection costs. Once the pristine
condition of the gate is established as a result of inspection, no repairs
are carried out. Following along a similar line of reasoning, we consider
another extreme end of gap length value of 𝜃true = 𝜃max = 180 inches
that reflects a severely damaged gate. Choosing the action 𝑀0 for such
a severely damaged gate can lead to consequence costs due to structural
failure, loss of life and property, and the cost of replacement, denoted
collectively by 𝐿(𝑑0, 𝜃max) = 𝛼max. This damage state of the structure de-
mands optimal maintenance to be 𝑀1 leading to costs associated with
down-time economic losses, inspection costs and major repairs/replacement
costs, collectively denoted by 𝐿(𝑑1, 𝜃max) = 𝛽max. In addition to the cost
𝐿(𝑑1, 0), the cost 𝐿(𝑑1, 𝜃max) includes an additional expense of major
repair or replacement. Therefore, 𝐿(𝑑1, 𝜃max) > 𝐿(𝑑1, 0). However,
the most expensive decision is choosing to do nothing when the gate
is critically damaged, making 𝐿(𝑑0, 𝜃max) the maximum cost among
the four cases discussed here, such that, 𝐿(𝑑0, 𝜃max) > 𝐿(𝑑1, 𝜃max) >
𝐿(𝑑1, 0) > 𝐿(𝑑0, 0), or 𝛼max > 𝛽max > 𝛽min > 𝛼min.

Base consequence cost functions: For each maintenance case, we have
two objectively defined consequences at 𝜃 = 𝜃 and 𝜃 = 𝜃 .
8

true min true max
A linear consequence cost has following form:

𝐿(𝑑𝑖, 𝜃true) = 𝐶𝑖0 + 𝐶𝑖1𝜃true. (15)

We obtain the constants 𝐶𝑖0 and 𝐶𝑖0 using the constraints listed in
Table 1. The consequence cost (illustrated in Fig. 3) functions are
obtained as:
𝐿(𝑑0, 𝜃true) =𝐶00 + 𝐶01𝜃true

=
(

𝜃max𝛼min − 𝜃min𝛼max
𝜃max − 𝜃min

)

+
(

𝛼max − 𝛼min
𝜃max − 𝜃min

)

𝜃true;

𝐿(𝑑1, 𝜃true) =𝐶10 + 𝐶11𝜃true

=
(

𝜃max𝛽min − 𝜃min𝛽max
𝜃max − 𝜃min

)

+
(

𝛽max − 𝛽min
𝜃max − 𝜃min

)

𝜃true.

(16)

Since 𝛼max is the maximum extreme cost, the costs 𝛽min and 𝛽max
can be expressed as a fraction of 𝛼max. For the purposes of numerical
simulation in this paper, we assume 𝛽min = 0.15𝛼max and 𝛽max = 0.4𝛼max.
We assign a dollar value of $1 million to 𝛼max. Under this assignment,
Fig. 3 gives the cost functions 𝐿(𝑑0, 𝜃true) and 𝐿(𝑑1, 𝜃true).

Remark 1. Treating the SHM-informed decision-making as a typical
data-science based traditional detection/classification type problem, the
conditional Bayes risk can be alternatively defined and evaluated by
utilizing probabilities of the discrete states (𝑑0: undamaged, and 𝑑1:
damaged), such that

𝑅𝑧(𝑑0; 𝑥𝑧) =𝑃𝐷|𝑋𝑧
(𝑑0|sensor data 𝑥𝑧)𝛼min

+ 𝑃𝐷|𝑋𝑧
(𝑑1|sensor data 𝑥𝑧)𝛼max;

𝑅𝑧(𝑑1; 𝑥𝑧) =𝑃𝐷|𝑋𝑧
(𝑑0|sensor data 𝑥𝑧)𝛽min

+ 𝑃𝐷|𝑋𝑧
(𝑑1|sensor data 𝑥𝑧)𝛽max,

(17)

from which the optimal decision may then be obtained as

𝒹𝑧 = argmin
𝑑𝑖

𝑅𝑧(𝑑𝑖; 𝑥𝑧). (18)

There are several limitations and challenges with this traditional ap-
proach, especially for the structural health monitoring type of decision
making where the structural state is continuously evolving with time.
Such challenges include:

1. It is natural to define the structural state or the damage in-
tensity as a continuous quantity, whereas, maintenance actions
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(and their labels acting as a proxy discrete damaged state) are
discrete. The decision-making framework proposed in this paper
utilizes continuous damage intensity (or the state parameter) to
make a maintenance decision. On the other hand, the decision-
making approach using Eq. (17) and (18) requires objectively
defining discrete damaged states 𝑑𝑖 (unlike in the proposed
approach, these discrete states are linked to the maintenance
strategies). In a real-world problem, it is difficult to objectively
define the discrete state of the structure since the structural
state is continuous by its very nature. Secondly, any attempt to
objectively define a discrete structural state is bound to be in
terms of the continuous state parameter.

2. The current approach directly/explicitly utilizes the probability
distribution of the state parameter to make a decision. On the
other hand, the traditional approach utilizes the state param-
eter implicitly to make a decision. This is because the tradi-
tional approach requires establishing a classifier/detector (via
a hypothesis test) to evaluate the probability of the discrete
damage state conditioned on the probability distribution of the
state parameter, which in turn is conditioned upon the strain
measurements. Defining the classifiers (or a detector criterion)
objectively requires a large amount of data (more specifically,
features) that span the target damage states of interest, and
supervised learning may be employed to define the classifiers.
In the case of the SHM system installed on a complex structure
with numerous sensors and an uncertain continuous degree of
damage, such objective well-defined classifiers may not neces-
sarily be obtainable. This is because, in practice, features are
very unlikely to be obtained in all possible classification states
(especially higher damage or failed states).

3. The expression of the expected cost evaluated using Eq. (17)
and (18) (the traditional approach) is not an optimal form to
incorporate behavioral biases in engineering decision-making.
The approach that we have proposed was inherently designed
to incorporate the behavioral psychology of the decision-maker
all the while using the continuous nature of the structural state.

We deviate from the traditional approach used in detection/
classification types of problems, where it is possible to objectively
define the discrete classes and classifiers (equivalent to discrete struc-
tural states in SHM-based problems). Defining the classifiers objectively
requires a large amount of data that spans the target classes (or
damage states). However, unlike a well-defined detection type prob-
lem, objectively defining a mutually exclusive and exhaustive set of
discrete structural states is challenging due to the lack of data and the
complexity of the problem. In turn, we solve this problem by utilizing
a damaged label associated with a maintenance strategy as a proxy to
the discrete structural state.

Remark 2. We have assumed a linear form of the base costs 𝐿(𝑑𝑖, 𝜃true)
for 𝑖 ∈ {0, 1} since this functional form satisfies monotonically in-
creasing property and only requires knowledge of extreme costs which
can reasonably estimated. In most cases, the consequence costs are
reasonably obtained by estimating the current real cost of performing
maintenance and by investigating the damage evolution model using
the finite element model. As explained before, one noteworthy char-
acteristic of the consequence cost is that it must be a non-decreasing
function of the true damage intensity. When it comes to maintenance
decisions guided by the organization’s policies or collective experience,
we consider the real-world scenario where inspection engineers are
authorized to execute those decisions. These decisions are subjective
to the engineer’s experience and their thought processes but are as-
sumed commensurate with the broader policies or guidance provided
by the organization. Therefore, the perceived consequence weights of
erforming maintenance may deviate from the base consequence cost
9

ecommended by the organization, subject to engineering judgment.
For example, engineers who know that there are some approxima-
tions in the base cost curves may want to make a more conservative
maintenance decision (doing a bit more than what is required by the
maintenance guide issued by the organization). The approximate nature
of the base cost functions, and hence the underlying uncertainty in
the cost, promote the inspection engineer to display risk-aversion [45].
Another situation that demands a deviation from the base cost functions
is if the SHM system under-predicts or over-predicts the degree of
damage (or the state parameter), causing the engineer to be either risk-
averse or risk-seeking. Therefore, the base consequence functions can be
modified to include risk intensity considered in the decision-making
process. Recognizing that this risk perception of the decision-makers
leads to modification of the base cost curve (to include desirable risk
intensity), the organization can offer a spectrum of cost functions that
can be chosen based on the desirable risk intensity of the decision-
making process. The next section explores and models the risk profiles
of the engineers. Empowered with the idea of the risk profiles, we
will propose a spectrum of risk profiles that can be interpreted in
two ways: (1) forward interpretation: each risk profile represents an
individual decision-maker’s behavior; (2) inverse interpretation: each risk
profile represents a risk-intensity that the organization wants to include
over the base cost to make a decision. A risk-averse profile demands
a conservative decision, i.e., a tendency to perform the maintenance
𝑀1 at a relatively lower level of damage to avoid any disastrous and
expensive consequence. On the other hand, a risk-seeker profile allows
more flexible decision-making that would recommend the maintenance
𝑀1 only when the degree of structural damage is approaching failure,
i.e., in a higher state of perceived risk.

4.3. Behavioral psychology and risk profiles

Decision-making under uncertainty is fundamental, and every de-
cision involves consequence(s) associated with it; thus, it is expected
that decision outcomes change from one individual to another based
on how they perceive the consequences of making that decision. This is
primarily due to biases and heuristics. The tendencies that govern our
day-to-day decision-making are the very same behavioral tendencies
that make maintenance decisions subjective to the engineer in charge.
We demonstrate this fact by a simple example of representative bias.
Irrespective of the true structural damage, the inspection engineers tend
to delay the maintenance of the structure that does not show a sign of
damage, and they are prompted to repair it when there is a visible form
of damage. This is because the undamaged state of the structure appears
safe (irrespective of the true structural state).

Another behavioral tendency of humans is that they inherently aim
at maximizing rewards and minimizing losses. However, losing hurts
more than winning brings joy. This concept of loss-aversion was first
identified by Amos Tversky and Daniel Kahneman [42] as a critique
of the expected utility theory which assumes that a rational decision-
maker would weigh losses and wins equally when their absolute values
are the same. They noted that people underweight outcomes that are
merely probable in comparison with outcomes that are obtained with
certainty, called the certainty effect. As a consequence of the certainty
effect, they argued that decision-maker acts risk-aversely in a situation
when decision choices involve sure gain and are happier with smaller
certain gains than with larger probable gains; on the other hand,
people exhibit risk-seeker behavior when the decision choices involve
certain losses and are happier to bet on a larger but probable loss
than a smaller but certain loss. This observation that risk aversion in
the positive domains is accompanied by risk-seeking in the negative
domain is called the reflection effect. As a consequence of the reflection
effect, Tversky and Kahneman argued that we do not necessarily desire
certainty, rather we ‘‘ desire to lose less’’ more than we ‘‘desire to win’’,
i.e., the certainty (or less uncertainty) increases the aversiveness of
losses, as well as the desirability of gains. Charles Krauthammer (refer

to chapter 3, pages 63–65 of [73]) wrote about loss-aversion in sports,



Reliability Engineering and System Safety 229 (2023) 108845M. Chadha et al.

A
𝑑
u
u
i
b

𝜉

a
p
a
f
𝜉

𝜉

called the Krauthammer Conjecture, and noted: ‘‘in sports, the pleasure
of winning is less than the pain of losing ’’. He supported his claim by
examples, including ‘‘When the Cleveland Cavaliers lost the 2015 NBA
Finals to Golden State, LeBron James sat motionless in the locker room,
staring straight ahead, still wearing his game jersey, for 45 min after the final
buzzer’’. Although humans are loss-averse, under uncertain situations
a decision-maker needs to accept a risk and possible losses with an
expectation of a reward.

It is these behavioral-psychological tendencies discussed above that
lead different inspection engineers to have different expectations and
intuitive/heuristic risk perception or knowledge of the possible con-
sequence of making a decision or choosing the maintenance action,
especially for the non-extreme values of the true degree of damage. The
perceived importance of the outcome of making a decision is subjective
to the individual. In general terms, an individual’s risk profile is his/her
willingness and ability to take risks and bear losses as a consequence of
making a decision. A risk can be thought of as an acceptable loss that
the individual is prepared to take for some expected return. For further
discussion, we consider monetary losses. As such, risk profiles can be
classified into risk-aversion, risk-seeking, and risk-neutral. A risk-averter
decision-maker has a strong desire to not make any incorrect decisions
that can lead to large losses. On the contrary, a risk-seeker is willing
to bet more and absorb high losses with an expectation of the highest
possible return. In short, a risk-averter decision-maker tends to make
a safer/conservative decision settling for a moderate reward, whereas,
a risk-seeker tends to risk larger losses expecting a bigger reward.
However, we note that the willingness and the ability of a decision-
maker to take risks need not necessarily match up. For instance, an
entrepreneur with the same net worth as a lottery winner may have
an equal ability, or capacity, to take a risk. Being fully aware of the
uncertainties, however, an entrepreneur might be more willing to bet
on new potential business than the lottery winner.

The risk profile of the decision-maker can be mathematically mod-
eled by their utility vs. wealth (or loss) function, or generally a utility
function. An individual’s utility gives their evaluation of the conse-
quence/outcome of an action. The utility may be different from the
real dollar cost (or value). Since a risk-averse decision-maker aims at
losing less (or gaining more), his/her perceived value of cost/loss is
higher than the real dollar cost. This leads to an increasing concave-
down utility function. On the other hand, a risk-seeker decision-maker
is willing to risk more and hence assign a lower valuation to the
real cost, leading to an increasing concave-up utility function. The
readers are recommended to read the third essay in [74] titled: ‘‘The
theory of risk-aversion’’, which discusses the concept of risk aversion
applied to the area of investment, insurance, risk-sharing, and liquidity
demand behavior; and read Bernstein [75] for the history of risk and
to understand the role of risk in our society.

The consequence of rating the structure as 𝑑0 leads to consequence
cost 𝐿(𝑑0, 𝜃true) that ranges from 𝛼min to 𝛼max. Similarly, rating the
structure as 𝑑1 leads to consequence cost 𝐿(𝑑1, 𝜃true) that ranges from
𝛽min to 𝛽max. Let 𝑙0 ∈ [𝛼min, 𝛼max] and 𝑙1 ∈ [𝛽min, 𝛽max] represent possible
values of the consequence cost functions 𝐿(𝑑0, 𝜃true) and 𝐿(𝑑1, 𝜃true),
respectively. We now define two utility functions 𝑈 (𝑑0, 𝑙0) and 𝑈 (𝑑1, 𝑙1)
for decisions 𝑑0 and 𝑑1, respectively. To do so, we assume the following:

1. We assume that utility equals consequence cost at the extreme
values of 𝑙0 and 𝑙1. That is, 𝑈 (𝑑0, 𝛼min) = 𝛼min, 𝑈 (𝑑0, 𝛼max) = 𝛼max,
𝑈 (𝑑1, 𝛽min) = 𝛽min and 𝑈 (𝑑1, 𝛽max) = 𝛽max. This is because these
costs represent extreme damage scenarios and are assumed to be
fixed by the organization. It is a valid assumption since different
individuals can agree with the consequence-cost decided by the
organization at extreme values of the gap length. It is this con-
straint that requires definition of two different utility functions
for the decisions 𝑑 and 𝑑 , respectively.
10
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2. To model the aforementioned utility functions, we define the
critical losses 𝑙𝑐0 ∈ [𝛼min, 𝛼max] and 𝑙𝑐1 ∈ [𝛽min, 𝛽max] as conse-
quence costs at which utilities are defined as 𝑈 (𝑑0, 𝑙𝑐0) = 𝛾𝛼max+
(1 − 𝛾)𝛼min, and 𝑈 (𝑑1, 𝑙𝑐1) = 𝛾𝛽max + (1 − 𝛾)𝛽min for labeling
scenarios 𝑑0, and 𝑑1, respectively. Here, 𝛾 ∈ [0, 1] represents
the fractional distance between extreme costs [𝛼min, 𝛼max] or
[𝛽min, 𝛽max] and it satisfies the conditions above. It is one of the
two quantities that parameterize the utility function. It must be
reasonably chosen to be used for a desirable utility function.
Therefore, a unique pair of (𝑙𝑐0, 𝛾) and (𝑙𝑐1, 𝛾) yields a unique
set of utility functions 𝑈 (𝑑0, 𝑙0) and 𝑈 (𝑑1, 𝑙1), respectively. We
assume these utility functions to bear the following form

𝑈 (𝑑0, 𝑙0) = 𝑎0 log((𝑙0 − 𝛼min)𝑏0 + 1) + 𝛼min;

𝑈 (𝑑1, 𝑙1) = 𝑎1 log((𝑙1 − 𝛽min)𝑏1 + 1) + 𝛽min.
(19)

The constants 𝑎0 and 𝑏0 are obtained by using the definition of the crit-
ical losses and solving the following simultaneous non-linear equations:

𝑎0 log
(

(𝛼max − 𝛼min)𝑏0 + 1
)

= 𝑈 (𝑑0, 𝛼max) − 𝑈 (𝑑0, 𝛼min)

= 𝛼max − 𝛼min;

𝑎0 log
(

(𝑙𝑐0 − 𝛼min)𝑏0 + 1
)

= 𝛾(𝑈 (𝑑0, 𝛼max) − 𝑈 (𝑑0, 𝛼min))

= 𝛾(𝛼max − 𝛼min).

(20)

Similarly, the constants 𝑎1 and 𝑏1 can be obtained by solving the
following equations:

𝑎1 log
(

(𝛽max − 𝛽min)𝑏1 + 1
)

= 𝑈 (𝑑1, 𝛽max) − 𝑈 (𝑑1, 𝛽min)

= 𝛽max − 𝛽min;

𝑎1 log
(

(𝑙𝑐1 − 𝛽min)𝑏1 + 1
)

= 𝛾(𝑈 (𝑑1, 𝛽max) − 𝑈 (𝑑1, 𝛽min))

= 𝛾(𝛽max − 𝛽min).

(21)

Eqs. (20) and (21) are not solvable for 𝑙𝑐0 = 𝛾𝛼max+(1−𝛾)𝛼min and 𝑙𝑐1 =
𝛾𝛽max +(1−𝛾)𝛽min respectively. However, as 𝑙𝑐0 ⟶ (𝛾𝛼max +(1−𝛾)𝛼min)
and 𝑙𝑐1 ⟶ (𝛾𝛽max + (1 − 𝛾)𝛽min), the utility function (or equivalently
the risk-profile) looses its curvature and becomes linear, i.e, the utility
reduces to the value (or dollar cost), i.e, 𝑈 (𝑑0, 𝑙0) = 𝑙0 and 𝑈 (𝑑1, 𝑙1) = 𝑙1.
This reflects a risk-neutral behavior. Therefore, the three cases of risk
profile can then be classified by the following:

𝑙𝑐0 < 𝛾𝛼max + (1 − 𝛾)𝛼min and 𝑙𝑐1 < 𝛾𝛽max + (1 − 𝛾)𝛽min ∶ Risk-aversion;
𝑙𝑐0 = 𝛾𝛼max + (1 − 𝛾)𝛼min and 𝑙𝑐1 = 𝛾𝛽max + (1 − 𝛾)𝛽min ∶ Risk-neutral;
𝑙𝑐0 > 𝛾𝛼max + (1 − 𝛾)𝛼min and 𝑙𝑐1 > 𝛾𝛽max + (1 − 𝛾)𝛽min ∶ Risk-seeking.

(22)

lthough we have two different utility functions for decisions 𝑑0 and
1, respectively, for a given triad (𝛾, 𝑙𝑐0, 𝑙1𝑐 ), an individual with his/her
nique risk perception should have a unique relationship between their
tility functions. To define a unique set of utility functions for a given
ndividual (or for a unique risk intensity), we establish a relationship
etween the critical costs 𝑙𝑐0 and 𝑙𝑐1

=
𝑙𝑐0 − 𝛼min
𝛼max − 𝛼min

=
𝑙𝑐1 − 𝛽min
𝛽max − 𝛽min

. (23)

Here, 𝜉 ∈ [0, 1] is the critical fractional distance. The constraint in
Eq. (23) and the following definition of the critical fractional dis-
tance 𝜉 allows us to uniquely parameterize a risk profile by two
non-dimensional and normalized parameters (𝛾, 𝜉) yielding a set of two
unique utility functions. From here on, we denote the utilities 𝑈 (𝑑0, 𝑙0)
nd 𝑈 (𝑑1, 𝑙1) as 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) and 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉), respectively, where the
arameters (𝛾, 𝜉) characterizes the risk-profile. Based on the discussion
bove and Eq. (22), the three cases of risk profile are classified as
ollows:
< 𝛾 ∶ Risk-averter;
= 𝛾 ∶ Risk-neutral; (24)

> 𝛾 ∶ Risk-seeker.
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Table 2
Examples of different risk profiles.

Risk profiles ID 𝛾 𝜉 Critical loss 𝑙𝑐0 Critical loss 𝑙𝑐1

Critical losses 𝑙𝑐0 and 𝑙𝑐1 are related by Eq. (23)

Extreme risk-averter RP1 0.8 0.25 𝑙𝑐0 = 0.25𝛼max + 0.75𝛼min 𝑙𝑐1 = 0.25𝛽max + 0.75𝛽min

Moderate risk-averter RP2 0.8 0.6 𝑙𝑐0 = 0.6𝛼max + 0.4𝛼min 𝑙𝑐1 = 0.6𝛽max + 0.4𝛽min

Neutral risk bearer RP3 0.8 0.8 𝑙𝑐0 ⟶ 𝛾𝛼max + (1 − 𝛾)𝛼min 𝑙𝑐1 ⟶ 𝛾𝛽max + (1 − 𝛾)𝛽min

Moderate risk-seeker RP4 0.8 0.95 𝑙𝑐0 = 0.95𝛼max + 0.05𝛼min 𝑙𝑐1 = 0.95𝛽max + 0.05𝛽min

Extreme risk-seeker RP5 0.8 0.999 𝑙𝑐0 = 0.999𝛼max + 0.001𝛼min 𝑙𝑐1 = 0.999𝛽max + 0.001𝛽min
s
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We have two other extreme cases. When 𝑙𝑐0 ⟶ 𝛼min and 𝑙𝑐1 ⟶

𝛽min, it limits the constants 𝑏0 ⟶ ∞ and 𝑏1 ⟶ ∞, respectively,
representing the extreme risk-averse behavior with asymptotic concave-
down utility function. Similarly, when 𝑙𝑐0 ⟶ 𝛼max and 𝑙𝑐1 ⟶ 𝛽max,
it constraints the constants 𝑏0 ⟶ 1 and 𝑏1 ⟶ 1, respectively,
representing the extreme risk-seeker behavior with asymptotic concave-
up utility function. The behavior of every individual with a unique
risk intensity is characterized by two utility functions 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉)
(plotted in Fig. 4(a)) and 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉) (plotted in Fig. 4(b)) bound
by the constraint in Eq. (23). Using the utility functions plotted in
Figs. 4(a) and 4(b), we define 5 risk profiles (RP) obtained using 𝛾 = 0.8
(reasonably assumed) and 𝜉 spanning from 0 to 1 in Table 2. These risk
profiles will later be used in numerical simulations.

We justify the functional form of utility function modeled by Eq. (19)
by noting the following properties of the utility 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) (same
arguments hold for the utility 𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉)):

1. The utility function of form 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) = 𝑎0 log((𝑙0 − 𝛼min)𝑏0 +
1) + 𝛼min satisfies one of the primary tenet of expected utility
theory as defined in [42], which is: all the concave-down utility
function curves with

(

𝜕2𝑙0𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) < 0
)

represent a risk-
averse behavior, whereas, the concave-up curves with
(

𝜕2𝑙0𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) > 0
)

represent a risk-seeker. This is clearly
illustrated in Figs. 4(c) and 4(d) for the utilities 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) and
𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉), respectively.

2. Pratt [76] noted that the local risk intensity factor, defined by

−
(

𝜕2𝑙0
𝑈 (𝑑0 ,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈 (𝑑0 ,𝑙0;𝛾,𝜉)

)

, is the correct measure of the local intensity

of the risk behavior. For two risk-averse profiles 𝑈𝑎(𝑑0, 𝑙0; 𝛾, 𝜉),

and 𝑈𝑏(𝑑0, 𝑙0; 𝛾, 𝜉), if −
(

𝜕2𝑙0
𝑈𝑎(𝑑0 ,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈𝑎(𝑑0 ,𝑙0;𝛾,𝜉)

)

> −
(

𝜕2𝑙0
𝑈𝑏(𝑑0 ,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈𝑏(𝑑0 ,𝑙0𝛾,𝜉)

)

, then

𝑈𝑎(𝑑0, 𝑙0; 𝛾, 𝜉) is locally more risk-averse than 𝑈𝑏(𝑑0, 𝑙0; 𝛾, 𝜉).
On the other hand, for two risk-seeker profiles 𝑈𝑎(𝑑0, 𝑙0; 𝛾, 𝜉),

and 𝑈𝑏(𝑑0, 𝑙0; 𝛾, 𝜉), if −
(

𝜕2𝑙0
𝑈𝑎(𝑑0 ,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈𝑎(𝑑0 ,𝑙0;𝛾,𝜉)

)

< −
(

𝜕2𝑙0
𝑈𝑏(𝑑0 ,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈𝑏(𝑑0 ,𝑙0;𝛾,𝜉)

)

, then
𝑈𝑎(𝑑0, 𝑙0; 𝛾, 𝜉) is locally more risk-seeker than 𝑈𝑏(𝑑0, 𝑙0; 𝛾, 𝜉). We
also note that the vanishing local risk intensity factor

−
(

𝜕2𝑙0
𝑈 (𝑑0 ,𝑙0;𝛾,𝜉)

𝜕𝑙0𝑈 (𝑑0 ,𝑙0;𝛾,𝜉)

)

= 0 implies constant risk, for which, the cost

function is linear. The form of utility function used in this paper
clearly exhibits the discussed properties for all values of the loss
as seen in Figs. 4(e) and 4(f) for the utilities 𝑈 (𝑑0, 𝑙0; 𝛾, 𝜉) and
𝑈 (𝑑1, 𝑙1; 𝛾, 𝜉), respectively.

Markowitz [71] noted the possibility that the utility function may
have both concave and convex regions for the scenarios involving both
gains and losses. We cautiously note that, in this paper, we did not
account for such cases where a decision-maker exhibits varying risk
behavior at different values of the gap length. Apart from the risk
profile, the discussion and approaches for decision-making remain the
same.

An organization like USACE consists of numerous maintenance
action decision-makers and policymakers who share a spectrum of risk
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profiles. Every single action by any employee of an organization affects
the collective performance of an organization. As discussed in [37],
although difficult to precisely define, an organization has a risk profile
based on its alignment with values and priorities. Assuming that an
organization is as good as its employees in an average sense, we pro-
pose that the organizational risk profile be defined based on the weighted
average consequences of the decisions made by the employees, which
in turn depends on the distribution of the risk-intensities of individual
decision-makers. We refer to the distribution of various risk profiles of
decision-makers employed by the organization as the organizational risk
profile (ORP). Methodology to psychologically evaluate and define an
individual’s risk profile is beyond the scope of this paper. However, one
approach to infer the individual risk profile is by analyzing their past
actions and by designing a set of questionnaires (as is very common in
the field of behavioral economics) with a goal of extracting their risk
profiles.

We provide a simple example of the risk profile of collective deci-
ion makers. Just like any organization, the performance of the stock
arket (quantified by the S&P500 index, for example) is governed by
illions of participants (speculators and investors) who have different

isk profiles. At an individual level, the risk profile of an investor
s a direct function of their age, investing skill, and experience in
nvesting. Additionally, analogous to how organizational values and
oals also impact the risk profiles of the engineers/managers, the
urrent risk profile of the market also influences the behavior of its
articipants. Investor George Soros calls this feedback loop of risk
ehavior of the participants influencing the market, and the market
onditions influencing the behavior of the participants, as the Principle
f Reflexivity [77]. In the bull market, there are more investors betting
n a growing economy and higher S&P500 prices. As the price of the
&P500 goes up, the risk of major correction increases — that is, the
arket becomes a ‘‘risk-seeker’’. In the bear market, there are more

ellers than buyers of equities, which leads the price of S&P500 to go
own, which in turn reduces the overall risk of investments — that is,
he market becomes ‘‘risk-averse’’.

In this paper, we focus our attention on investigating the collective
erformance of an organization by considering two different organi-
ational risk profiles–ORP1 and ORP2, detailed later in this section.
ecall that for the miter gate problem, the risk-profile of the decision-
aker is parameterized by two parameters (𝛾, 𝜉) and depends on the

xtreme costs 𝛼min, 𝛼max, 𝛽min, and 𝛽max. Hence, for a fixed value of
, and the extreme costs 𝛼min, 𝛼max (normalized to be unity), 𝛽min,

and 𝛽max, the risk profile is uniquely parameterized by 𝜉. For such
case, the organizational risk profile (here USACE) can be quantified

y the distribution of 𝜉 ∈ 𝛺𝛯 , denoted by 𝑓𝛯 (𝜉). For the purpose
f demonstration, we assume that the risk profiles of the decision-
akers at USACE range from Moderate Risk Aversion to Moderate Risk
eeking. Recall from Table 2, for a fixed 𝛾 = 0.8, the value of 𝜉 in the
eighborhood of 0.6 defines Moderate Risk Averse profile, and 𝜉 in the

neighborhood of 0.95 defines Moderate risk-seeker profile. Thus, we
assume that the decision-makers at USACE have risk profiles ranging
from (𝛾 = 0.8, 𝜉 = 0.55) to (𝛾 = 0.8, 𝜉 = 0.975), i.e., 𝛺𝛯 = [0.55, 0.975].
With these bounds on the risk profiles of the decision-makers, we
assume two organizational risk profiles (ORP1 and ORP2) as illustrated

in Fig. 5. Since a higher value of 𝜉 implies more risk-seeker behavior,
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Fig. 4. Risk profiles modeled by utility vs. loss, or simply utility function assuming 𝛾 = 0.8 and 𝜉 defined in Table 2.

Fig. 5. Organizational risk behavior as defined by 𝑓𝛯 (𝜉).
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Fig. 6. Risk intensity modified cost function.
ORP1 represents a more risk-averse behavior than ORP2. In Section 5,
we simulate and investigate the impact of individual risk profiles (RP1
to RP5), and the organizational risk profiles (ORP1 and ORP2) on
decision making.

4.4. Risk intensity modified cost functions

Since perceived value of a loss depends on individual’s utility (or
the risk-perception, or the specified risk-intensity), we can obtain the
modified consequence-costs of performing maintenance strategies 𝑀0
and 𝑀1, respectively, by substituting the losses 𝑙0 and 𝑙1 (arguments
in the utility function defined in Eq. (19)) by the consequence-cost
𝐿(𝑑0, 𝜃true) and 𝐿(𝑑1, 𝜃true) defined in Eq. (16), respectively. We denote
�̂�(𝑑0, 𝜃true; 𝛾, 𝜉) and �̂�(𝑑1, 𝜃true; 𝛾, 𝜉) (distinguished by a hat (⋅̂)) as the
modified consequence-costs of performing maintenance strategies 𝑀0 and
𝑀1 respectively. This allows us to incorporate the risk-perception into
the decision making process. Using Eqs. (16) and (19), we get

�̂�(𝑑0, 𝜃true; 𝛾, 𝜉) = 𝑈 (𝑑0, 𝐿(𝑑0, 𝜃true); 𝛾, 𝜉)

= 𝑎0 log
(

1 + 𝑏0

(

𝛼max − 𝛼min
𝜃max − 𝜃min

)

𝜃true

)

+ 𝛼min;

�̂�(𝑑1, 𝜃true; 𝛾, 𝜉) = 𝑈 (𝑑1, 𝐿(𝑑1, 𝜃true); 𝛾, 𝜉)

= 𝑎1 log
(

1 + 𝑏1

(

𝛽max − 𝛽min
𝜃max − 𝜃min

)

𝜃true

)

+ 𝛽min.

(25)

For a given risk profile (𝛾, 𝜉), the constants 𝑎0, 𝑎1, 𝑏0, and 𝑏1 are
obtained by solving Eqs. (20) and (21). Fig. 6 plots the modified cost
functions for the various risk profiles defined in Table 2. We note that

�̂�(𝑑𝑖, 𝜃true; 𝛾, 𝜉) > 𝐿(𝑑𝑖, 𝜃true) ∶ for risk-averse profile;
�̂�(𝑑𝑖, 𝜃true; 𝛾, 𝜉) = 𝐿(𝑑𝑖, 𝜃true) ∶ for risk-neutral profile;
�̂�(𝑑𝑖, 𝜃true; 𝛾, 𝜉) < 𝐿(𝑑𝑖, 𝜃true) ∶ for risk-seeker profile.

(26)

Unlike classification-type problems in supervised machine learning,
in this case, it is not possible to define a unique classifier for deciding
whether the structure should be labeled damaged or undamaged. This
is because decision-making is subjective in the current scenario, and
it depends on two sources of information: the posterior distribution of
the gap length (the damage parameter) 𝜃 and the risk profile of the
engineer/decision-maker. To quantify and model the intensity of the
risk behavior, we attempt to uniquely define a classifier for a special
case where the true value of the gap length is measurable (obtained
by performing a perfect experiment). Under this situation, when 𝜃true
can be accurately and deterministically inferred, we define a classifier
threshold 𝜃 ∈ 𝛺𝛩 as the gap length at which the consequence costs of
performing 𝑀0 and 𝑀1 are equal, i.e.,

𝜃true < 𝜃 ∶ Perform 𝑀0; (27)
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𝜃true > 𝜃 ∶ Perform 𝑀1,
where the classifier 𝜃 satisfies the following:

When risk-intensity is not included ∶ 𝐿(𝑑0, 𝜃) = 𝐿(𝑑1, 𝜃);

When risk-intensity is included ∶ �̂�(𝑑0, 𝜃; 𝛾, 𝜉) = �̂�(𝑑1, 𝜃; 𝛾, 𝜉).
(28)

Larger the value of 𝜃, higher the intensity of risk-seeker behavior and
vice versa. Table 3 gives the classifier 𝜃 for various risk profiles. It is ob-
vious that among the risk profiles considered in Table 2, RP5 represents
the most intense risk-seeker behavior, whereas RP1 represents the most
intense risk-averse behavior. This can also be seen in Fig. 7. Figs. 7(a)
and 7(b) compare the classifier for risk-averse (RP2) and risk-seeker
(RP4) profiles relative to a risk-neutral profile (RP3).

Remark 3. In the approach presented, we assume that any two
decision-makers agree upon the prior probability distribution of gap
length, agree upon modeling the likelihood function using a Gaussian
distribution, and agree on the consequence costs at extreme values of
𝜃true. We only model risk preferences of individuals at non-extreme val-
ues of 𝜃true through utility functions. Finally, we also assume that there
are no measurement biases and that the noise in sensor measurements
is random.

5. Prior and posterior decision analysis

To acquire new information in support of decision making, we
assume that an SHM system 𝑧 is installed, as is the case with the USACE
miter gate shown in Fig. 2. Since the system is already installed, this is
a posterior decision analysis and not a preposterior analysis. Installing
an SHM system incurs an intrinsic cost 𝐶(𝑧). We assume that intrinsic
cost to be a fraction of the maximum cost 𝛼max, i.e., 𝐶(𝑧) = 0.05𝛼max.
The total cost function for an information-acquiring system 𝑧, denoted
by �̂�𝑧(𝑑𝑖, 𝜃true; 𝛾, 𝜉), is defined as the sum total of the extrinsic (for the
various risk-profiles defined in Table 2) and the intrinsic cost-functions
used for posterior decision analysis, wherein

�̂�𝑧(𝑑𝑖, 𝜃true; 𝛾, 𝜉) = 𝐶(𝑧) + �̂�(𝑑𝑖, 𝜃true; 𝛾, 𝜉), for 𝑖 ∈ 0, 1. (29)

The cost function �̂�𝑧(𝑑𝑖, 𝜃true; 𝛾, 𝜉) for various risk-profiles can be ob-
tained by translating the curves in Fig. 6 upward of the value provided
by 𝐶(𝑧). Given the following information:

1. The posterior probability distribution of the gap length
𝑓𝛩|𝑋𝑧

(𝜃|𝑥𝑧) obtained by Bayesian inference using new data ac-
quired from the SHM system, and an updated finite element
model discussed in Section 3.2;

2. The extrinsic cost as a consequence of making a decision
�̂�(𝑑𝑖, 𝜃true; 𝛾, 𝜉) discussed in Section 4.3; and

3. The intrinsic cost 𝐶(𝑧) of installing the SHM system,

the problem is to decide which maintenance strategy to perform–𝑀0 or
𝑀1– or equivalently, what label/rating shall be assigned to the miter
gate, 𝑑 or 𝑑 .
0 1
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Table 3
Classifier for various risk profiles.
Risk profile RP1 RP2 RP3 RP4 RP5

Classifier 𝜃 (in inches)
for 𝛾 = 0.8 0.533 12.421 35.999 81.392 146.323
Table 4
Various cases of the posterior probability distribution used in the posterior decision analysis.

Cases Parameters of FE model for data simulation 𝜎strain
in Eq. (13)
(×10−6)

Posterior statistics

𝜃true
(in)

ℎup-true
(in)

ℎdown-true
(in)

𝜎strain-true
(×10−6)

𝜇𝜃|𝑥𝑧
(in)

𝜎𝜃|𝑥𝑧
(in)

𝜌𝜃|𝑥𝑧 =
𝜎𝜃|𝑥𝑧
𝜇𝜃|𝑥𝑧

Case 1 10.0 551.25 166.51 30 20 10.49 2.72 0.259
Case 2 50.0 560.53 185.06 50 60 44.68 13.02 0.290
Case 3 90.0 556.57 177.15 70 60 97.70 14.21 0.145
Case 4 130.0 543.07 150.14 90 70 140.78 11.25 0.0799
Case 5 170.0 542.59 149.18 100 70 158.78 11.38 0.0716
Fig. 7. Shift in the classifier due to skewed risk-perception (here it is assumed that the data is acquired through an SHM system, i.e., �̂�𝑧(⋅) = �̂�SHM(⋅))
Fig. 8. Decision tree for prior and posterior decision analysis.
o

𝒹

H
p
r

t
c

We start with a uniform prior distribution of the gap length rep-

esenting a case where no additional information is acquirable, such

hat 𝑓𝛩(𝜃) = (𝜃max − 𝜃min)−1. Recall here that we have assumed 𝜃min =

inches and 𝜃max = 180 inches. When prior analysis is performed,

nly the extrinsic risk-modified consequence cost �̂�(𝑑𝑖, 𝜃true; 𝛾, 𝜉) is used

ecause the prior analysis assumes that no new information gathering

echanism is available. When the new information 𝑥𝑧 ∈ 𝛺𝑋𝑧
is ob-

ained from the sensor array deployed on the miter gate, the posterior

istribution of the gap length 𝑓𝛩|𝑋𝑧
(𝜃|𝑥𝑧) is obtained using Bayesian

nference. In this case, the total cost �̂�
(

𝑑 , 𝜃 ; 𝛾, 𝜉
)

is considered. The
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𝑧 𝑖 true a
ptimal decision is then obtained as

prior(𝛾, 𝜉) = argmin
𝑑𝑖

𝛹prior(𝑑𝑖; 𝛾, 𝜉) = argmin
𝑑𝑖

𝐸𝛩
[

�̂�
(

𝑑𝑖, 𝜃true = 𝜃; 𝛾, 𝜉
)]

;

𝒹𝑧(𝛾, 𝜉) = argmin
𝑑𝑖

𝛹𝑧(𝑑𝑖; 𝛾, 𝜉) = argmin
𝑑𝑖

𝐸𝛩|𝑋𝑧

[

�̂�𝑧
(

𝑑𝑖, 𝜃true = 𝜃; 𝛾, 𝜉
)]

.

(30)

ere, 𝒹prior(𝛾, 𝜉) and 𝒹𝑧(𝛾, 𝜉) denote optimal ratings arrived by using
rior and posterior distribution of the gap length, respectively, for the
isk-profile parameterized by (𝛾, 𝜉).

Figs. 8(a) and 8(b) illustrates the decision-tree for the prior and
he posterior decision analysis, respectively. Following the traditional
onvention of decision trees, we denote the decision nodes by squares
nd the choices by circles.
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Fig. 9. Posterior probability distribution of gap length.
Table 5
The Bayes risk for different gap length distributions (cases 1–5) for decision 𝑑0 (undamaged rating).
Cases 𝛹prior

(

𝑑0; 𝛾, 𝜉
)

and 𝛹𝑧
(

𝑑0; 𝛾, 𝜉
)

in million $

extreme
risk-averter
(RP1)
𝜃 = 0.533 in

Mild
risk-averter
(RP2)
𝜃 = 12.421 in

Neutral
risk bearer
(RP3)
𝜃 = 35.999 in

Mild
risk-seeker
(RP4)
𝜃 = 81.392 in

extreme
risk-seeker
(RP5)
𝜃 = 146.323 in

Posterior

Case 1 0.637 0.223 0.108 0.0704 0.0572
Case 2 0.842 0.539 0.298 0.148 0.0846
Case 3 0.960 0.810 0.592 0.312 0.145
Case 4 1.014 0.951 0.832 0.538 0.238
Case 5 1.032 0.999 0.932 0.708 0.329

Prior 0.910 0.727 0.557 0.350 0.170
Table 6
The Bayes risk for different gap length distributions (cases 1-5) for decision 𝑑1 (damaged rating).
Cases 𝛹prior

(

𝑑1; 𝛾, 𝜉
)

and 𝛹𝑧
(

𝑑1; 𝛾, 𝜉
)

in million $

extreme
risk-averter
(RP1)
𝜃 = 0.533 in

Mild
risk-averter
(RP2)
𝜃 = 12.421 in

Neutral
risk bearer
(RP3)
𝜃 = 35.999 in

Mild
risk-seeker
(RP4)
𝜃 = 81.392 in

extreme
risk-seeker
(RP5)
𝜃 = 146.323 in

Posterior

Case 1 0.347 0.243 0.214 0.205 0.201
Case 2 0.398 0.322 0.262 0.224 0.208
Case 3 0.427 0.390 0.336 0.265 0.224
Case 4 0.441 0.425 0.395 0.322 0.247
Case 5 0.445 0.437 0.420 0.364 0.270

Prior 0.415 0.369 0.327 0.275 0.230
We parametrically investigate the sensitivity of risk perception on
decision-making by considering the various risk profiles (RP) defined
in Table 2. We consider five gap-length posterior distribution cases.
Fig. 9 shows these posterior distributions of gap length with increasing
mean values covering the entire domain of the gap length. It took
approximately 20 h to obtain the posterior distribution in each case
using an Intel Xeon W-2155 @ 3.30 GHz, 10 core, 128 GB memory
workstation. Parallel computing was exploited to obtain the posterior
distribution. The black dots in Fig. 9 indicate the true gap length
𝜃true which was used to simulate the strain data. Table 4 provides the
parameters of the FE model for data simulation (i.e., true parameters),
and reports the statistics of posterior distribution (mean 𝜇𝜃|𝑥𝑧 , standard-
deviation 𝜎𝜃|𝑥𝑧 , and coefficient of variation 𝜌𝜃|𝑥𝑧 ). It also provides the
standard deviation of the measurement noise that is considered in the
inference. Observe that 𝜎strain ≠ 𝜎strain-true, the reason for which is
discussed at the end of Section 3.2.

Tables 5 and 6 present the results of prior and posterior analysis
obtained using Eq. (30) for the risk profiles defined in Table 2. Table 7
shows the optimal decisions obtained for all the posterior distributions
defined in Table 4 and all the risk profiles described in Table 2. From
Tables 5, 6, and 7, we observe the following:
15
1. The extreme risk-averter (RP1) avoids making any risky decision
and decides to perform maintenance 𝑀1 (or label the structure
𝑑1) for all the posterior cases (even for the case where the
simulated true gap length value if 𝜃true = 10 in). Considering
the other extreme, the extreme risk-seeker (RP5) rates the gate
as undamaged, or 𝑑0, for all the posterior cases except for case 4
(with simulated 𝜃true = 130 in) and case 5 (with simulated 𝜃true =
170 in). We see that as the intensity of the risk-seeking behavior
increases, or equivalently as the intensity of the risk-aversion
behavior decreases, the cases with the rating 𝑑0 increase. This is
in line with the fact that the risk-seeker is willing to take his/her
chances of making a false decision for the purpose of reducing
the inspection or maintenance cost that follows with the decision
𝑑1.

2. Cases 4 and 5 represent the situation when the gap length
approaches its extreme value. As expected, as the value of gap
length approaches the extreme value of 𝜃max, all the risk profiles
decide that the gate is damaged (i.e., 𝑑1).

3. In a real-world situation, the true value of gap length 𝜃true is not
known. However, since we had simulated the posterior, we know
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Table 7
The optimal decision for various risk profiles.
Cases Optimal rating

extreme
risk-averter
(RP1)
𝜃 = 0.533 in

Mild
risk-averter
(RP2)
𝜃 = 12.421 in

Neutral
risk bearer
(RP3)
𝜃 = 35.999 in

Mild
risk-seeker
(RP4)
𝜃 = 81.392 in

extreme
risk-seeker
(RP5)
𝜃 = 146.323 in

Posterior

Case 1
𝜃true = 10 in 𝑑1 𝑑0 𝑑0 𝑑0 𝑑0

Case 2
𝜃true = 50 in 𝑑1 𝑑1 𝑑1 𝑑0 𝑑0

Case 3
𝜃true = 90 in 𝑑1 𝑑1 𝑑1 𝑑1 𝑑0

Case 4
𝜃true = 130 in 𝑑1 𝑑1 𝑑1 𝑑1 𝑑1

Case 5
𝜃true = 170 in 𝑑1 𝑑1 𝑑1 𝑑1 𝑑1

Prior
𝜇𝜃 = 90 in 𝑑1 𝑑1 𝑑1 𝑑1 𝑑0
Fig. 10. Decision tree for posterior analysis considering organizational risk profile.
the true value of gap length 𝜃true used for these simulations.
This allows us to predict the state of the structure using the
classifier threshold 𝜃 as defined in Eq. (27). We observe that our
predictions obtained by minimizing the Bayes conditional risk
using Eq. (30) are exactly in line with the predictions made using
the classifier defined in Eq. (27) (see Table 7), implying that the
presented approach is robust. If 𝜃true is not available, then it can
be estimated by the mean of the probability distribution of gap
length. The predictions obtained from the prior analysis with
mean 𝜇𝜃 = 90 inches are closer to that of case 3. This is because
the posterior distribution for case 3 falls in the middle of the
domain 𝛺𝛩, and as the prior analysis, is almost symmetric about
the center of the domain 𝛺𝛩. This leads the prior distribution
and the posterior distribution case 3 to have close values of
their mean. However, since no new information was available
for the prior analysis, decisions aligning with posterior decision
analysis for case 3 clearly show that the results are not useful
and indicate that installing an SHM system adds to the value of
decision-making. In fact, making a decision using a uniform prior
distribution is a matter of uninformed speculation or simply
guessing.

Finally, we investigate the impact of organizational risk profile
(ORP) on decision-making. We recall our discussion in Section 4.3 on
ORP. We assume 𝛾 = 0.8 and 𝛺 = [0.55, 0.975]. We define the Bayes
16

𝛯

risk and optimal decision considering the ORP for prior analysis as:

𝛹prior-org(𝑑0) = 𝐸𝛩𝛯
[

�̂�(𝑑0, 𝜃true = 𝜃; 𝛾, 𝜉)
]

= 𝐸𝛩
[

𝐸𝛯
[

�̂�(𝑑0, 𝜃true = 𝜃; 𝛾, 𝜉)
]]

;

𝛹prior-org(𝑑1) = 𝐸𝛩𝛯
[

�̂�(𝑑1, 𝜃true = 𝜃; 𝛾, 𝜉)
]

= 𝐸𝛩
[

𝐸𝛯
[

�̂�(𝑑1, 𝜃true = 𝜃; 𝛾, 𝜉)
]]

;

𝒹prior-org = argmin
𝑑𝑖

(

𝛹prior-org(𝑑𝑖)
)

.

(31)

In the equation above, it is reasonably assumed that the random vari-
ables 𝛩 and 𝛯 are statistically independent. This is a logical assumption
because the organizational behavioral risk profile is independent of the
state of the structure. Along similar lines, the Bayes risk and optimal
decision considering the ORP for posterior analysis are defined as

𝛹𝑧-org(𝑑0) = 𝐸𝛩|𝑋𝑧

[

𝐸𝛯
[

�̂�𝑧(𝑑0, 𝜃true = 𝜃; 𝛾, 𝜉)
]]

;

𝛹𝑧-org(𝑑1) = 𝐸𝛩|𝑋𝑧

[

𝐸𝛯
[

�̂�𝑧(𝑑1, 𝜃true = 𝜃; 𝛾, 𝜉)
]]

;

𝒹𝑧-org = argmin
𝑑𝑖

(

𝛹z-org(𝑑𝑖)
)

.
(32)

Fig. 10 illustrates the decision tree associated with the posterior deci-
sion analysis defined in Eq. (32).

For demonstration purposes, we perform posterior decision analysis
based on the posterior probability distribution of the gap length shown
in Fig. 9 considering the risk profiles ORP1 and ORP2 portrayed in
Figs. 5(a) and 5(b), respectively. Table 8 reports the results obtained
using posterior decision analysis considering the organizational risk
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Table 8
Posterior decision analysis considering organizational risk profiles ORP1 and ORP2.
Cases ORP1 ORP2

𝛹𝑧-org(𝑑0) 𝛹𝑧-org(𝑑1) 𝒹𝑧-org 𝛹𝑧-org(𝑑0) 𝛹𝑧-org(𝑑1) 𝒹𝑧-org

1 0.196 0.216 𝑑0 0.0905 0.207 𝑑0
2 0.489 0.258 𝑑1 0.226 0.230 𝑑0
3 0.770 0.328 𝑑1 0.462 0.277 𝑑1
4 0.930 0.385 𝑑1 0.703 0.333 𝑑1
5 0.988 0.409 𝑑1 0.838 0.372 𝑑1
Fig. 11. General methodology.
profiles. As mentioned at the end of Section 4.3, ORP1 is more risk-
averse than ORP2. On average, the ORP1 tends to conclude that the
gate is damaged at a smaller gap length than the ORP2.

Fig. 11 illustrates our current approach that aims at choosing op-
timal maintenance actions on an economic basis that minimizes the
cost/regret of making decisions while accounting for all sources of
uncertainties. This also allows us to rate/classify label the state of
the structure because the maintenance strategy is designed, and its
consequence-cost evaluated based on a discrete set of damaged rat-
ings. This state-classification approach is different from the traditional
machine learning-based detection problem and is more suitable for
SHM-related problems. This is because more often than not, these
discrete damaged states are hard to define in a meaningful or physical
way. Secondly, even if the discrete damaged states are defined, statis-
tical learning requires a large amount of data relating the damaged
states to the sensor measurements. This again is challenging – if not
impossible – to obtain.

Remark 4. A significant part of the proposed formulation is based
on the knowledge of the costs caused by structural failure, loss of life
and property, and the cost of replacement, denoted by 𝛼max. For the
discussion so far, we have assumed that 𝛼max is accurately estimated
and known. However, when the failure of an asset involves loss of prop-
erty and lives (the consequence of which could be determined by the
insurance payout), it may be extremely difficult to obtain an accurate
value of 𝛼max and it is reasonable to estimate a range of 𝛼max. We can
include the uncertainty in 𝛼max into the decision-making framework.
Let 𝑓𝐴max (𝛼max) denote the probability distribution of the total cost of
failure of structure, and loss of life and property, where 𝐴 denotes
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max
the random variable with a realization 𝛼max. Let �̂�(𝑑𝑖, 𝜃true; 𝛼max, 𝛾, 𝜉)
denote the consequence curve which in this case is also a function of
𝛼max. The optimal decision for the prior and the posterior case is then
obtained as:

𝒹prior(𝛾, 𝜉) = argmin
𝑑𝑖

𝐸𝛩

[

𝐸𝐴max

[

�̂�
(

𝑑𝑖, 𝜃; 𝛼max, 𝛾, 𝜉
)]

]

;

𝒹𝑧(𝛾, 𝜉) = argmin
𝑑𝑖

𝐸𝛩|𝑋𝑧

[

𝐸𝐴max

[

�̂�𝑧
(

𝑑𝑖, 𝜃; 𝛼max, 𝛾, 𝜉
)]

]

.
(33)

Remark 5. The proposed framework is focused on developing the
maintenance policy for a miter gate structure, the health of which is
defined by a scalar continuous damage parameter (the gap length).
Developing any decision-making policy requires a case-by-case inves-
tigation of the problem at hand and is bounded by the complexity
and governing physics of the system, the target of the decision-making
policy, its alignment with the organizational values, and numerous
assumptions made to simplify the decision-making process. For in-
stance, in the context of structural engineering applications, unlike
the scalar state parameter used in this paper, the state parameter
can be a multidimensional quantity containing numerous engineering
demand parameters (EDPs) associated with more than one potential
damage/failure mode of a structural system. It is beyond the scope of
this paper to tackle such problems; however, in theory, the principles
can be extended to such problems. For instance, a multi-dimensional
state parameter would require a multi-dimensional consequence cost
hypersurface. Specific constraints must be imposed to establish the
correlation between various EDPs. The statistical correlations between
various EDPs would be a by-product of the propagation of uncertainties
through the model of the structure.
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6. Conclusion

This paper proposes an approach to determine an optimal mainte-
nance strategy and rate/label the structural-state taking into account
the individual or organizational risk profile of the decision-makers.
There are consequences associated with making a maintenance deci-
sion. In this paper, we consider the consequence costs of performing
maintenance actions depending on what the true degree of structural
damage (or true state parameter) is. For a particular maintenance
strategy (with a unique label), the relationship of the cost-consequence
to all the possible values of the true degree of damage (or the state-
parameter) is defined by the consequence cost function. The consequence
cost function is derived for each maintenance strategy by estimating
various costs associated with maintenance downtime, inspection, repair
or replacement, and the cost of losing lives and property in case of
catastrophic failure. It is also assumed that state-parameter completely
describes the degree of structural damage. Since the state parameter
is assumed to be not directly measurable, it is probabilistically inferred
from acquired sensor data (in this paper simulated using the FEM) using
Bayesian inference. Among the available predefined set of maintenance
strategies, an optimal maintenance strategy is one that minimizes the
expected value of the consequence costs. The consequence cost associ-
ated with each maintenance label is implicitly designed by considering
a true level of damage, thus, choosing an optimal maintenance strategy
allows the engineer to reasonably use the associated labels as the state
classifier.

The base cost functions are defined by the organization. In most
cases, these costs are estimated based on the available data and are
approximate. When it comes to maintenance decisions, guided by the
organization’s maintenance policies, engineers are tasked to decide
how to perform the maintenance. These decisions are subjective to
the engineer’s experience and their thought-process, and risk behavior.
Therefore, the maintenance decisions made onsite by the engineers,
although as per the organization’s recommendations, can have a differ-
ent cost-consequence as defined by the base cost function. We model
these deviations using risk-profile. The risk profile of the decision-
maker can be mathematically modeled by their utility vs. wealth (or
loss) function or simply utility function. An individual’s utility gives
their evaluation of the consequence/outcome of an action. The utility
may be different from the real dollar cost (or value). The base cost
function and the utility function can be combined to incorporate the
effect of human psychology and an individual’s risk-perception into
the decision-making model. An organization consists of many decision-
makers with a spectrum of risk profiles. Apart from investigating the
effect of an individual’s risk perception, the collective risk behavior
of the organization is also investigated. Finally, the decision analysis
is performed using the expected utility theory. The application of the
proposed framework to the maintenance of a miter gate validates
and demonstrates the applicability of the proposed framework and
parametrically analyzes the sensitivity of the optimum decision based
on the risk profiles of the decision-maker.
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