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ABSTRACT

Streamflow forecasting plays a significant role in flood predictions, reservoir operations, and planning for
navigation channel dredging. In this paper, the Long Short-Term Memory (LSTM) networks are used for
developing the surrogate model, Gn,(e), of a hydrologic model, which simulates saturation and infiltration
excess runoff in a coherent framework. Two hybrid modelling approaches (delta learning and data augmenta-
tion) are applied to 600 watersheds in the contiguous United States for streamflow forecasting. In the delta
learning (DL) approach, an LSTM-based surrogate model, G;( e ), which is driven by climate data and observed
streamflow, is developed. This model aims to capture the discrepancy between the observed streamflow and the
streamflow predicted by another model, Gr,( e ), which also uses climate data and observed streamflow as in-
puts. In contrast, the data augmentation (DA) approach involves an LSTM-based surrogate model, G,( e ). This
model is driven by climate data, observed streamflow, and the outputs from G ( e ), which is similarly driven by
climate data and observed streamflow. The findings highlight that both hybrid modeling approaches consistently
outperform the hydrologic model in forecasting 30-day streamflow across various watersheds and seasons. The
spatial analysis reveals that both DL and DA models consistently deliver strong 30-day streamflow forecasting
performance across the eastern U.S., Pacific Northwest, and Northern Rockies, with seasonal variations.
Compared to the hydrologic model, hybrid models significantly improve the forecast accuracy, especially in the
Pacific Northwest, the Rocky Mountains, and Eastern States. The results show that the performance of the hy-
drologic model is sensitive to the forecast horizon length, with the performance generally improving at longer
lead times, especially in spring. In contrast, the hybrid models maintain consistent and superior accuracy across
all forecast horizon lengths. Forecast improvements by DL are positively correlated with latitude but negatively
correlated with seasonality and timing of precipitation, frequency of high precipitation days, and streamflow
elasticity to precipitation in summer; they are also positively correlated with leaf area index in winter and
baseflow index in spring. On the other hand, forecast improvements by DA are negatively correlated with the
frequency of high precipitation days in summer and positively correlated with baseflow index in spring. These
findings serve as a prospective guide to improve the representation of relevant hydrologic processes for indi-
vidual watersheds in the hydrologic model.
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1. Introduction

Streamflow forecasting is a major area of research within the hy-
drology and water resources management communities, playing a crit-
ical role in supporting decision-making across various time scales. Short-
term streamflow forecasting, typically with lead times ranging from a
few hours to several days, is essential for real-time decision-making. It
supports timely flood warnings and emergency response efforts (Alfieri
et al., 2013) and effective multi-year planning for optimal navigation
channel dredging (Asborno et al., 2024); it is also vital for urban
drainage system operations, helping to prevent urban flooding and
infrastructure overload (Piadeh et al., 2022). Medium-range forecasting,
which spans from weeks to a few months, is particularly important for
proactive water resources management. It enables more effective
reservoir operations to ensure reliable water supply and reduce the risk
of shortages during dry periods (Zhao et al., 2011). Additionally, it in-
forms agricultural irrigation planning (Zhang et al., 2017), allowing
farmers to optimize water use and crop yields, and supports drought
preparedness and mitigation strategies (Luo et al., 2023). Long-range
streamflow forecasting, with lead times extending from several
months to years, plays a strategic role in long-term water resources
planning (Troin et al., 2021). These forecasts are crucial for infrastruc-
ture development, policy-making, and sustainable management of water
systems under changing climatic and socio-economic conditions
(Devineni et al., 2008).

Physics-based hydrologic models and data-driven models have pre-
viously been used for streamflow forecasting. Physics-based hydrologic
models are categorized into lumped, spatially distributed, and semi-
distributed models based on representation of spatial variability (e.g.,
Beven and Kirkby, 1979; Moore, 1985; Liang et al., 1994). Physics-based
models capture hydrologic processes, but they are constrained by chal-
lenges related to explicitly characterizing or prescribing landscape het-
erogeneity, capturing process complexity (McDonnell et al., 2007), and
handling spatial scale issues when applying governing equations such as
Richards’ equation in space (Richards, 1931; Bloschl and Sivapalan,
1995). Moreover, physically based distributed hydrological models are
often computationally intensive and demand substantial hydrological
expertise from both developers and users (Fatichi et al., 2016). Data-
driven models include conventional methods such as autoregressive
integrated moving average, machine learning methods such as support
vector machines (Kisi and Cimen, 2011) and artificial neural networks
(e.g., Zealand et al., 1999), and deep learning methods (e.g., Granata
et al., 2022; Xu et al., 2022). Particularly in recent years, deep learning
techniques—such as Long Short-Term Memory (LSTM) networks and
Convolutional Neural Networks (CNNs)—have gained significant trac-
tion within the field of hydrology (Feng et al., 2020; Xie et al., 2021;
Tripathy and Mishra, 2024; Yu et al., 2024). However, data-driven
models are limited by physical interpretability and their inability to
predict untrained hydrological variables, yet they can effectively cap-
ture hydrologic dynamics at the watershed scale (Ng et al., 2023).

Hybrid models integrate physics-based and data-driven models,
overcoming the disadvantages of both models and enhancing the overall
model performance (Nourani et al. 2014; Ghaith et al., 2020; Yang et al.,
2020). For example, Li et al. (2023) integrated neural networks into the
conceptual EXP-Hydro model by replacing its internal components,
preserving hydrological principles. This hybrid approach enables the
prediction of previously untrained hydrological variables without the
need for pre-training or post-processing. Li et al. (2024) further
implanted this conceptual hydrological model into a recurrent neural
network (RNN) cell as a process driver for providing multi-sub-process
variables related to runoff process, with an Entity-Aware cell being
incorporated as a post-processor layer for simulating daily runoff.
Hybrid deep learning models have stronger feature extraction capabil-
ities and more dominant performance (Ng et al., 2023). For example, Yu
et al. (2023) explored the synergy between process-based hydrological
model (HBV) and LSTM to improve the predictive capability for semi-
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arid basins by developing three hybrid models (the outputs of the HBV
model are used as inputs of the LTSM model to simulate streamflow or
the residual of HBV simulated streamflow; the outputs of the LSTM
models include simulated streamflow as well as parameters of the HBV
model) and found distinct improvements in the three hybrid models
when compared with the HBV model and the standalone LSTM model.
Mohanty et al. (2024) developed a hybrid model for real-time stream-
flow forecasting with up to 10-days lead-time, such that the error of
simulated streamflow by SWAT model (Arnold et al., 1998) are updated
by hierarchical data-driven models including LSTM. Xu et al. (2024)
added data-driven models (e.g., random forests, support vector regres-
sion, and multilayer perceptron) as the post-processing procedure for
residual correction to the results of process-driven XAJ model (Zhao,
1992), enhancing the performance of real-time flood forecasting. Xu
et al. (2025) developed a hybrid model using data augmentation to
integrate XAJ model and a deep learning model (combination of CNN
and Gated Recurrent Unit) for monthly streamflow forecasts in a basin
with humid subtropical climate. Zhao et al. (2024) developed two
hybrid modeling approaches (delta learning and data augmentation) for
forecasting river discharge by integrating LSTM and the physics-based
VIC model (Liang et al., 1994) for runoff simulation with the river
routing model RAPID (David et al., 2011); the hybrid models yield
promising results for a basin located in Colorado. Building upon, this
work aims to generalize the approach presented in Zhao et al. (2024) by
applying the hybrid modeling methods to watersheds with varying ge-
ographies and spatial scales.

This research aims to investigate the performance of two hybrid
modeling techniques—delta learning and data augmentation—in fore-
casting daily streamflow across watersheds in the contiguous United
States. Focusing on variations in climate and watershed properties, we
conduct a comprehensive analysis to evaluate the applicability and
limitations of these techniques. Our findings are intended to offer in-
sights for adopting these hybrid modeling approaches in diverse regions
across the United States. The remaining part of the paper proceeds as
follows. The study watersheds and data used are presented in Section 2.
Section 3 describes the details of the process-based model, deep learning
model, and the two hybrid modeling approaches. Results are presented
in Section 4 and discussed in Section 5. Section 6 provides the conclu-
sions of this study.

2. Study watersheds and data used

The watersheds used in this study were sourced from the Catchment
Attributes and Meteorology for Large-sample Studies (CAMELS) dataset,
which was developed and expanded by the United States National
Center for Atmospheric Research (NCAR; Addor et al., 2017; Newman
et al., 2015; Fowler et al., 2021; Coxon et al., 2020) and covers the
continental United States. The data extracted from the dataset for this
study encompasses daily meteorological forcing inputs, catchment at-
tributes, and streamflow observations for 671 watersheds, making it
suitable for large sample hydrology such as comparative studies of
hybrid model performance. The CAMELS dataset includes daily data on
precipitation, potential evapotranspiration, air temperature, and
streamflow from 1985 to 2014 for each watershed. The watersheds,
ranging in size from 4 to 25,000 km?, were selected due to their rela-
tively low anthropogenic impacts. Deep learning studies utilizing the
CAMELS dataset have demonstrated state-of-the-art performance, sur-
passed several calibrated lumped conceptual models and distributed
hydrological models (e.g., Ma et al., 2021).

3. Methodology
3.1. Hydrologic model

This study employs the process-based hydrologic model with a uni-
fied runoff scheme for saturation and infiltration excess as shown in
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Fig. 1. The structure of hydrologic model with a unified runoff scheme for saturation excess and infiltration excess (Hong et al., 2025).

Fig. 1, as developed by Hong et al. (2025). The model provides a
coherent representation of both saturation and infiltration excess runoff,
capturing the spatial and temporal transitions between these two runoff
generation mechanisms. The snow-related processes are accounted by
the degree-day factor method with one parameter (m;) using mean daily
air temperature (Eder et al., 2003; Ye et al., 2012).

At the watershed scale, the spatial distribution of soil water storage
capacity is modeled by the distribution function proposed by Wang
(2018) and is represented by the black bold curve in Fig. 1. This dis-
tribution function has two parameters including average storage ca-
pacity (Sp) and shape parameter (a). C is soil water storage capacity at a
point and Cy is corresponding to the average initial soil water storage
(Sp) in Fig. 1. The saturation excess runoff (R;) from this distribution
leads to the Soil Conservation Service curve number method (SCS, 1972)
at the event scale and Budyko equation at the long-term scale (Wang and
Tang, 2014; Yao and Wang, 2022). Yao et al. (2020) applied the dis-
tribution function to replace the generalized Pareto distribution of
HyMOD model (Moore, 1985) to demonstrate the unified runoff model
across time scales.

More recently, Hong et al. (2025) incorporated infiltration excess
runoff (R;) into this framework. In this formulation, infiltration capacity
(f.) at a point is expressed as a power function of degree of soil water
deficit, defined as the ratio of soil moisture deficit (D) to S,. The pa-
rameters for the power function include coefficient (my) and exponent
(n). Therefore, the spatial distribution of infiltration capacity (control-
ling infiltration excess runoff) is coherently coupled with storage ca-
pacity (controlling saturation excess runoff).

As shown in Fig. 1, at the beginning of the time interval (e.g., day),
the antecedent saturation area fraction (@) corresponds to the initial
average storage (Sp). With precipitation (P) during the time interval,
saturation area fraction increases to ;. Over the area fraction of @; —ao,
runoff generation is switched from infiltration excess to saturation
excess, and infiltration (soil wetting) over this area is denoted as Wj.
Infiltration excess occurs over the area fraction of ay —ay, and infiltra-
tion over this area is denoted as W,. All the rainfall infiltrates into the
soil over the area fraction of 1 —a5, and infiltration over this area is
denoted as W3. The average infiltration over the entire watershed is the
sum of W, W», and Ws. E is actual evapotranspiration.

Direct runoff (Ry), comprising infiltration excess and a fraction (y) of
saturation excess, flows into the quick storage tank. The discharge from
this tank (Qy) is proportional to its storage (S4), which is governed by the
runoff coefficient kq. Meanwhile, Groundwater recharge (R,), repre-
sented by the remaining fraction (1 —y) of saturation excess, enters the
slow storage tank. Baseflow from this tank (Q) is similarly proportional

to its storage (S,), with the runoff coefficient k;. The total streamflow (Q)
at the watershed outlet is the sum of Q4 and Q. Comprehensive details
of the hydrologic model are available in Hong et al. (2025).

3.2. Data-driven model

3.2.1. Nonlinear autoregressive exogenous model

Nonlinear autoregressive models with exogenous inputs (NARX) link
the current value of a time series to its past values and to the current and
past values of other external time series (Takens, 1981). A nonlinear
dynamic system, such as a hydrologic system with external inputs like
precipitation and potential evapotranspiration, can be modeled using a
NARX model as follows:

Yi= F(Ui, U1, Uiig-1), Yic1, = Yip ) +é;. 1)

Here, y; represents the system output at the i-th time step; U; = [ul IR
- u,,yl-] denotes the exogenous inputs with a dimension of n at the i-th
time step; F( e ) is a nonlinear mapping function that transforms recent
inputs and outputs into the current output; g and p are the number of
lags in the delayed input and output vectors, respectively; and ¢; is the
residual of the NARX model, typically modeled as Gaussian white noise
with zero mean and standard deviation estimated from the residual data.
NARX models have been applied in various water resources research,
such as establishing multi-step-ahead flood forecast models for the next
hour at a 10-minute scale (Chang et al., 2022), groundwater level pre-
diction (Gharehbaghi et al., 2022), daily suspended sediment forecast
(Li et al., 2022), predicting the outcomes of ecological restoration from
water diversion (Liu et al., 2022), and estimating the enduring effects of
long-term drought on water fluxes and storage, as well as projecting
future short-term groundwater levels and recovery potential under
various precipitation scenarios (Luo et al., 2024).

The nonlinear mapping function F( e ) can be approximated using
various machine learning models. Shamseldin and O’Connor (2001)
developed a multi-layer feedforward neural network-based NARX model
for river flow forecasting. Nanda et al (2016) combined artificial neural
network (ANN), wavelet analysis, and NARX models for real-time flood
forecasting. Wunsch et al. (2021) implemented NARX as a RNN and
LSTM networks. In this paper, LSTMs are used to implement the function
F(e) in the NARX model, due to their demonstrated effectiveness and
widespread adoption by researchers in this field, as detailed in the
following section.



F. Zeng et al.

3.2.2. Long short-term memory network

RNNs are a type of neural architecture specifically designed for
handling sequence data, such as text, speech, and time series. In RNNs,
the output from a neuron at one time step is fed back as input to the
neuron at the next timestep, allowing RNNs to capture temporal de-
pendencies. However, traditional RNNs struggle with the vanishing
gradient problem, where gradient magnitudes diminish across layers
during backpropagation, hindering their capacity to capture long-term
dependencies. LSTM networks, an advanced variant of RNNs, were
introduced to overcome this issue (Hochreiter and Schmidhuber, 1997).
LSTMs modify the hidden layer of RNNs to better capture longer de-
pendencies. An LSTM network comprises multiple LSTM layers, each
containing a suite of LSTM cells. LSTMs are well-suited for processing
and predicting large time spans in time series data by incorporating
special gating mechanisms (input gate, output gate, and forget gate).
These three gates within the cell unit regulate the flow of information
between cell units. The forget gate decides which information from the
previous cell unit should be discarded. The input gate determines which
new information (both from the forget gate and the current input)
should be updated. The output gate decides which information is finally
output. Fig. 2 illustrates the architecture of a single LSTM cell, where i;,
f. o are the gate signals for the input, forget and output gates,
respectively. x;, a;, and C; are the input, hidden, and cell states,
respectively. The relationships among these variables are expressed as
follows:

i, =oc(Wiela 1,x]+bi), @
fo=o(Wyela 1,x]+by), )
0. = (W, ea, 1,x]+b,), &)
C. = tanh(W, e [a,1,x;] +b. ), 6)
C: = f,@cc1 +i@C: 6)
a, = o,Qtanh(C,). @

In these equations, tanh( e ) is the hyperbolic tangent function, and
o(e) is the sigmoid function. Both tanh(e) and o(e) enhance the
model’s nonlinear expression capabilities. Q) denotes the element-wise

product. C, represents the intermediate cell state created by a tanh layer.
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W and b with different subscripts are the weight (W,, W;, Wy, W,) and
bias (b, b;, by, and b,) vectors associated with different gates, and they
are the trainable parameters of the LSTM network. a, is the final output
of the unit cell and provides the hidden state for the next timestep. The
LSTM network have been combined with the NARX model to predict
streamflow (e.g., Hunt et al., 2022).

3.3. Hybrid modeling

Hybrid deep learning models combine one or more modeling tech-
niques with deep learning models (e.g., LSTM) to strengthen the capa-
bility of streamflow forecasts. Ng et al. (2023) provided a
comprehensive review on hybrid deep learning applications for
streamflow forecasts. The modeling techniques include data decompo-
sition (Zuo et al., 2020; Zhao et al., 2021), data convolution (Xu et al.,
2022; Wunsch et al., 2022), encoder-decoder (Kao et al., 2020; Ni et al.,
2020), attention mechanism (Wang et al., 2023), ensemble modeling
(Ma et al., 2023), and physically based models (Cho and Kim, 2022; Han
and Morrison, 2022). Despite the performance and applicability of deep
learning models being much better than the physics-based model, one
significant drawback is the lack of consideration of physical mechanisms
in deep learning models (Jiang et al., 2022). Hybrid models can thus be
developed by integrating the process-based hydrologic model and the
data-driven model (LSTM-NARX) to create a more robust model for
accurate streamflow forecasting. The primary benefit of a hybrid model
compared to standalone data-driven or physics/process-based models is
its ability to merge the strengths of both process-based and data-driven
models. For example, Cui et al. (2022) showed that using the forecasted
streamflow of the XAJ model as the exogenous input variable of the
LSTM decoder enhanced the prediction performance.

3.3.1. Delta learning

This method first trains a surrogate model G,( o ) based on the low-
fidelity data from the hydrologic model and then trains another surro-
gate model G;( o ) based on the discrepancy between the physics-based
prediction from G,(e) and the high-fidelity data from the observed
streamflow at the gauge station (Fig. 3). After training the two surrogate
models, the discharge forecasting in the future period can be made by
adding the prediction of Gs( e ) to that of Gi,( e ) (Zhao et al., 2024). This
method will be introduced through two parts: training stage and pre-
diction stage.

System Y,
output

Cell

State t-1 C.
Hidden -
State t=1 L

Input  x,
State

Fig. 2. The architecture of single Long Short-Term Memory (LSTM) cell.
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Fig. 3. Hybrid forecasting approach for delta learning.

3.3.1.1. Model training. The first step aims to build an underlying
physics-based surrogate model based on the low-fidelity data from the
hydrologic model. Following NARX architecture described in Section
3.2, the underlying physics-based surrogate model can be constructed as
follows:

Ymi = Gnm (Ui, Uiy, Ui_g-1); Ymi-1, "> Ymip ) Vi=w, -, N, (€))

where w = max{q,p+1}; ym; is the simulated streamflow by the hy-
drologic model; U; = [ul,i, Uy, ug,i} denotes the inputs of the hydrologic
model (i.e., uy ; is precipitation, uy; is potential evapotranspiration, and
u3; is minimum temperature at time i), obtained from the CAMELS
dataset; and N is the number of time step for training. G, ( e ) utilizes the
output of the process-based model as an input feature, and it enables the
hybrid model to capture the physical process of watersheds. Existing
studies have enforced that the utilization of these inputs proves suc-
cessful in estimating daily discharge (e.g., Yang et al., 2019).

The main goal of the 2nd step is to compute the discrepancy between
physics-based prediction and observations. To ensure that another
NARX model can then be established for this discrepancy term, we use
the observation y,; instead of simulated streamflow by the hydrologic
model (¥n;) in the delayed input-output vector to yield the physics-
based surrogate response:

Ymi = Gn (Uu Ui, Ui (g-1);Yoi-1, "> Yoip )7Vi =, ,N, (C)]

With the physics-based surrogate response §m7i, the discrepancy term
can be computed by:

8 = Yoi— Ymi, Vi=w, -+, N. (10)

Based on the §; values obtained in the previous step, we can continue
to construct another surrogate model G;( o ) for the discrepancy term:

5 = Gy (Uh Ui, Ui_(g-1);Yoi-1, s Yoi-p )7Vi =, ,N,. an
Substituting Eq. (9) and Eq. (11) into Eq. (10), one obtains:

Voi = Ymi + 0. 12)

From Eq. (12), it can be found that the basic idea of delta learning is
to recover the missing physics by adding a discrepancy term into the
underlying physics. The additive form facilities the full use of the un-
derlying physics information from hydrologic models and meanwhile
learns the missing physics information based on limited observations.

3.3.1.2. Model forecast. With the two surrogate models Gn(e) and
Gs( o ) trained based on the historical data, the discharge ¥o;,i =N; + 1,
---,N, at the future time steps can be forecasted in the following recursive

manner. With the known delayed input-output vector [UN,+1, Uy,, -,

Un,+1-(g-1); YoN,s “',)'o,N,+1_p] where Uy,.1 is the forecasted input, we

can obtain the surrogate responses from G,(e) and Gs(e) at the
(N¢ + 1)-th time step:

YmnNe+1 = Gm (UMH, Un,, s Unt1-(g-1); Yoy s ) YoNer1-p )7 13)

3N,+1 =G; (UN[+17 Un,, - Uns1-(g-1); YonNes ***> YoNe+1-p ) 14)

Adding the two surrogate response yields the corrected prediction
Yon,11 at the (N, + 1)-th time step:
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Vo1 = Ymp+1 +5N,+1- (15)
Let Yon,+1 ~Yon,+1- The delayed input-output vector can move for-

ward one time step, i.e., [UN,+27UN,+17"'7UNt+2—(q—1)§yo,N[+17"'7yo.,Nf+2—p ,

and then Y, x,2 can be predicted by the above operations. And so on
until the discharge at the N-th time step is predicted.

3.3.2. Data augmentation
Like delta learning approach, this method first trains an underlying
physics-based surrogate model G (e ) based on the low-fidelity data

Yoi = Ge (Ui, Ui 1, Ui g-1);Y0i-1," Yoip; Gm (Un U1, Uisg-1); Yoi-1, "

from the hydrologic model (Fig. 4). Then, the physics-based surrogate
prediction is integrated with the streamflow observations into an
augmented dataset to train another surrogate model G.( e ) as shown in
Fig. 4. Finally, the trained G.( e ) will provide the corrected predictions
(Zhao et al., 2024). The model training and prediction for this approach
are described in the following sections.

3.3.2.1. Model training. The first step is the same as delta learning as
discussed in Section 3.3.1, and its aim is to build an underlying physics-
based surrogate model based on the low-fidelity data from the hydro-
logic model, denoted as Gp(e) and defined in Eq. (8). Like delta

learning, this step also requires physics-based surrogate response ;m,i by

p times of
simulated

streamflow y,,
before time i

(Vi t=14<es Jr"m.i'—s-')

p times of
observed
streamflow y,
before time i

YVo.i=1s =1 Yo,i-p)

& train

Surrogate model
GI"I"l( i }

Physics-based
surrogate response
}:-",,,.,-{streamflow
prediction) for time i
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Eq. (9). The physics-based surrogate response ;m,i is then integrated with
the delayed input-output vector [Ui, Ui 1, Ui_(g-1);Yoi-1, " Yoip

to train another surrogate model G.( e ), which can directly output the
final corrected prediction:

Yoi = Ge (Ui, Ui, Ui(g-1);Yoi-1, "'1yo,i—p§ym,i)aVi =w,,N.. (16)

The following equation is obtained by substituting Eq. (9) into Eq.
16):

Yoin) ) a7

where i is between w and N;.

From Eq. (17), it can be found that the basic idea of data augmen-
tation is like multi-layer neural networks that embed one layer into
another layer. The embedding physics information from the hydrologic
model will help to improve the prediction ability of the machine
learning model, which allows for more accurate predictions based on
limited observed data.

3.3.2.2. Model prediction. With the known delayed input-output vector

I:UN[+1:UN[>"'7UN[+1—(q—1)§yo,N[7"'a.yo,Nt+1—p:| where Uy, is the fore-

casted input, the surrogate response ;,,,,N[H is generated from Gn,( e ) at

q times of inputs of the hydrologic
model y,,, from the current time step
i and the g-1 preceding steps
U, u, ..U‘ =8 1.}

Precipitation

Potential ET

Min Temperature

Surrogate model

Ge(*)

Discharge
forecast ¥, ;

Fig. 4. Hybrid forecasting approach for data augmentation.
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the (N; + 1)-th time step, as shown in Eq. (13). Plugging the delayed

input-output vector {UNtH, Un,, -, UNt1-(g-1); YoNs -~-,yo,Nt+1,p] along

with the surrogate response §m‘Nr+1 into the surrogate model G.(e)
yields the corrected prediction at the (N; + 1)-th time step:

Yon1 = Ge (UN[+17 Un,, -, Uns1-(g-1); Yoo > YoNe+1-p; YmNet1 ) (18)

Let Yon,+1 & Yon.+1- Taking the delayed input-output vector one time
step further, i.e., [UN[+2., Un,s15 4, Unr2-(g-1)3 YoNe+15 = YoNe+2-p ] s

Yon.+2 can be predicted by the above operations. And so on until the
discharge forecasting at the N-th time step is made.

4. Results
4.1. Hydrologic model calibration

The period 1985-1986 are used for model warm-up, 1987-2005 for
parameter determination, and 2006-2014 for model evaluation. The
hydrologic model has 8 parameters including my, Sp, a, 7, kp, kq, My, and
n (Hong et al., 2025). The range for ms (snow melting parameter) is
between 0 and 1 (Martinez and Gupta, 2010). The range for average
storage capacity (Sp) is set to be between 0 mm and 1500 mm (Yao et al.,
2020), along with a larger upper bound to be used if needed. The shape
parameter of spatial distribution of storage capacity (a) is between 0 and
2 (Wang, 2018). Based on its definition, the range of y is designated to be
between 0 and 1. The value of k4 (coefficient for quick storage tank)
should be higher than that of k;, (coefficient for slow storage tank) since
the residence time of fast flow should be shorter than that of slow flow;
therefore, the range of kj, is set to (0, 0.14) day! and that of k4 is set to
[0.14, 1] day! (Kollat et al., 2012). The range of my (coefficient of
power function for infiltration capacity) is assigned to be between 0 and
2000 mm e day !, and that of exponent n is assigned to be between 0 and
1.

The model parameters are determined following a two-stage strategy
proposed by Abeshu et al. (2023). In the first stage, runoff parameter sets
are generated through stratified sampling, and the best-performing sets
are identified by comparing simulated and observed runoff at annual
and monthly scales. In the second stage, routing parameters are sys-
tematically varied using the top-performing runoff sets as inputs, and
the final optimal parameter set is selected based on model performance
metrics. For each of the study watersheds, samples from the entire
parameter space are selected to obtain one million sets of parameter
values and run the model using each parameter set. The parameter
estimation process is carried out in three sequential steps to ensure
robust calibration of the hydrologic model. The first step is parameter
sampling. Initially, one million parameter sets are generated using Latin
Hypercube Sampling, a statistical method that ensures a comprehensive
and stratified exploration of the parameter space. This approach en-
hances the diversity and representativeness of the sampled parameter
combinations. In the second step, each of the one million parameter sets
is used to run the hydrologic model, resulting in a corresponding set of
simulation outputs. These outputs are evaluated against observed hy-
drologic data to assess model performance. The third step involves a
multi-stage filtering process based on hydrologic signatures at various
temporal scales, as described by Hong et al. (2025). The filtering pro-
ceeds as follows: The normalized root mean square error (NRMSE) be-
tween simulated and observed annual streamflow is computed for all
one million simulations. The 100,000 parameter sets with the lowest
NRMSE values are retained for further evaluation. For these 100,000
retained sets, the NRMSE is calculated between the simulated and
observed regime curves (i.e., mean monthly streamflow). The top 1,000
parameter sets with the smallest NRMSE values are selected for the next
stage. The NRMSE between simulated and observed annual flood peaks
is then computed for the 1,000 selected parameter sets. From these, the
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100 best-performing sets are chosen based on their flood peak accuracy.
Finally, the Kling-Gupta Efficiency (KGE; Gupta et al., 2009) is used to
evaluate the agreement between simulated and observed daily stream-
flow for the remaining 100 parameter sets. The parameter set that
achieves the highest KGE value is identified as the optimal set and is
selected as the final estimate.

Of the 671 watersheds analyzed, 600 with positive KGE values
during the calibration period are selected for hybrid modeling. This
selection is conservative, as even a KGE score above —0.41 still out-
performs using mean flow as a predictor (Knoben et al., 2019). Fig. S1 in
the Supporting Information shows the exceedance probability distribu-
tion of KGE values during the calibration and validation periods for the
selected watersheds. During this period, 98 % of the watersheds are
observed to achieve KGE values above 0.3, 90 % to exceed 0.5, and 40 %
to surpass 0.7. In the validation period, 91 % of the watersheds are
depicted to maintain KGE values above 0.3, 66 % to remain above 0.5,
and 23 % to exceed 0.7, suggesting acceptable model performance.
These results indicate a decline in model performance during the vali-
dation phase as compared to the calibration phase. However, the use of
hybrid models has the potential to enhance the performance of
streamflow forecasts.

4.2. Hybrid models

4.2.1. Surrogate model Gp( o)

By comparing the performance of LSTM-NARX model Gp( ) with
different time lags, it is identified that thirty days for the number of lags
in the delayed input (g) and output (p) vectors produce the best pre-
diction accuracy. The LSTM model structure has a total of three layers,
including an LSTM layer with 80 units, a dropout layer (applying 1 %
dropout) and a dense layer with linear activation for regression. The
model is trained using the Adam optimizer with a learning rate of 1 x
1073 and the Mean Squared Error (MSE) function is used as the loss
function for the optimizer. It undergoes 500 epochs with a batch size of
2048. During training, 20 % of the training data is reserved for valida-
tion, and the data is shuffled at the start of each epoch to reduce order
bias. The input of LSTM layer has a shape of (2048, 30, 4), corresponding
to the batch size, time step size, and the feature size respectively. The
data (simulated streamflow by the hydrologic model yp,;, precipitation
uy j, potential evapotranspiration u, ;, minimum temperature us;) during
1985 and 2012 is used for training of Gp( e ).

4.2.2. Surrogate model Gs( o)

The architecture and parameters of LSTM-NARX model G;( o) are
consistent with those of Gn( e ). The data (discrepancy term §&;, precip-
itation u; ;, potential evapotranspiration u ;, minimum temperature us ;)
during 1985 and 2012 is used for training of G;( e ).

4.2.3. Surrogate model Ge( o)
The architecture and parameters of LSTM-NARX model G.( ¢ ) are
also similar to those of Gi,( e ). The only difference lies in that the input

shape of the LSTM layer is (2048, 30, 5), where an additional item ;m_i is
added to the input feature, as described in Sec. 3.3.2. As aresult, the data
(simulated streamflow by the hydrologic model yn;, precipitation u ;,
potential evapotranspiration u,;, minimum temperature us;, physics-

based surrogate response §m,i) during 1985 and 2012 is used for
training of Ge( e ).

4.3. Performance of hybrid modeling

The streamflow forecasts by the hydrologic model (HM), DL, and DA
are presented in this section. Seasonal streamflow forecasts with a 30-
day lead time are issued on July 4, 2013 (summer), October 2, 2013
(fall), December 31, 2013 (winter), and March 31, 2014 (spring).
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Fig. 5. Observed and 30-day lead time forecasted hydrographs for July 4, 2014, generated using the hydrologic model, Delta Learning, and Data Augmentation
approaches across four representative watersheds: (a) Manokin Branch, Maryland; (b) Holiday Creek, Virginia; (c) Cub Creek, Virginia; and (d) North Fork Powder

River, Wyoming.

4.3.1. Hydrographs

For demonstration purposes, Fig. 5 presents the forecasted daily
streamflow for July 4, 2013, with a 30-day lead time across four selected
watersheds. Starting with the first watershed, Fig. 5a depicts the
observed and forecasted streamflow for Manokin Branch in Maryland,
using HM, DL, and DA. The watershed has a climate aridity index of 0.82
and a drainage area of 12.4 km? (USGS gauge #01486000). During the
30-day period, two peaks were evident. Compared to observations, HM
overestimates high flows; DA improves high flow predictions but still
overestimates them; DL significantly enhances high flow predictions,
closely matching real observations. HM generally overestimates low
flows; DA accurately matches low flows; and DL underestimates low
flows. The KGE values are —0.91 for HM, 0.52 for DL, and —0.08 for DA.
Fig. 5b shows the observed and forecasted streamflow for the second
watershed, Holiday Creek in Virginia, with a drainage area of 22.1 km?
(USGS gauge #02038850) and a climate aridity index of 0.92. One event
is identified during the 30-day period. HM slightly overestimates
streamflow, while DL slightly underestimates it and DA matches both
high and low flows well. The KGE values are 0.72 for HM, 0.55 for DL,
and 0.95 for DA. Moving to the third watershed, Fig. 5c illustrates the
observed and forecasted streamflow for Cub Creek in Virginia, with a
drainage area of 252.8 km? (USGS gauge #02065500) and a climate
aridity index of 1.18. Both HM and DA overestimate the peak flow,
whereas DL accurately matches the peak flow. The KGE values are 0.51
for HM, 0.97 for DL, and 0.83 for DA. Lastly, Fig. 5d displays the
observed and forecasted streamflow for the fourth watershed, North
Fork Powder River in Wyoming, with a drainage area of 61.9 km? (USGS
gauge #06311000) and a climate aridity index of 1.68. The hydrograph
during the 30-day period shows a recession event. HM overestimates
streamflow when it is higher (July 5, 2013 — July 15, 2013) but un-
derestimates when it is lower (July 15, 2013 — August 4, 2013),

resulting in a faster recession than observed. The recession curves for
both DL and DA are flatter compared to HM. The KGE values are —0.13
for HM, 0.50 for DL, and 0.61 for DA.

4.3.2. Grouping by KGE

The KGE values for the 30-day lead time streamflow predictions by
the HM, DL, and DA models are calculated for each of the four forecast
dates representing seasons. Watersheds with negative KGE values for all
three models (HM, DL, and DA) are excluded. The remaining water-
sheds, which have positive KGE values for at least one of the models, are
categorized into seven groups based on the signs of their KGE values. It
should be noted that KGE values greater than —0.41 indicate that a
model improves upon the mean flow benchmark, generally considered
acceptable (Knoben et al., 2019). As shown in Table 1, Group 1 includes
watersheds with positive KGE values for HM, DL, and DA. The numbers
of watersheds in this group are 232 for July 4, 2013, 165 for October 2,
2013, 156 for December 31, 2013, and 217 for March 31, 2014. Group 2
includes watersheds with negative KGE values for HM but positive KGE

Table 1
Number of watersheds in each of the seven groups with positive or negative KGE
values for 30-day lead time streamflow predictions.

Group KGE Value Number of Watersheds
HM DL DA Summer Fall Winter Spring
1 + + + 232 165 156 217
2 - + + 95 84 118 158
3 - + 46 48 37 38
4 - + — 19 39 35 20
5 + - + 13 24 12 8
6 + + — 16 17 10 12
7 + - - 34 25 27 15
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values for both DL and DA. The number of watersheds in this group is 95
for summer, 84 for fall, 118 for winter, and 158 for spring. Group
3 includes watersheds with negative KGE values for HM and DL but
positive KGE values for DA. Group 4 includes watersheds with negative
KGE values for HM and DA but positive KGE values for DL. Group
5 includes watersheds with positive KGE values for HM and DA but
negative KGE values for DL. Group 6 includes watersheds with positive
KGE values for HM and DL but negative KGE values for DA. Group
7 includes watersheds with positive KGE values for HM but negative
KGE values for both DL and DA. Compared to the other six groups, Group
1 has the largest number of watersheds. Combining Groups 2, 3, and
4—which are characterized by negative KGE value for HM but positive
value for DL and/or DA—results in a total number of 160 watersheds for
summer, 171 for fall, 190 for winter, and 216 for spring.

4.3.3. Performance of hybrid modeling

To evaluate and compare the performance of hybrid modeling ap-
proaches against the traditional hydrologic model, Table 2 presents the
number of watersheds in which each method has achieved the highest
KGE values for 30-day streamflow forecasts. The results are broken
down by season and by watershed group. Focusing on Group 1 as an
illustrative example, HM outperforms the hybrid methods in 59 water-
sheds during summer, 35 in fall and winter, and 50 in spring. Whereas
DL has the highest KGE values in 80 watersheds in summer, 58 in fall
and winter, and 94 in spring; and DA leads in 93 watersheds during
summer, 72 in fall, 63 in winter, and 73 in spring. When aggregating
results across all seven watershed groups, the hybrid modeling ap-
proaches (DL or DA) demonstrates superior performance over the hy-
drologic model in a substantial majority of cases: 75 % of watersheds in
summer, 81 % in fall and winter, and 84 % in spring. These findings
highlight the consistent advantage of hybrid modeling techniques in
enhancing streamflow forecast accuracy across different seasons and
watershed conditions.

To further assess the effectiveness of hybrid modeling approaches,
the exceedance probability distributions of KGE values for the HM, DL,
and DA are illustrated in Fig. 6. These distributions are derived from all
watersheds across the seven groups listed in Table 1. For consistency and
better visualization of lower-performing cases, the y-axis in Fig. 6 is
truncated at a minimum value of —2. In summer (Fig. 6a), both hybrid
models outperform HM. Notably, DA exhibits slightly better perfor-
mance than DL. Specifically, KGE values exceed 0 in 64 % of watersheds
for HM, 79 % for DL, and 84 % for DA. When considering a higher
threshold (KGE > 0.5), 23 % of watersheds for HM, 40 % for DL, and 45
% for DA are identified. In fall (Fig. 6b), a similar trend is observed. KGE
values are greater than 0 in 57 % of watersheds for HM, 75 % for DL, and
79 % for DA. For KGE values above 0.5, the proportions are 23 % for HM,
39 % for DL, and 41 % for DA. During winter (Fig. 6¢), the performance
gap between the models becomes more pronounced. KGE values exceed
0 in 52 % of watersheds for HM, compared to 80 % for DL and 81 % for
DA. For KGE values above 0.5, the percentages are 18 % for HM, 36 %
for DL, and 41 % for DA. In spring (Fig. 6d), the hybrid models show
their strongest relative performance. KGE values are greater than 0 in 54
% of watersheds for HM, 87 % for DL, and 90 % for DA. For KGE values

Journal of Hydrology 664 (2026) 134477

exceeding 0.5, the results are 22 % for HM, 54 % for DL, and 48 % for
DA. Overall, these seasonal exceedance probability distributions clearly
demonstrate the superior performance of hybrid modeling approaches
over HM in forecasting 30-day streamflow across a wide range of
watersheds.

4.3.4. Spatial distribution of model performance

Fig. 7 illustrates the spatial distribution of KGE values for 30-day
streamflow forecasts generated using DL and DA across the contiguous
United States. In summer (Fig. 7a for DL and Fig. 7e for DA), medium to
large KGE values—specifically those represented in the green
(0.41-0.60), blue (0.61-0.80), and dark blue (0.81-0.97) ranges—are
primarily concentrated in parts of the eastern United States, including
areas in the Midwest, Southeast, and Northeast, where many forecast
points show good to excellent streamflow prediction performance.
Additionally, some isolated pockets in the Pacific Northwest and
Northern Rockies also exhibit high KGE values, indicating strong model
skill in those locations. These regions contrast with the central and
southwestern U.S., where lower KGE values are more prevalent, high-
lighting spatial variability in the effectiveness of DL for summer
streamflow forecasting. In the fall season (Fig. 7b for DL and Fig. 7f for
DA), medium to high KGE values are predominantly located in
the eastern half of the United States, particularly in the Midwest,
Southeast, and parts of the Northeast, where DL shows strong stream-
flow forecasting performance. Additionally, scattered high-performing
locations appear in the Pacific Northwest and Northern Rockies,
similar to the summer pattern. These areas contrast with the central and
southwestern U.S., where lower KGE values are more common. During
the winter season (Fig. 7c for DL and Fig. 7g for DA), the spatial dis-
tribution of KGE values for 30-day streamflow forecasts generated by DL
reveals strong model performance across much of the eastern United
States, particularly in the Appalachian Mountains and surrounding re-
gions. This suggests that DL effectively captures the hydrological
behavior of the Appalachian region during winter, likely benefiting from
more stable snowmelt and precipitation patterns. Beyond the Appala-
chians, other areas with notable concentrations of high KGE values
include Pacific Northwest and parts of the Midwest. In the spring season
(Fig. 7d for DL and Fig. 7h for DA), medium to high KGE values are
distributed across several key areas of the United States. Notable con-
centrations of medium KGE values appear in parts of the Midwest,
Northeast, Southeast, West Coast, and Northern Rockies. These patterns
suggest that DL maintains a solid predictive skill in diverse hydrological
and climatic regions during the spring, with particularly strong perfor-
mance in select northern and coastal areas. Overall, both DL and DA
demonstrate robust and geographically consistent forecasting capabil-
ities, particularly in hydrologically active and topographically complex
regions such as the eastern U.S. and the Pacific Northwest. These results
underscore the models’ ability to adapt to seasonal and regional vari-
ability in streamflow dynamics.

Fig. 8 illustrates the spatial distribution of KGE improvements for 30-
day streamflow forecasts by hybrid modeling compared with the base-
line hydrologic model. In summer (Fig. 8a for DL and 7e for DA), sig-
nificant improvements, indicated by blue and dark blue dots, are

Table 2

Number of watersheds with the best KGE performance at a 30-day forecast horizon, categorized by hydrologic, Delta learning, and data augmentation models.
Group Summer Fall Winter Spring

HM DL DA HM DL DA HM DL DA HM DL DA

1 59 80 93 35 58 35 58 63 50 94 73
2 0 39 56 0 36 0 64 54 0 93 65
3 0 0 46 0 0 0 0 37 0 0 38
4 0 19 0 39 0 35 0 0 20 0
5 9 0 4 11 0 6 0 6 5 0 3
6 10 6 0 11 6 4 0 4 8 0
7 34 0 0 25 0 27 0 0 15 0 0
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concentrated in the Pacific Northwest (with the average value of 0.49 for
DL, 0.55 for DA) and the Rocky Mountains (0.62 for DL, 0.67 for DA), as
well as scattered locations in the Midwest (1.00 for DL, 1.56 for DA) and
along the East Coast (0.39 for DL, 0.40 for DA). These regions exhibit the
largest positive differences in KGE values, highlighting areas where DL
and DA substantially outperform HM. In fall (Fig. 8b for DL and 7f for
DA), regions with substantial KGE improvement are primarily located in
the western U.S. (e.g., parts of California (0.99 for DL, 1.26 for DA), the
Pacific Northwest(0.29 for DL, 0.11 for DA), and Northern Rockies (0.90
for DL, 0.99 for DA)), as well as in scattered areas in the Midwest (0.80
for DL, 0.53 for DA) and along the East Coast (0.42 for DL, 0.40 for DA).
In winter (Fig. 8c for DL and 7 g for DA), strong performance gains are
located Northern Rockies (0.10 for DL, 0.75 for DA), Midwest (0.42 for
DL, 0.58 for DA), Northeastern (0.15 for DL, 1.24 for DA), Alabama
(0.81 for DL, 0.68 for DA), and Florida (0.75 for DL, 0.71 for DA). In
spring (Fig. 8d for DL ad 7 h), substantial improvements are prominently
observed in the western U.S., particularly in California (0.70 for DL, 0.78
for DA), the Pacific Northwest (0.63 for DL, 0.64 for DA), and key areas
of the Rocky Mountains (1.50 for DL, 1.47 for DA), including northern
Colorado (2.64 for DL, 2.55 for DA), southern Wyoming (3.74 for DL,
3.83 for DA), western Montana (1.27 for DL, 1.32 for DA), and eastern
Idaho (1.56 for DL, 1.48 for DA). Additional clusters of strong perfor-
mance appear in parts of the Midwest (0.65 for DL, 0.52 for DA) and
along the East Coast (0.83 for DL, 0.75 for DA) (e.g., Florida (0.54 for DL,
0.30 for DA)).

Collectively, these results demonstrate that hybrid modeling ap-
proaches consistently enhance streamflow forecast accuracy across a
range of geographic and climatic regions, with particularly strong gains
in the western U.S. and other hydrologically dynamic areas.

10

5. Discussions
5.1. Impact of lead time

Fig. 9 presents a comparative analysis of the three streamflow fore-
casting models evaluated across 30-, 60-, and 90-day forecast horizons
using the KGE metric, plotted against the percentage of watersheds
(exceedance probability). The results reveal that the HM is notably
sensitive to forecast horizons, with seasonal variations influencing this
sensitivity. In summer (Fig. 9a), HM performance improves with longer
lead times, as the 90-day forecast consistently yields higher KGE values
than the 30- and 60-day forecasts across most watersheds. This trend
becomes even more pronounced in spring (Fig. 9d), where KGE values
increase substantially with forecast horizon, suggesting that HM benefits
from extended lead times during periods of dynamic hydrologic activity,
such as snowmelt and spring runoff. It should be noted that true values
are used for climatic forecasts. In practice, climate forecasts may
degrade with longer forecast horizons. For example, Shukla et al. (2012)
and Schepen et al. (2016) reported that skill at seasonal horizons is
strongly conditioned by basin memory and the quality of meteorological
forcing. Physics-based hydrologic models are typically sensitive to
forecast horizon because their performance strongly depends on the
quality of climatic inputs, which often degrade with longer lead times
(Shukla et al., 2012; Schepen et al., 2016). In contrast, winter (Fig. 9¢)
shows minimal sensitivity to the forecast horizon for HM, with KGE
values remaining relatively consistent across 30-, 60-, and 90-day
forecasts. This indicates that extending the forecast horizon in winter
neither significantly enhances nor degrades HM performance, possibly
due to more stable hydrologic conditions which aligns with the research
by Robertson (2012). The fall season (Fig. 9b) presents a more complex
pattern: while 90-day forecasts generally outperform shorter horizons,
the 30-day forecast shows higher KGE values than the 60-day forecast
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Data Augmentation (DA) for (e) summer, (f) fall, (g) winter, and (h) spring.

for lower exceedance probabilities (<0.7) but lower values for higher
exceedance probabilities (>0.7). This intricate behavior was also noted
in Luo’s study (2007). This suggests that HM’s performance in fall may
be influenced by transitional hydrologic conditions and watershed-
specific variability.

In contrast to HM, the DL and DA models exhibit relatively stable
KGE values across all forecast horizons and seasons, indicating that their
performance is largely insensitive to lead time. This finding is consistent
with recent machine learning research in hydrology, where residual
learning approaches (similar to DL) have effectively captured systematic
model errors (Kratzert et al., 2019), and data augmentation strategies
have enhanced skill for extreme events by leveraging additional data
sources (Nearing et al., 2021). This consistency highlights the robustness
of hybrid modeling approaches, which leverage data-driven techniques
to maintain accuracy over varying temporal scales. Notably, DL excels at
capturing residual patterns not modeled by HM, while DA enhances
performance by incorporating additional data, particularly for extreme
events.

Across all four seasons, the results (Fig. 9) collectively demonstrate
that forecast performance generally improves with longer horizons for
HM, especially in spring and summer when hydrologic variability is
high. However, DL and DA consistently outperform HM, particularly at
shorter horizons (30 and 60 days), underscoring their effectiveness in
capturing complex, nonlinear dynamics. These findings emphasize the
importance of tailoring forecasting strategies to both seasonal hydro-
logic conditions and forecast lead times, particularly when selecting
between a process-based model and a hybrid model.

5.2. Performance improvements and watershed characteristics

To gain physical insights into the performance of hybrid modeling
approaches, a correlation analysis is conducted between the improve-
ments in 30-day streamflow forecast skill—measured by the difference
in KGE values between the hybrid model and the HM—and various
watershed characteristics across different seasons. For the DL approach,
six watershed properties, obtained from the CAMELS dataset (Addor
et al., 2017), are found to be significantly associated with forecast im-
provements: four in summer, one in winter, and one in spring (Fig. 10).
In summer, Fig. 10a suggests a weak positive trend between gauge lat-
itude and KGE improvement, indicating that higher-latitude basins may
benefit slightly more from DL, which aligns with previous finding that
hydroclimatic variability with latitude influences model predictability
(Berghuijs et al., 2014). Conversely, negative correlations are observed
between KGE improvement and (i) seasonality and timing of precipita-
tion (Fig. 10b), (ii) frequency of high precipitation days (Fig. 10c), and
(iii) streamflow-precipitation elasticity (Fig. 10d). The seasonality
metric is derived from fitting sine curves to annual temperature and
precipitation cycles, where positive values indicate summer-peaking
precipitation and values near zero reflect uniform precipitation
throughout the year. High precipitation days are defined as those
exceeding five times the mean daily precipitation. Streamflow-
precipitation elasticity quantifies the sensitivity of annual streamflow
to changes in annual precipitation, with higher values indicating more
responsive basins. This metric has been associated with hydrologic
model transferability and forecast skill (Sankarasubramanian et al.,
2001; Troch et al., 2013).

In winter, DL-based forecast improvements are found to be positively
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Fig. 8. Spatial distribution of KGE differences between hybrid modeling and the hydrologic model for 30-day streamflow by DL for (a) summer, (b) fall, (c) winter,

and (d) spring, and by DA for (e) summer, (f) fall, (g) winter, and (h) spring.

correlated with the maximum monthly mean of leaf area index (LAI),
suggesting that vegetation dynamics—such as snow interception or
evapotranspiration—may influence model performance during this
season. This observation is consistent with earlier study showing that
vegetation plays a critical role in modulating water and energy fluxes in
snow-dominated basins (Mao & Cherkauer, 2009). In spring, a positive
correlation is observed between KGE improvement and the baseflow
index, which represents the ratio of mean daily baseflow to total
streamflow, calculated using the digital filter method of Ladson et al.
(2013). This indicates that basins with stronger groundwater contribu-
tions tend to benefit more from DL in spring.

In contrast, the DA approach demonstrates fewer and more selective
relationships with watershed characteristics (Fig. 11). Only two corre-
lations are identified: a negative correlation with the frequency of high
precipitation days in summer (Fig. 11a), and a positive correlation with
the baseflow index in spring (Fig. 11b). This suggests that DA may be
more robust to a wide range of watershed conditions but less sensitive to
specific hydrologic features compared to DL. Similar observations have
been reported in prior hybrid modeling study, where simpler augmen-
tation schemes yielded robust yet less condition-dependent improve-
ments (Nearing et al., 2021). While DL appears to leverage a broader set
of physical and climatic signals to enhance forecast skill, DA’s im-
provements are more narrowly tied to hydrologic stability (as indicated
by baseflow) and are potentially hindered by extreme precipitation
variability. This contrast highlights the complementary nature of the
two hybrid approaches and underscores the importance of tailoring
modeling strategies to watershed-specific characteristics and seasonal
dynamics.
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6. Conclusion

Streamflow forecasting is a critical component of water resources
engineering, yet it remains a complex and challenging endeavor,
whether approached through physics-based or data-driven models.
Hybrid models, integrating both process-based and data-driven models,
could enhance the performance of streamflow forecasting. In this study,
hybrid modelling is applied to a large number of watersheds in the
contiguous United States for streamflow forecasting. The recently
developed hydrologic model (Hong et al., 2025), which simulates
saturation and infiltration excess runoff in a coherent framework due to
the dependence of the spatial distribution of infiltration capacity on the
spatial distribution of storage capacity and soil water storage, is used as
the process-based model. LSTM, a deep learning model, is then utilized
for developing data-driven models. An LSTM-based surrogate model,
Gm(e), which is driven by hydroclimatic observations and simulated
streamflow by HM, is developed for capturing the underlying processes
of the hydrologic model. Two hybrid modeling approaches, including DL
and DA, are applied for forecasting streamflow. For the DL approach, an
LSTM-based surrogate model, G;( e ), which is driven by hydroclimatic
observations and observed streamflow, is developed to capture the
discrepancy between observed streamflow and predicted streamflow by
Gp(e), which in turn is driven by hydroclimatic observations and
observed streamflow. For the DA approach, the LSTM-based surrogate
model, Gg(e), is driven by hydroclimatic observations, observed
streamflow, and outputs of Gy, (e ), which in turn is driven by hydro-
climatic observations and observed streamflow.

The findings highlight that both hybrid modeling approaches
consistently outperform the hydrologic model in forecasting 30-day
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Fig. 11. The correlation of KGE difference for 30-day streamflow forecast by data augmentation and the hydrologic model and watershed characteristics: streamflow
forecasts improvement in summer versus frequency of high precipitation days (a), and streamflow forecasts improvement in spring versus baseflow index (b).

streamflow across various seasons and watersheds. DA exhibits slightly
better performance than DL. During winter, the performance gap be-
tween the models becomes more pronounced. Seasonal analysis reveals
that fall provides the most stable forecasting conditions, whereas sum-
mer, winter, and spring present challenges due to low flows and snow-
related processes. The spatial analysis reveals that both hybrid models
consistently deliver strong 30-day streamflow forecasting performance
across the eastern U.S., Pacific Northwest, and Northern Rockies, with
seasonal variations. Compared to the HM, hybrid models significantly
improve forecast accuracy, especially in the western U.S., Midwest, and
along the East Coast. Graph neural network architectures can be used to
explore temporal and spatial patterns in hydrological signatures for
improving streamflow forecasting (Sun et al., 2021; Sun et al., 2022).
The results show that the performance of the HM is sensitive to forecast
horizon length. In contrast, the hybrid models maintain consistent and
superior accuracy across all forecast horizons and seasons. These find-
ings highlight the hybrid models’ adaptability and robustness to diverse
hydrologic and climatic conditions across seasons and regions as well as
forecast horizon lengths.

To further explore the processes related to the improvements by
hybrid modeling, correlation analysis is conducted between KGE
improvement and watershed characteristics including hydroclimatic
variables. Forecast improvements by DL are positively correlated with
gauge latitude and negatively correlated with seasonality and timing of
precipitation, frequency of high precipitation days, and precipitation
elasticity in summer; add to that, they are positively correlated with leaf
area index in winter and baseflow index in spring. Forecast improve-
ments by DA are negatively correlated with the frequency of high pre-
cipitation daysin summer and positively correlated with baseflow
index in spring. These findings provide potential guidance to improve
the representation of relevant hydrologic processes for individual wa-
tersheds in the hydrologic model.

Future research will be focused on developing streamflow forecasts
utilizing the hybrid models driven by real-time precipitation and

Appendix A. Summary of notation

temperature forecasts. Moreover, the streamflow forecasts will be uti-
lized as inputs to predict shoaling rate in navigable channels.
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Symbol Description Appears In
Cc Soil water storage capacity at a point Fig. 1
So Average initial soil water storage Fig. 1
Co Soil water storage capacity corresponding to So Fig. 1
P Precipitation Fig. 1
D Soil water deficit at a point Fig. 1
R; Saturation excess runoff Fig. 1
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(continued)
Symbol Description Appears In
R; Infiltration excess runoff Fig. 1
ag Area fraction of initial saturation Fig. 1
a Area fraction of ending saturation Fig. 1
az Area fraction with runoff generation Fig. 1
w; Infiltration over the area fraction of a; —ag Fig. 1
Ws Infiltration over the area fraction of ay —a; Fig. 1
Ws Infiltration over the area fraction of 1 —ay Fig. 1
E Actual evapotranspiration Fig. 1
R4 Direct runoff Fig. 1
Rg Groundwater recharge Fig. 1
4 Partitioning parameter of saturation excess between direct runoff and groundwater recharge Fig. 1
Sd Storage in quick storage tank Fig. 1
Sy Storage in slow storage tank Fig. 1
kq Runoff coefficient of direct runoff Fig. 1
kp Runoff coefficient of baseflow Fig. 1
Q4 Direct streamflow Fig. 1
Qp Baseflow Fig. 1
Q Total streamflow Fig. 1
F(e) Nonlinear mapping function that transforms recent inputs and outputs into the current output Eq. (1)
i Time step Eq. (1); Fig. 3
Yi System output Eq. (1)
U; Exogenous inputs Eq. (1); Fig. 3
n Dimension of exogenous inputs Eq. (1)
q Number of lags in the delayed input vector Eq. (1)
p Number of lags in the delayed output vector Eq. (1)
€ Residual of NARX model Eq. (1)
i Signal for input gate Egs. (2), (6); Fig. 2
o(e) Sigmoid function Egs. (2), (3), (4); Fig. 2
a, Hidden state Egs. (2), (3), (1), (5), (7);
Fig. 2
X Input state Egs. (2), (3), (4, (5); Fig. 2
w; Weight vector for input gate Eq. (2); Fig. 2
b; Bias vector for input gate Eq. (2); Fig. 2
fi Signal for forget gate Egs. (3), (6); Fig. 2
w; Weight vector for forget gate Eq. (3); Fig. 2
by Bias vector for forget gate Eq. (3); Fig. 2
o, Signal for output gate Egs. (4), (7); Fig. 2
w, Weight vector for output gate Eq. (4); Fig. 2
b, Bias vector for output gate Eq. (4); Fig. 2
C Intermediate cell state Egs. (5), (6); Fig. 2
tanh(e) Hyperbolic tangent function Egs. (5), (7); Fig. 2
W, Weight vector for Intermediate cell Eq. (5); Fig. 2
b, Bias vector for Intermediate cell Eq. (5); Fig. 2
C, Cell state Egs. (6), (7); Fig. 2
[0 Element-wise product Egs. (6), (7); Fig. 2
Gn(e) Surrogate model based on the low-fidelity data from the hydrologic model Eq. (8), (9), (13); Fig. 3
Ym Simulated streamflow by the hydrologic model Eq. (8)
Ym Modeled streamflow by G,( e ) using ym Eq. (8)
Yo Observed streamflow Eq. (9); Fig. 3
;m Output of G ( e ) using y, Eq. (9)
3 Difference between y, and ;m Eq. (10)
Gs(e) Surrogate model based on the discrepancy between the physics-based prediction from G, ( e ) and the high-fidelity data from the observed ~ Eq. (11)
streamflow
K Output of G5( e ) using y, Eq. (11)
Yo Modelled streamflow by delta learning Eq. (12)
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