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A B S T R A C T

Streamflow forecasting plays a significant role in flood predictions, reservoir operations, and planning for 
navigation channel dredging. In this paper, the Long Short-Term Memory (LSTM) networks are used for 
developing the surrogate model, Gm( • ), of a hydrologic model, which simulates saturation and infiltration 
excess runoff in a coherent framework. Two hybrid modelling approaches (delta learning and data augmenta
tion) are applied to 600 watersheds in the contiguous United States for streamflow forecasting. In the delta 
learning (DL) approach, an LSTM-based surrogate model, Gδ( • ), which is driven by climate data and observed 
streamflow, is developed. This model aims to capture the discrepancy between the observed streamflow and the 
streamflow predicted by another model, Gm( • ), which also uses climate data and observed streamflow as in
puts. In contrast, the data augmentation (DA) approach involves an LSTM-based surrogate model, Ge( • ). This 
model is driven by climate data, observed streamflow, and the outputs from Gm( • ), which is similarly driven by 
climate data and observed streamflow. The findings highlight that both hybrid modeling approaches consistently 
outperform the hydrologic model in forecasting 30-day streamflow across various watersheds and seasons. The 
spatial analysis reveals that both DL and DA models consistently deliver strong 30-day streamflow forecasting 
performance across the eastern U.S., Pacific Northwest, and Northern Rockies, with seasonal variations. 
Compared to the hydrologic model, hybrid models significantly improve the forecast accuracy, especially in the 
Pacific Northwest, the Rocky Mountains, and Eastern States. The results show that the performance of the hy
drologic model is sensitive to the forecast horizon length, with the performance generally improving at longer 
lead times, especially in spring. In contrast, the hybrid models maintain consistent and superior accuracy across 
all forecast horizon lengths. Forecast improvements by DL are positively correlated with latitude but negatively 
correlated with seasonality and timing of precipitation, frequency of high precipitation days, and streamflow 
elasticity to precipitation in summer; they are also positively correlated with leaf area index in winter and 
baseflow index in spring. On the other hand, forecast improvements by DA are negatively correlated with the 
frequency of high precipitation days in summer and positively correlated with baseflow index in spring. These 
findings serve as a prospective guide to improve the representation of relevant hydrologic processes for indi
vidual watersheds in the hydrologic model.
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1. Introduction

Streamflow forecasting is a major area of research within the hy
drology and water resources management communities, playing a crit
ical role in supporting decision-making across various time scales. Short- 
term streamflow forecasting, typically with lead times ranging from a 
few hours to several days, is essential for real-time decision-making. It 
supports timely flood warnings and emergency response efforts (Alfieri 
et al., 2013) and effective multi-year planning for optimal navigation 
channel dredging (Asborno et al., 2024); it is also vital for urban 
drainage system operations, helping to prevent urban flooding and 
infrastructure overload (Piadeh et al., 2022). Medium-range forecasting, 
which spans from weeks to a few months, is particularly important for 
proactive water resources management. It enables more effective 
reservoir operations to ensure reliable water supply and reduce the risk 
of shortages during dry periods (Zhao et al., 2011). Additionally, it in
forms agricultural irrigation planning (Zhang et al., 2017), allowing 
farmers to optimize water use and crop yields, and supports drought 
preparedness and mitigation strategies (Luo et al., 2023). Long-range 
streamflow forecasting, with lead times extending from several 
months to years, plays a strategic role in long-term water resources 
planning (Troin et al., 2021). These forecasts are crucial for infrastruc
ture development, policy-making, and sustainable management of water 
systems under changing climatic and socio-economic conditions 
(Devineni et al., 2008).

Physics-based hydrologic models and data-driven models have pre
viously been used for streamflow forecasting. Physics-based hydrologic 
models are categorized into lumped, spatially distributed, and semi- 
distributed models based on representation of spatial variability (e.g., 
Beven and Kirkby, 1979; Moore, 1985; Liang et al., 1994). Physics-based 
models capture hydrologic processes, but they are constrained by chal
lenges related to explicitly characterizing or prescribing landscape het
erogeneity, capturing process complexity (McDonnell et al., 2007), and 
handling spatial scale issues when applying governing equations such as 
Richards’ equation in space (Richards, 1931; Blöschl and Sivapalan, 
1995). Moreover, physically based distributed hydrological models are 
often computationally intensive and demand substantial hydrological 
expertise from both developers and users (Fatichi et al., 2016). Data- 
driven models include conventional methods such as autoregressive 
integrated moving average, machine learning methods such as support 
vector machines (Kisi and Cimen, 2011) and artificial neural networks 
(e.g., Zealand et al., 1999), and deep learning methods (e.g., Granata 
et al., 2022; Xu et al., 2022). Particularly in recent years, deep learning 
techniques—such as Long Short-Term Memory (LSTM) networks and 
Convolutional Neural Networks (CNNs)—have gained significant trac
tion within the field of hydrology (Feng et al., 2020; Xie et al., 2021; 
Tripathy and Mishra, 2024; Yu et al., 2024). However, data-driven 
models are limited by physical interpretability and their inability to 
predict untrained hydrological variables, yet they can effectively cap
ture hydrologic dynamics at the watershed scale (Ng et al., 2023).

Hybrid models integrate physics-based and data-driven models, 
overcoming the disadvantages of both models and enhancing the overall 
model performance (Nourani et al. 2014; Ghaith et al., 2020; Yang et al., 
2020). For example, Li et al. (2023) integrated neural networks into the 
conceptual EXP-Hydro model by replacing its internal components, 
preserving hydrological principles. This hybrid approach enables the 
prediction of previously untrained hydrological variables without the 
need for pre-training or post-processing. Li et al. (2024) further 
implanted this conceptual hydrological model into a recurrent neural 
network (RNN) cell as a process driver for providing multi-sub-process 
variables related to runoff process, with an Entity-Aware cell being 
incorporated as a post-processor layer for simulating daily runoff. 
Hybrid deep learning models have stronger feature extraction capabil
ities and more dominant performance (Ng et al., 2023). For example, Yu 
et al. (2023) explored the synergy between process-based hydrological 
model (HBV) and LSTM to improve the predictive capability for semi- 

arid basins by developing three hybrid models (the outputs of the HBV 
model are used as inputs of the LTSM model to simulate streamflow or 
the residual of HBV simulated streamflow; the outputs of the LSTM 
models include simulated streamflow as well as parameters of the HBV 
model) and found distinct improvements in the three hybrid models 
when compared with the HBV model and the standalone LSTM model. 
Mohanty et al. (2024) developed a hybrid model for real-time stream
flow forecasting with up to 10-days lead-time, such that the error of 
simulated streamflow by SWAT model (Arnold et al., 1998) are updated 
by hierarchical data-driven models including LSTM. Xu et al. (2024)
added data-driven models (e.g., random forests, support vector regres
sion, and multilayer perceptron) as the post-processing procedure for 
residual correction to the results of process-driven XAJ model (Zhao, 
1992), enhancing the performance of real-time flood forecasting. Xu 
et al. (2025) developed a hybrid model using data augmentation to 
integrate XAJ model and a deep learning model (combination of CNN 
and Gated Recurrent Unit) for monthly streamflow forecasts in a basin 
with humid subtropical climate. Zhao et al. (2024) developed two 
hybrid modeling approaches (delta learning and data augmentation) for 
forecasting river discharge by integrating LSTM and the physics-based 
VIC model (Liang et al., 1994) for runoff simulation with the river 
routing model RAPID (David et al., 2011); the hybrid models yield 
promising results for a basin located in Colorado. Building upon, this 
work aims to generalize the approach presented in Zhao et al. (2024) by 
applying the hybrid modeling methods to watersheds with varying ge
ographies and spatial scales.

This research aims to investigate the performance of two hybrid 
modeling techniques—delta learning and data augmentation—in fore
casting daily streamflow across watersheds in the contiguous United 
States. Focusing on variations in climate and watershed properties, we 
conduct a comprehensive analysis to evaluate the applicability and 
limitations of these techniques. Our findings are intended to offer in
sights for adopting these hybrid modeling approaches in diverse regions 
across the United States. The remaining part of the paper proceeds as 
follows. The study watersheds and data used are presented in Section 2. 
Section 3 describes the details of the process-based model, deep learning 
model, and the two hybrid modeling approaches. Results are presented 
in Section 4 and discussed in Section 5. Section 6 provides the conclu
sions of this study.

2. Study watersheds and data used

The watersheds used in this study were sourced from the Catchment 
Attributes and Meteorology for Large-sample Studies (CAMELS) dataset, 
which was developed and expanded by the United States National 
Center for Atmospheric Research (NCAR; Addor et al., 2017; Newman 
et al., 2015; Fowler et al., 2021; Coxon et al., 2020) and covers the 
continental United States. The data extracted from the dataset for this 
study encompasses daily meteorological forcing inputs, catchment at
tributes, and streamflow observations for 671 watersheds, making it 
suitable for large sample hydrology such as comparative studies of 
hybrid model performance. The CAMELS dataset includes daily data on 
precipitation, potential evapotranspiration, air temperature, and 
streamflow from 1985 to 2014 for each watershed. The watersheds, 
ranging in size from 4 to 25,000 km2, were selected due to their rela
tively low anthropogenic impacts. Deep learning studies utilizing the 
CAMELS dataset have demonstrated state-of-the-art performance, sur
passed several calibrated lumped conceptual models and distributed 
hydrological models (e.g., Ma et al., 2021).

3. Methodology

3.1. Hydrologic model

This study employs the process-based hydrologic model with a uni
fied runoff scheme for saturation and infiltration excess as shown in 

F. Zeng et al.                                                                                                                                                                                                                                     Journal of Hydrology 664 (2026) 134477 

2 



Fig. 1, as developed by Hong et al. (2025). The model provides a 
coherent representation of both saturation and infiltration excess runoff, 
capturing the spatial and temporal transitions between these two runoff 
generation mechanisms. The snow-related processes are accounted by 
the degree-day factor method with one parameter (ms) using mean daily 
air temperature (Eder et al., 2003; Ye et al., 2012).

At the watershed scale, the spatial distribution of soil water storage 
capacity is modeled by the distribution function proposed by Wang 
(2018) and is represented by the black bold curve in Fig. 1. This dis
tribution function has two parameters including average storage ca
pacity (Sb) and shape parameter (a). C is soil water storage capacity at a 
point and C0 is corresponding to the average initial soil water storage 
(S0) in Fig. 1. The saturation excess runoff (Rs) from this distribution 
leads to the Soil Conservation Service curve number method (SCS, 1972) 
at the event scale and Budyko equation at the long-term scale (Wang and 
Tang, 2014; Yao and Wang, 2022). Yao et al. (2020) applied the dis
tribution function to replace the generalized Pareto distribution of 
HyMOD model (Moore, 1985) to demonstrate the unified runoff model 
across time scales.

More recently, Hong et al. (2025) incorporated infiltration excess 
runoff (Ri) into this framework. In this formulation, infiltration capacity 
(fc) at a point is expressed as a power function of degree of soil water 
deficit, defined as the ratio of soil moisture deficit (D) to Sb. The pa
rameters for the power function include coefficient (mk) and exponent 
(n). Therefore, the spatial distribution of infiltration capacity (control
ling infiltration excess runoff) is coherently coupled with storage ca
pacity (controlling saturation excess runoff).

As shown in Fig. 1, at the beginning of the time interval (e.g., day), 
the antecedent saturation area fraction (α0) corresponds to the initial 
average storage (S0). With precipitation (P) during the time interval, 
saturation area fraction increases to α1. Over the area fraction of α1 − α0, 
runoff generation is switched from infiltration excess to saturation 
excess, and infiltration (soil wetting) over this area is denoted as W1. 
Infiltration excess occurs over the area fraction of α2 − α1, and infiltra
tion over this area is denoted as W2. All the rainfall infiltrates into the 
soil over the area fraction of 1 − α2, and infiltration over this area is 
denoted as W3. The average infiltration over the entire watershed is the 
sum of W1, W2, and W3. E is actual evapotranspiration.

Direct runoff (Rd), comprising infiltration excess and a fraction (γ) of 
saturation excess, flows into the quick storage tank. The discharge from 
this tank (Qd) is proportional to its storage (Sd), which is governed by the 
runoff coefficient kd. Meanwhile, Groundwater recharge (Rg), repre
sented by the remaining fraction (1 − γ) of saturation excess, enters the 
slow storage tank. Baseflow from this tank (Qb) is similarly proportional 

to its storage (Sg), with the runoff coefficient kb. The total streamflow (Q) 
at the watershed outlet is the sum of Qd and Qb. Comprehensive details 
of the hydrologic model are available in Hong et al. (2025).

3.2. Data-driven model

3.2.1. Nonlinear autoregressive exogenous model
Nonlinear autoregressive models with exogenous inputs (NARX) link 

the current value of a time series to its past values and to the current and 
past values of other external time series (Takens, 1981). A nonlinear 
dynamic system, such as a hydrologic system with external inputs like 
precipitation and potential evapotranspiration, can be modeled using a 
NARX model as follows: 

yi = F
(

Ui,Ui− 1,⋯,Ui− (q− 1), yi− 1,⋯yi− p

)
+ εi. (1) 

Here, yi represents the system output at the i-th time step; Ui =
[
u1,i,

⋯, un,i
]

denotes the exogenous inputs with a dimension of n at the i-th 
time step; F( • ) is a nonlinear mapping function that transforms recent 
inputs and outputs into the current output; q and p are the number of 
lags in the delayed input and output vectors, respectively; and εi is the 
residual of the NARX model, typically modeled as Gaussian white noise 
with zero mean and standard deviation estimated from the residual data. 
NARX models have been applied in various water resources research, 
such as establishing multi-step-ahead flood forecast models for the next 
hour at a 10-minute scale (Chang et al., 2022), groundwater level pre
diction (Gharehbaghi et al., 2022), daily suspended sediment forecast 
(Li et al., 2022), predicting the outcomes of ecological restoration from 
water diversion (Liu et al., 2022), and estimating the enduring effects of 
long-term drought on water fluxes and storage, as well as projecting 
future short-term groundwater levels and recovery potential under 
various precipitation scenarios (Luo et al., 2024).

The nonlinear mapping function F( • ) can be approximated using 
various machine learning models. Shamseldin and O’Connor (2001) 
developed a multi-layer feedforward neural network-based NARX model 
for river flow forecasting. Nanda et al (2016) combined artificial neural 
network (ANN), wavelet analysis, and NARX models for real-time flood 
forecasting. Wunsch et al. (2021) implemented NARX as a RNN and 
LSTM networks. In this paper, LSTMs are used to implement the function 
F( • ) in the NARX model, due to their demonstrated effectiveness and 
widespread adoption by researchers in this field, as detailed in the 
following section.

Fig. 1. The structure of hydrologic model with a unified runoff scheme for saturation excess and infiltration excess (Hong et al., 2025).
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3.2.2. Long short-term memory network
RNNs are a type of neural architecture specifically designed for 

handling sequence data, such as text, speech, and time series. In RNNs, 
the output from a neuron at one time step is fed back as input to the 
neuron at the next timestep, allowing RNNs to capture temporal de
pendencies. However, traditional RNNs struggle with the vanishing 
gradient problem, where gradient magnitudes diminish across layers 
during backpropagation, hindering their capacity to capture long-term 
dependencies. LSTM networks, an advanced variant of RNNs, were 
introduced to overcome this issue (Hochreiter and Schmidhuber, 1997). 
LSTMs modify the hidden layer of RNNs to better capture longer de
pendencies. An LSTM network comprises multiple LSTM layers, each 
containing a suite of LSTM cells. LSTMs are well-suited for processing 
and predicting large time spans in time series data by incorporating 
special gating mechanisms (input gate, output gate, and forget gate). 
These three gates within the cell unit regulate the flow of information 
between cell units. The forget gate decides which information from the 
previous cell unit should be discarded. The input gate determines which 
new information (both from the forget gate and the current input) 
should be updated. The output gate decides which information is finally 
output. Fig. 2 illustrates the architecture of a single LSTM cell, where it , 
f t, ot are the gate signals for the input, forget and output gates, 
respectively. xt, at, and Ct are the input, hidden, and cell states, 
respectively. The relationships among these variables are expressed as 
follows: 

it = σ(Wi • [at− 1,xt ] + bi ), (2) 

f t = σ
(
Wf • [at− 1,xt ] + bf

)
, (3) 

ot = σ(Wo • [at− 1,xt ] + bo ), (4) 

C̃t = tanh(Wc • [at− 1,xt ] + bc ), (5) 

Ct = f t⨂ct− 1 + it⨂C̃t (6) 

at = ot⨂tanh(Ct). (7) 

In these equations, tanh( • ) is the hyperbolic tangent function, and 
σ( • ) is the sigmoid function. Both tanh( • ) and σ( • ) enhance the 
model’s nonlinear expression capabilities. ⨂ denotes the element-wise 
product. C̃t represents the intermediate cell state created by a tanh layer. 

W and b with different subscripts are the weight (Wc, Wi, Wf , Wo) and 
bias (bc, bi, bf , and bo) vectors associated with different gates, and they 
are the trainable parameters of the LSTM network. at is the final output 
of the unit cell and provides the hidden state for the next timestep. The 
LSTM network have been combined with the NARX model to predict 
streamflow (e.g., Hunt et al., 2022).

3.3. Hybrid modeling

Hybrid deep learning models combine one or more modeling tech
niques with deep learning models (e.g., LSTM) to strengthen the capa
bility of streamflow forecasts. Ng et al. (2023) provided a 
comprehensive review on hybrid deep learning applications for 
streamflow forecasts. The modeling techniques include data decompo
sition (Zuo et al., 2020; Zhao et al., 2021), data convolution (Xu et al., 
2022; Wunsch et al., 2022), encoder-decoder (Kao et al., 2020; Ni et al., 
2020), attention mechanism (Wang et al., 2023), ensemble modeling 
(Ma et al., 2023), and physically based models (Cho and Kim, 2022; Han 
and Morrison, 2022). Despite the performance and applicability of deep 
learning models being much better than the physics-based model, one 
significant drawback is the lack of consideration of physical mechanisms 
in deep learning models (Jiang et al., 2022). Hybrid models can thus be 
developed by integrating the process-based hydrologic model and the 
data-driven model (LSTM-NARX) to create a more robust model for 
accurate streamflow forecasting. The primary benefit of a hybrid model 
compared to standalone data-driven or physics/process-based models is 
its ability to merge the strengths of both process-based and data-driven 
models. For example, Cui et al. (2022) showed that using the forecasted 
streamflow of the XAJ model as the exogenous input variable of the 
LSTM decoder enhanced the prediction performance.

3.3.1. Delta learning
This method first trains a surrogate model Gm( • ) based on the low- 

fidelity data from the hydrologic model and then trains another surro
gate model Gδ( • ) based on the discrepancy between the physics-based 
prediction from Gm( • ) and the high-fidelity data from the observed 
streamflow at the gauge station (Fig. 3). After training the two surrogate 
models, the discharge forecasting in the future period can be made by 
adding the prediction of Gδ( • ) to that of Gm( • ) (Zhao et al., 2024). This 
method will be introduced through two parts: training stage and pre
diction stage.

Fig. 2. The architecture of single Long Short-Term Memory (LSTM) cell.
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3.3.1.1. Model training. The first step aims to build an underlying 
physics-based surrogate model based on the low-fidelity data from the 
hydrologic model. Following NARX architecture described in Section 
3.2, the underlying physics-based surrogate model can be constructed as 
follows: 

ŷm,i = Gm

(
Ui,Ui− 1,⋯,Ui− (q− 1); ym,i− 1,⋯, ym,i− p

)
, ∀i = ω,⋯,Nt , (8) 

where ω = max{q, p+1}; ym,i is the simulated streamflow by the hy
drologic model; Ui =

[
u1,i, u2,i, u3,i

]
denotes the inputs of the hydrologic 

model (i.e., u1,i is precipitation, u2,i is potential evapotranspiration, and 
u3,i is minimum temperature at time i), obtained from the CAMELS 
dataset; and Nt is the number of time step for training. Gm( • ) utilizes the 
output of the process-based model as an input feature, and it enables the 
hybrid model to capture the physical process of watersheds. Existing 
studies have enforced that the utilization of these inputs proves suc
cessful in estimating daily discharge (e.g., Yang et al., 2019).

The main goal of the 2nd step is to compute the discrepancy between 
physics-based prediction and observations. To ensure that another 
NARX model can then be established for this discrepancy term, we use 
the observation yo,i instead of simulated streamflow by the hydrologic 
model (ym,i) in the delayed input–output vector to yield the physics- 
based surrogate response: 

̂̃ym,i = Gm

(
Ui,Ui− 1,⋯,Ui− (q− 1); yo,i− 1,⋯, yo,i− p

)
,∀i = ω,⋯,Nt (9) 

With the physics-based surrogate response ̂̃ym,i, the discrepancy term 
can be computed by: 

δi = yo,i −
̂̃ym,i,∀i = ω,⋯,Nt . (10) 

Based on the δi values obtained in the previous step, we can continue 
to construct another surrogate model Gδ( • ) for the discrepancy term: 

δ̂ i = Gδ

(
Ui,Ui− 1,⋯,Ui− (q− 1); yo,i− 1,⋯, yo,i− p

)
,∀i = ω,⋯,Nt . (11) 

Substituting Eq. (9) and Eq. (11) into Eq. (10), one obtains: 

ŷo,i =
̂̃ym,i + δ̂i. (12) 

From Eq. (12), it can be found that the basic idea of delta learning is 
to recover the missing physics by adding a discrepancy term into the 
underlying physics. The additive form facilities the full use of the un
derlying physics information from hydrologic models and meanwhile 
learns the missing physics information based on limited observations.

3.3.1.2. Model forecast. With the two surrogate models Gm( • ) and 
Gδ( • ) trained based on the historical data, the discharge ̂yo,i, i = Nt + 1,
⋯,N, at the future time steps can be forecasted in the following recursive 

manner. With the known delayed input–output vector 
[
UNt+1,UNt ,⋯,

UNt+1− (q− 1); yo,Nt ,⋯, yo,Nt+1− p

]
where UNt+1 is the forecasted input, we 

can obtain the surrogate responses from Gm( • ) and Gδ( • ) at the 
(Nt + 1)-th time step: 

̂̃ym,Nt+1 = Gm

(
UNt+1,UNt ,⋯,UNt+1− (q− 1); yo,Nt ,⋯, yo,Nt+1− p

)
, (13) 

δ̂Nt+1 = Gδ

(
UNt+1,UNt ,⋯,UNt+1− (q− 1); yo,Nt ,⋯, yo,Nt+1− p

)
. (14) 

Adding the two surrogate response yields the corrected prediction 
ŷo,Nt+1 at the (Nt + 1)-th time step: 

Fig. 3. Hybrid forecasting approach for delta learning.

F. Zeng et al.                                                                                                                                                                                                                                     Journal of Hydrology 664 (2026) 134477 

5 



ŷo,Nt+1 = ̂̃ym,Nt+1 + δ̂Nt+1. (15) 

Let yo,Nt+1 ≈ ŷo,Nt+1. The delayed input–output vector can move for

ward one time step, i.e., 
[
UNt+2,UNt+1,⋯,UNt+2− (q− 1);yo,Nt+1,⋯,yo,Nt+2− p

]
, 

and then ŷo,Nt+2 can be predicted by the above operations. And so on 
until the discharge at the N-th time step is predicted.

3.3.2. Data augmentation
Like delta learning approach, this method first trains an underlying 

physics-based surrogate model Gm( • ) based on the low-fidelity data 

from the hydrologic model (Fig. 4). Then, the physics-based surrogate 
prediction is integrated with the streamflow observations into an 
augmented dataset to train another surrogate model Ge( • ) as shown in 
Fig. 4. Finally, the trained Ge( • ) will provide the corrected predictions 
(Zhao et al., 2024). The model training and prediction for this approach 
are described in the following sections.

3.3.2.1. Model training. The first step is the same as delta learning as 
discussed in Section 3.3.1, and its aim is to build an underlying physics- 
based surrogate model based on the low-fidelity data from the hydro
logic model, denoted as Gm( • ) and defined in Eq. (8). Like delta 
learning, this step also requires physics-based surrogate response ̂̃ym,i by 

Eq. (9). The physics-based surrogate response ̂̃ym,i is then integrated with 

the delayed input–output vector 
[
Ui,Ui− 1,⋯,Ui− (q− 1); yo,i− 1,⋯, yo,i− p

]

to train another surrogate model Ge( • ), which can directly output the 
final corrected prediction: 

ŷo,i = Ge

(
Ui,Ui− 1,⋯,Ui− (q− 1); yo,i− 1,⋯, yo,i− p;

̂̃ym,i

)
,∀i = ω,⋯,Nt . (16) 

The following equation is obtained by substituting Eq. (9) into Eq. 
(16):  

where i is between ω and Nt.
From Eq. (17), it can be found that the basic idea of data augmen

tation is like multi-layer neural networks that embed one layer into 
another layer. The embedding physics information from the hydrologic 
model will help to improve the prediction ability of the machine 
learning model, which allows for more accurate predictions based on 
limited observed data.

3.3.2.2. Model prediction. With the known delayed input–output vector 
[
UNt+1,UNt ,⋯,UNt+1− (q− 1); yo,Nt ,⋯, yo,Nt+1− p

]
where UNt+1 is the fore

casted input, the surrogate response ̂̃ym,Nt+1 is generated from Gm( • ) at 

Fig. 4. Hybrid forecasting approach for data augmentation.

ŷo,i = Ge

(
Ui,Ui− 1,⋯,Ui− (q− 1); yo,i− 1,⋯, yo,i− p;Gm

(
Ui,Ui− 1,⋯,Ui− (q− 1); yo,i− 1,⋯, yo,i− p

))
, (17) 
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the (Nt + 1)-th time step, as shown in Eq. (13). Plugging the delayed 

input–output vector 
[
UNt+1,UNt ,⋯,UNt+1− (q− 1); yo,Nt ,⋯, yo,Nt+1− p

]
along 

with the surrogate response ̂̃ym,Nt+1 into the surrogate model Ge( • )

yields the corrected prediction at the (Nt + 1)-th time step: 

ŷo,Nt+1 = Ge

(
UNt+1,UNt ,⋯,UNt+1− (q− 1); yo,Nt ,⋯, yo,Nt+1− p;

̂̃ym,Nt+1

)
. (18) 

Let yo,Nt+1 ≈ ŷo,Nt+1. Taking the delayed input–output vector one time 

step further, i.e., 
[
UNt+2,UNt+1,⋯,UNt+2− (q− 1); yo,Nt+1,⋯, yo,Nt+2− p

]
, 

ŷo,Nt+2 can be predicted by the above operations. And so on until the 
discharge forecasting at the N-th time step is made.

4. Results

4.1. Hydrologic model calibration

The period 1985–1986 are used for model warm-up, 1987–2005 for 
parameter determination, and 2006–2014 for model evaluation. The 
hydrologic model has 8 parameters including ms, Sb, a, γ, kb, kd, mk, and 
n (Hong et al., 2025). The range for ms (snow melting parameter) is 
between 0 and 1 (Martinez and Gupta, 2010). The range for average 
storage capacity (Sb) is set to be between 0 mm and 1500 mm (Yao et al., 
2020), along with a larger upper bound to be used if needed. The shape 
parameter of spatial distribution of storage capacity (a) is between 0 and 
2 (Wang, 2018). Based on its definition, the range of γ is designated to be 
between 0 and 1. The value of kd (coefficient for quick storage tank) 
should be higher than that of kb (coefficient for slow storage tank) since 
the residence time of fast flow should be shorter than that of slow flow; 
therefore, the range of kb is set to (0, 0.14) day− 1 and that of kd is set to 
[0.14, 1] day− 1 (Kollat et al., 2012). The range of mk (coefficient of 
power function for infiltration capacity) is assigned to be between 0 and 
2000 mm • day− 1, and that of exponent n is assigned to be between 0 and 
1.

The model parameters are determined following a two-stage strategy 
proposed by Abeshu et al. (2023). In the first stage, runoff parameter sets 
are generated through stratified sampling, and the best-performing sets 
are identified by comparing simulated and observed runoff at annual 
and monthly scales. In the second stage, routing parameters are sys
tematically varied using the top-performing runoff sets as inputs, and 
the final optimal parameter set is selected based on model performance 
metrics. For each of the study watersheds, samples from the entire 
parameter space are selected to obtain one million sets of parameter 
values and run the model using each parameter set. The parameter 
estimation process is carried out in three sequential steps to ensure 
robust calibration of the hydrologic model. The first step is parameter 
sampling. Initially, one million parameter sets are generated using Latin 
Hypercube Sampling, a statistical method that ensures a comprehensive 
and stratified exploration of the parameter space. This approach en
hances the diversity and representativeness of the sampled parameter 
combinations. In the second step, each of the one million parameter sets 
is used to run the hydrologic model, resulting in a corresponding set of 
simulation outputs. These outputs are evaluated against observed hy
drologic data to assess model performance. The third step involves a 
multi-stage filtering process based on hydrologic signatures at various 
temporal scales, as described by Hong et al. (2025). The filtering pro
ceeds as follows: The normalized root mean square error (NRMSE) be
tween simulated and observed annual streamflow is computed for all 
one million simulations. The 100,000 parameter sets with the lowest 
NRMSE values are retained for further evaluation. For these 100,000 
retained sets, the NRMSE is calculated between the simulated and 
observed regime curves (i.e., mean monthly streamflow). The top 1,000 
parameter sets with the smallest NRMSE values are selected for the next 
stage. The NRMSE between simulated and observed annual flood peaks 
is then computed for the 1,000 selected parameter sets. From these, the 

100 best-performing sets are chosen based on their flood peak accuracy. 
Finally, the Kling-Gupta Efficiency (KGE; Gupta et al., 2009) is used to 
evaluate the agreement between simulated and observed daily stream
flow for the remaining 100 parameter sets. The parameter set that 
achieves the highest KGE value is identified as the optimal set and is 
selected as the final estimate.

Of the 671 watersheds analyzed, 600 with positive KGE values 
during the calibration period are selected for hybrid modeling. This 
selection is conservative, as even a KGE score above − 0.41 still out
performs using mean flow as a predictor (Knoben et al., 2019). Fig. S1 in 
the Supporting Information shows the exceedance probability distribu
tion of KGE values during the calibration and validation periods for the 
selected watersheds. During this period, 98 % of the watersheds are 
observed to achieve KGE values above 0.3, 90 % to exceed 0.5, and 40 % 
to surpass 0.7. In the validation period, 91 % of the watersheds are 
depicted to maintain KGE values above 0.3, 66 % to remain above 0.5, 
and 23 % to exceed 0.7, suggesting acceptable model performance. 
These results indicate a decline in model performance during the vali
dation phase as compared to the calibration phase. However, the use of 
hybrid models has the potential to enhance the performance of 
streamflow forecasts.

4.2. Hybrid models

4.2.1. Surrogate model Gm( • )

By comparing the performance of LSTM-NARX model Gm( • ) with 
different time lags, it is identified that thirty days for the number of lags 
in the delayed input (q) and output (p) vectors produce the best pre
diction accuracy. The LSTM model structure has a total of three layers, 
including an LSTM layer with 80 units, a dropout layer (applying 1 % 
dropout) and a dense layer with linear activation for regression. The 
model is trained using the Adam optimizer with a learning rate of 1 ×
10− 3 and the Mean Squared Error (MSE) function is used as the loss 
function for the optimizer. It undergoes 500 epochs with a batch size of 
2048. During training, 20 % of the training data is reserved for valida
tion, and the data is shuffled at the start of each epoch to reduce order 
bias. The input of LSTM layer has a shape of (2048, 30, 4), corresponding 
to the batch size, time step size, and the feature size respectively. The 
data (simulated streamflow by the hydrologic model ym,i, precipitation 
u1,i, potential evapotranspiration u2,i, minimum temperature u3,i) during 
1985 and 2012 is used for training of Gm( • ).

4.2.2. Surrogate model Gδ( • )

The architecture and parameters of LSTM-NARX model Gδ( • ) are 
consistent with those of Gm( • ). The data (discrepancy term δi, precip
itation u1,i, potential evapotranspiration u2,i, minimum temperature u3,i) 
during 1985 and 2012 is used for training of Gδ( • ).

4.2.3. Surrogate model Ge( • )

The architecture and parameters of LSTM-NARX model Ge( • ) are 
also similar to those of Gm( • ). The only difference lies in that the input 
shape of the LSTM layer is (2048, 30, 5), where an additional item ̂̃ym,i is 
added to the input feature, as described in Sec. 3.3.2. As a result, the data 
(simulated streamflow by the hydrologic model ym,i, precipitation u1,i, 
potential evapotranspiration u2,i, minimum temperature u3,i, physics- 

based surrogate response ̂̃ym,i) during 1985 and 2012 is used for 
training of Ge( • ).

4.3. Performance of hybrid modeling

The streamflow forecasts by the hydrologic model (HM), DL, and DA 
are presented in this section. Seasonal streamflow forecasts with a 30- 
day lead time are issued on July 4, 2013 (summer), October 2, 2013 
(fall), December 31, 2013 (winter), and March 31, 2014 (spring).
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4.3.1. Hydrographs
For demonstration purposes, Fig. 5 presents the forecasted daily 

streamflow for July 4, 2013, with a 30-day lead time across four selected 
watersheds. Starting with the first watershed, Fig. 5a depicts the 
observed and forecasted streamflow for Manokin Branch in Maryland, 
using HM, DL, and DA. The watershed has a climate aridity index of 0.82 
and a drainage area of 12.4 km2 (USGS gauge #01486000). During the 
30-day period, two peaks were evident. Compared to observations, HM 
overestimates high flows; DA improves high flow predictions but still 
overestimates them; DL significantly enhances high flow predictions, 
closely matching real observations. HM generally overestimates low 
flows; DA accurately matches low flows; and DL underestimates low 
flows. The KGE values are − 0.91 for HM, 0.52 for DL, and − 0.08 for DA. 
Fig. 5b shows the observed and forecasted streamflow for the second 
watershed, Holiday Creek in Virginia, with a drainage area of 22.1 km2 

(USGS gauge #02038850) and a climate aridity index of 0.92. One event 
is identified during the 30-day period. HM slightly overestimates 
streamflow, while DL slightly underestimates it and DA matches both 
high and low flows well. The KGE values are 0.72 for HM, 0.55 for DL, 
and 0.95 for DA. Moving to the third watershed, Fig. 5c illustrates the 
observed and forecasted streamflow for Cub Creek in Virginia, with a 
drainage area of 252.8 km2 (USGS gauge #02065500) and a climate 
aridity index of 1.18. Both HM and DA overestimate the peak flow, 
whereas DL accurately matches the peak flow. The KGE values are 0.51 
for HM, 0.97 for DL, and 0.83 for DA. Lastly, Fig. 5d displays the 
observed and forecasted streamflow for the fourth watershed, North 
Fork Powder River in Wyoming, with a drainage area of 61.9 km2 (USGS 
gauge #06311000) and a climate aridity index of 1.68. The hydrograph 
during the 30-day period shows a recession event. HM overestimates 
streamflow when it is higher (July 5, 2013 − July 15, 2013) but un
derestimates when it is lower (July 15, 2013 − August 4, 2013), 

resulting in a faster recession than observed. The recession curves for 
both DL and DA are flatter compared to HM. The KGE values are − 0.13 
for HM, 0.50 for DL, and 0.61 for DA.

4.3.2. Grouping by KGE
The KGE values for the 30-day lead time streamflow predictions by 

the HM, DL, and DA models are calculated for each of the four forecast 
dates representing seasons. Watersheds with negative KGE values for all 
three models (HM, DL, and DA) are excluded. The remaining water
sheds, which have positive KGE values for at least one of the models, are 
categorized into seven groups based on the signs of their KGE values. It 
should be noted that KGE values greater than − 0.41 indicate that a 
model improves upon the mean flow benchmark, generally considered 
acceptable (Knoben et al., 2019). As shown in Table 1, Group 1 includes 
watersheds with positive KGE values for HM, DL, and DA. The numbers 
of watersheds in this group are 232 for July 4, 2013, 165 for October 2, 
2013, 156 for December 31, 2013, and 217 for March 31, 2014. Group 2 
includes watersheds with negative KGE values for HM but positive KGE 

Fig. 5. Observed and 30-day lead time forecasted hydrographs for July 4, 2014, generated using the hydrologic model, Delta Learning, and Data Augmentation 
approaches across four representative watersheds: (a) Manokin Branch, Maryland; (b) Holiday Creek, Virginia; (c) Cub Creek, Virginia; and (d) North Fork Powder 
River, Wyoming.

Table 1 
Number of watersheds in each of the seven groups with positive or negative KGE 
values for 30-day lead time streamflow predictions.

Group KGE Value Number of Watersheds

HM DL DA Summer Fall Winter Spring

1 + + + 232 165 156 217
2 − + + 95 84 118 158
3 − − + 46 48 37 38
4 − + − 19 39 35 20
5 + − + 13 24 12 8
6 + + − 16 17 10 12
7 + − − 34 25 27 15
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values for both DL and DA. The number of watersheds in this group is 95 
for summer, 84 for fall, 118 for winter, and 158 for spring. Group 
3 includes watersheds with negative KGE values for HM and DL but 
positive KGE values for DA. Group 4 includes watersheds with negative 
KGE values for HM and DA but positive KGE values for DL. Group 
5 includes watersheds with positive KGE values for HM and DA but 
negative KGE values for DL. Group 6 includes watersheds with positive 
KGE values for HM and DL but negative KGE values for DA. Group 
7 includes watersheds with positive KGE values for HM but negative 
KGE values for both DL and DA. Compared to the other six groups, Group 
1 has the largest number of watersheds. Combining Groups 2, 3, and 
4—which are characterized by negative KGE value for HM but positive 
value for DL and/or DA—results in a total number of 160 watersheds for 
summer, 171 for fall, 190 for winter, and 216 for spring.

4.3.3. Performance of hybrid modeling
To evaluate and compare the performance of hybrid modeling ap

proaches against the traditional hydrologic model, Table 2 presents the 
number of watersheds in which each method has achieved the highest 
KGE values for 30-day streamflow forecasts. The results are broken 
down by season and by watershed group. Focusing on Group 1 as an 
illustrative example, HM outperforms the hybrid methods in 59 water
sheds during summer, 35 in fall and winter, and 50 in spring. Whereas 
DL has the highest KGE values in 80 watersheds in summer, 58 in fall 
and winter, and 94 in spring; and DA leads in 93 watersheds during 
summer, 72 in fall, 63 in winter, and 73 in spring. When aggregating 
results across all seven watershed groups, the hybrid modeling ap
proaches (DL or DA) demonstrates superior performance over the hy
drologic model in a substantial majority of cases: 75 % of watersheds in 
summer, 81 % in fall and winter, and 84 % in spring. These findings 
highlight the consistent advantage of hybrid modeling techniques in 
enhancing streamflow forecast accuracy across different seasons and 
watershed conditions.

To further assess the effectiveness of hybrid modeling approaches, 
the exceedance probability distributions of KGE values for the HM, DL, 
and DA are illustrated in Fig. 6. These distributions are derived from all 
watersheds across the seven groups listed in Table 1. For consistency and 
better visualization of lower-performing cases, the y-axis in Fig. 6 is 
truncated at a minimum value of − 2. In summer (Fig. 6a), both hybrid 
models outperform HM. Notably, DA exhibits slightly better perfor
mance than DL. Specifically, KGE values exceed 0 in 64 % of watersheds 
for HM, 79 % for DL, and 84 % for DA. When considering a higher 
threshold (KGE > 0.5), 23 % of watersheds for HM, 40 % for DL, and 45 
% for DA are identified. In fall (Fig. 6b), a similar trend is observed. KGE 
values are greater than 0 in 57 % of watersheds for HM, 75 % for DL, and 
79 % for DA. For KGE values above 0.5, the proportions are 23 % for HM, 
39 % for DL, and 41 % for DA. During winter (Fig. 6c), the performance 
gap between the models becomes more pronounced. KGE values exceed 
0 in 52 % of watersheds for HM, compared to 80 % for DL and 81 % for 
DA. For KGE values above 0.5, the percentages are 18 % for HM, 36 % 
for DL, and 41 % for DA. In spring (Fig. 6d), the hybrid models show 
their strongest relative performance. KGE values are greater than 0 in 54 
% of watersheds for HM, 87 % for DL, and 90 % for DA. For KGE values 

exceeding 0.5, the results are 22 % for HM, 54 % for DL, and 48 % for 
DA. Overall, these seasonal exceedance probability distributions clearly 
demonstrate the superior performance of hybrid modeling approaches 
over HM in forecasting 30-day streamflow across a wide range of 
watersheds.

4.3.4. Spatial distribution of model performance
Fig. 7 illustrates the spatial distribution of KGE values for 30-day 

streamflow forecasts generated using DL and DA across the contiguous 
United States. In summer (Fig. 7a for DL and Fig. 7e for DA), medium to 
large KGE values—specifically those represented in the green 
(0.41–0.60), blue (0.61–0.80), and dark blue (0.81–0.97) ranges—are 
primarily concentrated in parts of the eastern United States, including 
areas in the Midwest, Southeast, and Northeast, where many forecast 
points show good to excellent streamflow prediction performance. 
Additionally, some isolated pockets in the Pacific Northwest and 
Northern Rockies also exhibit high KGE values, indicating strong model 
skill in those locations. These regions contrast with the central and 
southwestern U.S., where lower KGE values are more prevalent, high
lighting spatial variability in the effectiveness of DL for summer 
streamflow forecasting. In the fall season (Fig. 7b for DL and Fig. 7f for 
DA), medium to high KGE values are predominantly located in 
the eastern half of the United States, particularly in the Midwest, 
Southeast, and parts of the Northeast, where DL shows strong stream
flow forecasting performance. Additionally, scattered high-performing 
locations appear in the Pacific Northwest and Northern Rockies, 
similar to the summer pattern. These areas contrast with the central and 
southwestern U.S., where lower KGE values are more common. During 
the winter season (Fig. 7c for DL and Fig. 7g for DA), the spatial dis
tribution of KGE values for 30-day streamflow forecasts generated by DL 
reveals strong model performance across much of the eastern United 
States, particularly in the Appalachian Mountains and surrounding re
gions. This suggests that DL effectively captures the hydrological 
behavior of the Appalachian region during winter, likely benefiting from 
more stable snowmelt and precipitation patterns. Beyond the Appala
chians, other areas with notable concentrations of high KGE values 
include Pacific Northwest and parts of the Midwest. In the spring season 
(Fig. 7d for DL and Fig. 7h for DA), medium to high KGE values are 
distributed across several key areas of the United States. Notable con
centrations of medium KGE values appear in parts of the Midwest, 
Northeast, Southeast, West Coast, and Northern Rockies. These patterns 
suggest that DL maintains a solid predictive skill in diverse hydrological 
and climatic regions during the spring, with particularly strong perfor
mance in select northern and coastal areas. Overall, both DL and DA 
demonstrate robust and geographically consistent forecasting capabil
ities, particularly in hydrologically active and topographically complex 
regions such as the eastern U.S. and the Pacific Northwest. These results 
underscore the models’ ability to adapt to seasonal and regional vari
ability in streamflow dynamics.

Fig. 8 illustrates the spatial distribution of KGE improvements for 30- 
day streamflow forecasts by hybrid modeling compared with the base
line hydrologic model. In summer (Fig. 8a for DL and 7e for DA), sig
nificant improvements, indicated by blue and dark blue dots, are 

Table 2 
Number of watersheds with the best KGE performance at a 30-day forecast horizon, categorized by hydrologic, Delta learning, and data augmentation models.

Group Summer Fall Winter Spring

HM DL DA HM DL DA HM DL DA HM DL DA

1 59 80 93 35 58 72 35 58 63 50 94 73
2 0 39 56 0 36 48 0 64 54 0 93 65
3 0 0 46 0 0 48 0 0 37 0 0 38
4 0 19 0 0 39 0 0 35 0 0 20 0
5 9 0 4 11 0 13 6 0 6 5 0 3
6 10 6 0 6 11 0 6 4 0 4 8 0
7 34 0 0 25 0 0 27 0 0 15 0 0

F. Zeng et al.                                                                                                                                                                                                                                     Journal of Hydrology 664 (2026) 134477 

9 



concentrated in the Pacific Northwest (with the average value of 0.49 for 
DL, 0.55 for DA) and the Rocky Mountains (0.62 for DL, 0.67 for DA), as 
well as scattered locations in the Midwest (1.00 for DL, 1.56 for DA) and 
along the East Coast (0.39 for DL, 0.40 for DA). These regions exhibit the 
largest positive differences in KGE values, highlighting areas where DL 
and DA substantially outperform HM. In fall (Fig. 8b for DL and 7f for 
DA), regions with substantial KGE improvement are primarily located in 
the western U.S. (e.g., parts of California (0.99 for DL, 1.26 for DA), the 
Pacific Northwest(0.29 for DL, 0.11 for DA), and Northern Rockies (0.90 
for DL, 0.99 for DA)), as well as in scattered areas in the Midwest (0.80 
for DL, 0.53 for DA) and along the East Coast (0.42 for DL, 0.40 for DA). 
In winter (Fig. 8c for DL and 7 g for DA), strong performance gains are 
located Northern Rockies (0.10 for DL, 0.75 for DA), Midwest (0.42 for 
DL, 0.58 for DA), Northeastern (0.15 for DL, 1.24 for DA), Alabama 
(0.81 for DL, 0.68 for DA), and Florida (0.75 for DL, 0.71 for DA). In 
spring (Fig. 8d for DL ad 7 h), substantial improvements are prominently 
observed in the western U.S., particularly in California (0.70 for DL, 0.78 
for DA), the Pacific Northwest (0.63 for DL, 0.64 for DA), and key areas 
of the Rocky Mountains (1.50 for DL, 1.47 for DA), including northern 
Colorado (2.64 for DL, 2.55 for DA), southern Wyoming (3.74 for DL, 
3.83 for DA), western Montana (1.27 for DL, 1.32 for DA), and eastern 
Idaho (1.56 for DL, 1.48 for DA). Additional clusters of strong perfor
mance appear in parts of the Midwest (0.65 for DL, 0.52 for DA) and 
along the East Coast (0.83 for DL, 0.75 for DA) (e.g., Florida (0.54 for DL, 
0.30 for DA)).

Collectively, these results demonstrate that hybrid modeling ap
proaches consistently enhance streamflow forecast accuracy across a 
range of geographic and climatic regions, with particularly strong gains 
in the western U.S. and other hydrologically dynamic areas.

5. Discussions

5.1. Impact of lead time

Fig. 9 presents a comparative analysis of the three streamflow fore
casting models evaluated across 30-, 60-, and 90-day forecast horizons 
using the KGE metric, plotted against the percentage of watersheds 
(exceedance probability). The results reveal that the HM is notably 
sensitive to forecast horizons, with seasonal variations influencing this 
sensitivity. In summer (Fig. 9a), HM performance improves with longer 
lead times, as the 90-day forecast consistently yields higher KGE values 
than the 30- and 60-day forecasts across most watersheds. This trend 
becomes even more pronounced in spring (Fig. 9d), where KGE values 
increase substantially with forecast horizon, suggesting that HM benefits 
from extended lead times during periods of dynamic hydrologic activity, 
such as snowmelt and spring runoff. It should be noted that true values 
are used for climatic forecasts. In practice, climate forecasts may 
degrade with longer forecast horizons. For example, Shukla et al. (2012)
and Schepen et al. (2016) reported that skill at seasonal horizons is 
strongly conditioned by basin memory and the quality of meteorological 
forcing. Physics-based hydrologic models are typically sensitive to 
forecast horizon because their performance strongly depends on the 
quality of climatic inputs, which often degrade with longer lead times 
(Shukla et al., 2012; Schepen et al., 2016). In contrast, winter (Fig. 9c) 
shows minimal sensitivity to the forecast horizon for HM, with KGE 
values remaining relatively consistent across 30-, 60-, and 90-day 
forecasts. This indicates that extending the forecast horizon in winter 
neither significantly enhances nor degrades HM performance, possibly 
due to more stable hydrologic conditions which aligns with the research 
by Robertson (2012). The fall season (Fig. 9b) presents a more complex 
pattern: while 90-day forecasts generally outperform shorter horizons, 
the 30-day forecast shows higher KGE values than the 60-day forecast 

Fig. 6. Comparison of exceedance probability distributions of KGE values for 30-day streamflow forecasts generated by the hydrologic model, Delta Learning, and 
Data Augmentation methods, shown separately for summer (a), fall (b), winter (c), and spring (d).
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for lower exceedance probabilities (<0.7) but lower values for higher 
exceedance probabilities (>0.7). This intricate behavior was also noted 
in Luo’s study (2007). This suggests that HM’s performance in fall may 
be influenced by transitional hydrologic conditions and watershed- 
specific variability.

In contrast to HM, the DL and DA models exhibit relatively stable 
KGE values across all forecast horizons and seasons, indicating that their 
performance is largely insensitive to lead time. This finding is consistent 
with recent machine learning research in hydrology, where residual 
learning approaches (similar to DL) have effectively captured systematic 
model errors (Kratzert et al., 2019), and data augmentation strategies 
have enhanced skill for extreme events by leveraging additional data 
sources (Nearing et al., 2021). This consistency highlights the robustness 
of hybrid modeling approaches, which leverage data-driven techniques 
to maintain accuracy over varying temporal scales. Notably, DL excels at 
capturing residual patterns not modeled by HM, while DA enhances 
performance by incorporating additional data, particularly for extreme 
events.

Across all four seasons, the results (Fig. 9) collectively demonstrate 
that forecast performance generally improves with longer horizons for 
HM, especially in spring and summer when hydrologic variability is 
high. However, DL and DA consistently outperform HM, particularly at 
shorter horizons (30 and 60 days), underscoring their effectiveness in 
capturing complex, nonlinear dynamics. These findings emphasize the 
importance of tailoring forecasting strategies to both seasonal hydro
logic conditions and forecast lead times, particularly when selecting 
between a process-based model and a hybrid model.

5.2. Performance improvements and watershed characteristics

To gain physical insights into the performance of hybrid modeling 
approaches, a correlation analysis is conducted between the improve
ments in 30-day streamflow forecast skill—measured by the difference 
in KGE values between the hybrid model and the HM—and various 
watershed characteristics across different seasons. For the DL approach, 
six watershed properties, obtained from the CAMELS dataset (Addor 
et al., 2017), are found to be significantly associated with forecast im
provements: four in summer, one in winter, and one in spring (Fig. 10). 
In summer, Fig. 10a suggests a weak positive trend between gauge lat
itude and KGE improvement, indicating that higher-latitude basins may 
benefit slightly more from DL, which aligns with previous finding that 
hydroclimatic variability with latitude influences model predictability 
(Berghuijs et al., 2014). Conversely, negative correlations are observed 
between KGE improvement and (i) seasonality and timing of precipita
tion (Fig. 10b), (ii) frequency of high precipitation days (Fig. 10c), and 
(iii) streamflow-precipitation elasticity (Fig. 10d). The seasonality 
metric is derived from fitting sine curves to annual temperature and 
precipitation cycles, where positive values indicate summer-peaking 
precipitation and values near zero reflect uniform precipitation 
throughout the year. High precipitation days are defined as those 
exceeding five times the mean daily precipitation. Streamflow- 
precipitation elasticity quantifies the sensitivity of annual streamflow 
to changes in annual precipitation, with higher values indicating more 
responsive basins. This metric has been associated with hydrologic 
model transferability and forecast skill (Sankarasubramanian et al., 
2001; Troch et al., 2013).

In winter, DL-based forecast improvements are found to be positively 

Fig. 7. Spatial distribution of KGE values for 30-day streamflow forecasts generated by Delta Learning (DL) for (a) summer, (b) fall, (c) winter, and (d) spring, and by 
Data Augmentation (DA) for (e) summer, (f) fall, (g) winter, and (h) spring.
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correlated with the maximum monthly mean of leaf area index (LAI), 
suggesting that vegetation dynamics—such as snow interception or 
evapotranspiration—may influence model performance during this 
season. This observation is consistent with earlier study showing that 
vegetation plays a critical role in modulating water and energy fluxes in 
snow-dominated basins (Mao & Cherkauer, 2009). In spring, a positive 
correlation is observed between KGE improvement and the baseflow 
index, which represents the ratio of mean daily baseflow to total 
streamflow, calculated using the digital filter method of Ladson et al. 
(2013). This indicates that basins with stronger groundwater contribu
tions tend to benefit more from DL in spring.

In contrast, the DA approach demonstrates fewer and more selective 
relationships with watershed characteristics (Fig. 11). Only two corre
lations are identified: a negative correlation with the frequency of high 
precipitation days in summer (Fig. 11a), and a positive correlation with 
the baseflow index in spring (Fig. 11b). This suggests that DA may be 
more robust to a wide range of watershed conditions but less sensitive to 
specific hydrologic features compared to DL. Similar observations have 
been reported in prior hybrid modeling study, where simpler augmen
tation schemes yielded robust yet less condition-dependent improve
ments (Nearing et al., 2021). While DL appears to leverage a broader set 
of physical and climatic signals to enhance forecast skill, DA’s im
provements are more narrowly tied to hydrologic stability (as indicated 
by baseflow) and are potentially hindered by extreme precipitation 
variability. This contrast highlights the complementary nature of the 
two hybrid approaches and underscores the importance of tailoring 
modeling strategies to watershed-specific characteristics and seasonal 
dynamics.

6. Conclusion

Streamflow forecasting is a critical component of water resources 
engineering, yet it remains a complex and challenging endeavor, 
whether approached through physics-based or data-driven models. 
Hybrid models, integrating both process-based and data-driven models, 
could enhance the performance of streamflow forecasting. In this study, 
hybrid modelling is applied to a large number of watersheds in the 
contiguous United States for streamflow forecasting. The recently 
developed hydrologic model (Hong et al., 2025), which simulates 
saturation and infiltration excess runoff in a coherent framework due to 
the dependence of the spatial distribution of infiltration capacity on the 
spatial distribution of storage capacity and soil water storage, is used as 
the process-based model. LSTM, a deep learning model, is then utilized 
for developing data-driven models. An LSTM-based surrogate model, 
Gm( • ), which is driven by hydroclimatic observations and simulated 
streamflow by HM, is developed for capturing the underlying processes 
of the hydrologic model. Two hybrid modeling approaches, including DL 
and DA, are applied for forecasting streamflow. For the DL approach, an 
LSTM-based surrogate model, Gδ( • ), which is driven by hydroclimatic 
observations and observed streamflow, is developed to capture the 
discrepancy between observed streamflow and predicted streamflow by 
Gm( • ), which in turn is driven by hydroclimatic observations and 
observed streamflow. For the DA approach, the LSTM-based surrogate 
model, Ge( • ), is driven by hydroclimatic observations, observed 
streamflow, and outputs of Gm( • ), which in turn is driven by hydro
climatic observations and observed streamflow.

The findings highlight that both hybrid modeling approaches 
consistently outperform the hydrologic model in forecasting 30-day 

Fig. 8. Spatial distribution of KGE differences between hybrid modeling and the hydrologic model for 30-day streamflow by DL for (a) summer, (b) fall, (c) winter, 
and (d) spring, and by DA for (e) summer, (f) fall, (g) winter, and (h) spring.
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Fig. 9. Exceedance probability distributions of KGE values for 30-day, 60-day, and 90-day streamflow forecasts generated by the hydrologic model, Delta Learning, 
and Data Augmentation methods, shown separately for summer (a), fall (b), winter (c), and spring (d).

Fig. 10. The correlation of KGE difference for 30-day streamflow forecast by delta learning and the hydrologic model and watershed characteristics: streamflow 
forecasts improvement in summer versus latitude of gauge station (a), seasonality and timing of precipitation (b), frequency of high precipitation days (c), and 
streamflow precipitation elasticity (d); streamflow forecasts improvement in winter versus maximum monthly mean of leaf area index (e); and streamflow forecasts 
improvement in spring versus baseflow index (f).
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streamflow across various seasons and watersheds. DA exhibits slightly 
better performance than DL. During winter, the performance gap be
tween the models becomes more pronounced. Seasonal analysis reveals 
that fall provides the most stable forecasting conditions, whereas sum
mer, winter, and spring present challenges due to low flows and snow- 
related processes. The spatial analysis reveals that both hybrid models 
consistently deliver strong 30-day streamflow forecasting performance 
across the eastern U.S., Pacific Northwest, and Northern Rockies, with 
seasonal variations. Compared to the HM, hybrid models significantly 
improve forecast accuracy, especially in the western U.S., Midwest, and 
along the East Coast. Graph neural network architectures can be used to 
explore temporal and spatial patterns in hydrological signatures for 
improving streamflow forecasting (Sun et al., 2021; Sun et al., 2022). 
The results show that the performance of the HM is sensitive to forecast 
horizon length. In contrast, the hybrid models maintain consistent and 
superior accuracy across all forecast horizons and seasons. These find
ings highlight the hybrid models’ adaptability and robustness to diverse 
hydrologic and climatic conditions across seasons and regions as well as 
forecast horizon lengths.

To further explore the processes related to the improvements by 
hybrid modeling, correlation analysis is conducted between KGE 
improvement and watershed characteristics including hydroclimatic 
variables. Forecast improvements by DL are positively correlated with 
gauge latitude and negatively correlated with seasonality and timing of 
precipitation, frequency of high precipitation days, and precipitation 
elasticity in summer; add to that, they are positively correlated with leaf 
area index in winter and baseflow index in spring. Forecast improve
ments by DA are negatively correlated with the frequency of high pre
cipitation days in summer and positively correlated with baseflow 
index in spring. These findings provide potential guidance to improve 
the representation of relevant hydrologic processes for individual wa
tersheds in the hydrologic model.

Future research will be focused on developing streamflow forecasts 
utilizing the hybrid models driven by real-time precipitation and 

temperature forecasts. Moreover, the streamflow forecasts will be uti
lized as inputs to predict shoaling rate in navigable channels.
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Appendix A. Summary of notation

Symbol Description Appears In

C Soil water storage capacity at a point Fig. 1
S0 Average initial soil water storage Fig. 1
C0 Soil water storage capacity corresponding to S0 Fig. 1
P Precipitation Fig. 1
D Soil water deficit at a point Fig. 1
Rs Saturation excess runoff Fig. 1

(continued on next page)

Fig. 11. The correlation of KGE difference for 30-day streamflow forecast by data augmentation and the hydrologic model and watershed characteristics: streamflow 
forecasts improvement in summer versus frequency of high precipitation days (a), and streamflow forecasts improvement in spring versus baseflow index (b).
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(continued )

Symbol Description Appears In

Ri Infiltration excess runoff Fig. 1
α0 Area fraction of initial saturation Fig. 1
α1 Area fraction of ending saturation Fig. 1
α2 Area fraction with runoff generation Fig. 1
W1 Infiltration over the area fraction of α1 − α0 Fig. 1
W2 Infiltration over the area fraction of α2 − α1 Fig. 1
W3 Infiltration over the area fraction of 1 − α2 Fig. 1
E Actual evapotranspiration Fig. 1
Rd Direct runoff Fig. 1
Rg Groundwater recharge Fig. 1
γ Partitioning parameter of saturation excess between direct runoff and groundwater recharge Fig. 1
Sd Storage in quick storage tank Fig. 1
Sg Storage in slow storage tank Fig. 1
kd Runoff coefficient of direct runoff Fig. 1
kb Runoff coefficient of baseflow Fig. 1
Qd Direct streamflow Fig. 1
Qb Baseflow Fig. 1
Q Total streamflow Fig. 1
F( • ) Nonlinear mapping function that transforms recent inputs and outputs into the current output Eq. (1)
i Time step Eq. (1); Fig. 3
yi System output Eq. (1)
Ui Exogenous inputs Eq. (1); Fig. 3
n Dimension of exogenous inputs Eq. (1)
q Number of lags in the delayed input vector Eq. (1)
p Number of lags in the delayed output vector Eq. (1)
ε Residual of NARX model Eq. (1)
it Signal for input gate Eqs. (2), (6); Fig. 2
σ( • ) Sigmoid function Eqs. (2), (3), (4); Fig. 2
at Hidden state Eqs. (2), (3), (4), (5), (7); 

Fig. 2
xt Input state Eqs. (2), (3), (4), (5); Fig. 2
Wi Weight vector for input gate Eq. (2); Fig. 2
bi Bias vector for input gate Eq. (2); Fig. 2
f t Signal for forget gate Eqs. (3), (6); Fig. 2
Wf Weight vector for forget gate Eq. (3); Fig. 2
bf Bias vector for forget gate Eq. (3); Fig. 2
ot Signal for output gate Eqs. (4), (7); Fig. 2
Wo Weight vector for output gate Eq. (4); Fig. 2
bo Bias vector for output gate Eq. (4); Fig. 2
C̃t Intermediate cell state Eqs. (5), (6); Fig. 2
tanh( • ) Hyperbolic tangent function Eqs. (5), (7); Fig. 2
Wc Weight vector for Intermediate cell Eq. (5); Fig. 2
bc Bias vector for Intermediate cell Eq. (5); Fig. 2
Ct Cell state Eqs. (6), (7); Fig. 2
⨂ Element-wise product Eqs. (6), (7); Fig. 2
Gm( • ) Surrogate model based on the low-fidelity data from the hydrologic model Eq. (8), (9), (13); Fig. 3
ym Simulated streamflow by the hydrologic model Eq. (8)
ŷm Modeled streamflow by Gm( • ) using ym Eq. (8)
yo Observed streamflow Eq. (9); Fig. 3
̂̃ym

Output of Gm( • ) using yo Eq. (9)

δ Difference between yo and ̂̃ym
Eq. (10)

Gδ( • ) Surrogate model based on the discrepancy between the physics-based prediction from Gm( • ) and the high-fidelity data from the observed 
streamflow

Eq. (11)

δ̂ Output of Gδ( • ) using yo Eq. (11)
ŷo Modelled streamflow by delta learning Eq. (12)

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2025.134477.
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2025. A unified scheme for modeling saturation and infiltration excess runoff. 
EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2025-5039.

Hunt, K.M.R., Matthews, G.R., Pappenberger, F., Prudhomme, C., 2022. Using a long 
short-term memory (LSTM) neural network to boost river streamflow forecasts over 
the western United States. Hydrol. Earth Syst. Sci. 26 (21), 5449–5472. https://doi. 
org/10.5194/hess-26-5449-2022.

Jiang, S., Zheng, Y., Wang, C., Babovic, V., 2022. Uncovering flooding mechanisms 
across the contiguous United States through interpretive deep learning on 
representative catchments. Water Resour. Res. 58, e2021WR030185. https://doi. 
org/10.1029/2021WR030185.

Kao, I.F., Zhou, Y., Chang, L.-C., Chang, F.-J., 2020. Exploring a long short-term memory 
based encoder-decoder framework for multi-step-ahead flood forecasting. J. Hydrol. 
583. https://doi.org/10.1016/j.jhydrol.2020.124631.

Kisi, O., Cimen, M., 2011. A wavelet-support vector machine conjunction model for 
monthly stream-flow forecasting. J. Hydrol. 399, 132–140. https://doi.org/ 
10.1016/j.jhydrol.2010.12.041.

Knoben, W.J.M., Freer, J.E., Woods, R.A., 2019. Technical note: Inherent benchmark or 
not? Comparing nash-sutcliffe and kling-gupta efficiency scores. Hydrol. Earth Syst. 
Sci. 23, 4323–4331.

Kollat, J.B., Reed, P.M., Wagener, T., 2012. When are multiobjective calibration trade- 
offs in hydrologic models meaningful? Water Resour. Res. 48, W03520. https://doi. 
org/10.1029/2011WR011534.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M., 2019. Towards learning 
universal, regional, and local hydrological behaviors via machine learning applied to 
large-sample datasets. Hydrol. Earth Syst. Sci. 23 (12), 5089–5110. https://doi.org/ 
10.5194/hess-23-5089-2019.

Ladson, A.R., Brown, R., Neal, B., Nathan, R., 2013. A standard approachto baseflow 
separation using the Lyne and Hollick filter. Australian J. Water Resour. 17 (1), 
25–34. https://doi.org/10.7158/W12-028.2013.17.1.

Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A simple hydrologically 
based model of land surface water and energy fluxes for general circulation models. 
J. Geophys. Res. Atmos. 99 (D7), 14415–14428. https://doi.org/10.1029/ 
94JD00483.

Li, B., Sun, T., Tian, F.Q., Ni, G.H., 2023. Enhancing process-based hydrological models 
with embedded neural networks: a hybrid approach. J. Hydrol. 590, 125206. 
https://doi.org/10.1016/j.jhydrol.2023.130107.

Li, H., Zhang, C., Chu, W., Shen, D., Li, R., 2024. A process-driven deep learning 
hydrological model for daily rainfall-runoff simulation. J. Hydrol. 637, 131434. 
https://doi.org/10.1016/j.jhydrol.2024.131434.

Li, S., Xie, Q., Yang, J., 2022. Daily suspended sediment forecast by an integrated 
dynamic neural network. J. Hydrol. 604, 127258. https://doi.org/10.1016/j. 
jhydrol.2021.127258.

Liu, Q., Dai, H., Gui, D.W., Hu, B., Ye, M., Wei, G., Qin, J., Zhang, J., 2022. Evaluation 
and optimization of the water diversion system of ecohydrological restoration 
megaproject of Tarim River, China, through wavelet analysis and a neural network. 
J. Hydrol. 608, 127586. https://doi.org/10.1016/j.jhydrol.2022.127586.

Luo, C., Ding, W., Zhang, C., Yang, X., 2023. Exploiting multiple hydrologic forecasts to 
inform real-time reservoir operation for drought mitigation. J. Hydrol. 618, 129232. 
https://doi.org/10.1016/j.jhydrol.2023.129232.

Luo, L., Wood, E.F., Pan, M., 2007. Bayesian merging of multiple climate model forecasts 
for seasonal hydrological predictions. J. Geophys. Res. Atmos. 112 (D10). https:// 
doi.org/10.1029/2006JD007655.

Luo, S., Tetzlaff, D., Smith, A., Soulsby, C., 2024. Long-term drought effects on landscape 
water storage and recovery under contrasting landuses. J. Hydrol. 636, 131339. 
https://doi.org/10.1016/j.jhydrol.2024.131339.

Ma, K., Feng, D., Lawson, K., Tsai, W.-P., Liang, C., Huang, X., Sharma, A., Shen, C., 
2021. Transferring hydrologic data across continents – leveraging data-rich regions 
to improve hydrologic prediction in data-sparse regions. Water Resour. Res. 57, 
e2020WR028600. https://doi.org/10.1029/2020WR028600.

Mao, D., Cherkauer, K.A., 2009. Impacts of land-use change on hydrologic responses in 
the Great Lakes region. J. Hydrol. 374 (1–2), 71–82. https://doi.org/10.1016/j. 
jhydrol.2009.06.016.

Martinez, G.F., Gupta, H.V., 2010. Toward improved identification of hydrological 
models: a diagnosticevaluation of the “abcd” monthly water balance model for the 
conterminous United States. Water Resour. Res. 46, W08507. https://doi.org/ 
10.1029/2009WR008294.

Ma, X., Hu, H., Ren, Y., 2023. A hybrid deep learning model based on feature capture of 
water level influencing factors and prediction error correction for water level 
prediction of cascade hydropower stations under multiple time scales. J. Hydrol. 
617. https://doi.org/10.1016/j.jhydrol.2022.129044.
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