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In this paper, we investigate the coupling of Poisson’s and warping effect for a general asymmetric cross- 

section of Cosserat beam. We present the challenges and inconsistencies observed as a result of our at- 

tempt to couple the two effects. The fully-coupled Poisson’s transformation is then developed to describe 

the in-plane deformation for the prismatic beam. A comprehensive kinematic treatment of geometrically 

exact and nonlinear Cosserat beam subjected to large deformation and finite strain is finally obtained 

that extensively captures the deformation due to multiple curvatures, torsion, shear, axial deformation, 

warping and a fully-coupled Poisson’s effect in the cross-section, all while maintaining the single man- 

ifold nature of the problem. The contributions to the strain vector and the deformation gradient tensor 

due to various deformation effects are interpreted and explained in detail. In the final part of the paper, 

we use the kinematics developed to establish a measurement model of discrete and finite length strain 

gauges attached to the surface of the beam (or embedded into the beam). We investigate the relationship 

between the scalar strain measurement of the strain gauge and the local finite strain parameters of the 

beam. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Strain measurement devices (“strain gages”) are immensely im-

portant for a wide variety of measurement and monitoring appli-

cations ranging across civil structures, the energy sector, aerospace

structures, and even biomedical systems, to name just a few.

The development of sensing mechanisms that measure strain has

been a well-developed field for over a century; the solutions have

spanned piezo-resistive gages (arguably the most common and

commercially-realized) to fiber optic systems to laser Doppler ve-

locimetry (LDV). The sensing mechanism itself may require con-

tact between the measuring device and structure (e.g., piezo-

resistive gages or fiber optics) or be non-contact (e.g., LDV). Re-

alizations of these architectures can result in localized measure-

ments (discrete measurement points with a fixed length scale)

or distributed measurements (e.g., fiber optic Rayleigh backscatter

sensing Friedman et al. (2003) , where the length scale and location

of measurement depend on the optical pulsing). 
∗ Corresponding author. 

E-mail addresses: machadha@eng.ucsd.edu (M. Chadha), mdtodd@ucsd.edu (M. 
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A significant number of these monitoring applications for which

train measurements are required involve, fundamentally, one-

imensional slender structures, e.g., pipelines, suspension cables,

ethers, surgical tubing, mooring cables, etc. The fundamental ob-

ective of this exposition is to develop a comprehensive kinematic

odel of such “single manifold” structures, based on Cosserat

inematics, and further develop a measurement model for the

calar strain of discrete and finite-length strain gauges assumed af-

xed to these kinds of structures. The measurement gauge length

f the measuring device must be small enough to classify it

s a discrete sensor. More specifically, we develop a geometri-

ally exact non-linear kinematic model to capture warping (out

f plane deformation), fully coupled Poisson’s transformation (in-

lane deformation) along with axial deformation of the midcurve,

ultiple curvatures, torsion and finite shear deformations in a

osserat beam subjected to finite deformation and finite strain.

his approach does not make the usual Euler-Bernoulli rigid cross-

ection assumption (plane cross-section remains plane after defor-

ation). Instead, we propose a new approach to capture the cou-

led Poisson’s and warping influence that is deformation-adaptive.

e discuss the challenges associated with coupling Poisson’s ef-

ect and warping. The proposed fully-coupled Poisson’s effect cap-

ures the in-plane deformation of the cross-section. However, the

https://doi.org/10.1016/j.ijsolstr.2018.09.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2018.09.020&domain=pdf
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ully-coupled Poisson’s transformation presented in this work does

ot model the in-plane deformation due to local buckling, which

s a prominent phenomenon in case of thin-walled beam cross-

ections. The work by Fang (2005) describes the in-plane cross-

ectional distortion of thin-walled beam theory. Apart from this

uckling limitation, the kinematics and the measurement model

eveloped in this paper is completely general. 

For a Cosserat beam subjected to the Euler-Bernoulli rigid cross-

ection assumption, the configuration of the beam is defined by

he mid curve and the orthogonal body-centered director triad at-

ached to the cross-section. The rigid cross-section assumption re-

tricts the inclusion of Poisson’s and warping effects. The prob-

em of warping for various levels of complexities, from a simple

aint Venant problem (refer Sokolnikoff (1956) ) to a complicated

on-uniform asymmetric case (refer Trefftz (1935) ; Elter (1983) ;

urgoyne and Brown (1994) ; Brown and Burgoyne (1994) ;

imo and Vu-Quoc (1991) ; Vlasov (1961) ; Goodier (1941) ;

jelsvik (1981) ; Lin and Hsiao (2003) ), has been previously ex-

lored. We dedicate Section 2.3 to briefly review important con-

ributions related to warping. 

Per our survey of the literature, an investigation on the geo-

etric coupling between the Poisson’s effect and warping has not

een attempted before. We believe that fully-coupled Poisson’s and

arping effect for a single-manifold beam problem will capture

he in and out of the cross-sectional deformation with enhanced

ccuracy which is beneficial for both forward modeling analyses

nd solving inverse problems like shape sensing. The first step of

his investigation aims at obtaining a simplified governing differ-

ntial equation of warping from an assumed small displacement

eld. This step attempts to extend the theory of warping pro-

osed by Brown and Burgoyne (1994) to incorporate the contri-

ution of axial deformation and Poisson’s effect to warping. We

efine a small displacement field including axial, bending, torsion

nd Poisson’s effects for an asymmetric cross-section. We include

he contribution due to bending because in a general asymmetric

ross-section, the bending also contributes to warping. In general

refer to appendix A.1.5 ), the proposed warping function captures

he non-linear bending-induced shear strain distribution across the

ross-section, unlike Timoshenko’s theory which assumes a con-

tant shear distribution thereby preventing any out of plane defor-

ation. The effect of warping due to non-linear shear induced by

ending is quite significant in deep beams. 

The governing differential equations for warping are obtained.

owever, the governing equation and the boundary condition at

he periphery of the cross-section reflect an inconsistency if ax-

al strain is included in the deformation field. We propose a so-

ution to this inconsistency. Elimination of the observed inconsis-

ency suggests a solution that does not include the effect of axial

train on warping explicitly, but we obtain a consistent modified

ifferential equation for warping. We suggest two different solu-

ion approaches that have a separable variable form. 

Obtaining the warping functions by solving various governing

ifferential equations is beyond the scope of this current work,

nd the solution is assumed known in order to develop the fully-

oupled Poisson’s effect and establish the beam kinematics. Prior

nowledge of the warping function guarantees the single manifold

ature of the problem and allows us to obtain important param-

ters such as deformation gradient tensor and Cauchy Green tensor

or Push-forward Riemann metric ) for the beam. Assuming that we

now the solution to these differential equations, we propose a

ully-coupled Poisson’s effect that incorporates the effects of axial

train across the cross-section due to axial deformation, bending

urvatures and warping. Henceforth, we call the effect attributed

o the cross-sectional deformation (including in- and out-of-plane)

 fully-coupled Poisson’s and warping effect . 
The strain vectors and the deformation gradient tensor of the

eformed configuration referenced to both an initially straight

eam configuration and an initially curved reference beam configu-

ation are obtained. The contribution to each of these strain vectors

ue to different deformation effects are discussed in great detail.

he kinematics of various restraint cases is obtained. In the view

f authors, the kinematics developed herein establishes the most

omprehensive geometry of Cosserat beam that still preserves the

implicity of the single-manifold nature of the problem. 

We exploit the kinematics developed in the first half of the pa-

er to develop a measurement model for the strain gauge attached

n the surface of the beam or embedded in the beam. We arrive

t the Push-forward Riemannian Metric of the beam that is key in

eveloping the expression of the strain that would be detected by

 finite length strain gauge. We validate our result by demonstrat-

ng the applicability of the expression obtained on a simple case of

eformation that includes constant torsion, axial strain and Pois-

on’s effect. We obtain the expression of scalar strain in the dis-

rete strain gauge. We critically review the formula for the scalar

train proposed in our previous work on shape sensing based on

he results obtained in this paper. 

The mechanics of Cosserat structures is well developed and

ontinues to be a topic of interest in the continuum mechan-

cs community. We feel that the core reason of interest in this

eld lies in its mathematical simplicity. Cosserat rod theory de-

eloped by Cosserat and Cosserat (1909) is a powerful approach

hat attempts to capture the three-dimensional configuration of

 slender rod by modeling the structure as a single manifold

pace curve (midcurve). Therefore, the local finite strain terms are

he function of the arclength (manifold parameter) of the mid-

urve. The Cosserat description of the rods falls under the idea

f Duhem (1893) , where any point in the body is described by a

osition vector and by an attached set of vector triad called di-

ectors. An infinitesimal macro element of beam consists of many

ross-sections. If Euler Bernoulli’s rigid cross-section assumption is

nvoked, each section can be considered as a rigid body that can

ndergo translation and rotation. The translation is given by the

id-curve position vector and the rigid body rotation is obtained

y the orthogonal rotation tensor (director triad). The smoothness

n the rotation tensor and the midcurve position vector guarantees

he continuity in the beam. 

A detailed work on the extension of Cosserat continuum to de-

elop a nonlinear theory of rods and shells was undertaken by

ricksen and Truesdell (1958) . Kirchhoff is attributed to the idea

f the finite displacement theory of rods, which was further im-

roved by Hay (1942) . Cohen (1966) developed a comprehensive

on-linear static theory of elastic rods, which was extended by

hitman and DeSilva (1969) to include dynamics. The static finite

train beam theory for the plane case including shear deforma-

ion was developed by Reissner (1972, 1973, 1981) . Simo (1985) ex-

ended the work of Reissner for a three-dimensional dynamic case

sing the director type of approach. Simo and Vu-Quoc (1991) de-

eloped the mechanics of Cosserat beam by incorporating the ef-

ect of warping for initially straight beams using the Saint Venant

arping function (uniform torsion problem) including the effect of

he unsymmetrical section by using the concept of shear center

refer Trefftz (1935) and Elter (1983) ). They also obtained the fi-

ite deformation counterpart for the bi-shear and bi-moment in

he linear thin-walled beam theory. Iura and Atluri (1989) obtained

he governing equations for the initially curved beam configura-

ion using virtual work principle. Kapania and Li (2003) presented

 refined geometrically exact large deformation curved beam the-

ry restricted to Euler Bernoulli’s rigid cross-section. A more re-

ent work by Meier et al. (2017) proposed a novel finite ele-

ent formulation of geometrically-exact Kirchhoff-love theory and
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presents a complete and detailed review of finite element analysis

of geometrically-exact beams. 

The two-part work by Green et al. (1974a,b) is one of the first

expositions on the theory of elastic rods elucidated using classi-

cal three-dimensional equations and Cosserat curves. Readers may

refer to the work of Naghdi and Rubin (1982) , Brand and Ru-

bin (2007) for the constraint theories of rods. The Cosserat rod

is a special case of problems in micropolar continua, which is

a special restraint case of micromorphic continua. The compiled

work by Altenbach and Eremeyev (2013) serves as a great ref-

erence that cover topics on micro-polar continua (by Altenbach

and Eremeyev), Cosserat rods (by Altenbach, Bîrsan and Eremeyev),

micromorphic continua (by Samuel Forest), electromagnetism and

generalized continua (by Maugin). The applications of Cosserat

kinematics in modeling rod-like structure are multifaceted. For

instance, Bîrsan and Altenbach (2011) describes an approach to

model porous elastic rod, whereas Altenbach et al. (2012) presents

the thermodynamic model of rods using Cosserat kinematics. In-

terested readers can refer to the detailed work and references by

Antman (1972, 1995) , Svetlitsky (20 0 0, 20 04) , Maugin (2017) and

Rubin (20 0 0) . 

The earlier treatise we presented ( Chadha and Todd (2017b) )

serves as a detailed introduction to the variational formulation of

Cosserat beam assuming Euler-Bernoulli’s rigid cross-section as-

sumption and reviews the development of the subject in great

detail. Interested readers are recommended to refer to the ref-

erences therein. Chadha and Todd (2017b) also defined the fi-

nite strain parameters that will be directly used in this paper.

The kinematics described in this paper (and in many other pa-

pers like Simo (1985) , Simo and Vu-Quoc (1991) , Kapania and

Li (2003) and Chadha and Todd (2017b) ) incorporates finite shear,

unlike the Kirchhoff-Love beam theory (refer to Antman (1974) )

and can be thought of as a 3D large deformation generalization

of Timoshenko’s beam theory (refer to Timoshenko (1921) ). 

This work on the scalar surface strain can serve as a platform

to help develop an optimization algorithm to investigate the ori-

entation and placement of a strain gage array for single-manifold

structures, and eventually reduce the approximation errors de-

pending on the application. In the domain of continuum mechan-

ics, the mechanics developed here offers a method to obtain fi-

nite strain parameters using the surface measurements. This is

of utmost importance to develop a generalized (and more accu-

rate) shape sensing methodology to obtain the global full-field de-

formed shape using limited set of finite surface strain measure-

ment. The results presented here are in fact a part of developing

a general shape sensing methodology that includes the effect of

warping and Poisson’s effect as an extension of authors previous

work Todd et al. (2013) and Chadha and Chadha and Todd (2017a,

2018a, 2018b) . 

The remainder of the paper is arranged as follows:

Section 2 details various deformed configurations, defines fi-

nite strain parameters, and explains the proposed coupled Pois-

son’s and warping effects (a substantial portion on investigation

on warping is discussed in Appendix A.1 ). Section 3 presents

kinematics of the beam obtaining the general expression of

the strain vector and deformation gradient tensor of the beam.

Section 4 deals with measurement model for the strain gauges.

The subsection 4.1 derives the expression of the scalar strain

of finite length strain gauge and the subsection 4.2 deals with

discrete strain gauge. In Section 5 we make concluding remarks. 

2. Geometric description of various beam configurations 

In wake of proposing the fully-coupled Poisson’s and warping

effect within our presentation of the kinematics, we define the fol-

lowing configurations of the beam: 
1. �0 : Curved reference beam configuration. 

2. �00 : Mathematically straight beam configuration. 

3. �1 : Deformed configuration of the beam assuming Euler-

Bernoulli’s rigid cross-section. 

4. �2 : Deformed configuration of the beam allowing the cross-

section to undergo out of plane warping only (no in-plane de-

formation). 

5. �3 : Deformed configuration of the beam including fully-

coupled Poisson’s and warping effect. 

These configurations will be described in the subsequent sec-

ions. The nomenclature in this paper is slightly different from

hadha and Todd (2017b) . Chadha and Todd (2017b) describes vari-

tional formulation of the configuration �1 . 

.1. Description of the director frame and the midcurve 

We brief the idea of the midcurve and director frame us-

ng the first three configurations along the lines of Chadha and

odd (2017b) for completion. We assume that the initial config-

ration (zero strain/zero stress state) is known and is the one

n which the strain gauge is attached. We consider a fixed or-

hogonal triad { E i }. The deformed configuration �1 assumes Euler-

ernoulli’s rigid cross-section and is defined by the midcurve po-

ition vector ϕ( ξ 1 ) and the family of cross-sections �1 ( ξ 1 ) with

heir boundaries �1 ( ξ 1 ), parametrized by the undeformed arc-

ength ξ 1 ∈ [0, L 0 ]. Here L 0 is the total length of the midcurve in

he undeformed state �0 or �00 . The midcurve is defined as the

ocus of the centroid of the family of cross-sections. The shape of

he cross-section �1 ( ξ 1 ) is independent of the deformation and its

rientation is quantified by the set of orthogonal body centered

osserat triad called directors { d i ( ξ 1 )}, such that 

 (ξ1 ) = ϕ i E i ; d i (ξ1 ) = d i j E j . (1)

ny point in the beam is defined by the material coordinates ( ξ 1 ,

2 , ξ 3 ) that is independent of the beam configuration. The cross-

ection �1 (ξ1 ) = { (ξ2 , ξ3 ) ∈ R 

2 
ξ1 

} , where R 

2 
ξ1 

is 2D Euclidean space

panned by the directors d 2 (ξ1 ) − d 3 (ξ1 ) , with origin at the cen-

roid of the cross-section �1 ( ξ 1 ). A material point ( ξ 1 , ξ 2 , ξ 3 ) ∈ �1 

s defined by the position vector, 

 1 = ϕ (ξ1 ) + ξ2 d 2 (ξ1 ) + ξ3 d 3 (ξ1 ) . (2)

The initially curved reference beam �0 is defined by the direc-

or triad d 0 i (ξ1 ) = d 0 i j 
E j and the midcurve position vector ϕ0 ( ξ 1 ).

ny point in �0 is defined by the vector R 0 = ϕ 0 + ξ2 d 0 2 + ξ3 d 0 3 .

t is convenient to mathematically define a straight beam config-

ration �00 such that the directors are defined by { E i }, the mid-

urve is a straight line along the vector E 1 such that the midcurve

osition vector is defined by ϕ 00 = ξ1 E 1 . Any point on the straight

eam is then defined by R 00 = ϕ 00 + ξ2 E 2 + ξ3 E 3 = ξi E i . Note that

he material point ( ξ 1 , ξ 2 , ξ 3 ) ∈ �00 can be represented by writ-

ng ( ξ 2 , ξ 3 ) ∈ �00 ( ξ 1 ). This notation will be used numerous times

n the paper. 

The triad { E i } , { d 0 i } and { d i } are related to each other by means

f the orthogonal direction cosine tensor, 

 i = Q E i ; d 0 i = Q 0 E i ; d i = Q r d 0 i , (3)

uch that the following relationships hold, 

Q = Q r Q 0 , 

 = d i � E i ; Q r = d i � d 0 i ; Q 0 = d 0 i � E i . 
(4)

efore we proceed further, we define the dot product between two

ectors v and v as 〈 v , v 〉 = v v . 
1 2 1 2 1 i 2 i 
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.2. Description of the finite strain parameters defining the 

onfiguration �1 

The deformed configuration �1 is subjected to axial deforma-

ion of the midcurve, shear deformations of the cross-section, tor-

ion, and the bending curvatures. We define the deformed arc-

ength as s , the axial strain as e ( ξ 1 ), and the three shear angles

s γ 11 ( ξ 1 ), 
π
2 − γ12 (ξ1 ) and 

π
2 − γ13 (ξ1 ) subtended by the direc-

ors d 1 , d 2 and d 3 with the tangent vector 
∂ ϕ 
∂s 

= ϕ ,s respectively,

s described in Chadha and Todd (2017b) such that 

e = 

d s −d ξ1 

d ξ1 
⇒ 

d ξ1 

d s 
= 

1 
1+ e ;

 ϕ ,s , d i 〉 = 

{
cos γ1 i , for i = 1 

sin γ1 i , for i = 2 , 3 

}
. 

(5) 

herefore, 

 ,ξ1 
= (1 + e )( cos γ11 d 1 + sin γ12 d 2 + sin γ13 d 3 ) . (6)

ote that the above definitions do not uniquely define the shear

ngles. Interested readers may refer to Section 3.2 in Chadha and

odd (2017b) , that describes a way to uniquely define the shear

eformation. We define the axial strain vector ε representing the

train due to shear and midcurve axial strain such that 

 = ϕ ,ξ1 
− d 1 = ε i d i . (7) 

athematically, the curvatures in the beam are captured by the

erivative of the director with respect to the arc-length. From

q. 12 in Chadha and Todd (2017b) , the following relations hold,

 i,ξ1 
= Q ,ξ1 

Q 

T d i = K d i = κ × d i . (8) 

he tensor Q ( ξ 1 ), represents the family of orthogonal tensors that

elongs to the SO (3) rotational Lie group. Q ( ξ 1 ) can be understood

s a curve in the manifold SO (3), where Q ,ξ1 
∈ T Q SO (3) represents

he tangent vector to the curve Q ( ξ 1 ) in SO (3). Here, T Q SO (3) rep-

esents the tangent space to SO (3) at some Q ∈ SO (3). Note that

 ,ξ1 
Q 

T = K (ξ1 ) is the linear space of skew-symmetric matrix that

as Darboux vector κ(ξ1 ) = κ i d i as the corresponding axial vector,

uch that 
 

d 1 ,ξ1 

d 2 ,ξ1 

d 3 ,ξ1 

] 

= 

[ 

0 κ3 −κ2 

−κ3 0 κ1 

κ2 −κ1 0 

] 

︸ ︷︷ ︸ 
K T 

[ 

d 1 

d 2 

d 3 

] 

. (9) 

ere, κ1 represents the torsional curvature about the director d 1 .

he curvature terms κ2 and κ3 represent the curvature due to

ending about the director d 2 and d 3 , respectively. For the con-

guration �1 , ϕ (ξ1 ) ∈ R 

3 is sufficient to define the mid-curve,

hereas the orientation of the cross-section is fully described by

he director triad. Therefore, R 

3 × SO (3) is the configuration space

or �1 . 

The geometric description of more general configurations �2 −
3 comprises of different families of cross-sections obtained by 

urther transformation of the cross-section �1 . Therefore, before

e continue to describe the configurations �2 − �3 , we will first

btain the fully-coupled Poisson’s and warping effect in the next

hree Sections 2.3 –2.5 . 

.3. An introductory remark on warping 

The simplest non-trivial case of warping is Saint-Venant’s uni-

orm torsion problem (refer p. 113 of Sokolnikoff (1956) ) on a

oubly symmetric prismatic bar subjected to a constant curvature

1 (ξ1 ) = κ1 . If the cross-section is not doubly symmetric, the tor-

ion and bending are uncoupled by using the idea of shear-center.

lter (1983) describes two formulations of shear-center, the first
btained using Saint-Venant’s principle and the second attributed

o Trefftz (1935) . In Saint-Venant’s principle, the distributed forces

t the end-section (say �( L )) are replaced by a statically equiva-

ent concentrated force and couple. Trefftz (1935) proposed that

he work done by the distributed forces at the end-section is equal

o the work done by statically equivalent concentrated force and

ouple, thereby proposing equivalence in energy. Note that both

he approaches are meant for uniform torsion. 

Let the straight asymmetric beam be subjected to uniform tor-

ion with constant curvature κ1 . Let n = n 2 E 2 + n 3 E 3 be the nor-

al vector to the boundary �( ξ 1 ) of the deformed cross-section

( ξ 1 ). Due to linear and small deformation nature of the prob-

em, we express the displacement field in { E i } frame. Let the po-

ition vector of the shear center from the centroid be S 2 E 2 + S 3 E 3 .

he corresponding linear displacement field u s measured about the

hear center can be obtained as 

 s = κ1 ξ1 [ E 1 × ( ( ξ2 − S 2 ) E 2 + ( ξ3 − S 3 ) E 3 ) ] + κ1 �s ( ξ2 , ξ3 ) E 1 . 

(10) 

he warping function may then be obtained by solving the follow-

ng Neumann boundary value problem 

∇ 

2 �s = �s,ξ2 ξ2 
+ �s,ξ3 ξ3 

= 0 on �( ξ1 ) ;
�s, n = �s,ξ2 

n 2 + �s,ξ3 
n 3 

= −〈 [ ( ( ξ2 − S 2 ) E 2 + ( ξ3 − S 3 ) E 3 ) × n ] , E 1 〉 on �( ξ1 ) . 

(11) 

he second last equation in Elter (1983) gives formula for the shear

enter, when the displacement field is expressed at any arbitrary

oint A other than the centroid. Considering the arbitrary point A

o be the shear center S of the beam, we arrive at the following

wo conditions 
 

� ξ2 �s d ξ2 d ξ3 = 

∫ 
� ξ3 �s d ξ2 d ξ3 = 0 . (12) 

qs. (11) and (12) can be solved to obtain S 2 , S 3 and �s , unique to

 constant. Therefore, an additional normalization condition (that

s also required for the axial force to vanish) can be invoked to

olve for the constant, 
 

�
�s d ξ2 d ξ3 = 0 . (13) 

qs. (11) –(13) gives a unique solution to the warping function �s 

or uniform torsion. Simo and Vu-Quoc (1991) use the warping

unction �s weighted by the warping amplitude p ( ξ 1 ) to consider

on-uniform torsion in finite deformation problem. This adds an

dditional finite strain parameter p ( ξ 1 ), introducing the idea of bi-

hear and bi-moment . 

As indicated in Elter (1983) , it is interesting to note that the

arping function depends on the choice of origin. Consider the

isplacement field u defined with respect to the centroid, which

ay be written as u = κ1 ξ1 [ E 1 × (ξ2 E 2 + ξ3 E 3 )] + κ1 �(ξ2 , ξ3 ) E 1 .

he warping function �( ξ 2 , ξ 3 ) is then obtained by solving the

ollowing differential equation 

∇ 

2 � = 0 on �( ξ1 ) ;
�, n = −t on �( ξ1 ) ;
t = 〈 [ ( ξ2 E 2 + ξ3 E 3 ) × n ] , E 1 〉 . 

(14) 

he location of the shear center can be obtained using a gen-

ral Eq. (29) or Eq. (2) (for single and multi-connected regions),

n Elter (1983) . 

Burgoyne and Brown (1994) presents a detailed theory of warp-

ng for non-uniform torsion considering symmetric cross-section.

he assumed displacement field, where W ( ξ 1 , ξ 2 , ξ 3 ) represents

he warping deformation, is written as 

 = θ (ξ1 )[ E 1 × (ξ2 E 2 + ξ3 E 3 )] + W (ξ1 , ξ2 , ξ3 ) E 1 , 

θ (ξ1 ) = θ (0) + 

∫ ξ1 

0 κ1 (ξ1 ) d ξ1 . 
(15) 
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Here, θ represents the total twist angle. The governing differential

equations for linear elasticity with Poisson’s ratio ν = 0 then be-

come, 

∇ 

2 W + 

E 

G 

W ,ξ1 ξ1 
= 0 on �( ξ1 ) ;

W , n = −θ,ξ1 
t on �( ξ1 ) , such that , 

W ,ξ1 
= 0 or θ ( r ) = 0 if the end is unrestrained in warping, 

where r = 0 , 2 , 4 , 6 , . . . 

W = 0 or θ ( r ) = 0 if the end is restrained in warping, 

where r = 1 , 3 , 5 , . . . (16)

Here, θ ( r ) represents r order derivative of θ with respect to ξ 1 . For

example, θ,ξ1 ξ1 
= θ (2) . Both these presentations of derivative are

used interchangeably from here on. The parameters E and G are the

Young’s modulus and shear modulus, respectively. One of the two

solution approaches proposed by Burgoyne and Brown (1994) is to

use infinite series sum of the form 

 (ξ1 , ξ2 , ξ3 ) = 

∞ ∑ 

r=0 

θ (r) (ξ1 )�r (ξ2 , ξ3 ) . (17)

The idea is to solve for the functions �r , provided the twist an-

gle θ ( ξ 1 ) is known. This involves solving for �r that satisfies the

following set of equations 

�r = 0 if r is even or zero ;
∇ 

2 �1 = 0 on �( ξ1 ) and �1 , n = −t on �( ξ1 ) ;

∇ 

2 �r + 

E 

G 

�r−2 = 0 on �( ξ1 ) and �1 , n = 0 on �( ξ1 ) 

for r ≥ 3 . 

(18)

Knowing the functions �r ( ξ 2 , ξ 3 ), we can estimate the warping

deformation for large deformation beam problem as a finite sum 

 ( ξ1 , ξ2 , ξ3 ) = 

n ∑ 

r=1 

p ( r−1 ) ( ξ1 ) �r ( ξ2 , ξ3 ) , r is odd . (19)

The weighting parameter p ( ξ 1 ), is an additional unknown finite

strain parameter known as the warping amplitude. To make sure

that the higher derivatives of p ( ξ 1 ) are not additional unknowns,

p ( ξ 1 ) is assumed to be at least C n −1 continuous. 

A particularly notable work on the warping of a thin-walled

open section for pure (non-uniform) torsion was presented by

Vlasov (1961) . Vlasov’s theory considers the primary warping (or

contour warping) but ignores the secondary warping (or thick-

ness warping) of the cross-section. In Vlasov’s theory, the line per-

pendicular to the contour remains perpendicular to the contour

and undeformed in the deformed state (thus assuming Kirchhoff’s

thin plate assumption). Goodier (1941) and Gjelsvik (1981) incor-

porated the warping of walls of the beam with respect to the con-

tour. The contour is defined as the intersection of the midsurface

of wall with the cross-section (refer to Gjelsvik (1981) ). Lin and

Hsiao (2003) serves as an insightful reference to a complete deriva-

tion of torsional warping that includes both primary and secondary

warping for a thin walled open section beam subjected to pure tor-

sion. The warping function investigated in this paper is capable of

capturing the out-of-plane deformation of thin-walled beams (re-

fer Brown and Burgoyne (1994) ). 

The idea of shear center, center of twist, and their synonymic

nature is debatable. The work by Brown and Burgoyne (1994) ig-

nores the concept of shear-center and develops the coupled lin-

ear theory for torsion and flexure. They propose a trigonometric

series solution for the governing equations to obtain the warping

functions. As mentioned in Brown and Burgoyne (1994) , the wide

adaptation of the idea of the shear center by engineers can prob-

ably be attributed to its convenience. Their work critically reviews

the idea of shear center and center of twist. 
We now present our approach to model the coupling between

he Poisson’s effect and warping deformation. In Section 2.4 we

ttempt to extend the warping theory proposed by Burgoyne and

rown (1994) and Brown and Burgoyne (1994) to incorporate the

ffect of axial strain and Poisson’s deformation into the warping.

herefore, Section 2.4 along with the appendix A.1 elucidates the

rst stage of this coupling. In Section 2.5 , we further refine the

oupling by defining the fully-coupled Poisson’s transformation. 

.4. Coupling between axial strain, Poisson’s effect and warping 

As discussed before, the warping function is obtained for the

inear elastic case and suitably modified to capture non-linear

ases. Motivated from the work of Brown and Burgoyne (1994) ,

e assume a linear small deformation field including non-uniform

orsion, bending, axial deformation and Poisson’s effect for asym-

etric problem. For a general asymmetric cross-section, bending

nduces warping, causing a coupling between bending and torsion.

he incorporation of axial deformation helps us to investigate the

nfluence of Poisson’s effect and axial strain on warping (but not

ice-versa, that is taken care of by the second stage of coupling,

s we shall see later). We consider an asymmetric cross-section

ubjected to bending, axial deformation of midcurve, torsion, and

arping in the sense of small deformation. Hence, consider a dis-

lacement field 

 1 = W (ξ1 , ξ2 , ξ3 ) − ξ2 

(∫ 
κ3 (ξ1 ) d ξ1 + C 1 

)

+ ξ3 

(∫ 
κ2 (ξ1 ) d ξ1 + C 2 

)
+ 

(∫ 
e (ξ1 ) dξ1 + C 3 

)
;

 2 = 

[∫ ∫ 
κ3 (ξ1 ) d ξ1 d ξ1 + C 1 ξ1 + C 4 

]

− ξ3 

(∫ 
κ1 (ξ1 ) d ξ1 + C 5 

)
− νe (ξ1 ) ξ2 ;

 3 = −
[∫ ∫ 

κ2 (ξ1 ) d ξ1 d ξ1 + C 2 ξ1 + C 6 

]

+ ξ2 

(∫ 
κ1 (ξ1 ) d ξ1 + C 5 

)
− νe (ξ1 ) ξ3 . (20)

ere, C 1 − C 6 are the constants that depend on the boundary con-

itions and the initial undeformed state of the beam. The non-zero

omponents of isotropic elastic stress tensor including the Pois-

on’s effect can be obtained from Eq. (20) as 

σ11 = 

˜ λ(W ,ξ1 
+ ξ3 κ2 − ξ2 κ3 ) + ( ̃ λ − 2 λν) e ;

σ12 = σ21 = G 

(
W ,ξ2 

− ξ3 κ1 − νξ2 e ,ξ1 

)
;

σ13 = σ31 = G 

(
W ,ξ3 

+ ξ2 κ1 − νξ3 e ,ξ1 

)
;

22 = λ(W ,ξ1 
+ ξ3 κ2 − ξ2 κ3 ) − (ν ˜ λ + λ(ν − 1)) e ;

σ33 = λ(W ,ξ1 
+ ξ3 κ2 − ξ2 κ3 ) − (ν ˜ λ + λ(ν − 1)) e. 

(21)

ere, λ = 

νE 
(1+ ν)(1 −2 ν) 

and ˜ λ = 2 G + λ. The parameters E, G and ν

re Young’s modulus, shear modulus and Poisson’s ratio respec-

ively. Note that lim ν→ 0 
e → 0 

σ22 = 0 and lim ν→ 0 
e → 0 

σ33 = 0 . We restrict

urselves to stress-equilibrium in the E 1 direction, as we are inter-

sted in solving for the warping function. Therefore, the governing

ifferential equations are 

1 j, j = 0 ⇒ ∇ 

2 W 

+ 

˜ λ

G 

(
W ,ξ1 ξ1 

− ξ2 κ3 ,ξ1 
+ ξ3 κ2 ,ξ1 

)
+ λe ,ξ1 

= 0 on �(ξ1 ) ;
(22a)
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 , n = κ1 

−t ︷ ︸︸ ︷ 〈 
[ n × (ξ2 E 2 + ξ3 E 3 )] , E 1 

〉 

+ e ,ξ1 
ν

˜ t ︷ ︸︸ ︷ 〈 
n , (ξ2 E 2 + ξ3 E 3 ) 

〉 
on �(ξ1 ) . (22b) 

Here, λ = 

˜ λ+2 ν(G −˜ λ) 
G . As Eq. (1) in Brown and Burgoyne (1994) ,

e define the stress resultants for axial force, bending moment

nd torsion at the centroid as follows 

P 1 (ξ1 ) = 

∫ 
�(ξ1 ) 

σ11 d ξ2 d ξ3 = ( ̃ λ − 2 λν) Ae + ̃

 λ

∫ 
�(ξ1 ) 

W ,ξ1 
d ξ2 d ξ3 

T (ξ1 ) = 

∫ 
�(ξ1 ) 

( ξ2 σ13 − ξ3 σ12 ) d ξ2 d ξ3 = GJ κ1 

+ G 

∫ 
�(ξ1 ) 

(
ξ2 W ,ξ3 

− ξ3 W ,ξ2 

)
d ξ2 d ξ3 ;

 2 (ξ1 ) = 

∫ 
�(ξ1 ) 

ξ3 σ11 d ξ2 d ξ3 

= 

˜ λ

(∫ 
�(ξ1 ) 

ξ3 W ,ξ1 
d ξ2 d ξ3 + I 22 κ2 − I 23 κ3 

)
;

 3 (ξ1 ) = 

∫ 
�(ξ1 ) 

ξ2 σ11 d ξ2 d ξ3 

= 

˜ λ

(
−
∫ 

�(ξ1 ) 
ξ2 W ,ξ1 

d ξ2 d ξ3 + I 33 κ3 − I 23 κ2 

)
, (23) 

here A (ξ1 ) = 

∫ 
� d ξ2 d ξ3 , I i j = 

∫ 
� ξi ξ j d ξ2 d ξ3 for i = 2 , 3 and J =

 22 + I 33 . 

The warping differential Eq. (22a) across the cross-section �( ξ 1 )

s inconsistent with the peripheral boundary condition (22b) . To

void a sharp deviation from the prime topic of the paper (“com-

rehensive kinematics of Cosserat beam”), we discuss this incon-

istency, solution procedure, and challenges associated with solv-

ng for the function W ( ξ 1 , ξ 2 , ξ 3 ) in Appendix A.1 for the inter-

sted reader. 

To proceed further, we assume that the warping function W ( ξ 1 ,

2 , ξ 3 ) can be expressed in a variable separable form (for instance,

f form p ( ξ 1 ) �( ξ 2 , ξ 3 )) and the cross-sectional dependence of

arping function (the function �( ξ 2 , ξ 3 )) is known. Prior knowl-

dge of �( ξ 2 , ξ 3 ) guarantees the single manifold nature of the

inematics. In appendix A.1.6 , we propose a simplified form of

he warping function W ( ξ 1 , ξ 2 , ξ 3 ) that can be used to capture

ending-induced shear warping and torsion warping in the beams

ubjected to large deformations. To understand the second stage of

oupling, we need to define the deformed cross-sections �2 and

3 . 

.5. Description of the configuration �2 and �3 

The configuration �2 is defined by the midcurve ϕ( ξ 1 ) and

on-planar family of warped cross-sections (as discussed in

ection 2.4 ) �2 (ξ1 ) ⊂ R 

3 
ξ1 

, where R 

3 
ξ1 

is a three-dimensional Eu-

lidean space spanned by the director triad { d i ( ξ 1 )} with its origin

t the centroid of the cross-section �1 ( ξ 1 ) (refer Fig. 1 ). Therefore,

f ( W ( ξ 1 , ξ 2 , ξ 3 ), ξ 2 , ξ 3 )) ∈ �2 ( ξ 1 ), we can define a differentiable

ap M 12 ξ1 
: �1 (ξ1 ) −→ �2 (ξ1 ) such that 

 12 ξ1 
: (ξ2 , ξ3 ) � −→ ( W (ξ1 , ξ2 , ξ3 ) , ξ2 , ξ3 ) . (24)

ote that the projection of the cross-section �2 ( ξ 1 ) onto the R 

2 
ξ1 

pace yields �1 ( ξ 1 ), implying no in plane deformation. The posi-

ion vector for any point in �2 is, 

 2 (ξ1 , ξ2 , ξ3 ) = ϕ (ξ1 ) + ξ2 d 2 (ξ1 ) + ξ3 d 3 (ξ1 ) + W (ξ1 , ξ2 , ξ3 ) d 1 (ξ1 ) . 
(25) 

e now describe the most general configuration that includes

ully-coupled Poisson’s and warping effect. The configuration �3 is

efined by the midcurve ϕ( ξ 1 ) and the family of non-planar cross-

ections �3 (ξ1 ) ⊂ R 

3 
ξ1 

such that �3 (ξ1 ) = { (W (ξ1 , ξ2 , ξ3 ) , ˆ ξ2 , 
ˆ ξ3 ) ∈

 

3 
ξ1 

} . We define the planar cross-section �4 (ξ1 ) = { ( ̂  ξ2 , 
ˆ ξ3 ) ∈ R 

2 
ξ1 

}
ubjected to only in-plane Poisson’s deformation. For a point ( ξ 2 ,

3 ) ∈ �1 ( ξ 1 ) and ( ̂  ξ2 , 
ˆ ξ3 ) ∈ �4 (ξ1 ) , we define Poisson’s transforma-

ion P ξ1 
: �1 (ξ1 ) −→ �4 (ξ1 ) such that 

P ξ1 
: ( ξ2 , ξ3 ) �→ 

(
ˆ ξ2 , ˆ ξ3 

)
ˆ ξi = 

(
1 − ν( ξ1 , ξ2 , ξ3 ) 〈 λ2 

1 , d i 〉 
)
ξi for i = 2 , 3 . 

(26) 

ere, ν( ξ 1 , ξ 2 , ξ 3 ) is the Poisson’s ratio for the assumed isotropic

aterial. However, we will assume that the material is homoge-

eous for further discussion, thus taking a constant Poisson’s ratio

(ξ1 , ξ2 , ξ3 ) = ν . The quantity λ2 
1 represents the first strain vec-

or of the deformed configuration �2 and will be discussed in

ection 3.1 . The position vector for any material point in �3 is 

 3 = ϕ (ξ1 ) + 

ˆ ξ2 d 2 (ξ1 ) + 

ˆ ξ3 d 3 (ξ1 ) + W (ξ1 , ξ2 , ξ3 ) d 1 (ξ1 ) . (27)

This completes our endeavor to obtain fully-coupled Poisson’s

nd warping effect. Fig. 1 describes various deformed configura-

ions of the beam. To develop the kinematics of the beam and in-

estigate the mechanics of strain gauges, we need to define certain

eometric structures associated with the beam. 

.6. Surface bounding the beam and the associated tangent space 

From here on, we use the index j to represent any entity re-

ated to the deformed configuration �j with j = 1 − 3 . No sum is

mplied on j throughout the paper. 

Section 4 discusses the geometry of the beam surface where the

urface strain gauge is attached. Therefore, we define S 00 , S 0 and

 j as the surface bounding the beam �00 , �0 and �j respectively

not including the bounding cross-sections at the two ends of the

eam). Assuming that the patch of these surfaces on which strain

auge is attached is smooth and continuous, we can consider S 00 ,

 0 and S j as regular surfaces which are manifold of dimension 2.

he configurations �00 , �0 and �j are manifolds of dimension 3

essentially Euclidean space R 

3 ). 

We define the deformation map φ j : �00 −→ � j . Since S 00 

epresents the boundary of the undeformed state �00 , we can

efine the map φ j | S 00 
= 

˜ φ j (mapping φj restricted to the mani-

old S 00 ), such that ˜ φ j : S 00 −→ S j . We represent a tangent space

f the manifold M at point a ∈ M as T a M . The differential map

 φ j : T p �00 −→ T φ j (p) � j and d ̃

 φ j : T q S 00 −→ T ˜ φ j (q ) 
S j is homeo-

orphism and has rank 3 and 2 respectively, for all p ∈ �00 and q ∈
 00 (assuming no cracks or dislocations and a continuous beam).

espite the fact that φj ≡ R j , we did not define the deformation

ap as R j because that would imply the differential map to be d R j .

owever, we will use d R j to define an infinitesimal tangent vector

or the definition of deformation gradient tensor (as is customary

n continuum mechanics). Fig. 2 illustrates the idea discussed in

his section. 

. Kinematics: Deformation gradient tensor and strain vector 

In this section, we arrive at the deformation gradient tensor F j 

nd three strain vectors λ j 
i 

(with i = 1 − 3 ) of the beam config-

ration �j referenced to the straight beam configuration �00 . In

ection 3.4 , we derive the deformation gradient tensor F r j and the

train vectors λ
r j 
i 

of the beam configuration �j referenced to the

nitially curved reference configuration � . 
0 
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Fig. 1. Schematic diagram showing geometric description of configurations �1 , �2 and �3 . 

Fig. 2. Mathematical structures and various mappings associated with the beam configurations. 
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3.1. Deformation gradient tensor and the strain vectors 

Consider infinitesimal vector d R 00 = d ξi E i ∈ T p �00 (or in T p S 00 )

that deforms to d R j ∈ T φ j (p) � j (or in T ˜ φ j (p) 
S j ). If p ∈ �00 we have

differential map d φ j : d R 00 � −→ d R j , else if p ∈ S 00 , then d ̃

 φ j :

d R 00 � −→ d R j . 

The deformation gradient tensor F j maps a tangent vector from

undeformed configuration to the deformed configuration. Since

S 00 ∩ �00 = S 00 (and S j ∩ � j = S j ), for any p ∈ S j ∩ � j , we have

φ j (p) = 

˜ φ j (p) . The tangent space on surface has the dimension

2, whereas the tangent space on the deformed (or undeformed)

configuration has the dimension 3. But we can express any vector

(which is a geometric object) in either { E i } or { d i } frame. Hence, for

any vector v ∈ (T p �00 ∩ T p S 00 ) , at the point p ∈ (�00 ∩ S 00 ) , we
 v  
ave d φ j ( v ) = d ̃

 φ j ( v ) = F j v . Thus the expression of scalar strain

eveloped for a surface-mounted strain gauge in Section 4 is ap-

licable to the strain gauge embedded in the beam as well. 

From Eq. (23) of Chadha and Todd (2017b) , 

 j = 

d R j 

d R 00 

= R j,ξi 
� E i . (28)

or j = 1 , the first component of infinitesimal vector d R 00 strains,

hereas the other two components just experience rotation be-

ause of Euler–Bernoulli’s rigid cross-section assumption in the

onfiguration �1 (refer section 3.1.1 of Chadha and Todd (2017b) ).

or j � = 1, the second and the third component of the infinitesimal

ector d R strains as well, owing to the coupled Poisson’s and
00 
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arping effect. Thus we define, 

∂ R j 

∂ξi 

= λ j 
i + d i . (29) 

ere, λ j 
i 

represents i th strain vector in the �j configuration. There-

ore, from Eqs. (4) , (28) and (29) , we can write the expression of

eformation gradient tensor for the configuration �j referenced to

he configuration �00 as 

 j = ( λ j 
i + d i ) � E i = λ j 

i � E i + Q . (30)

he deformation gradient tensor F j can be written as 

F j = V j Q = Q U j ;
 j = λ j 

i � d i + I 3 ;
 j = λ

j 

i � E i + I 3 . 

(31) 

ere, λ
j 

i = Q 

T λ j 
i 

is the material form of the vector λ j 
i 

(refer section

.2.3 of Chadha and Todd (2017b) ). The vector V j and U j represent

he left stretch tensor and right stretch tensor , respectively, for the

eformed state �j referenced to the configuration �00 . In compo-

ent form, the deformation gradient tensor and the stretch tensors

an be written as [
F j 

]
d p �E q 

= 

[
F j 

]
E p �E q 

= 

[
U j 

]
E p �E q 

= 

[
V j 

]
d p �E q 

= 

displacement gradient tensor [ ∇ �00 
u j ] d p �E q ︷ ︸︸ ︷ ⎡ 

⎣ 

〈
λ j 

1 , d 1 

〉 〈
λ j 

2 , d 1 

〉 〈
λ j 

3 , d 1 

〉〈
λ j 

1 , d 2 

〉 〈
λ j 

2 , d 2 

〉 〈
λ j 

3 , d 2 

〉〈
λ j 

1 , d 3 

〉 〈
λ j 

2 , d 3 

〉 〈
λ j 

3 , d 3 

〉
⎤ 

⎦ + 

[ 

1 0 0 

0 1 0 

0 0 1 

] 

;

F j pq 

]
d p �E q 

= 

〈 
λ j 

q , d p 

〉 
+ δpq . (32) 

he notation [ F j ] d p �E q implies that in the operation F j . d R 00 = d R j ,

he component of the vector d R 00 is expressed in { E i } frame and

he components of the vector d R j obtained after the operation is in

 d i } frame. The displacement gradient tensor for the configuration

j referenced to �00 is given by ∇ �00 
u j , where u j = R j − R 00 . 

We are now in the position to elaborate on the fully-coupled

oisson’s effect. For the deformed configuration �2 , the strain vec-

ors may be obtained using Eqs. (25) and (29) , thus giving 

λ2 
1 , d 1 

〉
= 

(
ε 1 + ξ3 κ2 − ξ2 κ3 + W ,ξ1 

)
. (33) 

ntuitively, 〈 λ2 
1 , d 1 〉 is the axial strain field across the cross-section

ue to midcurve axial strain, bending and warping. Therefore, we

an write Eq. (26) as 

ˆ ξi = 

(
1 − ν

(
ε 1 + ξ3 κ2 − ξ2 κ3 + W ,ξ1 

))
ξi for i = 2 , 3 . (34) 

he strain vectors for the final deformed state �3 can be obtained

sing the expression of position vector in Eqs. (27) and (29) as 

3 
1 = 

(
ε + 

ˆ ξ3 d 3 ,ξ1 
+ 

ˆ ξ2 d 2 ,ξ1 
+ 

ˆ ξ3 ,ξ1 
d 3 + 

ˆ ξ2 ,ξ1 
d 2 + W ,ξ1 

d 1 + W d 1 ,ξ1 

)

= 

⎛ 

⎝ 

ε 1 = 〈 ε , d 1 〉 ︷ ︸︸ ︷ 
( (1 + e ) cos γ11 − 1 ) + ̂

 ξ3 κ2 − ˆ ξ2 κ3 + W ,ξ1 

⎞ 

⎠ d 1 

+ 

⎛ 

⎝ 

ε 2 = 〈 ε , d 2 〉 ︷ ︸︸ ︷ 
(1 + e ) sin γ12 − ˆ ξ3 κ1 + 

ˆ ξ2 ,ξ1 
+ W κ3 

⎞ 

⎠ d 2 

+ 

⎛ 

⎝ 

ε 3 = 〈 ε , d 3 〉 ︷ ︸︸ ︷ 
(1 + e ) sin γ13 + ̂

 ξ2 κ1 + 

ˆ ξ3 ,ξ1 
− W κ2 

⎞ 

⎠ d 3 ;

3 
2 = W ,ξ2 

d 1 + 

(
ˆ ξ2 ,ξ2 

− 1 

)
d 2 + 

ˆ ξ3 ,ξ2 
d 3 ;
3 
3 = W ,ξ3 

d 1 + 

ˆ ξ2 ,ξ3 
d 2 + 

(
ˆ ξ3 ,ξ3 

− 1 

)
d 3 . (35)

.2. Physical interpretation of λ j 
i 

Consider an infinitesimal vector d ξ 1 E 1 in the undeformed

tate �00 joining two material points ( ξ 2 , ξ 3 ) ∈ �00 ( ξ 1 ) and

(ξ2 , ξ3 ) ∈ �00 (ξ1 + d ξ1 ) . Similarly, consider an infinitesimal vector

 ξ 2 E 2 connecting two material points ( ξ 2 , ξ 3 ) ∈ �00 ( ξ 1 ) and (ξ2 +
 ξ2 , ξ3 ) ∈ �00 (ξ1 ) . Finally, consider an infinitesimal vector d ξ 3 E 3 

onnecting two material points ( ξ 2 , ξ 3 ) ∈ �00 ( ξ 1 ) and (ξ2 , ξ3 +
 ξ3 ) ∈ �00 (ξ1 ) . These three vectors transform to the following in

he deformed state �j 

 j ( d ξi E i ) = d ξi ( λ
j 
i + d i ) for i = 1 − 3 and j = 1 − 3 . (36)

he Einstein summation is suppressed in the above equation. The

ndex i represent the infinitesimal vectors. Therefore, for a unit arc

ength element 

j 
1 = F j E 1 − d 1 . (37) 

or the unit vectors E 2 and E 3 , (along the direction of d ξ 2 E 2 and

 ξ 3 E 3 , respectively), we see that 

j 
2 = F j E 2 − d 2 ; λ j 

3 = F j E 3 − d 3 . (38) 

herefore, λ j 
i 

represents the strain vector in the deformed state �j 

orresponding to the vector E i in the undeformed state �00 . The

ction of deformation gradient tensor on an infinitesimal vector

 R 00 can be understood from Eq. (30) . The vector d R 00 is subjected

o rigid body rotation (the contribution due to Q in Eq. (30) ) and

hange in magnitude (the contribution due to λ j 
i 
� E i , sum implied

ver i ). The outer product λ j 
i 
� E i filters out the i th component of

he vector d R 00 (for each i ) and strains it along the vector λ j 
i 
. 

.3. Deformation of the unit vectors 

It is insightful to observe the deformation of vectors E i (not

ecessarily at the centroid) with i = 1 − 3 in the deformed state

3 . Consider the infinitesimal vectors d ξ 1 E 1 , d ξ 2 E 2 and d ξ 3 E 3 as

escribed in Section 3.2 . As explained before, the deformation gra-

ient tensor maps an infinitesimal vector d R 00 to d R 3 . One might

onder as to what the deformation of a unit length vectors E i ,

hich is not infinitesimally small, means. The idea is that if the

eformation gradient tensor deforms the vector, say d R 00 = d ξi E i ∈
 p �00 (no sum on i ) to some vector d R 3 ∈ T φ3 (p) �3 , then the

ector E i ∈ T p �00 deforms to 
d R 3 
d ξi 

∈ T φ3 (p) �3 . Mathematically, for a

oint p ∈ �00 the fact F j ( d ξ1 E 1 ) ∈ T φ j (p) � j implies F j E 1 ∈ T φ j (p) � j 

nd F j (d ξ 1 E 1 ) ‖ F j E 1 . One must understand that this deformation

s different from the real deformed state of a finite length vector

which may be some curve!). 

This idea of deformation of the unit vector or a unit arc length

lement is useful to understand the strain vectors and to interpret

he contributions to the strain due to various finite strain parame-

ers. Section [4.1] of Schutz (2009) is an excellent read on the idea

f element in continuum mechanics. 

.3.1. Deformation of the unit vector E 1 

It is clear from Eqs. (35) and (37) that 

 3 E 1 = λ3 
1 + d 1 

= 

(
(1 + e ) cos γ11 + 

ˆ ξ3 κ2 − ˆ ξ2 κ3 + W ,ξ1 

)
d 1 

+ 

(
(1 + e ) sin γ12 − ˆ ξ3 κ1 + 

ˆ ξ2 ,ξ1 
+ W κ3 

)
d 2 

+ 

(
(1 + e ) sin γ13 + 

ˆ ξ2 κ1 + 

ˆ ξ3 ,ξ1 
− W κ2 

)
d 3 ; (39) 
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Fig. 3. Flowchart showing deformation of the unit vector E 1 in the configuration �3 referenced to the configuration �00 . 
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The Fig. 3 demonstrates straining of the vector E 1 (not necessarily

along the midcurve). Each subsequent step in the flowchart does

not represent superimposition; rather, each step represents the in-

clusion of various deformation effects, as indicated. 

Certain points interpreting Fig. 3 are discussed below, 

1. Fig. 3 is an improved version of Fig. 3 in Chadha and

Todd (2017b) . The transformation of the vector E 1 as showed

in Fig. 3 considers the final deformed state as �3 that incorpo-

rates fully-coupled Poisson’s and warping effect. 

2. Effects 1 and 2 represent the strain due to finite shear and

midcurve axial deformation. Effect 1 is special case of effect 2,

when there is no shear. The vector E 1 transforms to the vector

ε + d 1 if we consider effect 1 and 2 only. 

3. Effect 3 addresses the strain in the vector E 1 for a unit arc

length element ( d ξ1 = 1) due to differential Poisson’s deforma-

tion. Fig. 4 gives a geometric description of effect 1 and 3. 

4. Effects 4, 5 and 6 represent the strain due to bending and tor-

sion about the vectors d 3 , d 2 and d 1 respectively. Unlike the

description in Chadha and Todd (2017b) that utilizes the point

( ξ 2 , ξ 3 ) to define bending and torsion strains, we use ( ̂  ξ2 , 
ˆ ξ3 )

to capture bending and torsion strains (notice the terms like
ˆ ξ2 κ1 , 

ˆ ξ2 κ2 , 
ˆ ξ2 κ3 etc.). This is direct consequence of the fully-

coupled Poisson’s effect. 

5. Effect 7 represents axial strain in E 1 due to differential warping

deformation causing an additional axial strain of W ,ξ1 
along d 1 .

6. Effect 8 describes the strain W d 1 ,ξ1 
= W ( κ3 d 2 − κ2 d 3 ) . Note

that effect 7 and 8 are obtained by realizing the strain contri-

bution due to the quantity (W d 1 ) ,ξ1 
. In effect 7, the director

d 1 is kept constant but the change in the warping function is

considered. Whereas, in effect 8, the warping deformation re-

mains unchanged but the change in the orientation of director

d 1 is considered (attributed to bending about d 2 and d 3 ). Fig. 5

describes effect 7 and 8. 

3.3.2. Deformation of the unit vector E 2 (or E 3 ) 

The deformation of the vector E 2 is explored considering the

deformation of the cross-section �00 ( ξ 1 ). Consider an infinitesimal

vector d ξ E ∈ � ( ξ ) that deforms to d ξ ( F E ) in the deformed
2 2 00 1 2 3 2 
onfiguration �3 . From Eqs. (35) and (38) , 

 3 E 2 = W ,ξ2 
d 1 ︸ ︷︷ ︸ 

Effect b 

+ 

ˆ ξ2 ,ξ2 
d 2 + 

ˆ ξ3 ,ξ2 
d 3 ︸ ︷︷ ︸ 

Effect a 

(40)

t is observed that there are two effects that governs the defor-

ation in this case. Effect a represents the straining in the vec-

or d ξ 2 E 2 due to in-plane deformation of the cross-section from

00 ( ξ 1 ) → �3 ( ξ 1 ) attributed to the fully-coupled Poisson’s trans-

ormation P ξ1 
. Effect b represents the straining due to the out of

lane deformation of the cross-section attributed to warping. Fig. 6

llustrates the deformation of the vector E 2 . 

It is clear from Eq. (30) that the deformation gradient tensor

 j in the deformed configuration �j referenced to the undeformed

tate �00 can be obtained if the expression of λ j 
i 

is known (for

 = 1 − 3 ). Appendix A.2 gives the expressions of λ j 
i 

for other de-

ormed states. 

.4. Deformation gradient tensor of the deformed state referenced to 

he curved reference state 

Consider that the curved reference beam configuration �0 ob-

ained by straining �00 such that the total length of the midcurve

emains the same and there is no shear or torsion in the cross-

ections. Consider an infinitesimal vector d R 00 in the straight con-

guration �00 that transforms to d R 0 in the curved reference state

0 such that from Eq. 29 of Chadha and Todd (2017b) , we have 

 0 = 

d R 0 
d R 00 

= ε0 � E 1 + Q 0 ;

ε0 = 

ε0 1 ︷ ︸︸ ︷ 
(ξ3 κ02 − ξ2 κ03 ) d 0 1 . 

(41)

he vector ε0 represents the strain vector. The parameters κ02 (ξ1 )

nd κ03 (ξ1 ) represents the finite bending curvature field for

he curved reference state �0 . Noting Eq. 32 and Eq. 35 from

hadha and Todd (2017b) , we have 

 F 0 | = 1 + 〈 ε0 , d 0 1 〉 = 1 + ε0 1 ; (42a)

 

−1 
0 = Q 

T 
0 

[ 
I 3 − 1 

| F 0 | ( ε0 � d 0 1 ) 
] 
. (42b)
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Fig. 4. Geometric description of effect 1 and 3:- deformation of vector E 1 considering differential Poisson’s deformation in the cross section �4 ( ξ 1 ) and �4 (ξ1 + d ξ1 ) . 

Fig. 5. Geometric description of effect 7 and 8. 
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Fig. 6. Deformation of the infinitesimal vector d ξ 2 E 2 . 

Fig. 7. Deformation of a finite length curve on the beam surface. 
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Here, | F 0 | represents the determinant of the tensor F 0 . For
proof of the identity (42b) refer section 3.1.3 in Chadha and
Todd (2017b) . Note that the displacement gradient matrix
[ ∇ �00 

u 0 ] d 0 l �E m , with u 0 = R 0 − R 00 , has rank 1 and is nonsingu-

lar if ε0 � = 0 (it is zero along the midcurve in the configuration
�0 ). This property allowed us to obtain Eq. (42b) using the result
Eq. (1) in Miller Miller (1981) . The deformation gradient tensor F r j 
of the deformed state �j referenced to an initially curved (but un-

strained) reference configuration �0 can be obtained using the re-
sults mentioned above as 

F r j = F j F 
−1 
0 = 

[
( λ j 

i � E i ) + Q 

]
Q 

T 
0 

[
I 3 − 1 

| F 0 | ( ε0 � d 0 1 ) 

]

= 

[
( λ j 

i � d 0 i ) + Q r 

]
−
[ 〈 ε0 , d 0 1 〉 

| F 0 | 
(
λ j 

1 � d 0 1 

)
+ 

1 

| F 0 | ( Q r ε0 ) � d 0 1 

]
= ( λ

r j 
i 

� d 0 i ) + Q r . (43)

n the above equation, the relative strain vectors λ
r j 
i 

are given as 

r j 
1 

= 

1 
| F 0 | 
(
λ j 

1 − Q r ε0 

)
;

λ
r j 
2 

= λ j 
2 ; λ

r j 
3 

= λ j 
3 . 

(44)

n component form, 

 F r j pq 
] d p �d 0 q 

= 

〈
λ

r j 
q , d p 

〉
+ δpq . (45)
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Physically, λ
r j 
i 

represents the strain vector in the deformed state

j corresponding to the vector d 0 i in the undeformed state �0 .

ppendix A.3 elaborates the vector λ
r j 
1 

for various deformed con-

gurations �j . Appendix A.4 discusses the procedure to obtain de-

ormation gradient tensor of a deformed configuration with respect

o another deformed state. 

. Measurement model for finite length and discrete strain 

auge 

.1. On finite length strain gauge measurement 

.1.1. Geometric description of the deformation of finite strain gauge 

Consider a strain gauge of finite length l 0 (not necessarily small)

ttached to the surface of beam S 00 in the undeformed state �00 .

et a ∈ S 00 and b ∈ S 00 represent two ends of the finite strain

auge. Let us consider the unstrained segment of FBG sensor as

 space curve α : [0 , l 0 ] −→ S 00 , with α(0) = a and α(l 0 ) = b such

hat 

(t) = ξi (t) E i , t ∈ [0 , l 0 ] , (ξ1 , ξ2 , ξ3 ) ∈ S 00 . (46)

The curve α( t ) is parameterized by its arclength t . There-

ore, α,t (t) ∈ T α(t) S 00 is a unit tangent vector along the curve.

ere, T α(t) S 00 represents the tangent space of the manifold

 00 restricted to the curve α( t ). The curve α( t ) maps to

he curve ˜ φ j ( α(t)) = β j (t) : [0 , l 0 ] −→ S j , such that F j α,t (t) =
j,t (t) ∈ T ˜ φ( α(t)) 

S j . The vector field βj, t ( t ) is not a unit vector as

 is not the arc length of the curve β( t ). The magnitude of the tan-

ent vector βj, t ( t ) can be obtained as 

 β j,t (t) | = 

〈
β j,t (t) , β j,t (t) 

〉 1 
2 = 

〈
F j α,t (t) , F j α,t (t) 

〉 1 
2 

= 

〈
α,t (t) , F T j F j α,t (t) 

〉 1 
2 

= 

〈
α,t (t) , C j α,t (t) 

〉 1 
2 = 

√ 

C j pq 
αp,t αq,t (47) 

ere, C j = F T j F j = U 

T 
j U j represents the right Cauchy Green defor-

ation tensor . In fact, the Cauchy Green deformation tensor can

e thought as a push-forward Riemannian Metric (refer chapter 2

f Do Carmo (1992) ) in the deformed configuration �j (and the

urface S j as well). This is because for any pair of tangent vector

 1 , v 2 ∈ T p �00 (or T q S 00 ), the tensor C j associates an inner prod-

ct 〈 F j v 1 , F j v 2 〉 on the tangent space T φ( p ) �j (or T ˜ φ(q ) 
S j ) such that

 j v 1 , F j v 2 ∈ T φ( p ) �j (or T ˜ φ(q ) 
S j ). The length of the curve β( t ) as a

unction of the parameter t is obtained as 

 j ( t ) = 

∫ t 

0 

∣∣β j,t ( k ) 
∣∣d k = 

∫ t 

0 

√ [
C j pq 

αp,t αq,t 

]
( t= k ) d k, (48) 

he scalar strain ˜ e j (t) at the material point ( ξ 1 ( t ), ξ 2 ( t ), ξ 3 ( t )) ∈ �j 

nd the average scalar strain ˜ e 
avg 
j 

in the strain gauge is 

˜ e j (t) = | β j,t (t) | − 1 ;

˜ 
 

avg 
j 

= 

l j (t = l 0 ) 

l 0 
− 1 . 

(49) 

.1.2. Illustration 

Consider a cantilever beam with circular cross-section of ra-

ius r = 0 . 05 m and length l 0 = 1 m. Let the finite length

train gauge join the material point a = (0 , 0 , 0 . 05) ∈ S 00 and b =
(1 , 0 , 0 . 05) ∈ S 00 giving a straight curve α(t) = ξ1 (t) E 1 + 0 . 05 E 3 

ith t ≡ ξ 1 ∈ [0, 1]. Note that in this case ξ1 ,t (t) = 1 . Hence,

,t (t) = E 1 . Let the beam be subjected to the following finite strain

arameters, 

1 (ξ1 ) = 2 π, e (ξ1 ) = 0 . 1 , with ν = 0 . 3 . (50)

he deformed state for this example is �3 with vanishing κ2 , κ3 

nd W . It is intuitive that the curve α( t ) deforms to β3 (t) ∈ S 3 
hence j = 3) which is a helix with pitch length l p = (1 + e ) = 1 . 1 m,

adius r 1 = (1 − eν) r and number of turn n turn = 1 . From the equa-

ion of length of helix, the length of the curve β3 ( t ) can be ob-

ained as, 

 2 = 2 πn turn 

√ 

r 2 
1 

+ 

(
l p 

2 π

)2 

= 1 . 141 m ;
˜ e avg 

3 
= 14 . 1% . 

(51) 

ow we obtain the length of the curve β3 ( t ) using the discussion

n previous section and the result (30) . We have 

β3 ,t = F 3 α,t ( t ) = λ3 
1 ( t ) + d 1 = ( 1 + e ( ξ1 ( t ) ) ) d 1 

− ˆ ξ3 ( t ) κ1 ( ξ1 ( t ) ) d 2 + 

ˆ ξ2 ( t ) κ1 ( ξ1 ( t ) ) d 3 . 
(52) 

ince the undeformed curve (a mathematical equivalent of un-
trained finite length strain gauge) is along E 1 with ξ2 = 0 , we

ave ˆ ξ2 (t) = 0 and 

ˆ ξ3 (t) = (1 − eν) r. Hence, 

 2 = 

∫ 1 

0 

〈
β3 ,t , β3 ,t 

〉 1 
2 d t = 

∫ 1 

0 

√ (
(1 + e ) 2 + (1 − eν) r κ1 

)2 
d t = 1 . 141 m. 

(53) 

hus, the results from Eqs. (51) and (53) are exactly the same. 

.2. On discrete “point” strain measurements 

In strict sense, a discrete point strain gauge is an absurd idea

ecause a point does not strain. In reality, a discrete strain gauge

as a small but finite undeformed gage length associated with it.

he discrete strain gauge with small gauge length can be treated

y considering it as an infinitesimal vector such that its orienta-

ion in the undeformed state is known and gage length represents

he length of the vector. This can help us estimate strain in aver-

ge sense, by assuming that the finite strain parameters along the

ength of discrete strain gauge is constant throughout its length.

e consider the value of the deformation gradient tensor at the

enter point of the strain gauge. Since the gauge length of discrete

train gauge is small and the finite strain parameters are continu-

us, this approach gives an excellent estimation of the scalar strain

alue. 

.2.1. Orientation of the surface strain gauge in the undeformed state 

00 

Consider the undeformed configuration �00 that consist of con-

inuously varying family of planar cross-sections �00 ( ξ 1 ). Consider

 strain gauge attached to the point q 00 = 

(
ξ g 

1 
, ξ g 

2 
, ξ g 

3 

)
∈ S 00 such

hat the unit direction vector n 00 ∈ T q 00 
S 00 . The strain gauge can

e located from the point on the midcurve p 00 = (0 , 0) ∈ �00 

(
ξ g 

1 

)
y the vector r 

g 
00 

= ξ g 
2 

E 2 + ξ g 
3 

E 3 . The tangent plane T q 00 
S 00 

s spanned by the unit orthonormal vectors t 00 

(
ξ g 

1 
, ξ g 

2 
, ξ g 

3 

)
−

˜ 
 00 

(
ξ g 

1 
, ξ g 

2 
, ξ g 

3 

)
. The vector ˜ t 00 lies in the plane spanned by E 1 −

 

g 
00 

, such that 

˜ 
 00 = cos ˜ μE 1 + sin ˜ μ

(
r g 

00 

| r g 
00 

| 
)

= cos ˜ μE 1 + 

⎛ 

⎝ 

ξ g 
2 

sin ˜ μ√ 

ξ g 2 

2 
+ ξ g 2 

3 

⎞ 

⎠ E 2 

+ 

⎛ 

⎝ 

ξ g 
3 

sin ˜ μ√ 

ξ g 2 

2 
+ ξ g 2 

3 

⎞ 

⎠ E 3 . (54) 

he vector t 00 represents the unit tangent vector to the periphery

00 of the cross-section �00 

(
ξ g 

1 

)
, such that 

 00 = E 1 ×
(

r g 
00 

| r g 
00 

| 
)

= −

⎛ 

⎝ 

ξ g 
3 √ 

ξ g 2 

2 
+ ξ g 2 

3 

⎞ 

⎠ E 2 + 

⎛ 

⎝ 

ξ g 
2 √ 

ξ g 2 

2 
+ ξ g 2 

3 

⎞ 

⎠ E 3 . 

(55) 
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Fig. 8. Orientation of the strain gauge in undeformed configuration �00 . 
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The vector n 00 makes an angle μ with the vector ˜ t 00 at the point

q 00 . Fig. 8 describes the orientation of the strain gauge in the un-

deformed state. The expression for n 00 is obtained as 

n 00 = cos μ˜ t 00 + sin μt 00 . (56)

If the configuration �00 consists of the same cross-sections (not

varying along the beam), then ˜ μ = 0 . 

As, d ̃

 φ : T q 00 
S 00 −→ T ˜ φ(q 00 ) 

S j , the tangent space T ˜ φ(q 00 ) 
S j is

spanned by the normal basis vectors 

(
F j . t 00 

| F j . t 00 | , 
F j . ̃ t 00 

| F j . ̃ t 00 | 
)

. These ba-

sis vectors are not orthogonal unless F j = Q at the point q 00 . 

4.2.2. Expression of scalar strain value of discrete strain gauge 

Consider a discrete strain gauge with the finite (but small)

gauge length l g with the orientation n 00 in the undeformed state.

Let the center point of the strain gauge be attached to the mate-

rial point q 00 . Considering the strain gauge as the vector l g n 00 , the

scalar strain e j in the deformed state �j is, 

e j = 

Stretch ˆ λ j ︷ ︸︸ ︷ 〈
F j (q 00 ) n 00 , F j (q 00 ) n 00 

〉 1 
2 −1 . (57)

Eq. (57) defines nominal strain . We can obtain natural strain, La-

grangian strain, Eulerian strain, and logarithmic strain fields us-

ing the expression of stretch 

ˆ λ j (refer to Section 4.2 of Asaro and

Lubarda (2006) ). Note that a similar expression can be obtained by

using Eqs. (48) and (49) such that the deformation gradient ten-

sor is assumed to be constant F j ( q 00 ) (considering its value at the

center of the strain gauge) along the length of the discrete strain

gauge. 

In Todd et al. (2013) and Chadha and Todd (2017a) , the scalar

strain was obtained using the expression (for j = 1 as the de-

formed state considered was �1 ), 

e 1 = 

〈
λ1 

1 , n 1 

〉
. (58)

We assumed that the unit direction vector n 00 transforms to the

unit vector n 1 = Q n 00 . Eq. (58) captures bending and axial strains

in the same sense as Eq. (57) but it fails to capture finite strains

due to multiple deformation effects. The result obtained from Eq.

(58) also depends on the orientation of the strain gauge n 00 . For

instance, consider a discrete strain gauge with finite length at-

tached to beam along the direction n 00 = E 1 such that the center

of the strain gauge is at point q 00 . Suppose that the beam has cir-

cular cross-section and is subjected to pure torsion with curvature
eld κ1 (ξ1 ) . From Eq. (57) , the scalar strain in the strain gauge will

e, 

 1 = 

√ 

1 + r 2 g κ
2 
1 (ξ

g 
1 
) − 1 = 

r 2 g κ
2 
1 (ξ

g 
1 
) 

2 

− r 4 g κ
4 
1 (ξ

g 
1 
) 

8 

+ O [ κ5 
1 ] . (59)

here, r g = 

√ 

ξ g 2 

2 
+ ξ g 2 

3 
. If we use Eq. (57) with n 1 = Q E 1 = d 1 ,

t is clear that the estimated scalar strain is zero. But this is not

rue because an infinitesimal vector along E 1 will be strained due

o torsion. Therefore, Eq. (57) represents the corrected version of

q. (58) . In fact, Eq. (58) worked well in Todd et al. (2013) as bend-

ng and axial strains were the only deformation effects considered,

hereas in Chadha and Todd (2017a) , the problem considered be-

onged to the class of large deformation but small strain with dom-

nant cause of strain being bending and axial deformation. 

. Summary and conclusions 

This paper can be divided into three broad domains. The first

omain addresses the coupling between Poisson’s and warping ef-

ect and obtaining a fully-coupled Poisson’s transformation with

he aim of developing a comprehensive kinematics of Cosserat

eams. The kinematics developed is not restricted to the Euler-

ernoulli rigid cross-section assumption, and it is simultaneously

aintaining the single manifold nature of the problem. The idea

f having prior knowledge of the cross-sectional dependence of

he warping function (function of the form �( ξ 2 , ξ 3 )) is certainly

esirable for maintaining the single manifold nature of the kine-

atics, but it yields only an approximate solution. The primary

eason to investigate the coupling between Poisson’s and warp-

ng effect (along with contribution to warping due to torsional

nd bending induced shear) and develop a fully-coupled Poisson’s

ransformation, is to further refine the kinematics of the Cosserat

eam model. This is beneficial for both forward modeling analyses

nd solving inverse problems like shape reconstruction from strain

easurements. 

We detail three different deformed configurations of the beam

ith �3 representing the most general configuration and �1 − �2 

epresenting more constrained cases. The coupled Poisson’s and

arping is developed in a two-stage process. We arrive at the gov-

rning differential equations to capture warping in an asymmetric

eam cross-section subjected to curvatures and axial strains for the

inear elastic case. The inclusion of axial strain and Poisson’s effect

n the small displacement field leads to an inconsistent governing
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ifferential equation for warping ( Eqs. (61a) and (61b) ). We obtain

he consistent differential equation ( Eqs. (68a) and (68b) ) by deliber-

tely enforcing the inconsistency condition ( Eqs. (65) and (66) ) into

he inconsistent warping equation . The consistent warping equation

uggests a solution to the warping function W that is not explic-

tly dependent on the axial strain e ( ξ 1 ) and its derivatives. How-

ver, we carefully note that the elimination of inconsistency re-

ults in consistent differential equations for warping that could be

olved, but the accuracy of the solution and their closeness to

he exact 3D solution is open to further investigation. Motivated

rom the work of Burgoyne and Brown (1994) and Brown and Bur-

oyne (1994) , we delineated two possible solution approaches to

btain the warping function in variable separable form. Stage one

epresents the incorporation of the effects of axial strains and Pois-

on’s transformation on warping. The details of first stage of cou-

ling are mentioned in Appendix A.1 . In stage two, we propose

he fully-coupled Poisson’s transformation by considering the ax-

al strain contributions due to midcurve strain, finite shear, bend-

ng curvatures, and out of plane warping. This yields fully coupled

oisson’s and warping effect . We note that the proposed Poisson’s

ransformation governing the in-plane deformation does not in-

lude the deformation due to local buckling, which is a prominent

henomenon in thin walled beams. However, the kinematic frame-

ork developed is completely general. 

The second domain of investigation in this work develops the

inematics of the beam that includes fully-coupled Poisson’s and

arping effect along with finite curvatures, finite shear, and mid-

urve axial strains. The deformation gradient tensor and strain

ector in a general deformed state �j referenced to both a

athematically straight beam configuration �00 and an initially

urved reference configuration �0 are derived. The contribution

o deformation due to various effects are carefully explored and

xplained. 

The third domain of this exposition exploits the results devel-

ped in the first half of the paper to investigate the mechanics of

iscrete and finite length strain gauges . We arrive at the expres-

ion of the scalar strain value that would be observed in strain

auges perfectly attached to the surface (or embedded into the

eam) of Cosserat beam in terms of finite strain parameters and

llustrate a simple example to validate our results. We critically re-

iew the formula of scalar surface strain that was proposed in our

revious work on shape sensing (for finite deformation but small

train problem) and compare it to the expression arrived at this

ork. 

In a much broader sense, this paper studies the differential

eometry of the Cosserat beam. The results developed here will

e used to extend our work on shape reconstruction that uti-

ize local differential geometric parameters (finite strain parame-

ers) to predict the global deformed state of the structure. The

esults in this paper establishes a relationship between the fi-

ite strain parameters and the measurement of a (perfectly af-

xed) strain gauge. This development may be used to estimate fi-

ite strain fields of the beam using a countable number of surface

train gauge. Furthemore, we can arrive at the deformation adap-

ive shape functions to develop FEM formulation of the beam more

ccurately. 
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ppendix A 

1. Inconsistencies in the governing differential equation of warping 

nd the associated challenges 

1.1. Preliminary results 
Before we present a deeper discussion, we note the following

esults. From the definition of t and 

˜ t as in Eq. (22b) , we have 

 

t d � = 

∮ 
〈 [(ξ2 E 2 + ξ3 E 3 ) × n ] , E 1 〉 d � = 

∮ 
〈 n , (−ξ3 E 2 + ξ2 E 3 ) 〉 d �

= 

∫ 
�

Div (−ξ3 E 2 + ξ2 E 3 ) d ξ2 d ξ3 = 0 ; (60a) 

 

˜ t d � = 

∮ 
〈 n , (ξ2 E 2 + ξ3 E 3 ) 〉 d � = 

∫ 
�

Div (ξ2 E 2 + ξ3 E 3 ) d ξ2 d ξ3 = 2 A (ξ1 ) ;
(60b) 

 

�
∇ 

2 W d ξ2 d ξ3 = 

∮ 
W , n d �. (60c) 

From here on, we will represent the area of the cross-section

 ( ξ 1 ) as A . Eq. (60c) is obtained using the Gauss-divergence the-

rem. Recalling the governing differential equation for warping

22a) and (22b) , 

 

2 W + 

˜ λ

G 

(
W ,ξ1 ξ1 

− ξ2 κ3 ,ξ1 
+ ξ3 κ2 ,ξ1 

)
+ λe ,ξ1 

= 0 on �(ξ1 ) ;
(61a) 

 , n = −κ1 t + e ,ξ1 
ν ˜ t on �(ξ1 ) . (61b) 

1.2. The inconsistency 

Integrating Eq. (61b) along the boundary of the cross-section

( ξ 1 ) and using the result (60a) and (60b) , we have 
 

W , n d � = −κ1 

∮ 
t d � + e ,ξ1 

ν

∮ 
˜ t d � = 2 νAe ,ξ1 

. (62)

ntegrating Eq. (61a) across the cross-section �( ξ 1 ) and realizing

hat 
∫ 
� ξi d ξ2 d ξ3 = 0 for i = 2 and 3, we have 

 

�
∇ 

2 W d ξ2 d ξ3 = −
˜ λ

G 

∫ 
�

W ,ξ1 ξ1 
d ξ2 d ξ3 − λAe ,ξ1 

. (63)

sing Eqs. (60c) and (63) , we have 

 

W , n d � = −
˜ λ

G 

∫ 
�

W ,ξ1 ξ1 
d ξ2 d ξ3 − λAe ,ξ1 

. (64)

omparing Eqs. (62) and (64) , we clearly observe an inconsistency

hich can be resolved only if 

 

�
W ,ξ1 ξ1 

d ξ2 d ξ3 = −
( 

GA (ξ1 ) 
(
λ + 2 ν

)
˜ λ

) 

e ,ξ1 

= −
(

˜ λ − 2 νλ

˜ λ

)
A (ξ1 ) e ,ξ1 

. (65) 

rom the definition of the reduced axial force field P 1 ( ξ 1 ) in

q. (23) , we obtain the following result 

 1 ,ξ1 
= ( ̃ λ − 2 νλ) Ae ,ξ1 

+ ̃

 λ

∫ 
�

W ,ξ1 ξ1 
d ξ2 d ξ3 (66)

he inconsistency condition (65) and the Eq. (66) implies that the

nconsistency can be resolved if 

 1 ,ξ1 
= 0 or P 1 (ξ1 ) = Constant (67)

hese kind of inconsistencies or anomalies are commonly observed

n simplified theories. For instance, the anomaly of the torque

or the case of wholly-restrained end warping was observed by

https://doi.org/10.13039/100006752
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Burgoyne and Brown (1994) . If the axial strain and the Poisson’s

effect is not included in the displacement field (20) , it would re-

quire 
∫ 
� W ,ξ1 ξ1 

d ξ2 d ξ3 = 0 . This condition is automatically satisfied

if P 1 = 0 along the length of the beam, which is physically true if

axial deformation and force is ignored as in Eq. (7) of Brown and

Burgoyne (1994) . At the most fundamental level, the reason of this

inconsistency lies primarily in our objective to obtain a simpli-

fied warping function and our assumption of zero body force. In

our opinion, the inconsistency indicates that the rigid body cross-

sectional deformation due to constant axial strain field across the

cross-section attributed to midcurve axial strain e ( ξ 1 ) does not af-

fect warping (essentially an out-of-plane deformation), which is

clearly observed in Eqs. (79) and (96) . 

A1.3. Proposed solution to eliminate the inconsistency condition and 

obtain the warping function 

We attempt to resolve the inconsistency by enforcing the con-

dition (65) in the inconsistent warping equation. Substituting for

e ,ξ1 
(obtained using Eq. (65) ) in Eqs. (61a) and (61b) , we obtain

the modified consistent governing differential equation 

∇ 

2 W + C 1 
(
W ,ξ1 ξ1 

− ξ2 κ3 ,ξ1 
+ ξ3 κ2 ,ξ1 

)
+ C 2 λ

∫ 
�

W ,ξ1 ξ1 
d ξ2 d ξ3 = 0 on �(ξ1 ) , (68a)

 , n = −κ1 t + 

{ 
νC 2 

∫ 
�

W ,ξ1 ξ1 
d ξ2 d ξ3 

} 
˜ t on �(ξ1 ) , (68b)

where 

 1 = 

˜ λ

G 

and C 2 = − 1 

A 

(
˜ λ

˜ λ − 2 νλ

)
. (69)

A1.4. Solution approach 1: Solution of warping function using series 

sum 

We assume a solution of the variable separable form 

 (ξ1 , ξ2 , ξ3 ) = 

∞ ∑ 

r=0 

(
κ(r) 

1 
�1 r + κ(r) 

2 
�2 r + κ(r) 

3 
�3 r + e (r) �4 r 

)
(70)

and aim at obtaining the functions � ir , where i = 1 − 4 . Substitut-

ing Eq. (70) into the consistent differential Eqs. (68a) and (68b) ,

we can obtain the governing differential equations for the func-

tions � ir with i = 1 − 4 . 

The governing differential equations for the functions �1 r : 

For r = 0 and 1, 

∇ 

2 �10 = 0 on �(ξ1 ) with �10 , n = −t on �(ξ1 ) ;
∇ 

2 �11 = 0 on �(ξ1 ) with �11 , n = 0 on �(ξ1 ) ; (71)

For r ≥ 2, 

∇ 

2 �1 r = −
[ 

C 1 �1 ( r−2 ) + λC 2 

∫ 
�

�1 ( r−2 ) d ξ2 d ξ3 

] 
on �( ξ1 ) ;

�1 r, n = 

[ 
νC 2 

∫ 
�

�1 ( r−2 ) d ξ2 d ξ3 

] 
˜ t on �( ξ1 ) . 

(72)

From Eq. (71) , we note that �11 = constant . To avoid any rigid

body motion of the cross-section due to warping, we take �11 = 0 .

Eq. (72) then implies �1 r = 0 for any odd r . 

If the cross-section is symmetric, 
∫ 
� �10 d ξ2 d ξ3 = 0 as �10 is

anti-symmetric. This reduces the governing differential equation

for �1 r for any even r = 2 , 4 , 6 , . . . to, 

∇ 

2 �1 r = −C 1 �1(r−2) on �(ξ1 ) with �1 r, n = 0 on �(ξ1 ) ;
It is easy to prove then that 

∫ 
� �1 r = 0 for any even r = 2 , 4 , 6 , . . .

implying that the non-trivial solution to the functions �1 r is anti-

symmetric. Thus, we observe that the anti-symmetric nature of the
olution (contribution to warping due to torsion) for the symmet-

ic cross-section is preserved. 

The governing differential equations for the functions �2 r : 

For r = 0 and 1, 

∇ 

2 �20 = 0 on �(ξ1 ) with �20 , n = 0 on �(ξ1 ) ;
 

2 �21 = −C 1 ξ3 on �(ξ1 ) with �21 , n = 0 on �(ξ1 ) . 
(73)

For r ≥ 2, 

 

2 �2 r = −
[ 

C 1 �2(r−2) + λC 2 

∫ 
�

�2(r−2) d ξ2 d ξ3 

] 
on �(ξ1 ) ;

�2 r, n = 

[ 
νC 2 

∫ 
�

�2(r−2) d ξ2 d ξ3 

] 
˜ t on �(ξ1 ) . (74)

The governing differential equations for the functions �3 r : 

For r = 0 and 1, 

∇ 

2 �30 = 0 on �(ξ1 ) with �30 , n = 0 on �(ξ1 ) ;
 

2 �31 = C 1 ξ2 on �(ξ1 ) with �31 , n = 0 on �(ξ1 ) . 
(75)

For r ≥ 2, 

 

2 �3 r = −
[
C 1 �3(r−2) + λC 2 

∫ 
� �3(r−2) d ξ2 d ξ3 

]
on �(ξ1 ) ;

�3 r, n = 

[
νC 2 

∫ 
� �3(r−2) d ξ2 d ξ3 

]
˜ t on �(ξ1 ) . 

(76)

ollowing similar reasoning as before, we observe from

qs. (74) and (76) that �20 = 0 and �30 = 0 . That implies,

2 r = 0 and �3 r = 0 for any even r . The inclusion of bending

urvature in warping results in a non-linear strain profile across

he cross-section. 

The governing differential equations for the functions �4 r : 

For r = 0 and 1, 

 

2 �40 = 0 on �(ξ1 ) with �40 , n = 0 on �(ξ1 ) ;
∇ 

2 �41 = 0 on �(ξ1 ) with �41 , n = 0 on �(ξ1 ) . 
(77)

For r ≥ 2, 

 

2 �4 r = −
[ 

C 1 �4(r−2) + λC 2 

∫ 
�

�4(r−2) d ξ2 d ξ3 

] 
on �(ξ1 ) ;

�4 r, n = 

[ 
νC 2 

∫ 
�

�4(r−2) d ξ2 d ξ3 

] 
˜ t on �(ξ1 ) . (78)

q. (77) implies �40 = 0 and �41 = 0 . This result coupled with the

q. (78) results in �4 r = 0 for any r . This result eliminates the ex-

licit contribution to warping due to axial strain. Hence, we are

eft with a solution of the form 

W ( ξ1 , ξ2 , ξ3 ) = 

(
κ1 �10 + κ( 2 ) 

1 
�12 + κ( 4 ) 

1 
�14 + . . . 

)
+ 

(
κ( 1 ) 

2 
�21 + κ( 3 ) 

2 
�23 + κ( 5 ) 

2 
�25 + . . . 

)
+ 

(
κ( 1 ) 

3 
�31 + κ( 3 ) 

3 
�33 + κ( 5 ) 

3 
�35 + . . . 

)
. 

(79)

1.5. Physical interpretation of the warping function �31 (or �21 ) 

Claim : The warping contribution κ(1) 
3 

�31 represents the out-of-

lane deformation of the cross-section due a non-uniform shear

tress field induced by bending about E 3 . This implies that the

lope κ(1) 
3 

∂�31 
∂ξ2 

is the shear strain profile of the cross-section. 

roof. The warping is dependent on the geometry of the cross sec-

ion. Therefore, let us consider a rectangular prismatic beam with

he depth d and breadth b to proceed with further discussion. 

For the proof, we assume that the claim is true and arrive at the

overning equation for �31 as in Eq. (75) . If M ( ξ 1 ) and V ( ξ 1 ) repre-

ent the cross-sectional bending moment (about E 3 ) and shear re-

pectively, then we know from the theory of bending that V = 

d M 

d ξ1 

nd M = κ3 EI 33 , where I 33 = 

1 
12 bd 3 is the moment of inertia about

 3 axis. The expression for the shear strain profile of rectangular

ection is given as 

12 = 

6 V 

Gb d 3 

(
d 2 

4 

− ξ 2 
2 

)
= 

6 EI 33 κ
( 1 ) 
3 

Gb d 3 

(
d 2 

4 

− ξ 2 
2 

)
. (80)
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ote that Poisson’s effect is ignored in traditional beam theory lim-

ting the constant C 1 = 

E 
G (in Eq. (69) ). Substituting for I 33 and C 1 ,

he shear strain profile reduces to 

12 = 

C 1 κ
( 1 ) 
3 

2 

(
d 2 

4 

− ξ 2 
2 

)
. (81) 

rom our claim, 

κ( 1 ) 
3 

∂�31 

∂ξ2 

= γ12 ;
∂�31 

∂ξ2 

= 

C 1 
2 

(
d 2 

4 

− ξ 2 
2 

)
. 

(82) 

aking the derivative with ξ 2 , and noting that γ 12 is not a function

f ξ 3 (implying 
∂ 2 �31 

∂ξ2 
3 

= 0 ), we can write 

 

2 �31 = −C 1 ξ2 on �( ξ1 ) . (83) 

e also note that for bending about E 3 , we have 
∂�31 
∂ξ2 

| 
ξ2 = d 2 

= 0

nd 

∂�31 
∂ξ3 

= 0 (because �31 does not have ξ 3 dependence), imply-

ng 

31 , n = 0 on �(ξ1 ) . (84) 

his completes the proof. �

urther Comment : 

Timoshenko’s beam theory assumes plane cross-section re-

ains plane after deformation but relaxes the restriction of cross-

ection remaining perpendicular to the neutral surface. Thus as-

uming constant shear strain of γ12 = 

1 . 5 V 
Gbd 

= 1 . 5 E G 

(
d 2 

4 

)
for a rect-

ngular section with a shear coefficient 1.5. This leads us to de-

ne an equivalent warping function that incorporates Timoshenko

hear deformation as 

�t 
31 = 

E 

2 G 

(
d 2 

4 

ξ2 

)
;

�t 
21 = 

E 

2 G 

(
d 2 

4 

ξ3 

)
;

(85) 

uch that if v ( ξ 1 ) and w ( ξ 1 ) represent total transverse displace-

ent (including shear and bending) of the midcurve in E 2 and E 3 

espectively and θ2 ( ξ 1 ) and θ3 ( ξ 1 ) represents bending rotations

bout the axes E 2 and E 3 , respectively, then 

∂v 
∂ξ1 

− θ3 = κ(1) 
3 

�t 
31 ,ξ2 

∂w 

∂ξ1 

+ θ2 = κ(1) 
2 

�t 
21 ,ξ3 

. 

(86) 

sing Eq. (82) and the fact that �31 (0 , 0) = �21 (0 , 0) = 0 , the

arping functions �31 (or �21 ) are obtained as, 

31 = 

E 
2 G 

(
d 2 

4 
ξ2 − ξ 3 

2 

3 

)
= �t 

31 − E 
2 G 

(
ξ 3 

2 

3 

)
;

�21 = 

E 
2 G 

(
d 2 

4 
ξ3 − ξ 3 

3 

3 

)
= �t 

21 − E 
2 G 

(
ξ 3 

3 

3 

)
. 

(87) 

ig. A.9 illustrates the discussion here. 

1.6. A practically useful warping function for large deformation 

From the previous discussion, its clear that �t 
21 

and �t 
31 

are

he linear part of the warping function �21 and �31 respectively.

he displacement field assumed in (20) does not have shear de-

ormation added explicitly. However, the inclusion of the warp-

ng component κ(1) 
3 

�31 and κ(1) 
2 

�21 generalizes the shear defor-

ation assumed by Timoshenko to include out of plane bending-

nduced shear warping. Therefore, we should be careful in using
his general warping solution if the shear deformations are explic-

tly added. Since the kinematics developed in this paper includes

nite shear, we propose a simplified warping function for the large

eformation problem as 

 (ξ1 , ξ2 , ξ3 ) = κ1 (ξ1 )�10 + κ(1) 
2 

(�21 − �t 
21 ) + κ(1) 

3 
(�31 − �t 

31 ) . 

(88) 

econdly, an alternative warping function that can be defined as an

mproved version of warping used by Simo and Vu-Quoc (1991) (as

efined by Eq. (11) ) as 

 (ξ1 , ξ2 , ξ3 ) = p(ξ1 )�s + κ(1) 
2 

(�21 − �t 
21 ) + κ(1) 

3 
(�31 − �t 

31 ) . 

(89) 

ere, p ( ξ 1 ) is the warping amplitude and an additional unknown

nite strain parameter. 

1.7. The end support conditions for warping 

There are two possible end conditions for warping– wholly re-

trained and the unrestrained . Wholly restrained warping implies

 = 0 at the end support. Unrestrained warping would eliminate

 contribution of warping to the stress component σ 11 at the end

upport resulting in W ,ξ1 
= 0 . If a solution of form (79) is used, we

an obtain the warping end conditions by imposing the following

arping wholly restrained: κ(p) 
1 

= 0 ; κ(q ) 
2 

= 0 and κ(q ) 
3 

= 0 

for all even p ≥ 0 and for all odd q ≥ 1 . 

Warping unrestrained: κ(p) 
1 

= 0 ; κ(q ) 
2 

= 0 and κ(q ) 
3 

= 0 

for all odd p ≥ 1 and for all even q ≥ 2 . 

(90) 

1.8. An alternative way of arriving at the end support conditions for

arping 

Consider an end support condition with warping unrestrained.

uch a warping function must satisfy W ,ξ1 
= 0 for all the mate-

ial points ( ξ 2 , ξ 3 ) across the cross-section of end support. Let us

all this as unrestrained warping condition . Differentiating Eq. (68b) ,

ith respect to the arc-length ξ 1 , we get 

 

(1) 
, n = −κ(1) 

1 
t + 

{
νC 2 

∫ 
� W 

(3) d ξ2 d ξ3 

}
˜ t . (91) 

s an implication of unrestrained warping condition , we have

 

(1) 
, n = 0 . This can be guaranteed from Eq. (91) if 

(1) 
1 

= 0 and 

∫ 
� W 

(3) d ξ2 d ξ3 = 0 , (92) 

t the end support. Eq. (92) is a part of much larger set of end con-

itions. To proceed further, we take the derivative of Eq. (68a) with

espect to ξ 1 and use the previous result (92) , obtaining 

W 

( 3 ) + 

1 

C 1 
∇ 

2 W 

( 1 ) = 

1 

C 1 

(
ξ2 κ

( 2 ) 
3 

− ξ3 κ
( 2 ) 
2 

)
. (93) 

nce again, as a result of unrestrained warping condition , we have

 

2 W 

(1) = 0 . This result coupled with Eq. (93) , implies W 

(3) =
1 

C 1 

(
ξ2 κ

(2) 
3 

− ξ3 κ
(2) 
2 

)
, which is identically satisfied if 

 

(3) = 0 , κ(2) 
2 

= 0 and κ(2) 
3 

= 0 . (94) 

e can continue the process of obtaining odd derivatives of

qs. (68a) and (68b) with respect to ξ 1 and proceed along the

ame reasoning used to obtain Eqs. (92) and (94) to arrive at the

nd condition for the case of unrestrained warping as described in

q. (90) . In the very same way, we can obtain the set of end con-

itions for warping wholly restrained . 
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Fig. A1. Example of shear deformation of the cross-section in the beam subjected to plane bending. 
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A1.9. Solution approach 2: Solution of warping function using 

trigonometric series 

The warping function W depends on the curvatures and the

end support conditions. For a small (linear) deformation, we de-

fine the component of the displacement field v 1 ( ξ 1 ), v 2 ( ξ 1 ), v 3 ( ξ 1 )

that represents the motion of the midcurve due to axial deforma-

tion and bending. For small deformations, v 1 ,ξ1 
= e (ξ1 ) , v 2 ,ξ1 ξ1 

=
κ3 and v 3 ,ξ1 ξ1 

= −κ2 . Secondly if θ represents the angular rota-

tion due to torsion, then θ,ξ1 
= κ1 (ξ1 ) . To demonstrate the solution

procedure of the modified consistent differential Eqs. (68a) and

(68b) using trigonometric series, we assume simple support at the

end as in Brown and Burgoyne (1994) . The admissible end condi-

tions for small deformation are 

θ = v 2 = v 3 = 0 at ξ1 = 0 , L 0 ;
M 2 = M 3 = 0 at ξ1 = 0 , L 0 . 

(95)

Since, the consistent governing equation does not explicitly

depend on the axial strain, we ignore the admissibility of

the deformation field v 1 ( ξ 1 ). We choose the strain parameters

such that the displacement and force boundary conditions are

satisfied. 

κ1 (ξ1 ) = 

∞ ∑ 

m =1 

k 1 m 

cos 

(
mπξ1 

L 0 

)
;

κ2 (ξ1 ) = 

∞ ∑ 

m =1 

k 2 m 

sin 

(
mπξ1 

L 0 

)
;

κ3 (ξ1 ) = 

∞ ∑ 

m =1 

k 3 m 

sin 

(
mπξ1 

L 0 

)
;

 (ξ1 , ξ2 , ξ3 ) = �0 (ξ2 , ξ3 ) + 

∞ ∑ 

m =1 

�m 

(ξ2 , ξ3 ) cos 

(
mπξ1 

L 0 

)
. (96)

Substituting Eq. (96) into the equation set (68a) and (68b) and ob-

serving the orthogonality of trigonometric functions leads to the

following, 

Governing equation for �0 : 

∇ 

2 �0 = 0 on �( ξ1 ) with �0 , n = 0 on �( ξ1 ) . (97)

Following similar reasoning as above, �0 = 0 , to avoid any rigid

body contribution due to warping. 

Governing equation for �m 

with m ≥ 1: 
∇ 

2 �m 

− C 1 

(
m 

2 π2 

L 2 
0 

)
�m 

= C 1 

(
mπ

L 0 

)
( k 3 m 

ξ2 − k 2 m 

ξ3 ) 

+ C 2 λ

(
m 

2 π2 

L 2 
0 

)∫ 
�

�m 

d ξ2 d ξ3 on �( ξ1 ) ;
(98a)

m, n = −k 1 m 

t −
{

C 2 ν

(
m 

2 π2 

L 2 
0 

)∫ 
�

�m 

d ξ2 d ξ3 

}
˜ t on �( ξ1 ) . 

(98b)

The integral ∫ ��m 

d ξ 2 d ξ 3 can be obtained from the e ,ξ1 
field,

y substituting the warping function as in Eq. (96) into the incon-

istency condition (65) and utilizing the orthogonality relationship

f trigonometric functions, 

I m 

( ξ1 ) = 

∫ 
�

�m 

d ξ2 d ξ3 = 

(
˜ λ − 2 νλ

˜ λ

)(
L 2 0 

m 

2 π2 

)
A ( ξ1 ) 

sec 

(
mπξ1 

L 0 

)∫ L 0 

0 

e ,ξ1 

(
cos 

mπξ1 

L 0 

)
d ξ1 . 

(99)

imilarly, the Fourier coefficients k 1 m 

, k 2 m 

and k 3 m 

can be ob-

ained as, 

 1 m 

= 

2 

L 0 

∫ L 0 

0 

κ1 (ξ1 ) cos 

(
mπξ1 

L 0 

)
d ξ1 ; (100a)

 2 m 

= 

2 

L 0 

∫ L 0 

0 

κ2 (ξ1 ) sin 

(
mπξ1 

L 0 

)
d ξ1 ; (100b)

 3 m 

= 

2 

L 0 

∫ L 0 

0 

κ3 (ξ1 ) sin 

(
mπξ1 

L 0 

)
d ξ1 . (100c)

Check for consistency of Eqs. (98a) and (98b) : 

Using Eq. (98b) , Gauss theorem and the results in Eqs. (60a) and

60b) , we have, ∫ 
�

∇ 

2 �m 

d ξ2 d ξ3 = 

∮ 
�m, n d �

= −k 1 t 

∮ 
t d � −

{
C 2 ν

(
m 

2 π2 

L 2 
0 

)∫ 
�

�m 

d ξ2 d ξ3 

}∮ 
˜ t d �

= −
{

2 νAC 2 

(
m 

2 π2 

L 2 
0 

)∫ 
�

�m 

d ξ2 d ξ3 

}
. (101)
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ntegrating Eq. (98a) across the cross-section �( ξ 1 ), we have, ∫ 
�

∇ 

2 �m 

d ξ2 d ξ3 = C 1 

(
m 

2 π2 

L 2 
0 

)∫ 
�

�m 

d ξ2 d ξ3 

+ C 1 
(

mπ
L 0 

)⎛ 

⎜ ⎝ 

k 3 m 

0 ︷ ︸︸ ︷ ∫ 
�

ξ2 d ξ2 d ξ3 −k 2 m 

0 ︷ ︸︸ ︷ ∫ 
�

ξ3 d ξ2 d ξ3 

⎞ 

⎟ ⎠ 

+ C 2 A λ
(

m 

2 π2 

L 2 
0 

)∫ 
� �m 

d ξ2 d ξ3 = 

(
C 2 A λ + C 1 

)(
m 

2 π2 

L 2 
0 

)∫ 
� �m 

d ξ2 d

(102) 

he consistency between Eqs. (98a) and (98b) can be proved from

qs. (101) and (102) , if we can show that C 1 + C 2 A λ = −2 νAC 2 . Us-

ng the definitions of C 1 , C 2 , and λ, we have 

 1 + C 2 A λ = 

˜ λ

G 

−

λ︷ ︸︸ ︷ (
˜ λ + 2 ν(G − ˜ λ) 

G 

)(
˜ λ

˜ λ − 2 νλ

)

= 2 

(
ν ˜ λ

˜ λ − 2 νλ

)
= −2 νAC 2 . (103) 

herefore, the governing differential equations for �m 

are consis-

ent. 

Solving for �m 

: 

Consider a solution of the form 

m 

= �0 m 

+ 

3 ∑ 

i =1 

�im 

k im 

. (104) 

he functions � jm 

for j = 0 − 3 satisfies four set of differential

quations. The governing differential equations for �0 m 

are, 

 

2 �0 m 

− C 1 

(
m 

2 π2 

L 2 
0 

)
˜ λ

G 

�0 m 

= C 2 λ
m 

2 π2 

L 2 
0 

I m 

(ξ1 ) at �(ξ1 ) ;
(105a) 

0 m, n = −C 2 ν

(
m 

2 π2 

L 2 
0 

)
I m 

(ξ1 ) ̃ t at �(ξ1 ) . (105b) 

The governing differential equations for �1 m 

are, 

 

2 �1 m 

− C 1 

(
m 

2 π2 

L 2 
0 

)
˜ λ

G 

�1 m 

= 0 at �(ξ1 ) ; (106a) 

1 m, n = −t at �(ξ1 ) . (106b) 

The governing differential equations for �2 m 

are, 

 

2 �2 m 

− C 1 

(
m 

2 π2 

L 2 
0 

)
˜ λ

G 

�2 m 

= −C 1 

(
mπ

L 0 

)
ξ3 at �(ξ1 ) ; (107a) 

2 m, n = 0 at �(ξ1 ) . (107b) 

The governing differential equations for �3 m 

are, 

 

2 �3 m 

− C 1 

(
m 

2 π2 

L 2 
0 

)
˜ λ

G 

�3 m 

= C 1 

(
mπ

L 0 

)
ξ2 at �(ξ1 ) ; (108a) 

3 m, n = 0 at �(ξ1 ) . (108b) 

We can obtain the functions � jm 

with j = 0 − 4 by solving the

quation set (105a) - (108b) . Therefore, the warping function W can

e obtained using Eq. (96) , the Fourier coefficients as defined in

quation set (100a) - (100c) and (104) . 

In this appendix, we have detailed the first stage of geometric

oupling between axial deformation, Poisson’s effect and warping.

ur novel aim to obtain a simplified but refined warping model to
evelop comprehensive kinematics (such that we retain the single

anifold nature of the kinematics) leads to an inconsistent warp-

ng equation . Elimination of inconsistency result in consistent dif-

erential equations for warping that can be solved. For ν = 0 , the

resented theory of warping reduces to the theory presented by

urgoyne and Brown (1994) and Brown and Burgoyne (1994) . 

2. The vector λ j 
i 

for various deformed configurations 

For the deformed state �1 

λ1 
1 = ( ( ( 1 + e ) cos γ11 − 1 ) + ξ3 κ2 − ξ2 κ3 ) d 1 

+ ( ( 1 + e ) sin γ12 − ξ3 κ1 ) d 2 + ( ( 1 + e ) sin γ13 + ξ2 κ1 ) d 3 ;
λ1 

2 = λ1 
3 = 0 . 

or the deformed state �2 

2 
1 = 

(
( (1 + e ) cos γ11 − 1 ) + ξ3 κ2 − ξ2 κ3 + W ,ξ1 

)
d 1 

+ ( (1 + e ) sin γ12 − ξ3 κ1 + W κ3 ) d 2 

+ ( (1 + e ) sin γ13 + ξ2 κ1 − W κ2 ) d 3 ;
2 
2 = W ,ξ2 

d 1 ;
2 
3 = W ,ξ3 

d 1 . 

3. The vector λ
r j 
1 

for various deformed configurations 

r 1 
1 = 

(
1 

ξ3 κ0 2 − ξ2 κ0 3 

)
( ( (1 + e ) cos γ11 − 1 ) + ξ3 ( κ2 − κ0 2 ) 

− ξ2 ( κ3 − κ0 3 )) d 1 

+ ( (1 + e ) sin γ12 − ξ3 κ1 ) d 2 + ( (1 + e ) sin γ13 + ξ2 κ1 ) d 3 . 

r 2 
1 = 

(
1 

ξ3 κ0 2 − ξ2 κ0 3 

)
(((1 + e ) cos γ11 − 1) + ξ3 ( κ2 − κ0 2 ) 

− ξ2 ( κ3 − κ0 3 ) + W ,ξ1 
) d 1 

+ ( (1 + e ) sin γ12 − ξ3 κ1 + W κ3 ) d 2 

+ ((1 + e ) sin γ13 + ξ2 κ1 − W κ2 ) d 3 . 

r 3 
1 = 

(
1 

ξ3 κ0 2 − ξ2 κ0 3 

)
(((1 + e ) cos γ11 − 1) + 

ˆ ξ3 κ2 

− ξ3 κ0 2 − ˆ ξ2 κ3 + ξ2 κ0 3 + W ,ξ1 
) d 1 

+ 

(
(1 + e ) sin γ12 − ˆ ξ3 κ1 + W κ3 

)
d 2 

+ 

(
(1 + e ) sin γ13 + 

ˆ ξ2 κ1 − W κ2 

)
d 3 . 

4. Deformation gradient tensor referenced to another deformed state

We consider a deformation of class �3 . Suppose F 3 p and F 3 q 
epresent the deformation gradient tensor of a deformed state �3 p 

nd �3 q respectively, referenced to the undeformed state �00 . If

 d p i } and { d q i } represent the director triad for the configurations

3 p and �3 q , we have, Q p = d p i � E i and Q q = d q i � E i (sum on i ).

e obtain the deformation gradient tensor F 3 qp 
of the state �3 q 

eferenced to �3 p as 

 3 qp 
= F 3 q F 

−1 
3 p 

here, 

 3 p = λ3 p 
i � E i + Q p ;

F 3 q = λ3 q 
i � E i + Q q . 
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In the equation above, λ3 p 
i 

and λ3 q 
i 

represent the strain vectors re-

lated to the configuration �3 p and �3 q respectively. 

It is interesting to note that unlike the deformation gra-

dient matrix [ ∇ �00 
u 0 ] d p l �E m , the matrix [ ∇ �00 

u p ] d p l �E m =
[ λ3 p 

1 � E 1 ] d p l �E m + [ λ3 p 
2 � E 2 ] d p l �E m + [ λ3 p 

3 � E 3 ] d p l �E m has max-

imum rank 3. It has rank 3 and is nonsingular if 
〈
λ3 p 

1 , d p 1 

〉
� = 0 ,〈

λ3 p 
2 , d p 2 

〉
� = 0 and 

〈
λ3 p 

3 , d p 3 

〉
� = 0 . Here the index l and m are used

to represent the frames. Therefore, the expression for F −1 
3 p 

can

not be obtained from Eq. 1 in Miller (1981) . Consider the case

where the matrix [ ∇ �00 
u p ] d p l �E m has rank 3 and is nonsingular.

The fact that the matrix [ λ3 p 
1 � E 1 ] d p l �E m , [ λ3 p 

2 � E 2 ] d p l �E m and

[ λ3 p 
3 � E 3 ] d p l �E m are rank 1 and non-singular allows us to use the

theorem in page 69 of Miller (1981) to arrive at the expression for

F −1 
3 p 

. 
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