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Introduction

Authors’ introduction
Welcome to your study of IB Diploma Programme (DP) Higher Level (HL) physics! This 
textbook has been written to match the specifications of the new physics curriculum 
for first examinations in 2025 and gives comprehensive coverage of the course.

Content
The book covers the content that is common to all DP physics students and the 
additional material for HL students. 

HL The additional HL material is labeled as such, and the sequence of the chapters 
matches the sequence of the Subject Guide themes, with textbook chapter numbering 
matching the Guide topic numbering. 

Each chapter starts with a caption for the opening image, the Guiding Questions, an 
introduction (which gives the context of the topic and how it relates to your previous 
knowledge) and the Understandings for the topic. These will give a sense of what is 
to come, with the Understandings providing the ultimate checklists for when you are 
preparing for assessments.

How can the motion of a body be described quantitatively and qualitatively?

How can the position of a body in space and time be predicted?

Guiding Questions

The text covers the course content using plain language, with all scientific terms 
explained. We have been careful to apply the same terminology you will see in IB 
examinations in worked examples and questions.

Linking Questions that relate topics to one another can be found throughout, with a 
hint as to where the answer might be located. The purpose of Linking Questions is 
to connect different areas of the subject to one another – between topics and to the 
Nature of Science (NOS) more generally. These questions will encourage an open mind 
about the scope of the course during your first read through and will be superb stimuli 
for revision.

Each chapter concludes with Guiding Questions revisited and a summary of the 
chapter, in which we describe how we sought to present the material and what you 
should now know, understand and be able to do.

How can the motion of a body be described quantitatively and qualitatively?

How can the position of a body in space and time be predicted?

Guiding Questions revisited

How does the motion 
of a mass (A.1) in a 
gravitational fi eld (D.1) 
compare to the motion 
of a charged particle in 
an electric fi eld (D.2)?
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Aims
Using this textbook as part of your course will help you meet these IB DP physics aims 
to:

• develop conceptual understanding that allows connections to be made between 
different areas of the subject, and to other DP sciences subjects

• acquire and apply a body of knowledge, methods, tools and techniques that 
characterize science

• develop the ability to analyze, evaluate and synthesize scientific information 
and claims

• develop the ability to approach unfamiliar situations with creativity and 
resilience

• design and model solutions to local and global problems in a scientific context
• develop an appreciation of the possibilities and limitations of science
• develop technology skills in a scientific context
• develop the ability to communicate and collaborate effectively
• develop awareness of the ethical, environmental, economic, cultural and social 

impact of science.

Nature of physics
Physicists attempt to understand the nature of the Universe. They seek to expand 
knowledge through testing hypotheses and explaining observations, and by a 
commitment to checking and re-checking in a bid to set out basic principles. ‘Doing 
physics’ involves collecting evidence to reach partial conclusions, creating models to 
mediate and enable understanding, and using technology.

Observation

Can we explain this? Define quantities

Introduce laws

Explain observation

Solve problems

Apply laws

No

Yes

You will find examples of the nature of physics throughout this book, such as the 
scattering experiments in E.1, the speed of light in A.5, the relationships between 
pressure, volume and temperature in B.3, and detecting radiation in E.3.

Nature of Science
Throughout the course, you are encouraged to think about the nature of scientific 
knowledge and the scientific process as it applies to physics. Examples are given of 
the evolution of physical theories as new information is gained, the use of models 
to conceptualize our understanding, and the ways in which experimental work is 

Physics flowchart.

INTRODUCTION
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enhanced by modern technologies. Ethical considerations, environmental impacts, 
the importance of objectivity and the responsibilities regarding scientists’ code of 
conduct are also considered here. The emphasis is not on memorization, but rather 
on appreciating the broader conceptual themes in context. We have included some 
examples but hope that you will come up with your own as you keep these ideas at the 
forefront of your learning. 

The following table provides a comprehensive list of the elements of the Nature of 
Science that you should become familiar with.

Element Details

Making 
observations

Using the human senses, or instruments, and identifying new � elds for 
exploration.

Identifying 
patterns and 
trends

Using inductive reasoning (from speci� c cases to more general laws) 
and classi� cation of bodies (in overlapping ways), and distinguishing 
between correlation (relationships between two variables) and 
causation (when one variable has an e� ect on another).

Suggesting 
and testing 
hypotheses

Provisional qualitative and quantitative relationships with explanations 
before experimentation is carried out, which can then be tested and 
evaluated.

Experimentation The process of obtaining data, testing hypotheses, controlling 
variables, deciding the appropriate quantity of data, and developing 
technology that requires creativity and imagination.

Measuring Recognizing limitations in precision and accuracy, carrying out 
repeats for reliability, and accepting the existence of and quantifying 
the random errors that lead to imprecision and uncertainty and the 
systematic errors that lead to inaccuracy.

Using models Arti� cial representations of natural phenomena that are useful when 
direct observation is di�  cult, and simpli� cations of complex systems in 
the form of physical representations, abstract diagrams, mathematical 
equations or algorithms, which have inherent limitations.

Collecting 
evidence

Used to evaluate scienti� c claims to support or refute scienti� c 
knowledge.

Proposing and 
using theories

Understanding theories (general explanations with wide applicability), 
deductive reasoning (from the general to the speci� c) when testing for 
corroboration or falsi� cation of the theory, paradigm shifts (new and 
di� erent ways of thinking), and laws (that allow predictions without 
explanation).

Falsi� cation Accepting that evidence can refute a claim but cannot prove truth with 
certainty.

Perceiving 
science as a 
shared endeavor

Making use of agreed conventions, common terminology and peer 
review in the spirit of global communication and collaboration.

Commitment to 
global impact

Assessing risk to ensure that no harm is done and the ethical, 
environmental, political, social, cultural, economic and unintended 
consequences that work may have through compliance with ethics 
boards, and by communicating honestly and clearly with the public.

vii
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Learning physics
Approaches to learning
The IB aspires for all students to become more skilled in thinking, communicating, 
social activities, research and self-management.

In physics, thinking might include:

• being curious about the natural world
• asking questions and framing hypotheses based upon sensible 

scientific rationale
• designing procedures and models
• reflecting on the credibility of results
• providing a reasoned argument to support conclusions
• evaluating and defending ethical positions
• combining different ideas in order to create new understandings
• applying key ideas and facts in new contexts
• engaging with, and designing, linking questions
• experimenting with new strategies for learning
• reflecting at all stages of the assessment and learning cycle.

High-quality communication looks like:

• practicing active listening skills
• evaluating extended writing in terms of relevance and structure
• applying interpretive techniques to different forms of media
• reflecting on the needs of the audience when creating engaging presentations
• clearly communicating complex ideas in response to open-ended questions
• using digital media for communicating information
• using terminology, symbols and communication conventions consistently 

and correctly
• presenting data appropriately
• delivering constructive criticism.

The learning you will do socially could involve:

• working collaboratively to achieve a common goal
• assigning and accepting specific roles during group activities
• appreciating the diverse talents and needs of others
• resolving conflicts during collaborative work
• actively seeking and considering the perspective of others
• reflecting on the impact of personal behavior or comments on others
• constructively assessing the contribution of peers.

You will carry out research, in particular during the Internal Assessment, that includes:

• evaluating information sources for accuracy, bias, credibility and relevance
• explicitly discussing the importance of academic integrity and full 

acknowledgement of the ideas of others
• using a single, standard method of referencing and citation
• comparing, contrasting and validating information
• using search engines and libraries effectively.

INTRODUCTION
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And remember that a significant component of learning comes from you. Maybe you 
have even reflected on your skills while reading these bullet points! How competent are 
you at these self-management skills?

• breaking down major tasks into a sequence of stages
• being punctual and meeting deadlines
• taking risks and regarding setbacks as opportunities for growth
• avoiding unnecessary distractions
• drafting, revising and improving academic work
• setting learning goals and adjusting them in response to experience
• seeking and acting on feedback.

Inquiry
Combining the approaches to learning 
above will facilitate your use of the 
tools in physics: experimental 
techniques, technology and 
mathematics. The next chapter 
specifically highlights some 
of these tools; the rest can be 
found throughout the book.

In turn, these tools will enable 
you to thrive in the inquiry 
process, which involves 
exploring and designing, 
collecting and processing data, 
and concluding and evaluating. 
There are opportunities to 
practice the inquiry process 
in this book, and the Internal 
Assessment and Extended Essay 
chapters include eBook links to 
exemplar work. You are also sure to find 
the collaborative sciences project to be a 
highlight, with its:

• inclusion of real-world problems
• integration of factual, procedural and conceptual knowledge through study 

of scientific disciplines
• understanding of interrelated systems, mechanisms and processes
• solution-focused strategies
• critical lens for evaluation and reflection
• global interconnectedness (regional, national and local)
• appreciation of collective action and international cooperation.

Social skills Research skills

Self-management 
skills

Experimental 
techniques

Technology Mathematics

Communication 
skills

Exploring and 
designing

Concluding and 
evaluating

Collecting and 
processing data

Thinking skills

Tools for physics.

ix
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Learner profile
There is an abundance of ways in which your physics course will support your 
all-round growth as an IB learner.all-round growth as an IB learner.

Learning 
attribute

Advice on how to develop

Inquirer • Be curious, conduct research and try to become more independent.
• Ask questions about the world, search for answers and experiment.
• Extend your scientific knowledge and engage with existing research.

Knowledgeable • Explore concepts, ideas and issues, and seek to deepen your understanding of facts and 
procedures.

• Access a variety of resources.
• Apply your knowledge to unfamiliar contexts.

Thinker • Solve complex problems while reflecting on your strategies.
• Analyze methods critically and embrace creativity when seeking solutions.
• Practice reasoning and critical thinking (testing assumptions, formulating hypotheses, 

interpreting data and drawing conclusions from evidence).

Communicator • Accept opportunities to collaborate.
• Step out of your comfort zone during group work, for example, by opening discussions or 

using scientific language.
• Listen to others and share your ideas.

Principled • Take responsibility for your work, promoting shared values and acting in an ethical manner.
• Acknowledge the work of others, cite your sources and reduce waste.
• To show integrity during data collection, consider all data, including that which does not 

match your hypothesis.

Open-minded • Be aware of the existence of different perspectives and models.
• Reject or refine your models due to reasoning, deduction or falsification.
• Challenge perspectives and ideas.

Caring • Protect your environment and aim to improve the lives of others.
• Choose sustainable practices.
• Connect topics to global challenges (like healthcare, energy supply, food production).

Risk-taker • Seek opportunities for learning and challenge.
• Recognize your freedom to try different techniques or methods of learning.
• Collect experimental data in a bid to falsify (not just validate) ideas.

Balanced • Look holistically at your own development and consider how attentive you are to your tasks.
• Have a balanced perspective on scientific issues.
• Organize your time to avoid negative impacts on the emotional or social aspects of your life.

Reflective • Consider why and how success is achieved, and how you might change your approach when 
learning becomes difficult.

• Review your strategies, methods, techniques and approaches, for example, using 
success criteria.

• Reflect on your internal network of knowledge.

INTRODUCTION
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How to use this book
The book is written according to the following approach, in which we use electric 
fields as an example.

Observation

• Two rubbed 
balloons move 
apart

Explanation

• Acceleration

• Unbalanced forces

• Charge

Laws

• Coulomb’s law

• Work done and 
potential energy

Solving problems

• Exploring field 
strength and 
potential gradient

• Interpreting 
further 
observations 
of attraction or 
current electricity

• Anticipating the 
model of the atom

Observation
The aim of the course is to be able to model the physical Universe, so first we must 
consider a physical process.

A student observes two rubbed balloons moving apart and wonders why they repel. 
They realize that there must be an unbalanced force. That’s the beauty of physical laws; 
they are always right. The student recognizes a similarity with gravity, which is related 
to the mass of a body. But gravitational forces are weak and only attractive.

So what is the key property of the body and what is the force? The student does not 
know, so they have to add something to their model of the Universe.

Explanation
Having studied mechanics and particles, the student has some knowledge of the 
fundamentals of physics. They know that a body will only accelerate if there is an 
unbalanced force. We could stop there if this was enough to explain everything, but it 
is not.

The student reads about a new property, charge. Using what they know about 
gravitational fields, they expect to learn about field strength (in this case, electric) and 
wonder if electric forces follow an inverse square law. They carry out an experiment to 
confirm this.

Laws
Some research reveals that electric forces (like all forces) are vectors, that Coulomb’s 
law applies to point charges, and that moving a charge in an electric field requires a 
force (so work is done). 

They then become curious about the energies involved and read about electric 
potential energy. They know, using the tool of mathematics, that the area of a graph is 
the integral of the function and that the reverse of integration is differentiation, so the 
gradient of a graph of potential energy vs position could be force.

The student is unclear about how field strength can be zero when potential energy 
is non-zero. They use a simulation and apply the definitions of field strength and 
potential to a point midway between two equal charges to explore these ideas.

xi
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Solving problems
The student makes two further observations. The first is of the attraction between 
a balloon and a sweater. What might they determine from this? The student then 
observes their teacher demonstrating a simple electric circuit. What is the connection 
between the balloons and the circuit?

Based on observations, physicists define quantities and make up a series of rules 
and laws that fit the observations. They then use these laws to explain further 
observations, make predictions and solve problems. And it goes on! Having added to 
their knowledge, the student could now use what they know about mechanics and 
electricity to develop an understanding of atomic structure.

This example shows how the structure of the book connects factual, procedural and 
metacognitive knowledge and recognizes the importance of connecting learning with 
conceptual understanding. Learning physics is a non-linear, ongoing process of adding 
new knowledge, evolving understanding and identifying misconceptions.

Key to boxes
A popular feature of the book is the different colored boxes interspersed through each 
chapter. These are used to enhance your learning as explained below. 

Nature of Science
This is an overarching theme in the course to promote concept-based learning. 
Through the book, you should recognize some similar themes emerging across 
different topics. We hope they help you to develop your own skills in scientific literacy.

Nature of Science

The principle of conservation of momentum is a consequence of Newton’s 
laws of motion applied to the collision between two bodies. If this applies to 
two isolated bodies, we can generalize that it applies to any number of isolated 
bodies. Here we will consider colliding balls but it also applies to collisions 
between microscopic particles such as atoms.

Global context
The impact of the study of physics is global, and includes environmental, political and 
socio-economic considerations. Examples of this are given here to help you to see the 
importance of physics in an international context.

Interesting fact
These give background information that will add to your wider knowledge of the topic 
and make links with other topics and subjects. Aspects such as historic notes on the 
life of scientists and origins of names are included here.

Dynamic friction is 
less than static friction 
so once a car starts to 
skid on a corner it will 

continue. This is also 
why it is not a good 

idea to spin the wheels 
of a car while going 

round a corner.

Negative time does 
not mean going back 
in time – it means the 

time before you started 
the clock.

INTRODUCTION
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 Skills
These indicate links to SNSEb eBook resources that include ideas for experiments, 
technology and mathematics that will support your learning in the course, and help 
you prepare for the Internal Assessment. Look out for the grey eBook icons.

 Theory of Knowledge
These stimulate thought and consideration of knowledge issues as they arise in 
context. Each box contains open questions to help trigger critical thinking and 
discussion.

 Key fact
These key facts are drawn out of the main text and highlighted in bold. This will help 
you to identify the core learning points within each section. They also act as a quick 
summary for review.

Hint
These give hints on how to approach questions, and suggest approaches that 
examiners like to see. They also identify common pitfalls in understanding, and 
omissions made in answering questions.

Challenge yourself
These boxes contain open questions that encourage you to think about the topic in 
more depth, or to make detailed connections with other topics. They are designed to 
be challenging and to make you think.

Challenge yourself

A projectile is launched perpendicular to a 30° slope at 20 m s−1. Calculate the 
distance between the launching position and landing position.

Toward the end of the book, there are four appendix chapters: Theory of Knowledge 
as it relates to physics, and advice on the Extended Essay, External Assessment and 
Internal Assessment.

eBook
In the eBook you will also find the following:

• answers and worked solutions to all exercises in the book
• lab and activity worksheets
• interactive quizzes
• links to videos
• and links to simulations.

To fi nd the decay 
constant and hence 
half-life of short-lived 
isotopes, the change 
in activity can be 
measured over a period 
of time using a GM 
tube. 

Color is perceived but 
wavelength is measured.

velocity =    
displacement

  _______________
time

   

It is very important to 
realize that Newton’s 
third law is about 
two bodies. Avoid 
statements of this law 
that do not mention 
anything about there 
being two bodies.

xiii
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Questions
In addition to the Guiding and Linking Questions, there are three types of problems in 
this book.

1. Worked examples with solutions
These appear at intervals in the text and are used to illustrate the concepts covered. 
They are followed by the solution, which shows the thinking and the steps used in 
solving the problem.

Worked example 

A body with a constant acceleration of −5 m s–2 is traveling to the right with a 
velocity of 20 m s–1. What will its displacement be after 20 s?

Solution

s = ?

u = 20 m s−1

v = ?

a = −5 m s−2

t = 20 s

To calculate s, we can use the equation: s = ut +    1_2    at2

 s = 20 × 20 +    1_2    (−5) × 202 = 400 − 1000 = −600 m

This means that the final displacement of the body is to the left of the starting 
point. It has gone forward, stopped, and then gone backward.

2. Exercises
Exercise questions are found throughout the text. They allow you to apply your 
knowledge and test your understanding of what you have just been reading. The 
answers to these are accessed via icons in the eBook next to the questions.

Exercise

Q1. Convert the following speeds into m s–1:

 (a) a car traveling at 100 km h–1

 (b) a runner running at 20 km h–1.

INTRODUCTION

xiv
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3. Practice questions
These questions are found at the end of each chapter. They are mostly taken from 
previous years’ IB examination papers. The mark schemes used by examiners when 
marking these questions are given in the eBook next to the questions.

Practice questions

1. Police car P is stationary by the side of a road. Car S passes car P at a constant 
speed of 18 m s−1. Car P sets off to catch car S just as car S passes car P. Car P 
accelerates at 4.5 m s−2 for 6.0 s and then continues at a constant speed. Car P 
takes t seconds to draw level with car S.

(a) State an expression, in terms of t, for the distance car S travels in 
t seconds. (1)

(b) Calculate the distance traveled by car P during the fi rst 6.0 s of its 
motion. (1)

Worked solutions
Full worked solutions to all exercises and practice questions can also be found in the 
eBook using the grey icons next to the questions.

We hope you enjoy your study of IB physics.

Chris Hamper and Emma Mitchell

xv
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xvii

A vernier caliper is a device that relates to all three aspects of the tools in physics: experimental 
techniques, technology and mathematics.

As discussed in the Introduction, an excellent IB physicist should be aware of the 
course aims, appreciate the nature of physics (and science more broadly), and know 
how to learn and how to inquire.

The skills associated with inquiry have already been discussed and will be referred to 
once again in the Internal Assessment and Extended Essay chapters. In this chapter, 
you will find out about the three tools that physicists benefit most from: experimental 
techniques, technology and mathematics.

Read this chapter before embarking on your studies and continue to refer back to 
the skills addressed, as almost all elements could be required in any of the topics that 
follow. When preparing for External Assessment (in particular Paper 1B), you may 
wish to attempt the practice questions that are located in the eBook.

Tool 1: Experimental techniques

Physics is about modeling the physical Universe so that we can predict outcomes, but 
before we can develop models, we need to define quantities and measure them. To 
measure a quantity, we first need to invent a measuring device and define a unit. When 
measuring, we should try to be as accurate as possible but we can never be exact – 
measurements will always have uncertainties. This could be due to the instrument or 
the way we use it, or it might be that the quantity we are trying to measure is changing.

Making observations
Before we can try to understand the Universe, we have to observe it. Imagine you are 
a cave person looking up into the sky at night. You would see lots of bright points 
scattered about (assuming it is not cloudy). The points are not the same but how can 
you describe the differences between them? One of the main differences is that you 
have to move your head to see different examples. This might lead you to define their 
position. Occasionally, you might notice a star flashing so would realize that there 
are also differences not associated with position, leading to the concept of time. If you 
shift your attention to the world around you, you will be able to make further close-
range observations. Picking up rocks, you notice some are easy to pick up while others 
are more difficult, some are hot and some are cold, and different rocks are different 
colors. These observations are just the start: to be able to understand how these 
quantities are related, you need to measure them, and before you do that, you need to 
be able to count.

Standard notation 
In this course, we will use some numbers that are very big and some that are 
very small. 602 000 000 000 000 000 000 000 is a commonly used number, as is 
0.000 000 000 000 000 000 16. To make life easier, we write these in standard form. 
This means that we write the number with only one digit to the left of the decimal 
place and represent the number of zeros with powers of 10.

Figure 1 Making 
observations came 
before science.
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So:

602 000 000 000 000 000 000 000 = 6.02 × 1023  (decimal place must be shifted 
right 23 places)

0.000 000 000 000 000 000 16 = 1.6 × 10−19 (decimal place must be shifted left 19 places).

A number’s order of magnitude is the closest whole power of ten. 10-2, 10-1, 100, 101, 
102 and so on are all orders of magnitude.

Exercise 

Q1. Write the following in standard form.

(a) 48 000

(b) 0.000 036

(c) 14 500

(d) 0.000 000 48

Measuring variables
We have seen that there are certain fundamental quantities that define our Universe 
from which all other quantities can be derived or explained. These include position, 
time and mass.

Length and distance
Before we take any measurements, we need to define the quantity. The quantities that 
we use to define the position of different objects are length and distance. To measure 
distance, we need to make a scale and to do that we need two fixed points. We take our 
fixed points to be two points that never change position, for example, the ends of a 
stick. If everyone used the same stick, we will all end up with the same measurement. 
However, we cannot all use the same stick so we make copies of the stick and assume 
that they are all the same. The problem is that sticks are not all the same length, so 
our unit of length is now based on one of the few things we know to be the same for 
everyone: the speed of light in a vacuum. Once we have defined the unit, in this case, 
the meter, it is important that we all use it (or at least make it very clear if we are using 
a different one). There is more than one system of units but the one used in this course 
is the Système International d’Unités (SI units). Here are some examples of distances 
measured in meters:

 distance from the Earth to the Sun = 1.5 × 1011 m

 diameter of a grain of sand = 2 × 10–4 m

 the distance to the nearest star = 4 × 1016 m

 radius of the Earth = 6.378 × 106 m

It is also acceptable to 
use a prefi x to denote 
powers of 10.

Prefi x Value

T (tera) 1012

G (giga) 109

M (mega) 106

k (kilo) 103

c (centi) 10–2

m (milli) 10–3

µ (micro) 10–6

n (nano) 10–9

p (pico) 10–12

f (femto) 10–15

If you set up your 
calculator properly, it 
will always give your 
answers in standard 

form.

Realization that the 
speed of light in a 

vacuum is the same no 
matter who measures it 
led to the speed of light 

being the basis of our 
unit of length.

The meter was originally 
defi ned in terms of 

several pieces of metal 
positioned around 

Paris. This was not very 
accurate so now one 

meter is defi ned as the 
distance traveled by 
light in a vacuum in 

1
299 792 458 of a second.
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xix

Exercise

Q2. Convert the following into meters (m) and write in standard form:

(a) Distance from London to New York = 5585 km

(b) Height of Einstein = 175 cm

(c) Thickness of a human hair = 25.4 μm

(d) Distance to furthest part of the observable Universe = 100 000 million 
million million km.

Time 
When something happens, we call it an event. To distinguish between different events, 
we use time. The time between two events is measured by comparing to some fixed 
value, the second. Time is also a fundamental quantity.

Some examples of times:

 time between beats of a human heart = 1 s

 time for the Moon to go around the Earth = 1 month 

 time for the Earth to go around the Sun = 1 year

Exercise

Q3. Convert the following times into seconds (s) and write in standard form:

(a) 85 years, how long Newton lived

(b) 2.5 ms, the time taken for a mosquito’s wing to go up and down

(c) 4 days, the time it took Apollo 11 to travel to the Moon

(d) 2 hours 52 min 59 s, the time it took for Concord to fl y from London to 
New York.

Mass
If we pick up different objects, we find another difference. Some objects are easy to lift 
up and others are difficult. This seems to be related to how much matter the objects 
consist of. To quantify this, we define mass measured by comparing different objects 
to the standard kilogram.

Some examples of mass:

 approximate mass of a human = 75 kg

 mass of the Earth = 5.97 × 1024 kg

 mass of the Sun = 1.98 × 1030 kg

Exercise

Q4. Convert the following masses to kilograms (kg) and write in standard form:

(a) The mass of an apple = 200 g

(b) The mass of a grain of sand = 0.00001 g

(c) The mass of a family car = 2 tonnes.

The second was 
originally defi ned as 
a fraction of a day 
but today’s defi nition 
is ‘the duration of 
9 192 631 770 periods 
of the radiation 
corresponding to the 
transition between the 
two hyperfi ne levels of 
the ground state of the 
caesium-133 atom’.

If nothing ever 
happened, would there 
be time?

The kilogram was 
the last fundamental 
quantity to be based 
on an object kept in 
Paris. It is now defi ned 
using Planck’s constant. 
What are the benefi ts of 
using physical constants 
instead of physical 
objects?
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Area and volume
The 2-dimensional space taken up by an object is defined by the area and the 
3-dimensional space is volume. Area is measured in square meters (m2) and volume is 
measured in cubic meters (m3). Area and volume are not fundamental units since they 
can be split into smaller units (m × m or m × m × m). We call units like these derived 
units. 

A list of useful area and volume equations is located in your data booklet.

Exercise

Q5. Calculate the volume of a room of length 5 m, width 10 m and height 3 m.

Q6. Using the information from pages xviii-xix, calculate:

(a) the volume of a human hair of length 20 cm

(b) the volume of the Earth.

Density
By measuring the mass and volume of many different objects, we find that if the 
objects are made of the same material, the ratio mass

volume is the same. This quantity is 
called the density. The unit of density is kg m–3. This is another derived unit.

Examples include:

 density of water = 1.0 × 103 kg m–3

 density of air = 1.2 kg m–3

 density of gold = 1.93 × 104 kg m–3

Exercise

Q7. Calculate the mass of air in a room of length 5 m, width 10 m and height 3 m.

Q8. Calculate the mass of a gold bar of length 30 cm, width 15 cm and height 
10 cm.

Q9. Calculate the average density of the Earth.

Displacement
So far, all that we have modeled is the position of objects and when events take place, 
but what if something moves from one place to another? To describe the movement 
of a body, we define the quantity displacement. This is the distance moved in a 
particular direction.

The unit of displacement is the same as length: the meter.

Referring to the map in Figure 2:
If you move from B to C, your displacement will be 5 km north.
If you move from A to B, your displacement will be 4 km west.

N

B

C

A

5 km

Figure 2 Displacements on 
a map.
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Angle
When two straight lines join, an angle is formed. 
The size of the angle can be increased by rotating 
one of the lines about the point where they join (the 
vertex) as shown in Figure 3. To measure angles, we 
often use degrees. Taking the full circle to be 360° 
is very convenient because 360 has many whole 
number factors so it can be divided easily by e.g. 4, 
6, and 8. However, it is an arbitrary unit not related 
to the circle itself.

If the angle is increased by rotating line A, the arc lengths will also increase. So for 
this circle, we could use the arc length as a measure of angle. The problem is that if we 
take a bigger circle, then the arc length for the same angle will be greater. We therefore 
define the angle by using the ratio s

r  , which will be the same for all circles. This unit is 
the radian. 

Summary – Tool 1: Experimental techniques
So far, you will have become familiar with a range of experimental techniques, 
including measurements of:

• length
• time
• mass
• volume 
• angle. 

These tools are prescribed in your Subject Guide.

There are others still to come throughout the textbook. These include 
measurements of:

• force (A.2)
• temperature (B.1)
• electric current (B.5)
• electric potential difference (B.5)
• sound intensity (C.2)
• light intensity (C.2).

You should also be aware of how to recognize and address safety, ethical and 
environmental issues. Try to spot these throughout the textbook, such as the risks of 
high-temperature fluids (B.3) or ionizing radiation (E.3), or the environmental impact 
of using electricity (B.5) or water (C.2) for experimentation.

r s

B

A

θ

Figure 3 The angle between 
two lines.

For one complete 
circle, the arc 
length is the 
circumference = 2πr
so the angle 360° in 
radians = 2πr

r
 = 2π.

So 360° is equivalent 
to 2π.

Since the radian is a 
ratio of two lengths, 
it has no units.

vertex

The ear is an example of a 
sensor. Look out for human-
made sensors throughout 
this book.
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Tool 2: Technology

Technology and physics are closely linked. Technology enables the advancement 
of physics, and the pursuit of scientific understanding stimulates improvements in 
technology. The fields impacted are as wide-ranging as communication, medicine and 
environmental sustainability. 

Every measurement requires an instrument, which is itself inherently technological. 
Technology facilitates collaboration, which is to the benefit of international teams 
of scientists and IB physicists alike. Technology makes the processes carried out by 
physicists much faster, for example, when collecting data or performing calculations. 

A model is a representation of reality. It can be as concise as a single word (e.g. the 
brain is like a ‘computer’) or an equation (e.g. speed is the ratio of distance traveled 
to time taken). Technology supports physicists in forming new models during 
exploratory experimental work (e.g. by making it easy to compare the ‘fit’ of a range of 
mathematical relationships) and in creating simulations that enable experimentation 
without need for a lab.

Summary – Tool 2: Technology
Technology can be used to good effect in physics. The Tool 3: Mathematics section of 
this chapter will reveal that technology can be used to display graphs for representing 
data. In the remainder of the textbook, you can expect to learn about:

• using sensors (A.2, B.1, B.3, C.1, C.4)
• models and simulations for generation of data (B.2, C.4)
• spreadsheets for manipulation of data (B.5)
• computer modeling for processing data (C.1)
• image analysis of motion (C.5, E.1)
• databases for data extraction (C.5, E.5)
• video analysis of motion (E.3)

Tool 3: Mathematics

When counting apples, we can say there are exactly 6 apples, but if we measure 
the length of a piece of paper, we cannot say that it is exactly 21 cm wide. All 
measurements have an associated uncertainty and it is important that this is also 
quoted with the value. Uncertainties cannot be avoided, but by carefully using accurate 
instruments, they can be minimized. Physics is all about relationships between 
different quantities. If the uncertainties in measurement are too big, then relationships 
are difficult to identify. Throughout the practical part of this course, you will be 
trying to find out what causes the uncertainties in your measurements. Sometimes, 
you will be able to reduce them and at other times not. It is quite alright to have big 
uncertainties but completely unacceptable to manipulate data so that the numbers 
appear to fit a predicted relationship.

If the system of numbers 
had been totally 

different, would our 
models of the Universe 

be the same?

Humans can sense light 
intensity, temperature, 
sounds, smells, tastes 
and applied pressure. 

How might technology 
replicate or improve 
upon these senses? 

What else does 
technology enable us to 

measure?

In physics experiments, 
we always quote 

the uncertainties in 
our measurements. 
Shops also have to 
work within given 
uncertainties and 

could be prosecuted if 
they overestimate the 
weight of something.

An approximation 
is similar, but not 
exactly equal, to 

something else (for 
example, a rounded 

number). An estimate 
is a simplification of 

a quantity (such as 
assuming that an apple 

has a mass of 100 g).

 Algodoo® is software that 
enables the simulation of 
ideas that may or may not be 
possible in the lab. Gravity 
can be altered (or removed 
altogether) and materials or 
any desired properties can 
be tested.
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Summary of SI units
The SI system of units is the set of units that are internationally agreed to be used in 
science. It is still OK to use other systems in everyday life (miles, pounds, Fahrenheit), 
but in science, we must always use SI. There are seven fundamental (or base) quantities.

Base quantity Quantity 
symbol

Unit Unit symbol

length x or l meter m

mass m kilogram kg

time t second s

electric current I ampere A

thermodynamic temperature T kelvin K

amount of substance n mole mol

luminous intensity I candela cd

All other SI units are derived units. These are based on the fundamental units and will 
be introduced and defined where relevant. So far we have come across just three.

Derived quantity Symbol Base units

area m2 m × m

volume m3 m × m × m

density kg m–3 kg
m × m × m

By breaking down the units of derived quantities into base quantity units, it is possible 
to check whether an equation could be correct. This technique is an informal version 
of dimensional analysis, in which the ‘powers of’ quantities are compared on either 
side of an equation. Note, however, that dimensional analysis provides no insights into 
the constant of proportionality. 

Processing uncertainties
The SI system of units is defined so that we all use the 
same sized units when building our models of the 
physical world. However, before we can understand 
the relationship between different quantities, we must 
measure how big they are. To make measurements, we use 
a variety of instruments. To measure length, we can use a 
ruler and to measure time, a clock. If our findings are to be 
trusted, then our measurements must be accurate, and the 
accuracy of our measurement depends on the instrument 
used and how we use it. Consider the following examples.

Table 1

The candela will not be 
used in this course.

Table 2

Even this huge device at CERN has uncertainties.
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Measuring length using a ruler

Example 1

A good straight ruler marked in mm is 
used to measure the length of a 
rectangular piece of paper as in Figure 4.

The ruler measures to within 0.5 mm 
(we call this the uncertainty in the 
measurement) so the length in cm is 
quoted to 2 d.p. This measurement is 
precise and accurate. This can be written 
as 6.40 ± 0.05 cm, which tells us that the 
actual value is somewhere between 6.35 
and 6.45 cm.

Example 2

Figure 5 shows how a ruler with a broken 
end is used to measure the length of the 
same piece of paper. When using the ruler, 
you might fail to notice the end is broken 
and think that the 0.5 cm mark is the zero 
mark.

This measurement is precise since the 
uncertainty is small but is not accurate 
since the value 6.90 cm is wrong.

Example 3

A ruler marked only in 12 cm is 
used to measure the length of the paper as 
in Figure 6.

These measurements are precise and 
accurate, but the scale is not very sensitive.

Example 4

In Figure 7, a ruler is used to measure the maximum height of a bouncing ball. The 
ruler has more markings, but it is very difficult to measure the height of the bouncing 
ball. Even though you can use the scale to within 0.5 mm, the results are not precise 
(the base of the ball may be at about 4.2 cm). However, if you do enough runs of the 
same experiment, your final answer could be accurate.

When using a scale 
such as a ruler, the 
uncertainty in the 

reading is half of the 
smallest division. In 

this case, the smallest 
division is 1 mm so 

the uncertainty is 
0.5 mm. When using 
a digital device such 

as a balance, we take 
the uncertainty as the 

smallest digit. So if the 
measurement is 20.5 g, 

the uncertainty is ±0.1 g.

0
cm

1 2 3 4 5 6 7

Figure 4 Length = 6.40 ± 0.05 cm.

1 2 3 4 5 6 7

Figure 5 Length = / 6.90 ± 0.05 cm.

In Examples 1 and 2, 
we are assuming that 

there is no uncertainty 
at the ‘zero’ end of the 
ruler because it might 
be possible to line up 

paper with the long 
ruler marking.

In reality, the uncertainty 
for Example 1 may be 
±0.1 cm, which is the 

combination of the 0.05 
cm uncertainties at each 

end of the length.

0
cm

1 2 3 4 5 6 7

Figure 6 Length = 6.5 ± 0.3 cm.

Notice that 
uncertainties are 

generally quoted to 
one significant figure. 
The uncertainty then 

dictates the number of 
decimal places to which 

the measurement is 
written.

cm
1

2
3

4
5

6
7

Figure 7 
Height = 4.2 ± 0.2 cm.
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Precision and accuracy
To help understand the difference between precision and accuracy, consider the four 
attempts to hit the center of a target with three arrows shown in Figure 8.

Precise and 
accurate

A B

Precise but
not accurate

Not precise 
but accurate

Not precise and 
not accurate

C D

A The arrows were fi red accurately at the center with great precision.
B The arrows were fi red with great precision as they all landed near one another, but 

not very accurately since they are not near the center.
C The arrows were not fi red very precisely since they were not close to each other. 

However, they were accurate since they are evenly spread around the center. The 
average of these would be quite good.

D The arrows were not fi red accurately and the aim was not precise since they are far 
from the center and not evenly spread. 

So precision is how close to each other a set of measurements are (related to the 
resolution of the measuring instrument) and the accuracy is how close they are to the 
actual value (often based on an average).

Errors in measurement
There are two types of measurement error – random and systematic. 

Random error
If you measure a quantity many times and get lots of slightly different readings, then 
this called a random error. For example, when measuring the bounce of a ball, it is very 
difficult to get the same value every time even if the ball is doing the same thing.

Systematic error
A systematic error is when there is something wrong with the measuring device or 
method. Using a ruler with a broken end can lead to a ‘zero error’ as in Example 2 on 
page xxiv. Even with no random error in the results, you would still get the wrong 
answer.

Figure 8 Precise or 
accurate?

If you measure the 
same thing many 
times and get the 
same value, then 
the measurement is 
precise. 
If the measured 
value is close to the 
expected value, then 
the measurement is 
accurate. If a football 
player hits the post 
10 times in a row 
when trying to score 
a goal, you could say 
the shots are precise 
but not accurate.

It is not possible to 
measure anything 
exactly. This is 
not because our 
instruments are not 
exact enough but 
because the quantities 
themselves do not exist 
as exact quantities. 
What measurements 
could you make in the 
space around you? 
What might makes 
these quantities inexact?
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Reducing errors
To reduce random errors, you can repeat your measurements. If the uncertainty is 
truly random, your measurements will lie either side of the true reading and the mean 
of these values will be close to the actual value. To reduce a systematic error, you need 
to find out what is causing it and correct your measurements accordingly. A systematic 
error is not easy to spot by looking at the measurements, but is sometimes apparent 
when you look at the graph of your results or the final calculated value. 

Adding uncertainties
If two values are added together, then the uncertainties also add. For example, if we 
measure two lengths, L1 = 5.0 ± 0.1 cm and L2 = 6.5 ± 0.1 cm, then the maximum 
value of L1 is 5.1 cm and the maximum value of L2 is 6.6 cm, so the maximum value of 
L1 + L2 = 11.7 cm. Similarly, the minimum value is 11.3 cm. We can therefore say that 
L1 + L2 = 11.5 ± 0.2 cm.

If y = a ± b then Δy = Δa + Δb

If you multiply a value by a constant, then the uncertainty is also multiplied by the 
same number. 

So 2L1 = 10.0 ± 0.2 cm and 1
2L1 = 2.50 ± 0.05 cm.

Example of measurement and uncertainties
Let us consider an experiment to measure the mass and volume of a piece of modeling 
clay. To measure mass, we can use a top pan balance so we take a lump of clay and 
weigh it. The result is 24.8 g. We can repeat this measurement many times and get the 
same answer. There is no variation in the mass so the uncertainty in this measurement 
is the same as the uncertainty in the scale. The smallest division on the balance used is 
0.1 g so the uncertainty is ±0.1 g.

So: mass = 24.8 ±0.1 g

To measure the volume of the modeling clay, we first need to mold it into a uniform 
shape: let us roll it into a sphere. To measure the volume of the sphere, we measure its 
diameter from which we can calculate its radius (V = 4πr3

3 ). 

Making an exact sphere out of the modeling clay is not easy. If we do it many times, we 
will get different-shaped balls with different diameters so let us try rolling the ball five 
times and measuring the diameter each time with a ruler.

Using the ruler, we can only judge the diameter to the nearest mm so we can say that 
the diameter is 3.5 ± 0.1 cm. It is actually even worse than this since we also have to line 
up the zero at the other end, so 3.5 ± 0.2 cm might be a more reasonable estimate. If we 
turn the ball round, we get the same value for d. If we squash the ball and make a new 
one, we might still get a value of 3.5 ± 0.2 cm. This is not because the ball is a perfect 
sphere every time but because our method of measurement is not sensitive enough to 
measure the difference.

Ball of modeling clay 
measured with a ruler.

IB Physics Higher_3p.indb   26IB Physics Higher_3p.indb   26 20/12/2022   15:5820/12/2022   15:58

Uncorre
cte

d proofs



xxvii

Let us now try measuring the ball with a vernier caliper.

The vernier caliper can measure to the nearest 0.002 cm. Repeating measurements of 
the diameter of the same lump of modeling clay might give the results in Table 3.

Diameter/cm

3.640 3.450 3.472 3.500 3.520 3.520 3.530 3.530 3.432

3.540 3.550 3.550 3.560 3.560 3.570 3.572 3.582 3.582

The reason these measurements are not all the same is because the ball is not perfectly 
uniform and, if made several times, will not be exactly the same. We can see that there 
is a spread of data from 3.400 cm to 3.570 cm, with most lying around the middle. This 
can be shown on a graph but first we need to group the values as in Table 4.

Distribution of measurements
Even with this small sample of measurements, you can see in Figure 9 that there is 
a spread of data: some measurements are too big and some too small but most are 
in the middle. With a much larger sample, the shape would be closer to a ‘normal 
distribution’ as in Figure 10.
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A vernier caliper has sliding 
jaws, which are moved so 
they touch both sides of 
the ball.

Table 3

Range/cm No. of 
values 
within 
range

3.400–3.449 1

3.450–3.499 2

3.500–3.549 6

3.550–3.599 8

3.600–3.649 1

Table 4

Figure 9 Distribution of 
measurements of diameter.

IB Physics Higher_3p.indb   27IB Physics Higher_3p.indb   27 20/12/2022   15:5820/12/2022   15:58

Uncorre
cte

d proofs



Skills

xxviii

0
3.35 3.40 3.45 3.50 3.55 3.60 3.65

diameter/cm

nu
m

be
r 

of
 m

ea
su

re
m

en
ts

100

200

300

400

500

600

700

800

900

The mean
At this stage, you may be wondering what the point is of trying to measure something 
that does not have a definite value. Well, we are trying to find the volume of the 
modeling clay using the formula V =  4πr3

3 . This is the formula for the volume of a 
perfect sphere. The problem is we cannot make a perfect sphere. It is probably more 
like the shape of an egg, so depending on which way we measure it, sometimes the 
diameter will be too big and sometimes too small. It is, however, just as likely to be too 
big as too small, so if we take the mean of all our measurements, we should be close to 
the ‘perfect sphere’ value which will give us the correct volume of the modeling clay.

The mean or average is found by adding all the values and dividing by the number 
of values. In this case, the mean = 3.537 cm. This is the same as the peak in the 
distribution. We can check this by measuring the volume in another way, for example, 
sinking it in water and measuring the volume displaced. Using this method gives a 
volume = 23 cm3. Rearranging the formula gives: r = 

3 3V
4π

Substituting for V gives d = 3.53 cm, which is fairly close to the mean. Calculating the 
mean reduces the random error in our measurement.

There is a very nice example of this that you might like to try. Fill a jar with jelly beans 
and get your classmates to guess how many there are. Assuming that they really try to 
make an estimate rather than randomly saying a number, the guesses are just as likely 
to be too high as too low. So, if after you collect all the data you find the average value, 
it should be quite close to the actual number of beans.

Knowing the mean of data enables a calculation of the standard deviation to be 
performed. Standard deviation gives an idea of the spread of the data.

Smaller samples
You will be collecting a lot of different types of data throughout the course but you will 
not often have time to repeat your measurements enough to get a normal distribution. 
With only four values, the uncertainty is not reduced significantly by taking the mean 

Figure 10 Normal 
distribution curve.

If the data follows a 
normal distribution, 

68% of the values 
should be within one 
standard deviation of 

the mean.
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so half the range of values is used instead. This often gives a slightly exaggerated value 
for the uncertainty – for the example above, it would be ± 0.1 cm – but it is an approach 
accepted by the IB.

Relationships
In physics, we are very interested in the relationships between two quantities, for 
example, the distance traveled by a ball and the time taken. To understand how we 
represent relationships by equations and graphs, let us consider a simple relationship 
regarding fruit.

Linear relationships
Let us imagine that all apples have the same mass, 100 g. To find the relationship 
between number of apples and their mass, we would need to measure the mass of 
different numbers of apples. These results could be put into a table as in Table 5.

In this example, we can clearly see that the mass of the apples increases by the same 
amount every time we add an apple. We say that the mass of apples is proportional
to the number. If we draw a graph of mass vs number, we get a straight line passing 
through the origin as in Figure 11.
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The gradient of this line is given by Δy
Δx  = 100 g/apple. The fact that the line is straight 

and passing through the origin can be used to test if two quantities are proportional to 
each other.

The equation of the line is y = mx, where m is the gradient, so in this case y = 100x and 
m = 100 g apple−1.

This equation can be used to calculate the mass of any given number of apples. This is 
a simple example of what we will spend a lot of time doing in this course.

To make things a little more complicated, let us consider apples in a basket with mass 
500 g. The table of masses is shown in Table 6.

The slope in Figure 12 is still 100 g/apple, indicating that each apple still has a mass of 
100 g, but the intercept is no longer (0, 0). We say that the mass is linearly related to the 
number of apples but they are not directly proportional.

Number 
(N )

Mass 
(m)/g

1 100

2 200

3 300

4 400

5 500

6 600

Table 5

Figure 11 Graph of mass vs 
number of apples.

Number 
(N)

Mass 
(m)/g

1 600

2 700

3 800

4 900

5 1000

6 1100

Table 6

IB Physics Higher_3p.indb   29IB Physics Higher_3p.indb   29 20/12/2022   15:5820/12/2022   15:58

Uncorre
cte

d proofs



Skills

xxx

0
0 1 2 3 4 5 6

number of apples

m
as

s/
g

200

400

600

800

1000

1200

100

300

500

700

900

1100

The equation of this line is y = mx + c, where m is the gradient and c the intercept on the 
y-axis. The equation in this case is therefore y = 100 x + 500.

Finding the equation that relates two quantities can be useful for interpolation and 
extrapolation. Both techniques involve inserting a value for one of the quantities into the 
equation to find the corresponding value of the other. Interpolation can be performed with 
good confidence as it is done within the range of collected data. Extrapolation is more risky 
as the values are beyond the range of collected data; you are making a prediction.

Exercise

Q10. The data displayed in the graphs below all show examples of correlation. 
What other conclusions can you make?
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Non-linear relationships
Let us now consider the relationship between radius and the area of circles of paper as 
shown in Figure 13.

Figure 12 Graph of mass vs 
number of apples in a basket.

It is much easier to 
plot data from an 

experiment without 
processing it but this 

will often lead to curves 
that are very difficult to 
draw conclusions from. 
Linear relationships are 

much easier to interpret 
so are worth the time 
spent processing the 

data.

Figure 13 Five circles 
of green paper.
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1 cm 2 cm 3 cm 4 cm 5 cm

The results are recorded in Table 7.

If we now graph the area vs the radius, we get the graph shown in Figure 14.
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This is not a straight line so we cannot deduce that area is linearly related to radius. 
However, you may know that the area of a circle is given by A = πr2, which would mean 
that A is proportional to r2. To test this, we can calculate r2 and plot a graph of area vs r2. 
The calculations are shown in Table 8.

Radius/m Area/m2

1 3.14

2 12.57

3 28.27

4 50.27

5 78.54

Table 7

Figure 14 Graph of area of 
green circles vs radius.

Figure 15 Graph of area of 
green circles vs radius2.
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Radius/m r2/m2 Area/m2

1 1 3.14

2 4 12.57

3 9 28.27

4 16 50.27

5 25 78.54

Table 8
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This time, the graph is linear, confirming that the area is indeed proportional to the 
radius2. The gradient of the line is 3.1, which is π to two significant figures. So the 
equation of the line is A = πr2 as expected.

Using logs
Logs can be useful in your practical work. In the previous exercise, we knew that 
A = πr2, but if we had not known this, we could have found the relationship by plotting 
a log graph. Let us pretend that we did not know the relationship between A and r, only 
that they were related. So it could be A = kr2 or A = kr3 or even A = k   r.

We can write all of these in the form: A = krn

Now if we take logs of both sides of this equation, we get: log A = log krn = log k + nlog r

This is of the form y = mx + c, where log A is y and log r is x. 

So if we plot log A vs log r, we should get a straight line with gradient n and intercept log k. 
This is all quite easy to do using a spreadsheet, resulting in Table 9 and the graph in Figure 16.

Radius/m Area/m2 log (A/m2) log (r/m)

1 3.14 0.4969 0.0000

2 12.57 1.0993 0.3010

3 28.27 1.4513 0.4771

4 50.27 1.7013 0.6021

5 78.54 1.8951 0.6990

0
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log r
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This has gradient = 2 and intercept = 0.5, so if we compare it to the equation of the line:

log A = log k + nlog r

we can deduce that: n = 2 and log k = 0.5

The inverse of log k is 10k so k = 100.5 = 3.16, which is quite close to π.

Substituting into our original equation A = krn, we get A = πr2.

Exercise

Q11. Use a log–log graph to fi nd the relationship between A and B in Table 10.

Table 9

Figure 16 log A vs log r for 
the green paper discs.

A B

1.1 0.524

3.6 0.949

4.2 1.025

5.6 1.183

7.8 1.396

8.6 1.466

9.2 1.517

10.7 1.636

Table 10
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Relationship between the diameter of a modeling clay ball and 
its mass
So far, we have only measured the diameter and mass of one ball of modeling clay. If 
we want to know the relationship between the diameter and mass, we should measure 
many balls of different sizes. This is limited by the amount of modeling clay we have, 
but should be from the smallest ball we can reasonably measure up to the biggest ball 
we can make.

Mass/g 
± 0.1 g

Diameter/cm ± 0.002 cm

1 2 3 4

1.4 1.296 1.430 1.370 1.280

2.0 1.570 1.590 1.480 1.550

5.6 2.100 2.130 2.168 2.148

9.4 2.560 2.572 2.520 2.610

12.5 2.690 2.840 2.824 2.720

15.7 3.030 2.980 3.080 2.890

19.1 3.250 3.230 3.190 3.204

21.5 3.490 3.432 3.372 3.360

24.8 3.550 3.560 3.540 3.520

In Table 11, the uncertainty in diameter d is given as 0.002 cm. This is the uncertainty 
in the vernier caliper: the actual uncertainty in diameter is more than this as is revealed 
by the spread of data which you can see in the first row, which ranges from 1.280 to 
1.430, a difference of 0.150 cm. Because there are only four different measurements, we 
can use the approximate method using Δd = (dmax − dmin)

2 . This gives an uncertainty in the 
first measurement of ±0.08 cm. Table 12 includes the uncertainties and the mean.

Mass/g 
± 0.1 g

Diameter/cm ± 0.002 cm

1 2 3 4 dmean/cm Uncertainty 
Δd/cm

1.4 1.296 1.430 1.370 1.280 1.34 0.08

2.0 1.570 1.590 1.480 1.550 1.55 0.06

5.6 2.100 2.130 2.168 2.148 2.14 0.03

9.4 2.560 2.572 2.520 2.610 2.57 0.04

12.5 2.690 2.840 2.824 2.720 2.77 0.08

15.7 3.030 2.980 3.080 2.890 3.00 0.10

19.1 3.250 3.230 3.190 3.204 3.22 0.03

21.5 3.490 3.432 3.372 3.360 3.41 0.07

24.8 3.550 3.560 3.540 3.520 3.54 0.02

Table 11

Table 12
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Now, to reveal the relationship between the mass m and diameter d, we can draw 
a graph of m vs d as shown in Figure 17. However, since the values of m and d have 
uncertainties, we do not plot them as points but as lines. The length of the lines equals 
the uncertainty in the measurement. These are called uncertainty bars.
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The curve is quite a nice fit but very difficult to analyze. It would be more convenient 
if we could manipulate the data to get a straight line. This is called linearizing. To do 
this, we must try to deduce the relationship using physical theory and then test the 
relationship by drawing a graph. In this case, we know that density, ρ =  mass

volume
and the volume of a sphere =  4πr3

3 , where r = radius.

So: ρ = 
3m

4πr3

Rearranging this equation gives: r3 = 
3m
4πρ

But: r = 
d
2  so 

d3

8  = 
3m
4πρ

 d3 = 
6m
πρ

Since 6
πρ is a constant, this means that d3 is proportional to m. So, a graph of d3 vs m should 

be a straight line with gradient =  6
πρ. To plot this graph, we need to find d3 and its uncertainty. 

The uncertainty can be found by calculating the difference between the maximum and 
minimum values of d3 and dividing by 2: (dmax

3 − dmin
3)

2
. This has been done in Table 13.

Mass/g 
± 0.1 g

Diameter/cm ± 0.002 cm

1 2 3 4 dmean/
cm

d 3mean/
cm3

d 3unc./
cm3

1.4 1.296 1.430 1.370 1.280 1.34 2.4 0.4

2.0 1.570 1.590 1.480 1.550 1.55 3.7 0.4

5.6 2.100 2.130 2.168 2.148 2.14 9.8 0.5

9.4 2.560 2.572 2.520 2.610 2.57 17 1

12.5 2.690 2.840 2.824 2.720 2.77 21 2

15.7 3.030 2.980 3.080 2.890 3.00 27 3

19.1 3.250 3.230 3.190 3.204 3.22 33 1

21.5 3.490 3.432 3.372 3.360 3.41 40 2

24.8 3.550 3.560 3.540 3.520 3.54 44 1

A worksheet with full 
details of how to carry 
out this experiment is 
available on this page 

of your eBook.

Figure 17 Graph of mass 
of modeling clay ball vs 
diameter with error bars.

This curve is the best fit
for the data collected.

Table 13
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Looking at the line in Figure 18, we can see that due to random errors in the data, the 
points are not exactly on the line but close enough. What we expect to see is the line 
touching all of the error bars, which is the case here. The error bars should reflect the 
random scatter of data. In this case, they are slightly bigger, which is probably due to 
the approximate way that they have been calculated. Notice how the points furthest 
from the line have the biggest error bars.

According to the formula, d3 should be directly proportional to m; the line should 
therefore pass through the origin. Here we can see that the y-intercept is −0.3 cm3, 
which is quite close to the origin and is probably just due to the random errors in d. If 
the intercept had been more significant, then it might have been due to a systematic 
error in mass. For example, if the balance had not been zeroed properly and instead 
of displaying zero with no mass on the pan, it read 0.5 g, then each mass measurement 
would be 0.5 g too big. The resulting graph would be as in Figure 19.
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A systematic error in the diameter would not be so easy to see. Since diameter is cubed, 
adding a constant value to each diameter would cause the line to become curved.

Outliers
Sometimes a mistake is made in one of the measurements. This is quite difficult to 
spot in a table but will often lead to an outlier on a graph. For example, one of the 
measurements in Table 14 is incorrect.

Figure 18 Graph of 
diameter3 of a modeling clay 
ball vs mass.

The best fi t of these 
points is now a straight 
line. Over time, you 
will learn how to 
judge whether data is 
best represented by 
a linear or non-linear 
fi t, perhaps based on 
the theory behind 
an experiment or the 
positions of the points.

Figure 19 Graph of 
diameter3 of a modeling clay 
ball vs mass with a systematic 
error.
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Mass/g 
± 0.1 g

Diameter/cm ± 0.002 cm

1 2 3 4

1.4 1.296 1.430 1.370 1.280

2.0 1.570 1.590 1.480 1.550

5.6 2.100 2.130 2.148 3.148

9.4 2.560 2.572 2.520 2.610

12.5 2.690 2.840 2.824 2.720

15.7 3.030 2.980 3.080 2.890

19.1 3.250 3.230 3.190 3.204

21.5 3.490 3.432 3.372 3.360

24.8 3.550 3.560 3.540 3.520

This is revealed in the graph in Figure 20.
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When you find an outlier, you need to do some detective work to try to find out why the 
point is not closer to the line. Taking a close look at the raw data sometimes reveals that 
one of the measurements was incorrect. This can then be removed and the line plotted 
again. However, you cannot simply leave out the point because it does not fit. A sudden 
decrease in the level of ozone over the Antarctic was originally left out of the data since 
it was an outlier. Later investigation of this ‘outlier’ led to a significant discovery.

Uncertainty in the gradient

The general equation for a straight-line graph passing through the origin is y = mx. 

In this case, the equation of the line is d3 = 6m
πρ , where d3 is y and m is x and the gradient 

is 6
πρ . You can see that the unit of the gradient is cm3/g. This is consistent with it 

representing 6
πρ.

From the graph, we see that gradient = 1.797 cm3 g−1 =  6
πρ  so ρ =  6

1.797π
6

1.797π  = 1.063 gcm−3 but what is the uncertainty in this value?

There are several ways to estimate the uncertainty in a gradient. One of them is to draw 
the steepest and least steep lines through the error bars as shown in Figure 21.

Table 14

Figure 20 Graph of 
diameter3 of a modeling clay 
ball vs mass with outlier.

If asked for a sketch 
graph, you should 

consider what shape 
it will have and where 

it will cross the axes. 
Scales are not required.
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slope = 1.746 ± 0.003cm3g–1

y-intercept = –0.456cm3

slope = 1.797 ± 0.03cm3g–1

y-intercept = –0.313cm3

slope = 1.856 ± 0.03cm3g–1

y-intercept = –0.825cm3

This gives a maximum gradient = 1.856 cm3 g−1 and minimum gradient = 1.746 cm3 g−1.

So:  uncertainty in the gradient = (1.856 − 1.746)
2  = 0.06 cm3 g−1

Note that the program used to draw the graph (LoggerPro®) gives an uncertainty in 
the gradient of ±0.03 cm3 g−1. This is a more correct value but the steepest and least 
steep lines method is accepted in IB assessments.

The steepest and least steep gradients give maximum and minimum values for the 
density of:

ρmax =  6
1.746π  = 1.094 g cm−3

ρmin =  6
1.856π = 1.029 g cm−3

So the uncertainty is: (1.094 − 1.029)
2  = 0.03 g cm−3

The density can now be written as: 1.06 ± 0.03 g cm−3

Fractional uncertainties
So far, we have dealt with uncertainty as ±Δx. This is called the absolute uncertainty
in the value. Uncertainties can also be expressed as fractions. This has some 
advantages when processing data.

In the previous example, we measured the diameter of modeling clay balls then cubed 
this value in order to linearize the data. To make the sums simpler, let us consider a 
slightly bigger ball with a diameter of 10 ± 1 cm.

So the measured value d = 10 cm and the absolute uncertainty Δd = 1 cm.

The fractional uncertainty = Δd
d  =  1

10 = 0.1 (or, expressed as a percentage, 10%).

During the processing of the data, we found d3 = 1000 cm3.

The uncertainty in this value is not the same as in d. To find the uncertainty in d3, we 
need to know the biggest and smallest possible values of d3. These we can calculate by 
adding and subtracting the absolute uncertainty:

 maximum d3 = (10 + 1)3 = 1331 cm3

 minimum d3 = (10 − 1)3 = 729 cm3

Figure 21 Graph of 
diameter3 of a modeling clay 
ball vs mass showing steepest 
and least steep lines.

If the y-intercept was 
of more importance, 
then constructing 
steepest and least 
steep lines would also 
allow maximum and 
minimum intercept 
values to be read off.

A value obtained from 
an experiment can 
be compared with a 
‘known’ value by seeing 
if the known value lies 
within the uncertainty 
range.
Additionally, you 
could use percentage 
difference. Find the 
difference between 
the experimental and 
known values and then 
divide this difference by 
the known value.
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So the range of values is: (1331 − 729) = 602 cm3 

The uncertainty is therefore ±301 cm3, which rounded down to one significant figure 
gives ±300 cm3.

This is not the same as (Δd)3, which would be 1 cm3.

The fractional uncertainty in d3 =  300
1000 = 0.3. This is the same as 3 × the fractional 

uncertainty in d. This leads to an alternative way of finding uncertainties when raising 
data to the power 3.

If Δx
x  is the fractional uncertainty in x, then the fractional uncertainty in x3 = 3Δx

x .

More generally, if Δx
x  is the fractional uncertainty in x, then the fractional uncertainty in 

xn = nΔx
x .

So if you square a value, the fractional uncertainty is 2 × bigger.

Another way of writing this would be that, if Δx
x  is the fractional uncertainty in x, then 

the fractional uncertainty in x2 = Δx
x + Δx

x . This can be extended to any multiplication.

So if Δx
x is the fractional uncertainty in x and Δy

y  is the fractional uncertainty in y, then 
the fractional uncertainty in xy = Δx

x  + Δy
y .

It seems strange but, when dividing, the fractional uncertainties also add. So if Δx
x  is the 

fractional uncertainty in x and Δy
y  is the fractional uncertainty in y, then the fractional 

uncertainty in x
y  = Δx

x  + Δy
y .

If you divide a quantity by a constant with no uncertainty, then the fractional 
uncertainty remains the same.

This is all summarized in the Data Booklet as:

If y = ab
c  then Δy

y  = Δa
a  + Δb

b  + Δc
c

And if y = an then Δy
y  = n Δa

a

Challenge yourself

1. When a solid ball rolls down a slope of height h, its speed at bottom v is given by 
the equation:

v =  10
7 gh

where g is the acceleration due to gravity.

In an experiment to determine g, the following results were achieved:

Distance between two markers at the bottom of the slope d = 5.0 ± 0.2 cm
Time taken to travel between markers t = 0.06 ± 0.01 s
Height of slope h = 6.0 ± 0.2 cm.

Given that the speed v = d
t
, find a value for g and its uncertainty. How might you 

reduce this uncertainty?
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Example
If the length of the side of a cube is quoted as 5.00 ± 0.01 m, what are its volume and 
the uncertainty in the volume?

fractional uncertainty in length =  0.01
5  = 0.002

 volume = 5.003 = 125 m3

When a quantity is cubed, its fractional uncertainty is 3 × bigger so the fractional 
uncertainty in volume = 0.002 × 3 = 0.006. 

The absolute uncertainty is therefore 0.006 × 125 = 0.75 (approximately 1) so the 
volume is 125 ±1 m3.

Exercise

Q12. The length of the sides of a cube and its mass are quoted as:
length = 0.050 ± 0.001 m
mass = 1.132 ± 0.002 kg

Calculate the density of the material and its uncertainty.

Q13. The distance around a running track is 400 ± 1 m. If a person runs around the 
track four times, calculate the distance traveled and its uncertainty.

Q14. The time for 10 swings of a pendulum is 11.2 ± 0.1 s. Calculate the time for 
one swing of the pendulum and its uncertainty.

Nature of Science

We have seen how we can use numbers to represent physical quantities. By 
representing those quantities by letters, we can derive mathematical equations 
to define relationships between them, then use graphs to verify those 
relationships. Some quantities cannot be represented by a number alone so a 
whole new area of mathematics needs to be developed to enable us to derive 
mathematical models relating them.

Vector and scalar quantities
So far we have dealt with six different quantities: length, time, mass, volume, density, 
displacement.

All of these quantities have a size, but displacement also has a direction. Quantities 
that have size and direction are vectors and those with only size are scalars. All 
quantities are either vectors or scalars. It will be apparent why it is important to make 
this distinction when we add displacements together.

Example
Consider two displacements one after another as shown in Figure 22.

Starting from A, walk 4 km west to B, then 5 km north to C.

Scalar
A quantity with 
magnitude only.
Vector
A quantity with 
magnitude and 
direction.

N

B

C

5 km

A

Figure 22 Displacements 
shown on a map.
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The total displacement from the start is not 5 + 4 but can be found by drawing a 
line from A to C on a scale diagram. 

We will find that there are many other vector quantities that can be added in the 
same way.

Addition of vectors
Vectors can be represented by drawing arrows. The length of the arrow is proportional 
to the magnitude of the quantity and the direction of the arrow is the direction of the 
quantity. The arrow commences at the point of application, the significance of which 
will become clearer in A.2.

To add vectors, the arrows are simply arranged so that the point of one touches the tail 
of the other. The resultant vector is found by drawing a line joining the free tail to the 
free point.

Example
Figure 22 is a map illustrating the different displacements. We can represent the 
displacements by the vectors in Figure 23.

Calculating the resultant:

If the two vectors are at right angles to each other, then the resultant will be the 
hypotenuse of a right-angled triangle. This means that we can use simple trigonometry 
to relate the different sides. 

Some simple trigonometry
You will find cos, sin and tan buttons on your calculator. These are used 
to calculate unknown sides of right-angled triangles.

 sin θ = 
opposite

hypotenuse ➞ opposite = hypotenuse × sin θ

 cos θ = 
adjacent

hypotenuse ➞ adjacent = hypotenuse × cos θ

 tan θ = 
opposite
adjacent

Worked example 

Find the side X of the triangle. 

40°

5 m

X

Solution

Side X is the opposite so: X = 5 × sin 40°

 sin 40°= 0.6428 so X = 3.2 m

adjacent

hypotenuse
opposite

θ

resultant

4 km

5 km

Figure 23 Vector addition.

Figure 24 Triangle key terms.

To show that a 
quantity is a vector, 

we can write it in 
a special way. In 

textbooks, this is 
often in bold (A) but 
when you write, you 
can put an arrow on 

the top. In physics 
texts, the vector 

notation is often left 
out. This is because 
if we know that the 

symbol represents a 
displacement, then 

we know it is a vector 
and do not need the 

vector notation to 
remind us.
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Exercise

Q15. Use your calculator to fi nd x in each triangle.

(a) 

x

55°
3 cm

 (b) 

50°

x

4 cm

(c) 

30°

6 cm
x

 (d) 

20°

x
3 cm

Pythagoras
The most useful mathematical relationship for finding the resultant of two 
perpendicular vectors is Pythagoras’ theorem:

hypotenuse2 = adjacent2 + opposite2

Worked example 

Find the side X on the triangle.

X

4 m

2 m

Solution

Applying Pythagoras:

X2 = 22 + 42

So: X =   22 + 42 =   20 = 4.5m
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Exercise

Q16. Use Pythagoras’ theorem to fi nd the hypotenuse in each triangle.

(a) 

3 cm

4 cm

 (b) 

4 cm

4 cm

(c) 

6 cm

2 cm

 (d) 

2 cm

3 cm

Using trigonometry to solve vector problems
Once the vectors have been arranged point to tail, it is a simple matter of applying the 
trigonometrical relationships to the triangles that you get.

Exercise

Draw the vectors and solve the following problems using Pythagoras’ theorem.

Q17. A boat travels 4 km west followed by 8 km north. What is the resultant 
displacement?

Q18. A plane fl ies 100 km north then changes course to fl y 50 km east. What is the 
resultant displacement?

Vectors in one dimension
In this course, we will often consider the simplest examples where the motion is 
restricted to one dimension, for example, a train traveling along a straight track. In 
examples like this, there are only two possible directions – forward and backward. To 
distinguish between the two directions, we give them different signs (forward + and 
backward –). Adding vectors is now simply a matter of adding the magnitudes, with no 
need for complicated triangles.

+ve–ve

You can decide for 
yourself which you 

want to be positive but 
generally we follow the 

convention below.

Right/East

+

+
–

–

Left/West

Do
w

n/
So

ut
h

Up
/N

ot
th

 Figure 25 The train can only move forward or backward.
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xliii

Worked example 

If a train moves 100 m forward along a straight track then 50 m back, what is its 
final displacement?

Solution

The vector diagram is as follows.

100 m

50 m
The resultant is 50 m forward.

Subtracting vectors

A
B

A + (–B)

A

–B

Now we know that a negative vector is simply the opposite direction to a positive 
vector, we can subtract vector B from vector A by changing the direction of vector B
and adding it to A.

A − B = A + (−B)

Taking components of a vector
Consider someone walking up the hill in Figure 28. They walk 5 km up the slope but 
want to know how high they have climbed rather than how far they have walked. To 
calculate this, they can use trigonometry.

 height = 5 × sin 30°

5 km

30°

The height is called the vertical component of the displacement.

The horizontal displacement can also be calculated.

 horizontal displacement = 5 × cos 30°

This process is called taking components of a vector and is often used in solving 
physics problems. 

Figure 27 Subtracting 
vectors.

When a vector is 
multiplied by a scale 
factor, its alignment 
is unchanged. If 
the scale factor 
is negative, the 
vector is in the 
opposite direction. 
The magnitude is 
increased by the 
magnitude of the 
scale factor.

Figure 28 5 km up the hill 
but how high?

A sin   A

A cos   

not next to
the angle

next to the
angle

θ

θ

θ

Figure 29 An easy way to 
remember which is cos is to 
say that ‘it is becos it is next 
to the angle’.
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xliv

Exercise

Q19. If a boat travels 10 km in a direction 30° to the east of north, how far north 
has it traveled?

Q20. On his way to the South Pole, Amundsen travelled 8 km in a direction that 
was 20° west of south. What was his displacement south?

Q21. A mountaineer climbs 500 m up a slope that is inclined at an angle of 60° to 
the horizontal. How high has he climbed?

Summary – Tool 3: Mathematics
In terms of mathematics, you should now be aware of:

• scientific notation
• SI prefixes and units
• orders of magnitude
• area and volume
• fundamental units
• derived units in terms of SI units
• approximation and estimation
• dimensional analysis of units for checking expressions
• the significance of uncertainties in raw and processed data
• recording uncertainties in measurements as a range to appropriate precision
• expressing measurement and processed uncertainties to appropriate significant 

figures or precision
• expressing values to appropriate significant figures or decimal places
• mean and range
• extrapolate and interpolate graphs
• linear and non-linear graphs with appropriate scales and axes
• linearizing graphs
• drawing and interpreting uncertainty bars
• drawing lines or curves of best fit
• constructing maximum and minimum gradient lines by considering all 

uncertainty bars
• determining uncertainty in gradients and intercepts
• percentage change and percentage difference
• percentage error and percentage uncertainty
• propagation of uncertainties
• scalars and vectors
• scale diagrams
• drawing and labeling vectors
• vector addition and subtraction
• decimals, fractions, percentages, ratios, reciprocals, exponents and 

trigonometric ratios
• multiplication of vectors by a scalar
• resolving vectors.

You will find practice 
questions and solutions 

on this page of 
your eBook. 
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There are some mathematical tools that have been introduced here and will be 
continued, including:

• arithmetic and algebra (see worked example calculations throughout)
• tables and graphs for raw and processed data (see also Sankey diagrams (A.3) 

and greenhouse gas spectra (B.2))
• direct and inverse proportionality, and positive and negative relationships or 

correlations (A.1, A.2, B.1, B.2, B.5, C.1, D.1, D.2, D.3)
• interpreting graph features (A.1)
• logarithmic graphs (E.5)
• sketch graphs (labeled but unscaled axes) to qualitatively describe trends (A.1).

The mathematical skills listed in the Guide that will be addressed in the textbook 
content more generally are:

• symbols from the Guide and Data Booklet (throughout)
• selection and manipulation of equations (throughout)
• effect of changes to variables on other variables (throughout)
• use of units (throughout)
• rates of change (A.1, A.3, HL D.4)
• neglecting effects and explaining why (A.1)
• free-body diagrams (A.2)
• derivations of equations (B.3, HL C.5, HL D.1)
• continuous and discrete variables (E.1)
• logarithmic and exponential functions ( HL E.3).
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3

A Space, time, and motion

Fireworks displays encapsulate a lot of physics, including thermal energy, light and sound waves, their 
behavior in the Earth’s gravitational fi eld and the effects generated by particular types of atom. As you 
will see, they also relate to space, time and motion.

There are lots of words that can be used to describe something’s motion: distance and 
displacement, speed and velocity, and acceleration. If you know everything about a 
body’s motion at a specific position and time, then as an IB physicist you will be able 
to predict its state of motion at another position or time. This is kinematics. When 
simplified, the equations that govern motion horizontally and vertically can be treated 
separately. Fireworks are not so simple; they experience air resistance and continue to 
combust their fuel mid-flight.

The burning of fuels to generate changes in motion relates to forces and momentum. 
Isaac Newton articulated three laws that describe how a lack of resultant force means 
there is no change in velocity, a resultant force leads to a change in momentum and the 
force of one body ‘A’ on another ‘B’ means that the same type and size of force must be 
being exerted by ‘B’ on ‘A’ in precisely the opposite direction. There are types of force 
to contend with, and of course not all forces act in the same direction that the body is 
already moving in; circular motion results from perpendicular forces and velocities 
and has its own set of governing equations.

If kinematics is the study of the journey, energy is the study of the before and after. 
Energy, along with momentum, is a conserved quantity that can be changed only 
if work is done. Power is another term still; it is the rate at which energy is changed 
or work is done. Balancing a 100 g apple in your hand requires a force of about 1 N. 
Lifting it vertically to arm’s reach requires you to provide about 1 J of work. Doing so 
repeatedly every second represents 1 W of power, irrespective of how long in total you 
do it for.

Some bodies rotate, and you will study how the angles and angular velocities of 
circular motion can be linked to the kinematics equations in the Rigid Body Mechanics 
chapter (A.4). Other bodies have velocities similar in magnitude to the speed of light, 
which leads to relativistic effects like time dilation and length contraction. But fear not. 
In the first case you will always be solving problems with real-world connections. In 
the latter, you will get to know about the experimental evidence for these effects as well 
as how to use the Lorentz transformation and space–time diagrams to your advantage.
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5

SPACE, TIME AND MOTION A.1
When can you think of a steam train as a particle?

How can the motion of a body be described quantitatively and qualitatively?

How can the position of a body in space and time be predicted?

How can the analysis of motion in one and two dimensions be used to solve 
real-life problems?

Guiding Questions

The photograph at the start of this chapter shows a train, but we will not be dealing 
with complicated systems like trains in their full complexity. In physics, we try to 
understand everything on the most basic level. Understanding a physical system 
means being able to predict its final conditions given its initial conditions. To do this 
for a train, we would have to calculate the position and motion of every part – and 
there are a lot of parts. In fact, if we considered all the particles that make up all the 
parts, then we would have a huge number of particles to deal with.

In this course, we will be dealing with one particle of matter at a time. This is because 
the ability to solve problems with one particle makes us able to solve problems with 
many particles. We may even pretend a train is one particle.

The initial conditions of a particle describe where it is and what it is doing. These can 
be defined by a set of numbers, which are the results of measurements. As time passes, 
some of these quantities might change. What physicists try to do is predict their values 
at any given time in the future. To do this, they use mathematical models.

Nature of Science

From the definitions of velocity and acceleration, we can use mathematics 
to derive a set of equations that predict the position and velocity of a particle 
at any given time. We can show by experiment that these equations give 
the correct result for some examples, then make the generalization that the 
equations apply in all cases.

Students should understand:

that the motion of bodies through space and time can be described and analyzed in terms of 
position, velocity, and acceleration

velocity is the rate of change of position, and acceleration is the rate of change of velocity

the change in position is the displacement

the difference between distance and displacement

the difference between instantaneous and average values of velocity, speed and acceleration, 
and how to determine them
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SPACE, TIME AND MOTION A.1 Kinematics

6

the equations of motion for solving problems with uniformly accelerated motion as given by:

s =    
u + v____

2
    t

v = u + at

s = ut +    
1__
2

    at2

v2 = u2 + 2as

motion with uniform and non-uniform acceleration

the behavior of projectiles in the absence of fl uid resistance, and the application of the 
equations of motion resolved into vertical and horizontal components

the qualitative effect of fl uid resistance on projectiles, including time of fl ight, trajectory, 
velocity, acceleration, range and terminal speed.

Further information about the fluid resistance force can be found in A.2.

Nature of Science

In the Tools chapter, we observed that things move and now we are going to 
mathematically model that movement. Before we do that, we must define 
some quantities.

Displacement and distance
It is important to understand the difference between distance traveled and displacement. 
To explain this, consider the route marked out on the map shown in Figure 1.

Displacement is the shortest path moved in a particular direction.

The unit of displacement is the meter (m). Displacement is a vector quantity.

On the map, the displacement is the length of the straight line from A to B, which is a 
distance of 5 km west. 

Distance is how far you have traveled from A to B.

The unit of distance is also the meter (m). Distance is a scalar quantity.

In this example, the distance traveled is the length of the path taken, which is about 10 km.

Sometimes, this difference leads to a surprising result. For example, if you run all 
the way round a running track, you will have traveled a distance of 400 m but your 
displacement will be 0 m.

In everyday life, it is often more important to know the distance traveled. For example, 
if you are going to travel from Paris to Lyon by road, you will want to know that the 
distance by road is 450 km, not that your final displacement will be 336 km SE. However, 
in physics, we break everything down into its simplest parts, so we start by considering 
motion in a straight line only. In this case, it is more useful to know the displacement, 
since that also has information about which direction you have traveled in.

A.1 Figure 1

N

B A

5 km

Note: since 
displacement is a 

vector, you should 
always say what the 

direction is.
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7

Velocity and speed
Both speed and velocity are a measure of how fast a body is moving.

Velocity is defined as the rate of change of position. Since ‘change of position’ is 
displacement and ‘rate of change’ requires division by time taken: 

 velocity =    
displacement___________

time   

The unit of velocity is m s–1.

Velocity is a vector quantity.

Speed is defined as the distance traveled per unit time:

 speed =    
distance_______

 time
   

The unit of speed is also m s–1.

Speed is a scalar quantity.

Exercise

Q1. Convert the following speeds into m s–1:

 (a) a car traveling at 100 km h–1

 (b) a runner running at 20 km h–1.

Average velocity and instantaneous velocity
Consider traveling by car from the north of Bangkok to the south – a distance of about 
16 km. If the journey takes 4 hours, you can calculate your velocity to be    16__

4    = 4 km h–1

in a southward direction. This does not tell you anything about the journey, just the 
difference between the beginning and the end (unless you managed to travel at a 
constant speed in a straight line). The value calculated is the average velocity and 
in this example it is quite useless. If we broke the trip down into lots of small pieces, 
each lasting only one second, then for each second the car could be considered to be 
traveling in a straight line at a constant speed. For these short stages, we could quote 
the car’s instantaneous velocity – which is how fast it is going at that moment in 
time and in which direction. 

velocity =    
displacement

  _______________
time

   

speed =    distance__________
time

   

A.1 Figure 2 It is not 
possible to take this route 
across Bangkok with a 
constant velocity.

The bus in the photo has a 
constant velocity for a very 
short time.
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Exercise

Q2. A runner runs once around a circular track of length 400 m with a constant 
speed in 96 s. Calculate:

 (a) the average speed of the runner

 (b) the average velocity of the runner

 (c) the instantaneous velocity of the runner after 48 s

 (d) the displacement after 24 s.

Constant velocity
If the velocity is constant, then the instantaneous velocity is the same all the time so: 

 instantaneous velocity = average velocity

Since velocity is a vector, this also implies that the direction of motion is constant.

Measuring a constant velocity

From the definition of velocity, we see that: 

 velocity =    
displacement___________

time   

Rearranging this gives: 

 displacement = velocity × time

So, if velocity is constant, displacement is proportional to time. To test this relationship 
and find the velocity, we can measure the displacement of a body at different times. 
To do this, you either need a lot of clocks or a stop clock that records many times. 
This is called a lap timer. In this example, a bicycle was ridden at constant speed along 
a straight road past six students standing 10 m apart, each operating a stop clock as in 
Figure 3. The clocks were all started when the bike, already moving, passed the start 
marker and stopped as the bike passed each student.

10 mstart 10 m 10 m 10 m 10 m 10 m

What does Newton’s 
fi rst law tell us about 
the forces on a body 
traveling at constant 

velocity? (A.2)

A.1 Figure 3 Measuring the 
time for a bike to pass.
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The results achieved are shown in Table 1.

The uncertainty in 
displacement is given as 0.1 m 
since it is difficult to decide 
exactly when the bike passed 
the marker.

The digital stop clock has a 
scale with 2 decimal places, 
so the uncertainty is 0.01 s. 
However, the uncertainty given 
is 0.02 s since the clocks all had 
to be started at the same time.

Since displacement (s) is 
proportional to time (t), 
then a graph of s vs t should 
give a straight line with 
gradient = velocity as shown 
in Figure 4.

Notice that in this graph the line does not pass through all the points. This is because 
the uncertainty in the measurement in time is almost certainly bigger than the 
uncertainty in the clock (±0.02 s) due to the reaction time of the students stopping 
the clock. To get a better estimate of the uncertainty, we would need to have several 
students standing at each 10 m position. Repeating the experiment is not possible in 
this example since it is very difficult to ride at the same velocity several times.

The gradient indicates that: velocity = 3.5 m s−1

Most school laboratories are not large enough to ride bikes in so when working indoors, we 
need to use shorter distances. This means that the times are going to be shorter so hand-
operated stop clocks will have too great a percentage uncertainty. One way of timing in the 
lab is by using photogates. These are connected to a computer via an interface and record 
the time when a body passes in or out of the gate. So, to replicate the bike experiment in 
the lab using a ball, we would need seven photogates as in Figure 5, with one extra gate to 
represent the start.

5 cm 5 cm 5 cm 5 cm 5 cm 5 cm

photogates

This would be quite expensive so we compromise by using just two photogates and a 
motion that can be repeated. An example could be a ball moving along a horizontal section 
of track after it has rolled down an inclined plane. Provided the ball starts from the same 
point, it should have the same velocity. So, instead of using seven photogates, we can use 
two – one is at the start of the motion and the other is moved to different positions along the 
track as in Figure 6. 

A.1 Figure 5 How to measure the time for a rolling ball if you have seven photogates.

A.1 Table 1 

Displacement/m 
± 0.1 m

Time/s 
± 0.02 s

10.0 3.40

20.0 5.62

30.0 8.55

40.0 12.31

50.0 14.17

60.0 17.21

0

10

20

30

40

50

60

70

0 5 10 15 20
time/s

di
sp

la
ce

m
en

t/
m

A.1 Figure 4 Graph of displacement vs time for a bike.

A.1 Figure 6 The ball 
interrupts the infrared light 
transmitted across each gate 
as it passes through them. The 
times of these interruptions 
are measured and recorded 
by a data logger.
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5 cm 5 cm 5 cm 5 cm

start time

starting position

stop time

5 cm 5 cm

Table 2 shows the results obtained using this arrangement.

Displacement/
cm ± 0.1 cm  

Time(t)/s ± 0.0001 s Mean 
t/s

Δt/s

5.0 0.0997 0.0983 0.0985 0.1035 0.1040 0.101 0.003

10.0 0.1829 0.1969 0.1770 0.1824 0.1825 0.18 0.01

15.0 0.2844 0.2800 0.2810 0.2714 0.2779 0.28 0.01

20.0 0.3681 0.3890 0.3933 0.3952 0.3854 0.39 0.01

25.0 0.4879 0.5108 0.5165 0.4994 0.5403 0.51 0.03

30.0 0.6117 0.6034 0.5978 0.6040 0.5932 0.60 0.01

Notice that the uncertainty 
calculated from    

(max − min)_________
2    

is much more than the 
instrument uncertainty. 
A graph of displacement vs 
time gives Figure 8.

From this graph, we can see 
that within the limits of the 
experiment’s uncertainties 
the displacement could be 
proportional to time, so 
we can conclude that the 
velocity may have been 
constant. However, if we 
look closely at the data, we 
see that there seems to be 
a slight curve, indicating 
that perhaps the ball was 
slowing down. To verify 
this, we would have to 
collect more data.

A.1 Table 2

A.1 Figure 8 Graph of 
displacement vs time for a 
rolling ball. 

0

5
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cm

slope = 48.53 cm s–1

y-intercept = 0.08117 cm

Measuring instantaneous velocity

To measure instantaneous velocity, a very small displacement must be used. This could be 
achieved by placing two photogates close together or attaching a piece of card to the moving 
body as shown in Figure 9. The time taken for the card to pass through the photogate is 

recorded and the instantaneous velocity calculated from: 
length of card

  ____________
time taken

      (
d__
t  )

A.1 Figure 9 A card and 
photogate used to measure 
instantaneous velocity.

d

photogate
card

A.1 Figure 7 Measuring the 
velocity of a ball with two 
photogates.
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Relative velocity
Velocity is a vector so velocities must be added as vectors. Imagine you are running 
north at 3 m s−1 on a ship that is also traveling north at 4 m s−1 as shown in Figure 10. 
Your velocity relative to the ship is 3 m s−1 but your velocity relative to the water is 
7 m s−1. If you turn around and run due south, your velocity will still be 3 m s−1 relative 
to the ship but 1 m s−1 relative to the water. Finally, if you run toward the east, the 
vectors add at right angles to give a resultant velocity of magnitude 5 m s−1 relative to 
the water. You can see that the velocity vectors have been added.

3ms–1

4ms–1

7ms–1

4ms–1

3ms–1

3ms–1

4ms–1

1ms–1

4ms–1

3ms–1

3ms–1

4ms–1

5ms–14ms–1

3ms–1

Imagine that you are floating in the water watching two boats traveling toward each 
other as in Figure 11.

4ms–1 3ms–1

–3ms–1–4ms–1

The blue boat is traveling east at 4 m s−1 and the green boat is traveling west at −3 m s−1. 
Remember that the sign of a vector in one dimension gives the direction. So, if east is 
positive, then west is negative. If you were standing on the blue boat, you would see 
the water going past at −4 m s−1 so the green boat would approach with the velocity of 
the water plus its velocity in the water: −4 + −3 = −7 m s−1. This can also be done in two 
dimensions as in Figure 12.

4ms–1

3ms–1

5ms–1

–4ms–1

3ms–1

According to the swimmer floating in the water, the green boat travels north and the 
blue boat travels east, but an observer on the blue boat will see the water traveling 
toward the west and the green boat traveling due north. Adding these two velocities 
gives a velocity of 5 m s−1 in an approximately northwest direction.

What is the relative 
speed of the light from 
a star measured by a 
rocket traveling at 0.5 
times the speed of light 
toward the star? (A.5)

A.1 Figure 10 Running on 
board a ship.

A.1 Figure 11 Two boats 
approach each other. The 
vector addition for the 
velocity of the green boat 
from the perspective of the 
blue boat is shown.

A.1 Figure 12 Two boats 
traveling perpendicular 
to each other. The vector 
addition for the velocity of 
the green boat from the 
perspective of the blue boat 
is shown.

How effectively do the 
equations of motion 
model Newton’s laws of 
dynamics? (A.2)
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Exercise

Q3. An observer standing on a road watches a bird fl ying east at a velocity of 
10 m s−1. A second observer, driving a car along the road northward at 20 m s−1, 
sees the bird. What is the velocity of the bird relative to the driver?

Q4. A boat travels along a river heading north with a velocity 4 m s−1 as a woman 
walks across a bridge from east to west with velocity of 1 m s−1. Calculate the 
velocity of the woman relative to the boat.

Acceleration
In everyday usage, the word accelerate means to go faster. However, in physics,
acceleration is defined as the rate of change of velocity:

acceleration =    
change of velocity

  _______________
time      

The unit of acceleration is m s–2.

Acceleration is a vector quantity.

This means that whenever a body changes its velocity, it accelerates. This could be 
because it is getting faster, slower, or just changing direction. In the example of the 
journey across Bangkok, the car would have been slowing down, speeding up and 
going round corners almost the whole time so it would have had many different 
accelerations. However, this example is far too complicated for us to consider in 
this course (and probably any physics course). For most of this chapter, we will only 
consider the simplest example of accelerated motion, which is constant acceleration.

Constant acceleration in one dimension
In one-dimensional motion, acceleration, velocity and displacement are all in the same 
direction. This means they can be added without having to draw triangles. Figure 13 
shows a body that is starting from an initial velocity u and accelerating at a constant 
rate a to velocity v in t seconds. The distance traveled in this time is s. Since the motion 
is in a straight line, this is also the displacement.

u

time = 0 time = t

va

s

Using the definitions already stated, we can write equations related to this example.

Average velocity
From the definition, average velocity =    

displacement___________
time      

 average velocity =    
s_
t     (1)

Since the velocity changes at a constant rate from the beginning to the end, we can also 
calculate the average velocity by adding the initial and final velocities and dividing by two:

 average velocity =    
(u + v)_____

2
     (2)

A.1 Figure 13 A red ball 
is accelerated at a constant 
rate.
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13

Acceleration
Acceleration is defined as the rate of change of velocity:

a =    
(v − u)_____

t    (3)

We can use these equations to solve any problem involving constant acceleration. 
However, to make problem solving easier, we can derive two more equations by 
substituting from one into the other. 

Equating equations (1) and (2):

    
s_
t    =    

(u + v)_____
2

   

s =    
(u + v) t______

2
    (4)

Rearranging (3) gives: v = u + at

If we substitute for v in equation (4), we get: s = ut +    1_2   at2 (5)

Rearranging (3) again gives: t =    
(v − u)_____

a   

If t is now substituted in equation (4), we get: v2 = u2 + 2as (6)

These equations are sometimes known as the suvat equations. If you know any three of 
s, u, v, a, and t, you can find either of the other two in one step. 

Worked example 

A car traveling at 10 m s–1 accelerates at 2 m s–2 for 5 s. What is its displacement?

Solution

The fi rst thing to do is draw a simple diagram:

u = 10 m s–1

time = 0 time = 5 s

a = 2 m s–2

This enables you to see what is happening at a glance rather than reading the text. 
The next stage is to make a list of suvat.

s = ?

u = 10 m s–1

v = ?

a = 2 m s–2

t = 5 s

To fi nd s, you need an equation that contains suat. The only equation with all four of 
these quantities is: s = ut +    1_2   at2

Using this equation gives: s = 10 × 5 +    1_2    × 2 × 52

 s = 75 m

When the units are 
consistent, you do 
not need to include 
units in all stages of a 
calculation, just in the 
answer.

These equations are 
known as the suvat
equations:

a =    
(v − u)_______

t
   

s =    
(v + u)t________

2
   

s = ut +    1__
2   at2

v2 = u2 + 2as

How are the equations 
for rotational motion 
related to those for 
linear motion? (A.4)
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SPACE, TIME AND MOTION A.1 Kinematics

14

The signs of displacement, velocity, and acceleration
We must not forget that displacement, velocity and acceleration are vectors. This 
means that they have direction. However, since this is a one-dimensional example, 
there are only two possible directions, forward and backward. We know which 
direction the vector is in from its sign. 

If we take right to be positive:
• A positive displacement means that the body has moved to the right.
• A positive velocity means the body is moving to the right.
• A positive acceleration means that the body is either moving to the right and 

getting faster or moving to the left and getting slower. This can be confusing so 
consider the following example.

v = 5 m s–1

time = 5 s time = 0

u = 10 m s–1

The car is traveling in a negative direction so the velocities are negative.

 u = −10 m s−1

 v = −5 m s−1

 t = 5 s
The acceleration is therefore given by:

a =    
(v − u)_____

t    =    
−5 − (–10)________

5
    = 1 m s−2

The positive sign tells us that the acceleration is in a positive direction (right) even 
though the car is traveling in a negative direction (left).

Worked example 

A body with a constant acceleration of −5 m s–2 is traveling to the right with a 
velocity of 20 m s–1. What will its displacement be after 20 s?

Solution

s = ?

u = 20 m s−1

v = ?

a = −5 m s−2

t = 20 s

To calculate s, we can use the equation: s = ut +    1_2    at2

 s = 20 × 20 +    1_2    (−5) × 202 = 400 − 1000 = −600 m

This means that the final displacement of the body is to the left of the starting 
point. It has gone forward, stopped, and then gone backward.

The acceleration due to 
gravity is not constant all 
over the Earth. 9.81 m s−2

is the average value. 
The acceleration also 

gets smaller the higher 
you go. However, we 

ignore this change when 
conducting experiments 
in the lab since labs are 

not that high.

To make the examples 
easier to follow, 

g = 10 m s−2 is used 
throughout. However, 

you should only use this 
approximate value in 

exam questions if told 
to do so.

A.1 Figure 14 A car moves 
to the left with decreasing 
speed

20 m s–1

5 m s–2

A.1 Figure 15 The 
acceleration is negative so 
points to the left.
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15

Exercise

Q5. Calculate the fi nal velocity of a body that starts from rest and accelerates at 
5 m s–2 for a distance of 100 m.

Q6. A body starts with a velocity of 20 m s–1 and accelerates for 200 m with an 
acceleration of 5 m s–2. What is the fi nal velocity of the body?

Q7. A body accelerates at 10 m s–2 and reaches a fi nal velocity of 20 m s–1 in 5 s. 
What is the initial velocity of the body?

Free fall motion
Although a car has been used in the previous examples, the acceleration of a car is 
not usually constant so we should not use the suvat equations. The only example of 
constant acceleration that we see in everyday life is when a body is dropped. Even then, 
the acceleration is only constant for a short distance.

Acceleration of free fall
When a body is allowed to fall freely, we say it is in free fall. Bodies falling freely on the 
Earth fall with an acceleration of about 9.81 m s–2 (depending where you are). The body 
falls because of gravity. For that reason, we use the letter g to denote this acceleration. 
Since the acceleration is constant, we can use the suvat equations to solve problems.

Exercise

In these calculations, use g = 10 m s–2. 

Q8. A ball is thrown upward with a velocity of 30 m s–1. What is the displacement 
of the ball after 2 s?

Q9. A ball is dropped. What will its velocity be after falling 65 cm?

Q10. A ball is thrown upward with a velocity of 20 m s–1. After how many seconds 
will the ball return to its starting point?

Measuring the acceleration due to gravity
When a body falls freely under the influence of gravity, it accelerates at a constant 
rate. This means that time to fall t and distance s are related by the equation: 
s = ut +    1_2    at2. If the body starts from rest, then u = 0 so the equation becomes: 
s =    1_2    at2. Since s is directly proportional to t2, a graph of s vs t2 would therefore 
be a straight line with gradient    1_2    g. It is difficult to measure the time for a ball to 
pass different markers, but if we assume the ball falls with the same acceleration 
when repeatedly dropped, we can measure the time taken for the ball to fall from 
different heights. There are many ways of doing this. All involve some way of 
starting a clock when the ball is released and stopping it when it hits the ground. 
Table 3 shows a set of results from a ‘ball drop’ experiment.

How does the motion 
of an object change 
within a gravitational 
fi eld? (D.1)

If you jump out of a 
plane (with a parachute 
on), you will feel the 
push of the air as it 
rushes past you. As you 
fall faster and faster, the 
air will push upward 
more and more until 
you cannot go any 
faster. At this point, you 
have reached terminal 
velocity. We will come 
back to this after 
introducing forces.

Apparatus for measuring g.
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SPACE, TIME AND MOTION A.1 Kinematics
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Height(h)/m
± 0.001 m

Time(t)/s ± 0.001 s Mean 
t/s

t²/s² Δ(t²)/s²

0.118 0.155 0.153 0.156 0.156 0.152 0.154 0.024 0.001

0.168 0.183 0.182 0.183 0.182 0.184 0.183 0.0334 0.0004

0.218 0.208 0.205 0.210 0.211 0.210 0.209 0.044 0.001

0.268 0.236 0.235 0.237 0.239 0.231 0.236 0.056 0.002

0.318 0.250 0.254 0.255 0.250 0.256 0.253 0.064 0.002

0.368 0.276 0.277 0.276 0.278 0.276 0.277 0.077 0.001

0.418 0.292 0.293 0.294 0.291 0.292 0.292 0.085 0.001

0.468 0.310 0.310 0.303 0.300 0.311 0.307 0.094 0.003

0.518 0.322 0.328 0.330 0.328 0.324 0.326 0.107 0.003

0.568 0.342 0.341 0.343 0.343 0.352 0.344 0.118 0.004

Notice that the uncertainty in t2 is calculated from:    
(tmax

2 − tmin
2)___________

2
   

Notice how the line in Figure 16 is very close to the points and that the uncertainties 
reflect the actual random variation in the data. The gradient of the line is equal to    1_2    g 
so g = 2 × gradient.

g = 2 × 4.814 = 9.624 m s−2

The uncertainty in this value can be estimated from the steepest and least steep lines:

gmax = 2 × 5.112 = 10.224 m s−2

gmin = 2 × 4.571 = 9.142 m s−2

Δg =    
( gmax − gmin)__________

2
    =    

(10224 − 9.142)
  _____________

2
    = 0.541 m s−2

So, the final value including uncertainty is 9.6 ± 0.5 m s−2.

This is in agreement with the accepted average value which is 9.81 m s−2. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
time2/s2

he
ig

ht
/m

slope = 4.814 m s–2

y-intercept = 0.005 m

slope = 4.571 m s–2

y-intercept = 0.0137 m

slope = 5.112 m s–2

y-intercept = –0.01030 m

A.1 Table 3

If a parachutist kept 
accelerating at a 

constant rate, they 
would break the 

sound barrier after 
about 30 s of flight. 

By understanding 
the forces involved, 
scientists have been 
able to design wing 

suits so that base 
jumpers can achieve 

forward velocities 
greater than their rate 

of falling.

A.1 Figure 16 Height vs 
time2 for a falling object.

Why would it not be 
appropriate to apply the 

suvat equations to the 
motion of a body falling 
freely from a distance of 
2 times the Earth’s radius 

to the surface of the 
Earth? (D.1)

A worksheet with full 
details of how to carry 

out this experiment 
is available in your 

eBook.
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Graphical representation of motion
Graphs are used in physics to give a visual representation of relationships. In 
kinematics, they can be used to show how displacement, velocity and acceleration 
change with time. Figure 17 shows the graphs for four different examples of motion. 

The best way to sketch graphs is to split the motion into sections then plot where the 
body is at different times. Joining these points will give the displacement–time graph. 
Once you have done that, you can work out the v–t and a–t graphs by looking at the s–t
graph rather than the motion.

Gradient of displacement–time graph

The gradient of a graph is:    
change in y__________
change in x

    =    
∆y___
∆x

   

In the case of the displacement–time graph, this will give:

gradient =    
∆s___
∆t

   

This is the same as velocity.

We can represent the motion of a body on displacement–time graphs, velocity–time 
graphs and acceleration–time graphs. The three graphs of these types shown in 
Figure 17 display the motion of four bodies, which are labeled A, B, C and D.

D B
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time
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D
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time
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time
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time
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Body A

A body that is not moving. 
Displacement is always the same.
Velocity is zero.
Acceleration is zero.

Body B

A body that is traveling with a constant 
positive velocity.
Displacement increases linearly with time.
Velocity is a constant positive value.
Acceleration is zero.

Body C

A body that has a constant negative 
velocity.
Displacement is decreasing linearly 
with time.
Velocity is a constant negative value.
Acceleration is zero.

Body D

A body that is accelerating with constant 
acceleration.
Displacement is increasing at a non-linear 
rate. The shape of this line is a parabola 
since displacement is proportional to 
t2 (s = ut +    1_2   at2).
Velocity is increasing linearly with time.
Acceleration is a constant positive value.

So, the gradient of the displacement–time graph equals the velocity. Using this 
information, we can see that line A in Figure 18 represents a body with a greater 
velocity than line B, and that since the gradient of line C is increasing, this must be the 
graph for an accelerating body. 

You need to be able to: 
•   work out what kind 

of motion a body 
has by looking at the 
graphs

•   sketch graphs for a 
given motion.

A.1 Figure 17 Graphical 
representation of motion.

C

B

A

time

di
sp

la
ce

m
en

t

A.1 Figure 18 Three new 
bodies to compare.
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SPACE, TIME AND MOTION A.1 Kinematics
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Instantaneous velocity
When a body accelerates, its velocity is constantly changing. The displacement–time 
graph for this motion is therefore a curve. To find the instantaneous velocity from 
the graph, we can draw a tangent to the curve and find the gradient of the tangent as 
shown in Figure 19.

Area under velocity–time graph
The area under the velocity–time graph for the body traveling at constant velocity v
shown in Figure 20 is given by:

 area = v∆t

But we know from the definition of velocity that: v =    
∆ s___
∆t

    

Rearranging gives ∆s = v∆t so the area under a velocity–time graph gives the 
displacement.

This is true, not only for simple cases such as this, but for all examples.

Gradient of velocity–time graph

The gradient of the velocity–time graph is given by    
∆v___
∆t

    . This is the same as 
acceleration.

Area under acceleration–time graph
The area under the acceleration–time graph in Figure 21 is given by a∆t. But we know 

from the definition of acceleration that: a =    
(v − u)_____

t   

Rearranging this gives v – u = a∆t so the area under the graph gives the change in velocity.

If you have covered calculus in your mathematics course, you may recognize these 
equations:

v =    
ds__
dt

   , a =    
dv__
dt

    =    
d2s___
d2t

    and s = ∫vdt, v = ∫adt 

Exercise

Q11. Sketch a velocity–time graph for a body starting from rest and accelerating 
at a constant rate to a fi nal velocity of 25 m s–1 in 10 seconds. Use the graph 
to fi nd the distance traveled and the acceleration of the body.

Q12. Describe the motion of the body whose velocity–time graph is shown. 
What is the fi nal displacement of the body?

10 

–10  

time/s

velocity/m s–1

3 6
9

s

t
time

Δ

Δ

di
sp

la
ce

m
en

t

A.1 Figure 19 Finding the 
gradient of the tangent

t time

velocity

v

Δ

A.1 Figure 20 The area is 
displacement

t time

ac
ce

le
ra

tio
n

a

Δ

A.1 Figure 21 The area is 
change in velocity

How does analyzing 
graphs allow us to 

determine other 
physical quantities? 

(NOS)
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Q13. A ball is released from rest on the hill in the fi gure below. Sketch the s–t, v–t, 
and a–t graphs for its horizontal motion.

Q14. A ball rolls along a table then falls off the edge, landing on soft sand. Sketch 
the s–t, v–t, and a–t graphs for its vertical motion.

Example 1: The suvat example
As an example, let us consider the motion we looked at when deriving the suvat
equations. 

u

time = 0 time = t

va

s

Displacement–time
The body starts with velocity u and travels to the right with constant acceleration a for a 
time t. If we take the starting point to be zero displacement, then the displacement–
time graph starts from zero and rises to s in t seconds. We can therefore plot the two 
points shown in Figure 23. The body is accelerating so the line joining these points is 
a parabola. The whole parabola has been drawn to show what it would look like – the 
reason it is offset is because the body is not starting from rest. The part of the curve to 
the left of the origin tells us what the particle was doing before we started the clock.

Velocity–time
Figure 24 is a straight line with a positive gradient 
showing that the acceleration is constant. The line 
does not start from the origin since the initial 
velocity is u. 

The gradient of this line is    
(v − u)_____

t    , which we know 

from the suvat equations is acceleration.

The area under the line makes the shape of a 
trapezium. The area of this trapezium is    1_2   (v + u)t. 
This is the suvat equation for s.

Acceleration–time
The acceleration is constant so the acceleration–time 
graph is a horizontal line as shown in Figure 25. 
The area under this line is a × t , which we know 
from the suvat equations equals (v – u).

Negative time does 
not mean going back 
in time – it means the 
time before you started 
the clock.

A.1 Figure 22 A body with 
constant acceleration.

s

t

displacement

time

A.1 Figure 23 Constant 
acceleration.

v

u

time

velocity

t A.1 Figure 24 Constant 
acceleration.

a

time

acceleration

t

A.1 Figure 25 Constant 
acceleration.
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Example 2: The bouncing ball
Consider a rubber ball dropped from position A above the ground onto hard surface B. 
The ball bounces up and down several times. Figure 26 shows the displacement–time 
graph for four bounces. From the graph, we see that the ball starts above the ground 
then falls with increasing velocity (as shown by the increasing negative gradient). 
When the ball bounces at B, the velocity suddenly changes from negative to positive as 
the ball begins to travel back up. As the ball goes up, its velocity decreases until it stops 
at C and begins to fall again.

A

A

B
B

C

D time

displacement

Exercise

Q15. By considering the gradient of the displacement–time graph in Figure 26, 
plot the velocity–time graph for the motion of the bouncing ball.

Example 3: A ball falling with air resistance
Figure 27 shows the motion of a ball that is dropped several hundred meters through 
the air. It starts from rest and accelerates for some time. As the ball accelerates, the air 
resistance increases, which stops the ball from getting any faster. At this point, the ball 
continues with constant velocity.

time

di
sp

la
ce

m
en

t

Exercise

Q16. By considering the gradient of the displacement–time graph, plot the 
velocity–time graph for the motion of the falling ball in Figure 27.

A.1 Figure 26 Vertical 
displacement vs time.

Why is the height 
reached by a bouncing 
ball less than the height 

of release? (A.3)

A.1 Figure 27 Vertical 
displacement vs time
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Projectile motion
We all know what happens when a ball is thrown. It follows a curved path like the one 
in the photo. We can see from this photo that the path is parabolic and later we will 
show why that is the case. 

Modeling projectile motion
All examples of motion up to this point have been in one dimension but projectile 
motion is two-dimensional. However, if we take components of all the vectors vertically 
and horizontally, we can simplify this into two simultaneous one-dimensional 
problems. The important thing to realize is that the vertical and horizontal components 
are independent of each other. You can test this by dropping an eraser off your desk and 
flicking one forward at the same time – they both hit the floor together. The downward 
motion is not changed by the fact that one stone is also moving forward.motion is not changed by the fact that one stone is also moving forward.

A

B

C

v

R
range

h
max height

v

g

g

θ

θ

Consider a ball that is projected at an angle θ to the horizontal, as shown in Figure 28. 
We can split the motion into three parts, beginning, middle and end, and analyze the 
vectors representing displacement, velocity and time at each stage. Notice that the path 
is symmetrical, so the motion on the way down is the same as on the way up.

Horizontal components

At A (time = 0) At B (time =    t__
2

   ) At C (time = t)

displacement = zero

velocity = v cos θ

acceleration = 0

displacement =    
R__
2

   

velocity = v cos θ

acceleration = 0

displacement = R

velocity = v cos θ

acceleration = 0

Vertical components

At A At B At C

displacement = zero

velocity = v sin θ

acceleration = −g

displacement = h

velocity = zero

acceleration = −g

displacement = zero

velocity = –v sin θ

acceleration = −g

We can see that the vertical motion is constant acceleration and the horizontal motion 
is constant velocity. We can therefore use the suvat equations.

A stroboscopic photograph 
of a projected ball.

When can problems 
on projectile motion 
be solved by applying 
conservation of energy 
instead of kinematic 
equations? (A.3)

A.1 Figure 28 A projectile 
launched at an angle θ.

Note that, at C, we are 
using the magnitude of 
θ (which is unchanged 
from position A). 
Therefore the negative 
sign is in place to 
provide the correct 
velocity direction; the 
projectile is moving 
downward.
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suvat for horizontal motion
Since acceleration is zero, there is only one equation needed to define the motion.

suvat A to C

v =    
s_
t   R = v cos θ t

suvat for vertical motion
When considering the vertical motion, it is worth splitting the motion into two parts.

suvat At B At C

s =    1_2   (u + v)t

v2 = u2 + 2as

s = ut +    1_2    at2

a =    
v − u____

t   

h =    1_2   (v sin θ)   
t__
2

   

0 = v2 sin2θ – 2gh

h = v sin θ t –    1_2    g  (
t__
2

  )
2

g =    
v sin θ – 0________

t__
2

  
   

0 =    1_2   (v sin θ – v sin θ)t

(–v sin θ)2 = (v sin θ)2 – 0

0 = v sin θ t –    1_2    gt2

g =    
v sin θ – (–v sin θ)

  _____________
t   

Some of these equations are not very useful since they simply state that 0 = 0. 
However, we do end up with three useful ones (highlighted):

 R = v cos θ t   (7)

 0 = v2 sin 2θ – 2gh or  h =    
v2 sin2 θ_________

2g
     (8)

 0 = v sin θ t –    1_2    gt2  or  t =    
2v sin θ______

g     (9)

Solving problems
In a typical problem, you will be given the magnitude and direction of the initial 
velocity and asked to find either the maximum height or range. To calculate h, you can 
use equation (8), but to calculate R, you need to find the time of flight so must use (9) 
first. (You could also substitute for t into equation (6) to give another equation but we 
have enough equations already.)

You do not have to remember a lot of equations to solve a projectile problem. If 
you understand how to apply the suvat equations to the two components of the 
projectile motion, you only have to remember the suvat equations (and they are in the 
data booklet).

Worked example 

A ball is thrown at an angle of 30° to 
the horizontal at a speed of 20 m s–1. 
Calculate its range and the 
maximum height reached.

20 m s–1

30°

h

R

A.1 Table 4

Since the horizontal 
displacement is 

proportional to t, the 
path has the same 

shape as a graph of 
vertical displacement 
plotted against time. 

This is parabolic 
since the vertical 
displacement is 

proportional to t2.

For a given value of v, 
the maximum range 
is when v cos θ t is a 

maximum value. 

t = 2v sin θ
g

If we substitute this for 
t we get:

R = 2v2 cos θ sin θ
g

Now, 2sin θ cos θ = sin2 θ
(a trigonometric 

identity)

So, R = v2sin2θ
g

This is maximum when 
sin2 θ is a maximum 
(sin2 θ = 1), which is 

when θ = 45°.

How does the motion of 
a mass in a gravitational 

fi eld compare to the 
motion of a charged 
particle in an electric 

fi eld? (D.2)
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Solution

First, draw a diagram, including labels defi ning all the quantities known and 
unknown.

Now we need to fi nd the time of fl ight. If we apply s = ut +    1_2    at2 to the whole fl ight 
we get: 

 t =    
2v sin θ______

g    =    
(2 × 20 × sin 30°)

  ______________
10

    = 2 s

We can now apply s = vt to the whole fl ight to fi nd the range:

 R = v cos θ t = 20 × cos 30° × 2 = 34.6 m

Finally, to fi nd the height, we apply s = ut +    1_2    at2 to the vertical motion, but 
remember that this is only half the complete fl ight so the time is 1 s.

 h = v sin θ t −    1_2    gt2 = 20 × sin 30° × 1 −    1_2    × 10 × 12 = 10 – 5 = 5 m

When a bullet is fired 
at a distant target, it 
will travel in a curved 
path due to the action 
of gravity. Precision 
marksmen adjust their 
sights to compensate 
for this. The angle of 
this adjustment could 
be based on calculation 
or experiment (trial and 
error).

Worked example 

A ball is thrown horizontally from a cliff top 
with a horizontal speed of 10 m s–1. 
If the cliff is 20 m high, what is the range 
of the ball?

10 m s–1

20 m

R

Solution
This is an easy one since there are no angles to deal with. The initial vertical 
component of the velocity is zero and the horizontal component is 10 m s−1. 
To calculate the time of fl ight, we apply s = ut +    1_2    at2 to the vertical component. 
Knowing that the fi nal displacement is −20 m, this gives:

−20 m = 0 −    1_2    gt2 so t =   √
_______
(2 × 20)_______

10
     = 2 s

We can now use this value to fi nd the range by applying the equation s = vt to the 
horizontal component: R = 10 × 2 = 20 m

If you have ever played golf, 
you will know that it is not 
true that the maximum range 
is achieved with an angle 
of 45°. The angle is actually 
much less. This is because the 
ball is held up by the air like 
a plane is. In this photo, Alan 
Shepard is playing golf on the 
Moon. Here, the maximum 
range will be at 45°.
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Exercise

Q17. Calculate the range of a projectile thrown at an angle of 60° to the horizontal 
with a velocity of 30 m s–1.

Q18. You throw a ball at a speed of 20 m s–1.

(a) At what angle must you throw the ball so that it will just get over a wall 
that is 5 m high?

(b) How far away from the wall must you be standing?

Q19. A gun is aimed so that it points directly at the center of a target 200 m away. 
If the bullet travels at 200 m s–1, how far below the center of the target will the 
bullet hit?

Q20. If you can throw a ball at 20 ms–1, what is the maximum distance you can 
throw it?

Challenge yourself

1. A projectile is launched perpendicular to a 30° slope at 20 m s−1. Calculate the 
distance between the launching position and landing position.

Projectile motion with air resistance
In all the examples above, we have ignored the fact that the air will resist the motion 
of the ball. Air resistance opposes motion and increases with the speed of the moving 
object. The actual path of a ball including air resistance is likely to be as shown in 
Figure 29.

without air
resistance

with air
resistance

Notice that both the maximum height and the range are less. The path is also no longer 
a parabola – the way down is steeper than the way up. 

The equation for this motion is complex. Horizontally, there is negative acceleration 
and so the horizontal component of velocity decreases. Vertically, there is increased 
magnitude of acceleration on the way up and a decreased magnitude of acceleration on 
the way down. None of these accelerations are constant so the suvat equations cannot 
be used. Luckily, all you need to know is the shape of the trajectory and the qualitative 
effects on range and time of flight.

How does gravitational 
force allow for orbital 

motion? (A.2)

A.1 Figure 29 When 
air resistance is present, 
the projectile’s motion is 
asymmetric
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Alternative air effects
The air does not always reduce the range of a projectile. A golf ball travels further than 
a ball projected in a vacuum. This is because the air holds the ball up, in the same way 
that it holds up a plane, due to the dimples in the ball and its spin.

dimpled ball flight

smooth ball flight

How can the motion of a body be described quantitatively and qualitatively?

How can the position of a body in space and time be predicted?

How can the analysis of motion in one and two dimensions be used to solve 
real-life problems?

Guiding Questions revisited

In this chapter, we have considered real-life examples to show that:

• Displacement is the straight-line distance between the start and end points of a 
body’s motion and it has a direction.

• Velocity is the rate of change of displacement (and the vector equivalent of speed).
• Acceleration is the rate of change of velocity (and can therefore be treated as a 

vector).
• Motion graphs of displacement and velocity (or acceleration) against time 

enable qualitative changes in these quantities to be described and calculations of 
other quantities to be performed.

• The suvat equations of uniformly accelerated motion can be used to predict 
how position and velocity change with time (or one another) when a body 
experiences a constant acceleration.

• Vector quantities can be split into perpendicular components that can be treated 
independently, making it possible to solve problems in two dimensions using the 
suvat equations twice, for example, vertically and then horizontally for a projectile.

• Air resistance changes the acceleration in both perpendicular components, 
which means that the suvat equations cannot be used.

A.1 Figure 30 The path of 
a smooth ball and a dimpled 
golf ball.
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Practice questions

1. Police car P is stationary by the side of a road. Car S passes car P at a constant 
speed of 18 m s−1. Car P sets off to catch car S just as car S passes car P. Car P 
accelerates at 4.5 m s−2 for 6.0 s and then continues at a constant speed. Car P 
takes t seconds to draw level with car S.

(a) State an expression, in terms of t, for the distance car S travels in 
t seconds. (1)

(b) Calculate the distance traveled by car P during the fi rst 6.0 s of its 
motion. (1)

(c) Calculate the speed of car P after it has completed its acceleration. (1)

(d) State an expression, in terms of t, for the distance traveled by car P 
during the time that it is traveling at constant speed. (1)

(e) Using your answers to (a) to (d), determine the total time t taken by 
car P to draw level with car S. (2)

2. A ball is kicked with a speed of 14 m s–1 at 60° to the horizontal and lands 
on the roof of a 4 m high building.

(a) (i) State the fi nal vertical displacement of the ball. (1)

(ii) Calculate the time of fl ight. (3)

(iii) Calculate the horizontal displacement between the start point 
and the landing point on the roof. (2)

(b) The ball is kicked vertically upward. Explain the difference between 
the time to reach the highest point and the time from the highest 
point back to the ground. (3)

3. Two boys kick a football up and 
down a hill that is at an angle of 
30° to the horizontal. One boy 
stands at the top of the hill and 
one boy stands at the bottom of 
the hill. 

(a) Assuming that each boy kicks the ball perfectly to the other boy 
(without spin or bouncing), sketch a single path that the ball could 
take in either direction. (2)

(b) Compare the velocities with which each boy must strike the ball to 
achieve this path. (2)
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4. The graph shows how the displacement of an object varies with time. 
At which point (A, B, C or D) does the instantaneous speed of the object 
equal its average speed over the interval from 0 to 3 s? (1)

32
time/s

displacement/m

1

A B
C

D

0
0

1

2

3

4

5. A runner starts from rest and accelerates at a constant rate. 
Which graph (A, B, C or D) shows the variation of the speed v of 
the runner with the distance traveled s? (1)

0
0

s

vA

0
0

s

vB

0
0

s

vC

0
0

s

vD

6. A student hits a tennis ball at point P, which is 2.8 m above the ground. 
The tennis ball travels at an initial speed of 64 m s–1 at an angle of 7.0° to 
the horizontal. The student is 11.9 m from the net and the net has a height 
of 0.91 m.

7.0°
P

2.8 m

11.9 m

64 m s–1

0.91 m
ground

diagram not to scale

net

(a) Calculate the time it takes the tennis ball to reach the net. (2)

(b) Show that the tennis ball passes over the net. (3)

(c) Determine the speed of the tennis ball as it hits the ground. (2)
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7. Estimate from what height, under free-fall conditions, a heavy stone would 
need to be dropped if it were to reach the surface of the Earth at the speed 
of sound (330 m s–1). (2)

8. A motorbike is ridden up the left side of a symmetrical ramp. The bike 
reaches the top of the ramp at speed u, becomes airborne and falls to a point P 
on the other side of the ramp.

l

P
θ θ

O

 In terms of u, l and g, obtain expressions for: 

(a) the time t for which the motorbike is in the air (2)

(b) the distance OP (= l ) along the right side of the ramp. (3)
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The launch of the James Webb Space Telescope took place on 25 December 2021. When an object 
ejects a gas in a downward direction, the gas exerts an equal and upward force on the object. This is an 
example of a Newton’s third law pair.

How can we use our knowledge and understanding of the forces acting on a 
system to predict changes in translational motion? 

How can Newton’s laws be modeled mathematically? 

How can the conservation of momentum be used to predict the behavior of 
interacting objects?

Guiding Questions

The motion of a body traveling with constant acceleration can be modeled using the 
suvat equations of uniformly accelerated motion. But what causes the acceleration? 

First we must introduce a second body, which interacts with the original body. When 
two bodies interact, we say that they exert forces on one another in accordance 
with Newton’s three laws of motion. Forces can take many forms, but the presence 
of a force is required for one body to change the speed or course of another (an 
acceleration). 

The effect of the force depends upon its direction, so we use an arrow to represent the 
size and direction of a given force. By adding all the arrows together as vectors, we 
can calculate the overall size and direction of the resultant force. Using this direction 
of force and, therefore, acceleration in combination with the suvat equations, we can 
predict the new position and velocity of the original body.

Momentum is the product of mass and velocity, two quantities that we met in the 
previous chapter. What makes it worth defining in its own right? Momentum is always 
conserved in any collision provided there are no external forces. This conservation is a 
direct consequence of Newton’s three laws and can be used as a quick way to apply them. 

Nature of Science

Newton’s three laws of motion are a set of statements, based on observation 
and experiment, that can be used to predict the motion of a point object from 
the forces acting on it. 

Students should understand: 

Newton’s three laws of motion

forces as interactions between bodies

forces acting on a body can be represented in a free-body diagram

free-body diagrams can be analyzed to find the resultant force on a system
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the nature and use of the following contact forces:

• normal force FN is the component of the contact force acting perpendicular to the surface 
that counteracts the body

• surface frictional force Ff acting in a direction parallel to the plane of contact between a 
body and a surface, on a stationary body as given by Ff  ≤ μsFN or a body in motion as 
given by

Ff = μdFN where μs and μd are the coeffi cients of static and dynamic friction respectively

• elastic restoring force FH following Hooke’s law as given by FH = –kx where k is the spring 
constant

• viscous drag force Fd acting on a small sphere opposing its motion through a fl uid as 
given by Fd = 6πηrv where η is the fl uid viscosity, r is the radius of the sphere, and v is the 
velocity of the sphere through the fl uid

• buoyancy Fb acting on a body due to the displacement of the fl uid as given by Fb = ρVg
where V is the volume of fl uid displaced

the nature and use of the following field forces:

• gravitational force Fg as the weight of the body and calculated as given by Fg = mg

• electric force Fe

• magnetic force Fm

linear momentum as given by p = mv remains constant unless the system is acted upon by a 
resultant external force

a resultant external force applied to a system constitutes an impulse J as given by J = FΔt
where F is the average resultant force and Δt is the time of contact

the applied external impulse equals the change in momentum of the system

Newton’s second law in the form F = ma assumes mass is constant whereas  F =  
Δp_
Δt    allows for 

situations where mass is changing

the elastic and inelastic collisions of two bodies

explosions

energy considerations in elastic collisions, inelastic collisions, and explosions

bodies moving along a circular trajectory at a constant speed experience an acceleration that is 
directed radially toward the center of the circle – known as a centripetal acceleration as given 

by  a =  v
2_

r   =  ω 2 r =  4  π 2 r_
T2

circular motion is caused by a centripetal force acting perpendicular to the velocity

a centripetal force causes the body to change direction even if its magnitude of velocity may 
remain constant

the motion along a circular trajectory can be described in terms of the angular velocity ω

which is related to the linear speed v by the equation as given by  v =  2πr_
T   = ωr .

Hooke’s law and the elastic restoring force is discussed in A.3. The definitions of 
elastic and inelastic collisions can also be found in A.3. Information about electric and 
magnetic forces can be found in D.2.
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Force
We can now model the motion of a constantly accelerating body but what makes it 
accelerate? From experience, we know that to make something move we must push 
or pull it. We call this applying a force. One simple way of applying a force to a body 
is to attach a string and pull it. Imagine a sphere floating in space with two strings 
attached. The sphere will not start to move unless one of the astronauts pulls the string 
as in Figure 1.

A B

If A pulls the string, then the body will move to the left, and if B pulls the string, it will 
move to the right. We can see that force is a vector quantity since it has direction.

Addition of forces
Since force is a vector, we must add forces vectorially, so if A applies a force of 50 N 
and B applies a force of 60 N, the resultant force will be 10 N toward B, as can be seen in 
Figure 2. 

A force is a push or 
a pull.

The unit of force is 
the newton.

A.2 Figure 1 Two 
astronauts and a red ball.

If you hold an object 
of mass 100 g in your 

hand, then you will be 
exerting an upward 
force of about one 

newton (1 N).

50 N

50 N 10 N

60 N

60 N

A B

50 N

50 N x

60 N

60 N

A

B

Or, in two dimensions, we can use trigonometry as in Figure 3.

In this case, because the addition of forces forms a right-angled triangle, we can use 
Pythagoras to find x:

x =    502 + 602 = 78 N

A.2 Figure 3 Astronauts pulling at right angles.A.2 Figure 2 Astronaut B 
pulls harder than A.

Astronauts in space 
are considered here 

so that no other 
forces (except for 

very low gravity) are 
present. This makes 

things simpler.
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Taking components
As with other vector quantities, we can calculate components of forces. For example, 
we might want to know the resultant force in a particular direction.

In Figure 4, the component of the force in the x-direction is: Fx = 60 × cos 30° = 52 N

This is particularly useful when we have several forces.

30°

x

60 N

50 N

30°

30° x

60 N

  

In the example shown in Figure 5, we can use components to calculate the resultant 
force in the x-direction: 60 × cos 30° + 50 × cos 30° = 52 + 43 = 95 N

Exercise

Q1. Find the resultant force in the following examples:

(a)                                (b)

Equilibrium
If the resultant force on a body is zero, as in Figure 6, then we say the forces are 
balanced or the body is in equilibrium.

50 N

50 N

50 N

50 N

A B

A.2 Figure 4 Pulling at an angle. A.2 Figure 5 Astronauts not 
pulling in line.

10 N

10 N

10 N

3 N

5 N

A.2 Figure 6 Balanced 
forces.
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Or with three forces as in Figure 7.

45°

45°

50 N

50 N
50 N 50 N

70.7 N

70.7 N

x

y

In this example, the two blue forces are perpendicular, making the trigonometry easy. 
Adding all three forces gives a right-angled triangle. We can also see that if we take 
components in any direction, then the forces must be balanced. 

Taking components in the x-direction:

−50 × cos 45° − 50 × cos 45° + 70.7 = −35.35 − 35.35 + 70.7 = 0

Taking components in the y-direction:

50 × sin 45° − 50 × sin 45° = 0

Free-body diagrams
Problems often involve more than one body. For example, the previous problem involved 
four bodies, three astronauts, and one red ball. All of these bodies will experience forces, 
but if we draw them all on the diagram, it would be very confusing. For that reason, we 
only draw forces on the body we are interested in; in this case, the red ball. This is called a 
free-body diagram, as shown in Figure 8. Note that we treat the red ball as a point object 
by drawing the forces acting on the center. Not all forces actually act on the center, but 
when adding forces, it can be convenient to draw them as if they do.

Exercise

Q2. In the following examples, calculate the force F required to balance the forces.

40 N

30° 30°
40 N40 N

60 N 60 N

(a) (b)

F
F

A.2 Figure 7 Three 
balanced forces.

A.2 Figure 8 A free-body 
diagram of the forces in 
Figure 7.

50 N

50 N

70.7 N
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Q3. Calculate the resultant force for the following.

40 N

40 N20°

20°

50 N

50 N

20 N
60 N

(a) (b)

Q4. By resolving the vectors into components, calculate if the following bodies 
are in translational equilibrium or not. If not, calculate the resultant force.

(a)  (b)

Q5. If the following two examples are in equilibrium, calculate the unknown 
forces F1, F2, and F3.

(a)  (b)

Newton’s fi rst law of motion
From observation, we can conclude that to make a body move we need to apply an 
unbalanced force to it. What is not so obvious is that once moving it will continue 
to move with a constant velocity unless acted upon by another unbalanced force. 
Newton’s first law of motion is a formal statement of this: 

A body will remain at rest or moving with constant velocity unless acted upon by an unbalanced force.

The reason that this is not obvious to us on Earth is that we do not tend to observe bodies 
traveling with constant velocity with no forces acting on them; in space, it would be 
more obvious. Newton’s first law can be used in two ways. If the forces on a body are 
balanced, then we can use Newton’s first law to predict that it will be at rest or moving 
with constant velocity. If the forces are unbalanced, then the body will not be at rest 
or moving with constant velocity. This means its velocity changes – in other words, it 
accelerates. Using the law the other way round, if a body accelerates, then Newton’s first 
law predicts that the forces acting on the body are unbalanced. To apply this law in real 
situations, we need to know a bit more about the different types of force.

30°

10 N

1 N

8.66 N

4 N

6 N4 N

60°
30°

6 N

F1

6 N

45°

45°

60 N

20 N

F2

30°

F3

A law in physics is 
a very useful tool. If 
applied properly, it 
enables us to make a 
very strong argument 
that what we say is 
true. If asked ‘will a box 
move?’ you can say that 
you think it will and 
someone else could 
say it will not. You both 
have your opinions 
and you would then 
argue as to who is right. 
However, if you say 
that Newton’s law says 
it will move, then you 
have a much stronger 
argument (assuming 
you have applied the 
law correctly).
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Types of force
Tension
Tension is the name of the force exerted by the astronauts on the red ball. If you attach 
a string to a body and pull it, then you are exerting tension, as in Figure 9.

Normal reaction
Whenever two surfaces are in contact with (touching) each other, there will be a force 
between them. This force is perpendicular to the surface so it is called the normal 
reaction force. If the astronaut pushes the ball with his hand as in Figure 10, then 
there will be a normal reaction between the hand and the ball.

Note that the force acts on both surfaces so the astronaut will also experience a normal 
force. However, since we are interested in the ball, not the astronaut, we take the ball as 
our ‘free body’ so only draw the forces acting on it.

Gravitational force (weight)
Back on Earth, if a body is released above the ground as in Figure 11, it accelerates 
downward. According to Newton’s first law, there must be an unbalanced force 
causing this motion. This force is called the weight. The weight of a body is directly 
proportional to its mass: Fg = mg where gravitational field strength, g = 9.81 N kg−1 close 
to the surface of the Earth. Note that this is the same as the acceleration of free fall. You 
will find out why later on.

Note that the weight acts at the center of the body.

If a block is at rest on the floor, then Newton’s first law implies that the forces are balanced. 
The forces involved are weight (because the block has mass and is on the Earth) and 
normal force (because the block is in contact with the ground). Figure 12 shows the forces.normal force (because the block is in contact with the ground). Figure 12 shows the forces.

Fg

FN

A.2 Figure 12 A free-body diagram of 
a box resting on the ground.

Ft

Fg

FN

A.2 Figure 13 A string applies an 
upward force on the box.

Ft

Fg

A.2 Figure 14 The block is lifted as 
the tension is bigger than its weight.

These forces are balanced so: −Fg + FN = 0 or Fg = FN

If the mass of the block is increased, then the normal reaction will also increase.

If a string is added to the block, then we can exert tension on the block as in Figure 13.

The forces are still balanced since Ft + FN = Fg. Notice how Fg has remained the same but 
FN has got smaller. If we pull with more force,we can lift the block as in Figure 14. At 
this point, the normal reaction FN will be zero. The block is no longer in contact with 
the ground; now Ft = Fg.

Ft

A.2 Figure 9 Exerting 
tension with a string.

FN

A.2 Figure 10 A normal 
reaction force is exerted 
when a hand is in contact 
with a ball.

the ground

Fg

A.2 Figure 11 A ball in 
free fall.
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The block in Figure 15 is on an inclined plane (slope) so the weight still acts downward. 
In this case, it might be convenient to split the weight into components, one acting 
parallel to the slope and one acting perpendicular to the slope.

The component of weight perpendicular to the slope is Fg cos θ. Since there is no 
movement in this direction, the force is balanced by FN. The component of weight 
parallel to the slope is Fg sin θ. This force is unbalanced, causing the block to accelerate 
parallel to the slope. If the angle of the slope is increased, then sin θ  will also increase, 
resulting in a greater force down the slope.

Electric and magnetic forces
Electric forces act on charged particles. Magnetic forces act on moving charged 
particles and magnetic materials. 

Like weight (i.e. gravitational forces), electric and magnetic forces act at a distance. 
Unlike weight, they can be attractive and repulsive.

Friction
There are two types of friction: static friction, which is the force that stops the relative 
motion between two touching surfaces, and dynamic friction, which opposes the 
relative motion between two touching surfaces. In both cases, the force is related to 
both the normal force and the nature of the surfaces, so pushing two surfaces together 
increases the friction between them.

Ff = μFN where μ is the coefficient of friction (static or dynamic).

Dynamic friction
In Figure 21, a block is being pulled along a table at a constant velocity.

dFN
μ

v

dFN
μ

Ft

FgFg

FNFN

2   dFNμ

Ft

2Fg

FN

A.2 Figure 17 Two blocks joined with a rope. A.2 Figure 18 Two blocks on top of 
each other.

Since the velocity is constant, Newton’s first law implies that the forces are balanced so 
Ft = Ff and Fg = FN. Notice that friction does not depend on the area of contact. We can 
show this by considering two identical blocks sliding at constant velocity across a table 
top joined together by a rope as in Figure 17. The friction under each cube is μdFN so 
the total friction would be 2μdFN.

If one cube is now placed on top of the other as in Figure 18, the normal force under 
the bottom cube will be twice as much so the friction is now 2μdFN. It does not matter 
if the blocks are side by side (large area of contact) or on top of each other (small area 
of contact); the friction is the same.

θθ

FN

FN
Fg

Fg

A.2 Figure 15 Free-body 
diagram for a block on a 
slope.

What assumptions 
(NOS) about the forces 
between molecules of 
gas allow for ideal gas 
behavior? (B.3)

v

Ff

Ff

Ft

Ft

Fg

Fg

FN

FN

A.2 Figure 16 The force 
experienced by a block 
pulled along a table.
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If this is the case, then why do racing cars have wide tires with no tread pattern (slicks)? 
There are several reasons for this but one is to increase the friction between the tires 
and the road. This is strange because friction is not supposed to depend on area of 
contact. In practice, friction is not so simple. When one of the surfaces is sticky like the 
tires of a racing car, the force does depend upon the surface area. The type of surfaces 
we are concerned with here are quite smooth, non-sticky surfaces like wood and 
metal.

Static friction
If a very small force is applied to a block at rest on the ground, it will not move. This 
means that the forces on the block are balanced (Newton’s first law): the applied force 
is balanced by the static friction.

sFN
μ

dFN
μ

Ft

at rest

Ff

Ft

at rest

Ft

acceleration

In this case, the friction simply equals the applied force: Ff = Ft. As the applied force 
is increased, the friction will also increase. However, there will be a point when the 
friction cannot be any bigger. If the applied force is increased past that point, the block 
will start to move; the forces have become unbalanced as illustrated in Figure 24. 
The maximum value that friction can have is μsFN where μs is the coefficient of static 
friction. The value of static friction is always greater than dynamic friction. This can 
easily be demonstrated with a block on an inclined plane as shown in Figure 20.

dFN
μ

sFN
μ

Fg

Fg

FNFN

Fg

FNFf

In the first example, the friction is balancing the component of weight down the 
plane, which equals Fg sin θ, where θ is the angle of the slope. As the angle of the slope 
is increased, the point is reached where the static friction = μsFN. The forces are still 
balanced but the friction cannot get any bigger, so if the angle is increased further, the 
forces become unbalanced and the block will start to move. Once the block moves, the 
friction becomes dynamic friction. Dynamic friction is less than static friction, so this 
results in a bigger resultant force down the slope, causing the block to accelerate.

Friction does not just slow things down; it is also the force that makes things move. 
Consider the tire of a car as it starts to drive away from the traffic lights. The rubber of 
the tire is trying to move relative to the road. In fact, if there was no friction, the wheel 
would spin as the tire slipped backward on the road. The force of friction that opposes 
the motion of the tire slipping backward on the road is therefore in the forward
direction.

A.2 Figure 19 μFN is the 
maximum size of friction.

A.2 Figure 20 A block rests 
on a slope until the forces 
become unbalanced.

Ff

A.2 Figure 21 Friction 
pushes the car forwards.
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If the static friction between the tire and the road is not big enough, the tire will slip. 
Once this happens, the friction becomes dynamic friction, which is less than static 
friction, so once tires start to slip, they tend to continue slipping.

Buoyancy
Buoyancy is the name of the force experienced by 
a body totally or partially immersed in a fluid (a 
fluid is a liquid or gas). The size of this force is equal 
to the weight of fluid displaced. It is this force that 
enables a boat to float and a helium balloon to rise 
in the air. Let us consider a football and a bucket 
full of water.

If you take the football and push it under the water, then water will flow out of the 
bucket (luckily a big bowl was placed there to catch it). The weight of this displaced 
water is equal to the upward force on the ball. To keep the ball under water, you would 
therefore have to balance that force by pushing the ball down.

The forces on a floating object are balanced so the weight must equal the buoyant 
force. This means that the ball must have displaced its own weight of water as in 
Figure 28.

 Fg=ρVg

where V is the volume of fluid displaced and ρ is the density of the fluid.

Air resistance
Air resistance is the force that opposes the motion of a body through the air. More 
broadly, this is known as fluid resistance or drag. The size of this force depends on 
the speed, size, and shape of the body. At low speeds, the drag force experienced by a 
sphere is given by Stokes’ law:

Fd = 6πηvr

 where η = viscosity (a constant)

v = velocity

r = radius

When a balloon is dropped, it accelerates downward due to the force of gravity. As it 
falls through the air, it experiences a drag force opposing its motion. As the balloon’s 
velocity gets bigger so does the drag force, until the drag force balances its weight, at 
which point its velocity will remain constant (Figure 24). This maximum velocity is 
called its terminal velocity.

The same thing happens when a parachutist jumps out of a plane. The terminal 
velocity in this case is around 54 m s−1 (195 km h−1). Opening the parachute increases 
the drag force, which slows the parachutist down to a safer 10 m s−1 for landing.

A.2 Figure 22 A football immersed in 
a bucket of water.

Fb
Fb

Fg

A.2 Figure 23 A football 
fl oats in a bucket of water.

Fb
Fb

Fg

Fb

Fg

FdFd

Fd

Fb

Fg

Fb

Fg

Fd Fb

Fg

A.2 Figure 24 A balloon 
reaches terminal velocity as 
the forces become balanced. 
Notice the buoyant force is 
also present.
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As it is mainly the air resistance that limits the top speed of a car, a lot of time and 
money is spent by car designers to try to reduce this force. This is particularly 
important at high speeds when the drag force is related to the square of the speed.

Fg

FfFd

FN

Ff

Fd

Fg

FN
2

FN
2

Elastic restoring force
An elastic restoring force, FH, acts when the shape of an object is changed. An object is 
stretched when in tension and squashed when in compression. The size of the elastic 
restoring force increases with the extension (or compression) from the original length.

Exercise

Q6. A ball of weight 10 N is suspended on a string and pulled to one side by 
another horizontal string as shown in Figure 27. If the forces are balanced:

(a) write an equation for the horizontal components of the forces acting on 
the ball

(b) write an equation for the vertical components of the forces acting on 
the ball

(c) use the second equation to calculate the tension in the upper string, Ft

(d) use your answer to (c) plus the fi rst equation to fi nd the horizontal force F.

Q7. The condition for the forces to be balanced is that the 
sum of components of the forces in any two 
perpendicular components is zero. In the ‘box on a 
ramp’ example, the vertical and horizontal 
components were taken. However, it is sometimes 
more convenient to consider components parallel 
and perpendicular to the ramp.

A.2 Figure 25 The forces 
acting on a car traveling at 
constant velocity.

Speed skiers wear special 
clothes and squat down like 
this to reduce air resistance.

A.2 Figure 26 Stretching a 
spring.

∆x

How does the 
application of a restoring 

force acting on a 
particle result in simple 

harmonic motion? (C.1)

F

Ft

10 N

30°

A.2 Figure 27 A ball on a 
string that is pulled to the 
side

FN

FF

50 N

30°
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Consider the situation in the fi gure. If the forces on this box are balanced:

(a) write an equation for the components of the forces parallel to the ramp

(b) write an equation for the forces perpendicular to the ramp

(c) use your answers to fi nd the friction (Ff) and normal force (FN).

Q8. A rock climber is hanging from a rope attached to the cliff by two bolts as 
shown in Figure 28. If the forces are balanced: 

(a) write an equation for the vertical component of the forces on the knot

(b) write an equation for the horizontal forces exerted on the knot

(c) calculate the tension Ft in the ropes joined to the bolts.

The result of this calculation shows why ropes should not be connected in 
this way.

The relationship between force and acceleration
Newton’s first law states that a body will accelerate if an unbalanced force is applied to 
it. Newton’s second law tells us how big the acceleration will be and in which direction. 
Before we look in detail at Newton’s second law, we should look at the factors that affect 
the acceleration of a body when an unbalanced force is applied. Let us consider the 
example of catching a ball. When we catch the ball, we change its velocity, Newton’s first 
law tells us that we must therefore apply an unbalanced force to the ball. The size of that 
force depends upon two things: the mass and the velocity. A heavy ball is more difficult 
to stop than a light one traveling at the same speed, and a fast one is harder to stop than a 
slow one. Rather than having to concern ourselves with two quantities, we will introduce 
a new quantity that incorporates both mass and velocity: momentum.

Nature of Science

The principle of conservation of momentum is a consequence of Newton’s 
laws of motion applied to the collision between two bodies. If this applies to 
two isolated bodies, we can generalize that it applies to any number of isolated 
bodies. Here we will consider colliding balls but it also applies to collisions 
between microscopic particles such as atoms.

Momentum (p)
Momentum is defined as the product of mass and velocity:      p = mv

The unit of momentum is kg m s–1. Momentum is a vector quantity.

Impulse
When you get hit by a ball, the effect it has on you is greater if the ball bounces off you 
than if you catch it. This is because the change of momentum, Δp, is greater when the 
ball bounces, as shown in Figure 35. 

The unit of impulse is kg m s–1.

Impulse, J, is the change in momentum and is equal to the product of force and the 
time over which the force is acting. It is a vector.

J = Δp = FΔt

600 N

knot

80° 80°
FtFt

A.2 Figure 28 The rope is 
attached at two bolts

41

IB Physics Higher_3p.indb   41IB Physics Higher_3p.indb   41 20/12/2022   15:5820/12/2022   15:58

Uncorre
cte

d proofs



Red ball

momentum before = mv

momentum after = −mv (remember momentum is a vector)

change in momentum, J = −mv − mv = −2mv

Blue ball

momentum before = mv

momentum after = 0

change in momentum, J = 0 − mv = −mv

Exercise

Q9. A ball of mass 200 g traveling at 10 m s–1 bounces off a wall as in Figure 29. 
If after hitting the wall it travels at 5 m s–1, what is the impulse?

Q10. Calculate the impulse on a tennis racket that hits a ball of mass 67 g traveling 
at 10 m s–1 so that it comes off the racket at a velocity of 50 m s–1.

Newton’s second law of motion
The rate of change of momentum of a body is directly proportional to the unbalanced force acting on 
that body and takes place in same direction.

Let us once again consider a ball with a constant force acting on it as in Figure 30.

u

time = 0 time = t

va

s

F F

Newton’s first law tells us that there must be an unbalanced force acting on the ball 
since it is accelerating. 

Newton’s second law tells us that the size of the unbalanced force is directly 
proportional to the rate of change of momentum. We know that the force is constant 
so the rate of change of momentum is also constant, which, since the mass is also 
constant, implies that the acceleration is uniform so the suvat equations apply.

If the ball has mass, m we can calculate the change of momentum of the ball.

initial momentum = mu

final momentum = mv

change in momentum = mv − mu

The time taken is t so the rate of change of momentum =  
mv − mu

t

m

v

m

v

Before

v

After

A.2 Figure 29 The change 
of momentum of the red ball 
is greater.

A.2 Figure 30 A ball gains 
momentum

If F = 
change in momentum

time
then momentum 

= force × time.
So the unit of 

momentum is N s. 
This is the same 

as kg m s–1. 
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This is the same as 
m(v − u)

t
  = ma

Newton’s second law states that the rate of change of momentum is proportional to 
the force, so F ∝ ma.

To make things simple, the newton is defined so that the constant of proportionality is 
equal to 1 so:

F = ma

So when a force is applied to a body in this way, Newton’s second law can be simplified to:

The acceleration of a body is proportional to the force applied and inversely proportional to its mass.

Not all examples are so simple. Consider a jet of water hitting a wall as in Figure 31. 
The water hits the wall and loses its momentum, ending up in a puddle on the floor. 

Newton’s first law tells us that since the velocity of the water is changing, there must be 
a force on the water,

Newton’s second law tells us that the size of the force is equal to the rate of change 
of momentum. The rate of change of momentum in this case is equal to the amount 
of water hitting the wall per second multiplied by the change in velocity. This is not 
the same as ma. For this reason, it is best to use the first, more general, statement of 
Newton’s second law, since this can always be applied.

However, in this course, most of the examples will be of the F = ma type.

Example 1: Elevator accelerating upward
An elevator has an upward acceleration of 1 m s–2. If the mass of the elevator is 500 kg, 
what is the tension in the cables pulling it up?

First draw a free-body diagram as in Figure 32. Now we can see what forces are acting. 
Newton’s first law tells us that the forces must be unbalanced. Newton’s second law 
tells us that the unbalanced force must be in the direction of the acceleration (upward). 
This means that Ft is bigger than mg. 

Newton’s second law also tells us that the size of the unbalanced force equals ma so we 
get the equation:

Ft − mg = ma

Rearranging gives: 

Ft = mg + ma
  = 500 × 10 + 500 × 1
  = 5500 N

v

A.2 Figure 31 A jet 
becomes a puddle

Ft

mg

a

A.2 Figure 32 An elevator 
accelerating upward. This 
could either be going up 
getting faster or going down 
getting slower.

43

IB Physics Higher_3p.indb   43IB Physics Higher_3p.indb   43 20/12/2022   15:5820/12/2022   15:58

Uncorre
cte

d proofs



Example 2: Elevator accelerating downward
The same elevator as in Example 1 now has a downward acceleration of 1 m s–2 as in 
Figure 33.

This time, Newton’s laws tell us that the weight is bigger than the tension so: 
mg – Ft = ma

Rearranging gives: 

Ft = mg – ma
 = 500 × 10 − 500 × 1 
 = 4500 N

Example 3: Joined masses
Two masses are joined by a rope. One of the masses sits on a frictionless table, while 
the other hangs off the edge as in Figure 34.

M is being dragged to the edge of the table by m.

Both are connected to the same rope so Ft is the same for both masses. This also means 
that the acceleration a is the same. 

We do not need to consider FN and Mg for the mass on the table because these forces 
are balanced. However, the horizontally unbalanced force is Ft.

Applying Newton’s laws to the mass on the table gives:

Ft = Ma

The hanging mass is accelerating down so mg is bigger than Ft. Newton’s second law 
implies that: mg − Ft = ma

Substituting for Ft  gives: mg − Ma = ma so a = 
mg

M + m

Example 4: The free fall parachutist
After falling freely for some time, a free fall parachutist, whose weight is 60 kg, opens his 
parachute. Suddenly, the force due to air resistance increases to 1200 N. What happens? 

Looking at the free-body diagram in Figure 35, we can see that the forces are 
unbalanced and that, according to Newton’s second law, the acceleration, a, will 
be upward. 

The size of the acceleration is given by:

ma = 1200 − 600 = 60 × a

So: a = 10 m s–2

The acceleration is in the opposite direction to the motion. This will cause the 
parachutist to slow down. As he slows down, the air resistance gets less until the forces 
are balanced. He will then continue down with a constant velocity.

Ft

mg

a

A.2 Figure 33 The elevator 
with downward acceleration.

FN

Ft

Ft

a

a

Mg

mg

A.2 Figure 34

1200 N

600 N

A.2 Figure 35 The 
parachutist just after opening 
the parachute.
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Exercise

Q11. The helium in a balloon causes an upthrust of 0.1 N. If the mass of the 
balloon and helium is 6 g, calculate the acceleration of the balloon.

Q12. A rope is used to pull a felled tree (mass 50 kg) along the ground. A tension 
of 1000 N causes the tree to move from rest to a velocity of 0.1 m s–1 in 2 s. 
Calculate the force due to friction acting on the tree.

Q13. Two masses are arranged on a frictionless table as shown in the fi gure on the 
right. Calculate:

(a) the acceleration of the masses

(b) the tension in the string. 

Q14. A helicopter is lifting a load of mass 1000 kg with a rope. The rope is strong 
enough to hold a force of 12 kN. What is the maximum upward acceleration 
of the helicopter?

Q15. A person of mass 65 kg is standing in an elevator that is accelerating upwards 
at 0.5 m s–2. 
What is the normal force between the fl oor and the person?

Q16. A plastic ball is held under the water by a child in a swimming pool. The 
volume of the ball is 4000 cm3.

(a) If the density of water is 1000 kg m–3, calculate the buoyant force on the 
ball (buoyant force = weight of fl uid displaced).

(b) If the mass of the ball is 250 g, calculate the theoretical acceleration of the 
ball when it is released. Why will the ball not accelerate this quickly in a 
real situation?

Even before opening their 
parachutes, base jumpers 
reach terminal velocity.

10 kg

5 kg
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It is not easy to apply a constant known force to a moving body: just try pulling a cart along 
the table with a force meter and you will see. One way this is often done in the laboratory is 
by hanging a mass over the edge of the table as shown in Figure 36.
If we ignore any friction in the pulley or in the wheels of the trolley, then the unbalanced 
force on the trolley = Ft. Since the mass is accelerating down, then the weight is bigger than Ft

so Fg − Ft = ma where m is the mass hanging on the string. The tension is therefore given by: 
Ft = mg − ma = m(g − a)
There are several ways to measure the acceleration of the trolley; one is to use a motion 
sensor. This senses the position of the trolley by reflecting an ultrasonic pulse off it. Knowing 
the speed of the pulse, the software can calculate the distance between the trolley and 
sensor. As the trolley moves away from the sensor, the time taken for the pulse to return 
increases; the software calculates the velocity from these changing times. Using this 
apparatus, the acceleration of the trolley for different masses was measured, and the results 
are given in the Table 1.

A.2 Table 1

Mass/kg 
±0.0001

Acceleration/m s−2

±0.03
Tension 

(Ft = mg − ma)/N
Max 
Ft/N

Min 
Ft/N ΔFt/N

0.0100 0.10 0.097 0.098 0.096 0.001

0.0500 0.74 0.454 0.453 0.451 0.001

0.0600 0.92 0.533 0.532 0.531 0.001

0.1000 1.49 0.832 0.830 0.828 0.001

0.1500 2.12 1.154 1.150 1.148 0.001

The uncertainty in mass is given by the last decimal place in the scale, and the uncertainty in 
acceleration by repeating one run several times. To calculate the uncertainty in tension, the 

maximum and minimum values have been 
calculated by adding and subtracting the 
uncertainties.
These results are shown in Figure 37.
Applying Newton’s second law to the trolley, 
the relationship between Ft and a should be 
Ft = Ma where M is the mass of the trolley. This 
implies that the gradient of the line should be M. 
From the graph, we can see that the gradient is 
0.52 ± 0.02 kg, which is quite close to the 0.5 kg 
mass of the trolley.
According to theory, the intercept should be (0, 0) 
but we can see that there is a positive intercept of 
0.05 N. It appears that each value is 0.05 N too big. 
The reason for this could be friction. If there was 
friction, then the actual unbalanced force acting 
on the trolley would be tension – friction. If this is 
the case, then the results would imply that friction 
is about 0.05 N.

motion sensor

a

a

Ft

Ft

Fg

A.2 Figure 36 Apparatus 
for fi nding the relationship 
between force and 
acceleration.

acceleration by repeating one run several times. To calculate the uncertainty in tension, the 
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slope = 0.501Nm–1 s2

y-intercept = 0.072N

slope = 0.521Nm–1 s2

y-intercept = 0.055N

slope = 0.546Nm–1 s2

y-intercept = 0.0199N

A.2 Figure 37 Graph of 
tension against acceleration.
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Newton’s third law of motion
When dealing with Newton’s first and second laws, we are careful to consider only the 
body that is experiencing the forces, not the body that is exerting the forces. Newton’s 
third law relates these forces.

If body A exerts a force on body B, then body B will exert an equal and opposite force on body A.

So if someone is pushing a car with a force F as shown in Figure 38, the car will 
push back on the person with a force –F. In this case, both of these forces are normal to 
the car’s surface.

–F F

You might think that, since these forces are equal and opposite, they will be balanced, 
and, in that case, how does the person get the car moving? This is wrong. The forces act 
on different bodies so cannot balance each other.

In summary, a Newton’s third law pair is made up of two forces of the same type and 
magnitude acting in opposite directions on different bodies.

Example 1: A falling body
A body falls freely toward the ground as in Figure 39. If we 
ignore air resistance, there is only one force acting on the 
body – the force due to the gravitational attraction of the 
Earth, which we call weight.

Applying Newton’s third law

If the Earth pulls the body down, then the body must pull 
the Earth up with an equal and opposite force. We have seen 
that the gravitational force always acts on the center of the 
body, so Newton’s third law implies that there must be a 
force equal to Fg acting upward on the center of the Earth 
as in Figure 40.

Example 2: A box rests on the floor
A box sits on the floor as shown in Figure 41. Let us apply Newton’s third law to this 
situation.

There are two forces acting on the box.

Normal force: The floor is pushing up on the box with a force FN. According to 
Newton’s third law, the box must therefore push down on the floor with a force of 
magnitude FN.

If experimental 
measurements contain 
uncertainties, how can 
laws be developed 
based on experimental 
evidence? (NOS) 

It is very important to 
realise that Newton’s 
third law is about 
two bodies. Avoid 
statements of this law 
that do not mention 
anything about there 
being two bodies.

A.2 Figure 38 The man 
pushes the car and the car 
pushes the man.

Fg

A.2 Figure 39 A falling 
body pulled down by gravity.Fg

A.2 Figure 40 The Earth 
pulled up by gravity.

Fg

FN

A.2 Figure 41 Forces acting 
on a box resting on the fl oor.
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Weight: The Earth is pulling the box down with a force Fg. 
According to Newton’s third law, the box must be pulling 
the Earth up with a force of magnitude Fg as shown in 
Figure 42.

Example 3: Recoil of a gun
When a gun is fired, the velocity of the bullet changes. 
Newton’s first law implies that there must be an unbalanced 
force on the bullet. This force must come from the gun. 
Newton’s third law says that if the gun exerts a force on the 
bullet, the bullet must exert an equal and opposite force on 
the gun. This is the force that makes the gun recoil or 
‘kick back’.

Example 4: The water cannon
When water is sprayed at a wall from a hosepipe, it hits the wall and stops. Newton’s 
first law says that if the velocity of the water changes, there must be an unbalanced 
force on the water. This force comes from the wall. Newton’s third law says that if the 
wall exerts a force on the water, then the water will exert a force on the wall. This is the 
force that makes a water cannon so effective at dispersing demonstrators.

Exercise

Q17. Use Newton’s fi rst and third laws to explain the following:

(a) When burning gas is forced downward out of a rocket motor, the rocket 
accelerates up.

(b) When the water cannons on the boat in the photo are operating, the boat 
accelerates forward.

(c) When you step forwards off a skateboard, the skateboard accelerates 
backward.

(d) A table tennis ball is immersed in a fl uid and held down by a string as 
shown in Figure 43. The container is placed on a balance. What will 
happen to the reading of the balance if the string breaks?

Fg

FN

Students often think 
that Newton’s third law 
implies that the normal 

force = –weight, but 
both of these forces act 

on the box. If the box 
is at rest, these forces 
are indeed equal and 

opposite but this is due 
to Newton’s first law.

A.2 Figure 42 Forces acting 
on the Earth according to 
Newton’s third law.

water

string

balance

A.2 Figure 43 A table 
tennis ball attached to a mass 
balance

A boat tests its water 
cannons.
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Collisions
In this section, we have been dealing with the interaction between two bodies 
(gun–bullet, skater–skateboard, hose–water). To develop our understanding of the 
interaction between bodies, let us consider a simple collision between two balls as 
illustrated in Figure 44.

v1 v2

u1

m1

u2

m2

Before

After

During
F2F1

Let us apply Newton’s three laws to this problem.

Newton’s first law
In the collision, the red ball slows down and the blue ball speeds up. Newton’s first law 
tells us that this means there is a force acting to the left on the red ball (F1) and to the 
right on the blue ball (F2).

Newton’s second law
This law tells us that the force will be equal to the rate of change of momentum of the 
balls so if the balls are touching each other for a time ∆t:

F1 = 
m1v1 – m1u1

∆t

F2 = 
m2v2 – m2u2

∆t

Newton’s third law
According to the third law, if the red ball exerts a force on the blue ball, then the blue 
ball will exert an equal and opposite force on the red ball.

F1 = −F2

m1v1 − m1u1

∆t  = 
−(m2v2 − m2u2)

∆t

Rearranging gives: m1u1 + m2u2 = m1v1 + m2v2

In other words, the momentum at the start equals the momentum at the end. 
We find that this applies not only to this example but to all interactions.

A.2 Figure 44 Collision 
between two balls.

An isolated system 
is one in which no 
external forces are 
acting. When a ball hits 
a wall, the momentum 
of the ball is not 
conserved because the 
ball and wall is not an 
isolated system, since 
the wall is attached 
to the ground. If the 
ball and wall were 
fl oating in space, then 
momentum would be 
conserved.
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The law of the conservation of momentum
For a system of isolated bodies, the total momentum is always the same.

This is not a new law since it is really just a combination of Newton’s laws. However, 
it provides a useful short cut when solving problems.

In many examples, we will have to pretend everything is in space isolated from the 
rest of the Universe, otherwise they are not isolated and the law of conservation of 
momentum will not apply. 

You may have noticed that some collisions enable the bodies to bounce off one 
another, while there are other collisions where the bodies stick together. We’ll discuss 
this further in A.3 Work, energy and power.

Nature of Science

By applying what we know about motion in a straight line, we can develop a 
model for motion in a circle. This is a common way that models are developed 
in physics: start simple and add complexity later.

Circular motion
If a car travels around a bend at 30 km h−1, it is obviously traveling at a constant speed, 
since the speedometer registers 30 km h−1 all the way round. However, it is not traveling 
at constant velocity. This is because velocity is a vector quantity, and for a vector 
quantity to be constant, both magnitude and direction must remain the same. Bends 
in a road can be many different shapes, but, to simplify things, we will only consider 
circular bends taken at constant speed.

Quantities of circular motion
Consider the body in Figure 45 traveling in a circle radius r, with constant speed v. 
In time Δt, the body moves from A to B. As it does this, the radius sweeps out an 
angle Δθ.

When describing motion in a circle, we often use quantities referring to the angular 
motion rather than the linear motion. These quantities are:

Time period (T)
The time period is the time taken to complete one circle.

The unit of the time period is the second.

Angular displacement (θ )
The angular displacement is the angle swept out by a line joining the body to 
the center.

The unit of angular displacement is the radian.

How are concepts 
of equilibrium and 

conservation applied to 
understand matter and 

motion from the smallest 
atom to the whole 

Universe? (B.3, D.1)

In which way is 
conservation of 

momentum relevant to 
the workings of a nuclear 

power station? (E.4)

When dealing with 
circular motion in 
physics, we always 

measure the angle in 
radians.

v

A

B

v

r

θΔ

A.2 Figure 45
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Angular velocity (ω)
The angular velocity is the angle swept out by per unit time. 

The unit of angular displacement is the radian s−1.

ω = 
∆θ
∆t

The angle swept out when the body completes a circle is 2π and the time taken is by 
definition the time period T so this equation can also be written:

ω = 
2π
T

Frequency (f )

The frequency is the number of complete revolutions per unit time.

f = 1
T

So: 

ω = 2πf

Angular velocity and speed
In a time T, the body in Figure 46 completes one full circle so it travels a distance 2πr, 
the circumference of the circle. Speed is defined as the distance traveled

time taken  so v = 2πr
T

. In this 
time, a line joining the body to the center will sweep out an angle of 2π radians so the 
angular velocity, ω =  2π

T
. Substituting into the equation for v we get:

 v = ωr

Although the speed is constant, when a body moves in a circle, its direction 
and velocity are always changing. At any moment in time, the magnitude of the 
instantaneous velocity is equal to the speed and the direction is perpendicular to the 
radius of the circle.

Centripetal acceleration
From the definition of acceleration, we know that if the velocity of a body changes, 
it must be accelerating, and that the direction of acceleration is in the direction of the 
change in velocity. Let us consider a body moving in a circle with a constant speed v. 
Figure 46 shows two positions of the body separated by a short time.

To derive the equation for this acceleration, let us consider a very small angular 
displacement δθ as represented by Figure 47.

v

v

–v

v
r

θδ
θδ

δ

Why is no work done 
on a body moving along 
a circular trajectory at 
constant speed? (A.3)constant speed? (A.3)

v

A

B

v

r

θΔ

A.2 Figure 46 A body 
travels at constant speed 
around a circle of radius r.

A.2 Figure 47 Angular 
displacement.
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If this small angular displacement has taken place in a short time δt, then the angular 
velocity, ω =  δθ

δt
.

From the definition of acceleration: a = 
change of velocity

time

If we took only the magnitude of velocity, then the change of velocity would be zero. 
However, velocity is a vector so change in velocity is found by taking the final velocity 
vector − initial velocity vector as in the vector addition in Figure 48. This triangle is not 
a right-angled triangle so cannot be solved using Pythagoras. However, since the angle 
δθ is small, we can say that the angle δθ in radians is approximately equal to 

δv
v .

Rearranging gives: δv = vδθ

 acceleration = 
δv

δt  = 
vδθ
δt

 a = vω

But we know that v = ωr so we can substitute for v and get a = ω2r

Or substituting for: ω = 
v
r

 a = 
v2

r

The direction of this acceleration is in the direction of δv. Now, as the angle δθ is small, 
the angle between δv and v is approximately 90°, which implies that the acceleration 
is perpendicular to the velocity. This makes it directed toward the center of the circle; 
hence the name centripetal acceleration.

Exercise

Q18. A body travels with constant speed of 2 m s−1 around a circle of radius 5 m. 
Calculate:

(a) the distance moved in one revolution

(b) the displacement in one revolution

(c) the time taken for one revolution

(d) the frequency of the motion

(e) the angular velocity

(f) the centripetal acceleration. 

Centripetal force
From Newton’s first law, we know that if a body accelerates, there must be an 
unbalanced force acting on it. The second law tells us that this force is in the direction 
of the acceleration. This implies that there must be a resultant force acting toward the 
center. This force is called the centripetal force.

From Newton’s second law, we can also deduce that F = ma so F = 
mv2

r  = mω2r.

 F = mω2r

if    is small then

r

s
= 

θ

θ

= θθ

r

c
θ

s
r

c
r

A.2 Figure 48 The small 
angle approximation.

You will not be asked 
to reproduce this 

derivation in the exam.
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Examples of circular motion
All bodies moving in a circle must be acted upon by a force toward the center of the 
circle. However, this can be provided by many different forces.

Mass on a string in space
If you take a mass on the end of a string, you can 
easily make it move in a circle, but the presence 
of gravity makes the motion difficult to analyze. 
It will be simpler if we start by considering what 
this would be like if performed by an astronaut 
in deep space: much more difficult to do but 
easier to analyze. Figure 49 shows an astronaut 
making a mass move in a circle on the end of a 
string. The only force acting on the mass is the 

tension in the string.

In this case, it is obvious that the centripetal 
force is provided by the tension so:

Ft = mv2

r

From this, we can predict that the force 
required to keep the mass in its circular motion 
will increase if the speed increases. This will 
be felt by the astronaut who, according to 
Newton’s third law, must be experiencing an 
equal and opposite force on the other end of the 
string. If the string were to break, the ball would 
have no forces acting on it so would travel at a 
constant velocity in the same direction as it was 
moving when the break occurred. This would 
be at some tangent to the circle as in Figure 50.

Mass on a string on the Earth (horizontal)
When playing with a mass on a string on the Earth, there will be gravity acting as well 
as tension. We will first consider how this changes the motion when the mass is made 
to travel in a horizontal circle as in Figure 51.

Ft

Ft

mg

mg

θ

θ

For the motion to be horizontal, there will be no vertical acceleration so the weight 
must be balanced by the vertical component of tension (Ft cos θ = mg). This means 
that the string cannot be horizontal but will always be at an angle, as shown in 
Figure 51. The centripetal force is provided by the horizontal component of tension 
(Ft sin θ = mv2

r ), which is equal to the vector sum of the two forces.

How can knowledge of 
electric and magnetic 
forces allow the 
prediction of changes to 
the motion of charged 
particles? (D.2)

In this example, 
the astronaut has a 
much larger mass 
than the ball. If this 
was not the case, 
the astronaut would 
be pulled out of 
position by the equal 
and opposite force 
acting on the other 
end of the string.

Ft

A.2 Figure 49 An astronaut playing with 
a mass on a string.

People often think 
that the mass will fly 
outward if the string 
breaks. This is because 
they feel themselves 
being forced outward 
so think that if the string 
breaks, the mass will 
move in this direction. 
Applying Newton’s 
laws, we know that this 
is not the case. This is 
an example of a case 
where intuition gives 
the wrong answer.

A.2 Figure 50 The string breaks.

A.2 Figure 51 A mass 
swung in a horizontal circle.
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Mass on a string on the Earth (vertical)
As a mass moves in a vertical circle, the force of gravity sometimes acts in the same 
direction as its motion and sometimes against it. For this reason, it is not possible to 
keep it moving at a constant speed, so here we will just consider it when it is at the top 
and the bottom of the circle as shown in Figure 52.

At the top, the centripetal force 
mvt

2

r  = Ft (top) + mg so Ft (top) = 
mvt

2

r  – mg

At the bottom, 
mvb

2

r  = Ft (bottom) − mg so Ft (bottom) = 
mvb

2

r  + mg

When the mass approaches the top of the circle, its kinetic energy is transferred to 
potential energy, resulting in a loss of speed. If it were to stop at the top, then it would 
fall straight down. The minimum speed necessary for a complete circle is when the 
weight of the ball is enough to provide the centripetal force without any tension. So if 
Ft (top) = 0, then mvt

2

r
 = mg.

When you rotate a mass in a vertical circle, you definitely feel the change in the tension 
as it decreases toward the top and increases toward the bottom.

The wall of death
In the wall of death, motorbikes and cars travel around the inside of a cylinder with 
vertical walls.

In the wall of death shown in Figure 53, the centripetal force is provided by the normal 
reaction, FN. The weight is balanced by the friction between the ball and wall, which is 
dependent on the normal reaction Ff = μFN. If the velocity is too slow, the normal force 
will be small, which means the friction will not be large enough to support the weight.

r

FN
Ff

Fg

A.2 Figure 52 A mass 
swung in a vertical circle.

Ft (top)

Ft (bottom)

vt

vb

mg

mg

Wall of death.

A.2 Figure 53 The wall of 
death with a ball rather than 
bike.
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Car on a circular track
When a car travels around a circular track, the centripetal force is provided by the 
friction between the tires and the road. The faster you go, the more friction you 
need. The problem is that friction has a maximum value given by Ff = μFN, so if the 
centripetal force required is greater than this, the car will not be able to maintain a 
circular path. Without friction, for example, on an icy road, the car would travel in a 
straight line. This means that you would hit the kerb on the outside of the circle, giving 
the impression that you have been thrown outward. This is of course not the case since 
there is no force acting outward.

Cyclist on a banked track
A banked track is a track that is 
angled to make it possible to go 
faster around the bends. These are 
used in indoor cycle racing. In the 
case shown in Figure 55, where the 
bike is represented by a ball, the 
centripetal force is provided by the 
horizontal component of the normal 
reaction force, so even without 
friction, the ball can travel around 
the track. If the track was angled 
the other way, then it would have 
the opposite effect. This is called an 
adverse camber and bends like this 
should be taken slowly.

FN

Fg

Dynamic friction is 
less than static friction 
so once a car starts to 
skid on a corner it will 
continue. This is also 
why it is not a good 
idea to spin the wheels 
of a car while going 
round a corner.

A.2 Figure 54 A car 
rounding a bend.

Remember when 
solving circular motion 
problems, centripetal 
force is not an extra 
force – it is one of the 
existing forces. Your 
task is to fi nd which 
force (or a component 
of it) points toward the 
center.

A racing cyclist on a banked 
track in a velodrome.

A.2 Figure 55 A ball on a 
banked track.
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Exercise

Q19. Calculate the centripetal force for a 1000 kg car traveling around a circular 
track of radius 50 m at 30 km h–1.

Q20. A 200 g ball is made to travel in a circle of radius 1 m on the end of a string. 
If the maximum force that the string can withstand before breaking is 50 N, 
what is the maximum speed of the ball?

Q21. A rollercoaster is designed with a 5 m radius vertical loop. Calculate the 
minimum speed necessary to get around the loop without falling down.

Q22. A 200 g ball moves in a vertical circle on the end of a 50 cm long string. If its 
speed at the bottom is 10 m s−1, calculate:

(a) the velocity at the top of the circle

(b) the tension at the top of the circle.

Challenge yourself

1. A car of mass 1000 kg is driving around a circular track with radius 50 m. If the 
coefficient of friction between the tires and road is 0.8, calculate the maximum 
speed of the car before it starts to slip. What would the maximum speed be if the 
track was banked at 45°?

How can we use our knowledge and understanding of the forces acting on a 
system to predict changes in translational motion? 

How can Newton’s laws be modeled mathematically? 

How can the conservation of momentum be used to predict the behavior of 
interacting objects?

Guiding Questions revisited

In this chapter, we have considered new quantities and accepted laws to describe how:

• Different types of force can be distinguished from one another.
• Forces are vector quantities that can be represented by arrows of appropriate 

length and direction on free-body diagrams (in which the forces acting on, 
rather than exerted by, a given body are shown).

• Newton’s first law states that an object will remain at constant velocity unless 
acted upon by a resultant force.

• Newton’s second law states that the rate of change of momentum is 
proportional to and in the same direction as the resultant force.

• A resultant force acting at an angle to a body’s velocity leads to a change in 
direction and, when the force and velocity are perpendicular, circular motion.

• Linear acceleration and centripetal acceleration are both defined as the rate of 
change of velocity, but are calculated using different equations.

• Newton’s third law states that when body A exerts a force on body B, body B 
exerts an equal and opposite force (of the same type) on body A.
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• Momentum, the product of mass and velocity, is conserved in the absence of 
external forces, which means that the initial momentum and final momentum 
of a system can be equated.

• When objects interact, they exert forces on one another, which means that 
momentum is exchanged between them.

• Newton’s second law can be rephrased mathematically as impulse, the product 
of force acting and the time of the interaction, which is equal to change in 
momentum.

Practice questions

1. (a)  A car goes round a curve in a road at constant speed. Explain why, 
although its speed is constant, it is accelerating. (2)

 In the diagram, a marble (small glass sphere) rolls down a track, the bottom 
part of which has been bent into a loop. The end A of the track, from which 
the marble is released, is at a height of 0.80 m above the ground. Point B is 
the lowest point and point C the highest point of the loop. The diameter of 
the loop is 0.35 m.

0.35m

0.80m

ground

A

marble

B

C

 The mass of the marble is 0.050 kg. Friction forces and any gain in kinetic 
energy due to the rotating of the marble can be ignored. The acceleration 
due to gravity, g = 10 m s−2.

 Consider the marble when it is at point C.

(b) (i)  Copy the diagram and on the diagram, draw an arrow to show 
the direction of the resultant force acting on the marble. (1)

(ii) State the names of the two forces acting on the marble. (2)

(iii) Deduce that the speed of the marble is 3.0 m s−1. (3)

(iv) Determine the resultant force acting on the marble and hence 
determine the reaction force of the track on the marble. (4)
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2. (a) Defi ne what is meant by coeffi cient of friction. (1)

  The diagram shows a particular ride at a funfair (sometimes called 
‘the fl y’) that involves a spinning circular room. When it is spinning 
fast enough, a person in the room feels ‘stuck’ to the wall. The fl oor is 
lowered and they remain held in place on the wall. Friction prevents 
the person from falling.

radius = 6.0m

(b) (i)  Explain whether the friction acting on the person is static, 
dynamic, or a combination of both. (2)

 The diagram below shows a cross section of the ride when the fl oor has 
been lowered.

(ii) Copy the diagram and, on your diagram, draw labeled arrows to 
represent the forces acting on the person. (3)

(c) Use the data given below:

mass of person = 80 kg

coeffi cient of friction between the person and the wall = 0.40

radius of circular room = 6.0 m

Calculate each of the following:

(i) the magnitude of the minimum resultant horizontal force on 
the person (2)

(ii) the minimum speed of the wall for a person to be ‘stuck’ to it. (2)
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3. A 10 000 kg cubic rock (a boulder) rests on the side of a mountain as shown 
in the diagram below.

300 m

900 m

(a) Calculate the frictional force acting on the rock. (3)

(b) After a prolonged period of rain, the rock starts to slide down the 
slope. Show that this will happen when the coeffi cient of friction 
between the rock and the slope is equal to 0.33. (3)

(c) Once the block starts to slide, the coeffi cient of friction is reduced to 
0.2. Calculate: 

(i) the acceleration of the rock (2)

(ii) the speed of the rock when it reaches the bottom of the hill. (2)

(d) The rock then slides along the fl at section of ground. Assuming there 
is no change in the coeffi cient of friction calculate:

(i) the frictional force on the rock (1)

(ii) the distance traveled by the rock. (2)

4. A student investigates the forces involved in holding a climbing rope by 
standing on bathroom scales while holding a rope as shown in the diagram. 

(a) If both students have mass 60 kg, calculate:

(i) the tension in the rope (1)

(ii) the reading on the scales (2)

(iii) the friction between the rope holder’s feet and the scales.  (2)

(b) Explain why the rope-holding student should lower the hanging 
student smoothly. (2)

scales

30°

59

IB Physics Higher_3p.indb   59IB Physics Higher_3p.indb   59 20/12/2022   15:5920/12/2022   15:59

Uncorre
cte

d proofs



5. Sand fl ows out of a container at a rate of 5 kg s−¹ and falls a vertical distance 
of 1 m, where it is defl ected into the back of a truck by a defl ector placed at 
an angle of 45°.

(a) Calculate:

(i) the velocity of the sand as it hits the defl ector (1)

(ii) the horizontal velocity of the sand after hitting the defl ector (1)

(iii) the force exerted by the sand on the defl ector. (3)

(b) The sand stops when it hits the back of the truck.

(i) Explain why there must be a frictional force between the tires 
and the road. (3)

(ii) Calculate the force of friction between the truck and the ground. (2)

6. Two forces act on an object in different directions. The magnitudes of 
the forces are 18 N and 27 N. The mass of the object is 9.0 kg. What is 
a possible value for the acceleration of the object? (1)

A 0 m s−2 B 0.5 m s−2 C 2.0 m s−2 D 6.0 m s−2

7. An object of mass m strikes a vertical wall horizontally at speed U. 
The object rebounds from the wall horizontally at speed V. What is the 
magnitude of the change in the momentum of the object? (1)

A   0 B   m(V − U) C   m(U − V) D   m(U + V)

8. A sphere is suspended from the end of a string and rotates in a horizontal 
circle. Which free-body diagram, to the correct scale, shows the forces 
acting on the sphere? (1)

A B

C D

sand

de�ector
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9. A company delivers packages to customers using a small unmanned 
aircraft. Rotating horizontal blades exert a force on the surrounding air. 
The air above the aircraft is initially stationary.

 The air is propelled vertically downward with speed  v . The aircraft hovers 
motionless above the ground. A package is suspended from the aircraft 
on a string. The mass of the aircraft is  0.95 kg  and the combined mass of 
the package and string is  0.45 kg . The mass of air pushed downward by the 
blades in one second is  1.7 kg .

(a) State the value of the resultant force on the aircraft when hovering. (1)

(b) Outline, by reference to Newton’s third law, how the upward lift force 
on the aircraft is achieved. (2)

(c) Determine v. State your answer to an appropriate number of 
signifi cant fi gures. (3)

(d) The package and string are now released and fall to the ground. The 
lift force on the aircraft remains unchanged. Calculate the initial 
acceleration of the aircraft. (2)

10. The Rotor is an amusement park ride that can be modeled as a vertical 
cylinder of inner radius R rotating about its axis. When the cylinder rotates 
fast enough, the fl oor drops out and the passengers stay motionless against 
the inner surface of the cylinder. The diagram shows a person taking the 
Rotor ride. The fl oor of the Rotor has been lowered away from the person.

(a) Draw and label the free-body diagram for the person. (2)

(b) The person must not slide down the wall. Show that the minimum 
angular velocity    of the cylinder for this situation is:

ω =  √
_
g_

μR

where  μ  is the coefficient of static friction between the person and the 
cylinder. (2)

(c) The coeffi cient of static friction between the person and the cylinder 
is  0.40 . The radius of the cylinder is  3.5 m . The cylinder makes  28  
revolutions per minute. Deduce whether the person will slide down 
the inner surface of the cylinder. (3)

aircraft

package

ground

axis of rotation

R
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11. A boulder is many times heavier than a pebble; that is, the gravitational 
force that acts on a boulder is many times that which acts on the pebble. 
If you drop a boulder and a pebble at the same time, they will fall together 
with equal accelerations (neglecting air resistance). The principal reason 
the heavier boulder does not accelerate more than the pebble has to do 
with what? (1)

A Energy  B Weight C Mass

D Surface area E none of these

12. The force exerted on a house by a  120 mph  hurricane wind is how many 
times as strong as the force exerted on the same house by a  60 mph  gale 
wind? (1)

A Equally B Two times C Three times D Four times 

13. Two buckets hang from a rope over a frictionless pulley. The bucket on the 
right has a mass   m2   , which is greater than the mass of the bucket on the left   
m1   . Bucket 2 starts at height h above the ground. If the buckets are released 
from rest, determine:

(a) the speed with which bucket 2 hits the ground in terms of   m1   ,   m2   , h, 
and the acceleration due to gravity g (2)

(b) the further increase in height of bucket 1 after bucket 2 hits the ground 
and stops. (2)

Ignore resistive effects and assume the rope is long compared to the height 
above the ground.

2

1 h
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A.3 Work, energy and power
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A Rube Goldberg machine starts with a small action (like the pressing of a button or the knocking 
over of a domino tile) that sets off a chain reaction of different events, which continues for an 
extended time. Objects that are stretched, at a height, or moving, combine – often with entertaining 
consequences (as seen in films, music videos, advertisements and social media).

How are concepts of work, energy and power used to predict changes within 
a system? 

How can a consideration of energetics be used as a method to solve problems 
in kinematics? 

How can transfer of energy be used to do work?

Guiding Questions

If body A pushes body B, body B may start to move. This movement might cause body 
B to hit body C, after which, body C moves toward body D (you get the idea). The 
‘ability to push’ seems to be passed on from one object to another. We call this energy, 
and the fact that it is conserved can lead to a simple way of solving problems that 
bypasses all the complications of forces and motion.

For example, when calculating the final velocity of a box pushed up a slope by a 
constant force, we need to find the component of force up the slope, use that to find 
acceleration, and then apply the suvat equations to calculate final velocity. Or, using 
conservation of energy, we can state that the gain in potential energy and kinetic 
energy is equal to the work done.

It is the same when we study gases. It is much easier to understand how work done on 
a gas increases its temperature than to model the motion of each molecule.

Students should understand: 

the principle of the conservation of energy

work done by a force is equivalent to a transfer of energy

energy transfers can be represented on a Sankey diagram

work W done on a body by a constant force depends on the component of the force along the 
line of displacement as given by W = Fs cos θ

work done by the resultant force on a system is equal to the change in the energy of the system

mechanical energy is the sum of kinetic energy, gravitational potential energy and elastic 
potential energy

in the absence of frictional, resistive forces, the total mechanical energy of a system is 
conserved

if mechanical energy is conserved, work is the amount of energy transformed between 
different forms of mechanical energy in a system, such as:

• the kinetic energy of translational motion as given by   Ek   =   1_2   m  v 2  =   
p 2
_
2m

• the gravitational potential energy, when close to the surface of the Earth, as given by: 
Δ  Ep   = mgΔh

• the elastic potential energy as given by   EH   =   1_2   k∆  x 2
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power P is the rate of work done, or the rate of energy transfer, as given by  P =  E_t   = Fv

efficiency η in terms of energy transfer or power as given by  η =  
E

output_
E

input

  =  
P

output_
P

input

energy density of the fuel sources.

Nature of Science

Scientists should remain sceptical but that does not mean you have to doubt 
everything you read. The law of conservation of energy is supported by many 
experiments and is the basis of countless predictions that turn out to be true. 
If someone now found that energy was not conserved, there would be a lot 
of explaining to do. Once a law is accepted, it gives us an easy way to make 
predictions. For example, if you are shown a device that produces energy from 
nowhere, you know it must be a fake without even finding out how it works 
because it violates the law of conservation of energy.

In A.1 and A.2, we dealt with the motion of a small red ball and now understand what 
causes acceleration. We have also investigated the interaction between a red ball and 
a blue one and have seen that the red one can cause the blue one to move when they 
collide. But what enables the red one to push the blue one? To answer this question, we 
need to define some more quantities.

Work
In the introduction to this book, it was stated that by developing models, our aim is 
to understand the physical world so that we can make predictions. At this point, you 
should understand certain concepts related to the collision between two balls, but we 
still cannot predict the outcome. To illustrate this point, let us again consider the red 
and blue balls. Figure 1 shows three possible outcomes of the collision.

If we apply the law of conservation of momentum, we realize that all three outcomes 
are possible. The original momentum is 10 N s and the fi nal momentum is 10 N s in all 
three cases. But which one actually happens? This we cannot say (yet). All we know is 
that from experience the last option is not possible – but why?

When body A hits body B, body A exerts a force on body B. This force causes B to have 
an increase in velocity. The amount that the velocity increases depends on how big the 
force is and over what distance the collision takes place. To make this simpler, consider 
a constant force acting on two blocks as in Figure 2.

F F

F F

10 m s–1

1 kg 1 kg

1 m s–1
a. 9 m s–1

5 m s–1
b. 5 m s–1

100 m s–1

c.
110 m s–1

A.3 Figure 1 The red ball 
hits the blue ball but what 
happens?

A.3 Figure 2 The force acts 
on the orange block for a 
greater distance
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Both blocks start at rest and are pulled by the same force, but the orange block will 
gain more velocity because the force acts over a longer distance. To quantify this 
difference, we say that in the case of the orange block, the force has done more work. 
Work is done when the point of application of a force moves in the direction of the 
force. 

Work is defined in the following way:

work done = force × distance moved in the direction of the force

The unit of work is the newton meter (N m), which is the same as the joule (J).

Work is a scalar quantity.

Worked example 

A tractor pulls a felled tree along the ground 
for a distance of 200 m. If the tractor exerts a 
force of 5000 N, how much work will be done?

Solution

work done = force × distance moved in direction of force

work done = 5000 × 200 = 1 MJ

Worked example 

A force of 10 N is applied 
to a block, pulling it 
50 m along the ground as 
shown. How much work is 
done by the force?

Solution

In this example, the force is not in the same direction as the movement. However, 
the horizontal component of the force is 10 × cos 30°.

work done = 10 × cos 30° × 50 = 433 N

10 N

50 m

30°

10 N

How do traveling waves 
allow for a transfer 

of energy without a 
resultant displacement of 

matter? (C.2, A.1)
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Worked example 

When a car brakes, it slows down due to the friction force between the tires 
and the road. This force opposes the motion as shown. If the friction force is a 
constant 500 N and the car comes to rest in 25 m, how much work is done by the 
friction force?

25 m
500 N 500 N

Solution

This time, the force is in the opposite direction to the motion.

 work done = −500 × 25 = −12 500 J

The negative sign tells us that the car’s kinetic energy is decreasing. The internal energy 
of the brake disks has increased; positive work has been done on them by friction.

Worked example 

The woman in the figure walks along with a constant 
velocity holding a suitcase. 
How much work is done by the force holding the case?

Solution

In this example, the force is acting perpendicular to the direction of motion, so 
there is no movement in the direction of the force.

 work done = zero

v

F

General formula
In general:

work = F cos θ × ∆s

where θ is the angle between the displacement, ∆s, and force, F3.

It may seem strange 
that when you carry a 
heavy bag you are not 
doing any work – that 
is not what it feels like. 
In reality, lots of work 
is being done, since to 
hold the bag you use 
your muscles. Muscles 
are made of microscopic 
fi bres, which are 
continuously contracting 
and relaxing, so are 
doing work.

s

FF

θ

Δ
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All the previous examples can be solved using this formula.

If θ < 90°, cos θ is positive so the work is positive.

If θ = 90°, cos θ = 0 so the work is zero.

If θ > 90°, cos θ is negative so the work is negative.

Exercise

Q1. The fi gure shows a boy taking a dog for a walk.

(a) Calculate the work done by the force shown when the dog moves 
10 m forward.

(b) Who is doing the work?

Q2. A bird weighing 200 g sits on a tree branch. How much work does the bird do 
on the tree?

Q3. As a box slides along the fl oor, it is slowed down by a constant force due to 
friction. If this force is 150 N and the box slides for 2 m, how much work is 
done against the frictional force?

Graphical method for determining work done
Let us consider a constant force acting in the direction of movement pulling a body 
a distance Δx. The graph of force against distance for this example is as shown in 
Figure 3. From the definition of work, we know that work done = FΔx, which in this 
case is the area under the graph. From this we can deduce that:

work done = area under force vs distance graph

Work done by a varying force
Stretching a spring is a common example of a varying force. When you stretch a 
spring, it gets more and more difficult the longer it gets. Within certain limits, the force 
needed to stretch the spring is directly proportional to the extension of the spring: 
FH = kx. This was first recognized by Robert Hooke in 1676, so is named Hooke’s law. 
If we add different weights to a spring, the more weight we add, the longer it gets. If we 
draw a graph of force against distance as we stretch a spring, it will look like the graph 

in Figure 4. The gradient of this line, 
FH

∆x is called the spring constant, k. 

The work done as the spring is stretched is found by calculating the area under the 
graph:

 area = 
1
2

 base × height = 
1
2

FH∆x

So:  work done = 
1
2

FH∆x

But if: 
FH

∆x = k then FH = k∆x

150 N

30°

distance

force

F

 xΔ

A.3 Figure 3 Force vs 
distance for a constant force.

A.3 Figure 4 Force vs 
extension for a spring.

extension

force

FH

 xΔ
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Substituting for FH gives: 

 work done = 
1
2

k∆x²

This is equal to the elastic potential energy, EH

Exercise

Q4. A spring of spring constant 2 N cm–1 and length 6 cm is stretched to a new 
length of 8 cm.

(a) How far has the spring been stretched?

(b) What force will be needed to hold the spring at this length?

(c) Sketch a graph of force against extension for this spring.

(d) Calculate the work done in stretching the spring.

(e) The spring is now stretched a further 2 cm. Draw a line on your graph to 
represent this and calculate how much additional work has been done.

Q5. Calculate the work done by the force represented by the fi gure on the right.

Energy
We have seen that it is sometimes possible for body A to do work on body B, but what 
does A have that enables it to do work on B? To answer this question, we must define a 
new quantity: energy. 

Energy is the quantity that enables body A to do work on body B.

If body A collides with body B as shown in Figure 5, body A has done work on body B. 
This means that body B can now do work on body C. Energy has been transferred from 
A to B.

When body A does work on body B, energy is transferred from body A to body B.

The unit of energy is the joule (J). Energy is a scalar quantity.

Different types of energy
If a body can do work, then it has energy. There are two ways that a simple body such 
as a red ball can do work. In the example above, body A could do work because it 
was moving – this is called kinetic energy. Figure 6 shows an example where A can 
do work even though it is not moving. In this example, body A is able to do work on 
body B because of its position above the Earth. If the hand is removed, body A will be 
pulled downward by the force of gravity, and the string attached to it will then drag 
body B along the table. If a body is able to do work because of its position, we say it has 
potential energy.

distance (m)

force

100

200

300

5 10

A

before A hits B

after A hits B

B C

A B C

v

v

A.3 Figure 5 The red ball 
gives energy to the blue ball.

B

A

A.3 Figure 6 A has 
potential energy that could 
become kinetic energy
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Kinetic energy (Ek)
This is the energy a body has due to its movement. To give a body kinetic energy, work 
must be done on the body. The amount of work done will be equal to the increase in 
kinetic energy. If a constant force acts on a red ball of mass m as shown in Figure 7, 
then the work done is Fs. 

time = 0 time = t

va

s

F F

From Newton’s second law, we know that F = ma, which we can substitute in work = Fs
to give work = mas.

We also know that since acceleration is constant, we can use the suvat equation 
v2 = u2 + 2as, which since u = 0 simplifies to v2 = 2as.

Rearranging this gives: as = 
v2

2  so work = 
1
2

mv2

This work has increased the kinetic energy of the body so we can deduce that:

Ek = 
1
2

mv2

Gravitational potential energy (Ep)
This is the energy a body has due to its position above the Earth. 

For a body to have potential energy, it must have at some time been lifted to that 
position. The amount of work done in lifting it equals the potential energy. Taking the 
example shown in Figure 9, the work done in lifting the mass, m, to a height h is mgh
(this assumes that the body is moving at a constant velocity so the lifting force and 
weight are balanced).

If work is done on the body then energy is transferred so:

gain in Ep = mgh

The law of conservation of energy
We could not have derived the equations for kinetic energy or potential energy without 
assuming that the work done is the same as the gain in energy. The law of conservation 
of energy is a formal statement of this fact.

Energy can neither be created nor destroyed; it can only be transferred from one store to another.

This law is one of the most important laws that we use in physics. If it were not true, 
you could suddenly find yourself at the top of the stairs without having done any work 
in climbing them, or a car suddenly has a speed of 200 km h–1 without anyone touching 
the accelerator pedal. These things just do not happen, so the laws we use to describe 
the physical world should reflect that. 

If we say a body has 
potential energy, it 

sounds as though it 
has the potential to do 

work. This is true, but 
a body that is moving 

has the potential to do 
work too. This can lead 
to misunderstanding. It 
might have been better 

to call it positional 
energy.

A.3 Figure 7 A ball gains 
kinetic energy

What happens to the 
energy transferred as we 

approach the speed of 
light? (A.5)

In this section, we only 
deal with examples of 

potential energy due to 
a body’s position close 
to the Earth. However, 

there are other positions 
that will enable a body 

to do work (for example, 
in an electric fi eld). 

These will be introduced 
after the concept 
of fi elds has been 

introduced.

Why is the equation 
for the change in 

gravitational potential 
energy only relevant 

close to the surface of 
the Earth, and what 

happens when moving 
further away from the 

surface? (D.1)

How are Kirchhoff ’s 
and Lenz’s laws a 

consequence of the 
law of conservation of 

energy? (B.5, D.4)
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Looping the loop
When looping the loop on a rollercoaster, the situation is very similar to the vertical 
circle example, except that the tension is replaced by the normal reaction force. This 
also gives a minimum speed at the top of the loop when mvt

2

r  = Fg.

vh

r

Applying the law of conservation of energy to the car in Figure 8, if no energy is lost, 
then the Ep at the top of the hill = Ep + Ek at the top of the loop.

The minimum speed to complete the loop is mg = mv2

r  so at the top of the loop: 
1
2mv2 = 12mgr

The height of the car at the top of the loop is 2r so Ep = mgh = mg2r.

So Ep at top of slope = 2mgr + 12mgr = 2.5mgr, which means the height of the slope = 2.5r. 
In any real situation, there will be energy lost due to work done against friction and air 
resistance so the slope will have to be a bit higher.

Worked example 

A ball of mass 200 g is thrown vertically upward with a 
velocity of 2 m s–1 as shown in the figure. Use the law of 
conservation of energy to calculate its maximum height. 

A.3 Figure 9

Solution

At the start of its motion, the body has kinetic energy. This enables the body to do 
work against gravity as the ball travels upward. When the ball reaches the top, all 
the kinetic energy has been transferred to potential energy. So applying the law of 
conservation of energy:

 loss of Ek = gain in Ep

1
2

mv2 = mgh

So: h = 
v2

2g = 
22

2 × 10 = 0.2 m

This is exactly the same answer you would get by calculating the acceleration from 
F = ma and using the suvat equations. 

2 m s–1Ek

Ep

h

If the ride is propelled by 
gravity, then the designer 
must make sure that the car 
has this minimum speed 
when it reaches the top.

A.3 Figure 8 Looping the loop.
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Worked example 

A block slides down the frictionless 
ramp shown in the figure. Use the law of 
conservation of energy to find its speed when 
it gets to the bottom. 

Solution

This time the body loses potential energy and gains kinetic energy so applying the 
law of conservation of energy:

 loss of Ep = gain of Ek

mgh = 
1
2

mv2

So: v =     2gh =    (2 × 10 × 5) = 10 m s–1

Again, this is a much simpler way of getting the answer than using components of 
the forces.

v
5 m

Exercise

Use the law of conservation of energy to solve the following:

Q6. A stone of mass 500 g is thrown off the top of a cliff with a speed of 5 m s–1. If 
the cliff is 50 m high, what is its speed just before it hits the ground?

Q7. A ball of mass 250 g is dropped 5 m onto a spring 
as shown in the fi gure on the right.

(a) How much kinetic energy will the ball have 
when it hits the spring?

(b) How much work will be done as the spring is 
compressed?

(c) If the spring constant is 250 kN m–1, calculate 
how far the spring will be compressed.

Q8. A ball of mass 100 g is hit vertically upward with a bat. The bat exerts a 
constant force of 15 N on the ball and is in contact with it for a distance of 5 cm.

(a) How much work does the bat do on the ball?

(b) How high will the ball go?

Q9. A child pushes a toy car of mass 200 g up a slope. The car has a speed of 
2 m s–1 at the bottom of the slope.

(a) How high up the slope will the car go?

(b) If the speed of the car were doubled, how high would it go now?

In this example, the 
spring is compressed 

not stretched, but 
Hooke’s law still 

applies.

Δx

5 m
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Stores of energy
When we are describing the motion of simple red balls, there are only two stores of 
energy, kinetic energy and potential energy. However, when we start to look at more 
complicated systems, we discover that we can do work using a variety of different 
machines, such as petrol engine, electric engine, etc. To do work, these machines must 
be given energy and this can come from many stores, for example:

•  petrol             •  solar             •  gas             •  nuclear            •  electricity

All of these (except solar) are related to either the kinetic energy or potential energy 
of particles. 

Fuels
A petrol car gets its energy from petrol, which is mixed with air in the engine and 
ignited by a spark, causing it to explode. The explosion pushes up a piston that turns 
a crank, which converts the linear motion of the piston into rotation of the wheels. 
Petrol is an example of a fuel – a chemical that can be burned to produce heat, which 
can be used to enable an engine to do work. 

Different fuels contain different amounts of energy. Physicists compare the energy 
contents of fuels in terms of the energy per unit volume (energy density).

Fuel Energy density/MJ L−1

Crude oil 37

Vegetable oil 30

Diesel 36

Coal 72

Sugar 26

Wood 3
A.3 Table 1

During the process of burning and moving parts of the engine, some energy is lost. 
The flow of energy can be represented on a Sankey diagram. The width of an arrow 
represents the amount of that type of energy and, because the total width of all output 
arrows is equal to the input width, conservation of energy is displayed.

energy to customers

energy used in transmission

energy used in power station

thermal energy loss in power station

Where do the laws of 
conservation apply in 
other areas of physics? 
(NOS)

How is the equilibrium 
state of a system, such as 
the Earth’s atmosphere 
or a star, determined? 
(B.2, E.5)

A.3 Figure 10 A Sankey 
diagram for a coal-fi red 
power station.
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Energy transfer
Taking the example of a petrol engine, the energy stored in the petrol is transferred to 
mechanical energy of the car by the engine. 1 liter of petrol contains 36 MJ of energy. 
Let us calculate how far a car could travel at a constant 36 km h−1 on 1 liter of fuel; 
that’s pretty slow but 36 km h−1 is 10 m s−1 so it will make the calculation easier.

The reason a car needs to use energy when traveling at a constant speed is because 
of air resistance. If we look at the forces acting on the car, we see that there must be a 
constant forward force (provided by the friction between tires and road) to balance the 
air resistance or drag force.

So work is done against the drag force, and the energy to do this work comes from the 
petrol. The amount of work done = force × distance traveled. So to calculate the work 
done, we need to know the drag force on a car traveling at 36 km h−1. One way to do 
this would be to drive along a flat road at a constant 36 km h−1 and then take your foot 
off the accelerator pedal. The car would then slow down because of the unbalanced 
drag force.

This force will get less as the car slows down but here we will assume it is constant. 
From Newton’s second law, we know that F = ma, so if we can measure how fast the 
car slows down, we can calculate the force. This will depend on the make of car but to 
reduce the speed by 1 m s−1 (about 4 km h−1) would take about 2 s. Now we can do the 
calculation:

 acceleration of car = 
(v − u)

t  = 
(9 − 10)

2  = −0.5 m s−2

 drag force = ma = 1000 × −0.5 = −500 N

So to keep the car moving at a constant velocity, this force would need to be balanced 
by an equal and opposite force, F = 500 N.

Work done = force × distance so the distance traveled by the car = 
work done

force .

So if all of the energy in 1 liter of fuel is converted to work, the car will move a 
distance = 36 × 106

500  = 72 km. Note that if you reduce the drag force on the car, you 
increase the distance it can travel on 1 liter of fuel.

Circular motion and work
In the previous chapter (A.2), we learned that for an object to move in a circle, a 
centripetal force (resultant force perpendicular to velocity) was required. An alternative 
way of deducing that the force acts toward the center is to consider the energy. When 
a body moves in a circle with constant speed, it will have constant kinetic energy. This 
means that no work is being done on the mass. But we also know that since the velocity 
is changing, there must be a force acting on the body. This force cannot be acting in the 
direction of motion, since if it was, then work would be done and the kinetic energy 
would increase. We can therefore deduce that the force must be perpendicular to the 
direction of motion; in other words, toward the center of the circle.

Taking the example of a petrol engine, the energy stored in the petrol is transferred to 
mechanical energy of the car by the engine. 1 liter of petrol contains 36 MJ of energy. 
Let us calculate how far a car could travel at a constant 36 km h
that’s pretty slow but 36 km h

The
of air resistance. If we look at the forces acting on the car, we see that there must be a 
constant forward force (provided by the friction between tires and road) to balance the 
air resistance or drag force.

So work is done against the drag force, and the energy to do this work comes from the 
petrol. The amount of work done = force × distance traveled. So to calculate the work 

Fd
R
2

FN
2

Fg

FfFd

FN

FfFg

A.3 Figure 11 The forces 
acting on a car traveling at 
constant velocity.

A.3 Figure 12 The forces 
on a car traveling at high 
speed with the foot off the 
accelerator pedal.

Fd

FN
2

FN

a

2

Fg

Fd

FN

Fg

If you go over a hump 
back bridge too 

quickly, your car might 
leave the surface of the 

road. This is because 
the force needed to 

keep you moving in a 
circle is more than the 

weight of the car.
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Efficiency
A very efficient road car driven carefully would not be able to drive much further 
than 20 km on 1 liter of fuel so energy must be lost somewhere. One place where the 
energy is lost is in doing work against the friction that exists between the moving parts 
of the engine. Using oil and grease will reduce this but it can never be eliminated. The 
efficiency of an engine is defined by the equation:

 efficiency = 
useful work out
total energy in

So if a car travels 20 km at a speed of 10 m s−1, the useful work done by the engine:

 = force × distance = 500 × 20000 = 10 MJ

The total energy put in = 36 MJ so the efficiency = 
10
36 = 0.28.

Efficiency is often expressed as a percentage so this would be 28%.

Where does all the energy go?
In this example, we calculated the energy required to move a car along a flat road. The 
car was traveling at a constant speed so there was no increase in kinetic energy and the 
road was flat so there was no increase in potential energy. We know that energy cannot 
be created or destroyed so where has the energy gone? The answer is that it has been 
transferred to the particles that make up the air and car. 

Exercise

Q10. A 45% effi cient machine lifts 100 kg through 2 m.

(a) How much work is done by the machine?

(b) How much energy is used by the machine?

Q11. A 1000 kg car accelerates uniformly from rest to 100 km h−1.

(a) Ignoring air resistance and friction, calculate how much work was done 
by the car’s engine.

(b) If the car is 60% effi cient, how much energy in the form of fuel was given 
to the engine?

(c) If the fuel contains 36 MJ per liter, how many liters of fuel were used?

Energy and collisions
One of the reasons that we brought up the concept of energy was related to the 
collision between two balls as shown in Figure 13. We now know that if no energy is 
lost when the balls collide, then the kinetic energy before the collision = kinetic energy 
after. This enables us to calculate the velocity afterwards and the only solution in this 
example is quite a simple one. The red ball transfers all its kinetic energy to the blue 
one, so the red one stops and the blue one continues, with velocity = 10 m s–1. If the 
balls become squashed, then some work needs to be done to squash them. In this case, 
not all the kinetic energy is transferred, and we can only calculate the outcome if we 
know how much energy is used in squashing the balls.

A.3 Figure 13 The red ball 
gives energy to the blue ball.

10 m s–1

1 kg 1 kg

10 m s–1

There has been a lot of 
research into making 
cars more efficient so 
that they use less fuel. 
Is this to save energy or 
money?
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Elastic collisions
An elastic collision is a collision in which both momentum and kinetic energy 
are conserved. 

Example: two balls with equal mass

Two balls with equal mass m collide as shown in Figure 14. As you can see, the red ball 
is traveling faster than the blue one before and slower after. If the collision is perfectly 
elastic, then we can show that the velocities of the balls simply swap so u1 = v2 and 
u2 = v1.

u1 u2 v1 v2

m

before after

m m m

If the collision is elastic, then momentum and kinetic energy are both conserved. If we 
consider these one at a time we get:

Conservation of momentum:

 momentum before = momentum after

 mu1 + mu2 = mv1 + mv2

 u1 + u2 = v1 + v2

Conservation of kinetic energy:

Ek before = Ek after

1
2

mu1
2 + 

1
2

mu2
2 = 

1
2

mv1
2 + 

1
2

mv2
2

 u1
2 + u2

2 = v1
2 + v2

2

So we can see that the velocities are such that both their sums are equal and the squares 
of their sums are equal. This is only true if the velocities swap, as in Figure 15.

5 m s–1

m

4 m s–1

before after

m

4 m s–1

m

5 m s–1

m

Collision in 2D between two identical balls

Anyone who has ever played pool or snooker will know that balls do not always collide 
in line; they travel at angles to each other. Figure 16 shows a possible collision.

A.3 Figure 14 Collision 
between two identical balls..

A.3 Figure 15 A possible 
elastic collision.
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u
v1

v2

m

before after

m

m

m

In this case, the blue ball is stationary so applying the conservation laws we get slightly 
simpler equations:

 u→ = v→1 + v→2

 u→2 = v→1
2 + v→2

2

Note the vector notation to remind us that we are dealing with vectors. The first 
equation means that the sum of the velocity vectors after the collision gives the 
velocity before. This can be represented by the triangle of vectors in Figure 17.

The second equation tells us that the sum of the squares of two sides of this triangle = the 
square of the other side. This is Pythagoras’ theorem, which is only true for right-angled 
triangles. So after an elastic collision between two identical balls, the two balls will 
always travel away at right angles (unless the collision is perfectly head on). This of 
course does not apply to balls rolling on a pool table since they are not isolated.

Inelastic collisions
There are many outcomes of an inelastic collision but here we will only consider the 
case when the two bodies stick together (coalesce). We call this a totally inelastic 
collision. 

Example

When considering the conservation of momentum in collisions, we used the example 
shown in Figure 18. How much work was done to squash the balls in this example?

6 m s–1

100 g

1 m s–1

before after

500 g

According to the law of conservation of energy, the work done squashing the balls is 
equal to the loss in kinetic energy. 

Ek loss = Ek before – Ek after = 
1
2

 × 0.1 × 62 – 
1
2

 × 0.6 × 12

Ek loss = 1.8 – 0.3 = 1.5 J

So: work done = 1.5 J

A.3 Figure 16 A 2D 
collision.

u

v1 v2

A.3 Figure 17 Adding the 
velocity vectors.

Pool balls may not 
collide like perfectly 
elastic isolated spheres 
but, if the table is 
included, their motion 
can be accurately 
modeled, enabling 
scientists to calculate 
the correct direction 
and speed for the 
perfect shot. Taking 
that shot is another 
matter entirely.

Why is the internal 
energy of an ideal gas 
equal to the sum of the 
kinetic energies but not 
the potential energies? 
(B.3)

How do collisions 
between charge carriers 
and the atomic cores 
of a conductor result in 
thermal energy transfer? 
(B.5, B.1)

A.3 Figure 18 An inelastic 
collision
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Explosions
Explosions can never be elastic since, without doing work, the parts that fly off after 
the explosion would not have any kinetic energy and would therefore not be moving. 
The energy to initiate an explosion often comes from the chemical energy contained in 
the explosive.

Example

Consider an exploding ball (shown in Figure 18). How much energy was supplied to 
the ball by the explosive?

5 m s–125 m s–1

before after

120 g 20 g 100 g

According to the law of conservation of energy, the energy from the explosive equals 
the gain in kinetic energy of the ball.

Ek gain = Ek after – Ek before

Ek gain = (
1
2

 × 0.02 × 252 + 
1
2

 × 0.1 × 52) – 0 = 6.25 + 1.25 = 7.5 J

Exercise

Q12. Two balls are held together by a spring as shown 
in the � gure. The spring has a spring constant of 
10 N cm–1 and has been compressed a distance 5 cm.

(a) How much work was done to compress the spring?

(b) How much kinetic energy will each gain?

(c) If each ball has a mass of 10 g, calculate the velocity of each ball.

Q13. Two pieces of modeling clay as shown in the � gure collide and stick together.

(a) Calculate the velocity of the lump after the collision.

(b) How much kinetic energy is lost during the collision?

Q14. A red ball traveling at 10 m s–1 to the right collides with a blue ball with the 
same mass traveling at 15 m s–1 to the left. If the collision is elastic, what are 
the velocities of the balls after the collision?

Challenge yourself
1. A 200 g red ball traveling at 6 m s−1 collides with a 500 g blue ball at rest, such 

that after the collision the red ball travels at 4 m s−1 at an angle of 45° to its 
original direction. Calculate the speed of the blue ball.

A.3 Figure 19 An explosion

The result of this 
example is very 

important; we 
will use it when 

dealing with nuclear 
decay later on. So 

remember, when a 
body explodes into 

two unequal bits, 
the small bit gets 

most energy.

10 m s–1 15 m s–1

2 kg 10 kg
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Power
We know that to do work requires energy, but work can be done quickly or it can be 
done slowly. This does not alter the energy transferred but the situations are certainly 
different. For example, we know that to lift one thousand 1 kg bags of sugar from the 
floor to the table is not an impossible task – we can simply lift them one by one. It will 
take a long time but we would manage it in the end. However, if we were asked to do 
the same task in 5 seconds, we would either have to lift all 1000 kg at the same time 
or move each bag in 0.005 s; both of which are impossible. Power is the quantity that 
distinguishes between these two tasks.

Power is defined as:

power = work done per unit time

The unit of power is the J s–1 which is the same as the watt (W). Power is a scalar quantity.

Example 1: The powerful car
We often use the term power to describe cars. A powerful car is one that can accelerate 
from 0 to 100 km h–1 in a very short time. When a car accelerates, energy is being 
transferred from the chemical energy in the fuel to kinetic energy. To have a big 
acceleration, the car must gain kinetic energy in a short time; hence be powerful.

Example 2: Power lifter
A power lifter is someone who can lift heavy weights, so should we not say they are 
strong people rather than powerful? A power lifter certainly is a strong person (if they 
are good at it) but they are also powerful. This is because they can lift a big weight in a 
short time.

Worked example 

A car of mass 1000 kg accelerates from rest to 100 km h–1 in 5 seconds. What is the 
average power of the car?

Solution

 100 km h–1 = 28 m s–1

gain in kinetic energy of the car = 
1
2

mv2 = 
1
2

 × 1000 × 282 = 392 kJ

If the car does this in 5 s, then:

 power = 
work done

time  = 
392

5  = 78.4 kW

If power = work done
time

then we can also 
write 

P = F∆s
t

So P = F ∆s
t

which is the same as 

P = Fv

where v is the 
velocity.

This equation is a 
useful shortcut for 
calculating the power 
of a body moving at 
constant velocity.

Which other quantities 
in physics involve rates 
of change? (e.g. A.1, B.5, 
C.1, E.3)

Horsepower is often 
used as the unit for 
power when talking 
about cars and boats.

746 W = 1 hp

So in the Worked 
example, the power of 
the car is 105 hp.
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Example 3: Hydroelectric power 
It may not be obvious at first, but the energy converted into electrical energy by 
hydroelectric power stations comes originally from the Sun. Heat from the Sun turns 
water into water vapor, forming clouds. The clouds are blown over the land and the water 
vapor turns back into water as rain falls. Rain water falling on high ground has potential 
energy that can be converted into electricity (see Figure 20). Some countries like Norway 
have many natural lakes high in the mountains and the energy can be utilized by simply 
drilling into the bottom of the lake. In other countries rivers have to be dammed. 

The energy stored in a lake at altitude is gravitational potential energy. This can be 
calculated from the equation Ep = mgh where h is the height difference between the outlet 
from the lake and the turbine. Since not all of the water in the lake is the same height, the 
average height is used (this is assuming the lake is rectangular in cross section).

reservoir

turbine

generator
transformer

power lines

river

The Hoover Dam in 
Colorado can generate 
1.5 × 109 watts.

A.3 Figure 20 The 
main components in a 
hydroelectric power station.
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Worked example 

Calculate the total energy stored and 
power generated in the figure if water 
flows from the lake at a rate of 
1 m3 per second.

Solution

The average height above the turbine is
(100 + 75)

2  = 87.5 m

 Volume of the lake = 2000 × 1000 × 25 = 5 × 107 m3

 Mass of the lake = volume × density = 5 × 107 × 1000
 = 5 × 1010 kg

Ep = mgh = 5 × 1010 × 9.8 × 87.5 = 4.29 × 1013  J

If the water flows at a rate of 1 m3 per second then 1000 kg falls 87.5 m per second 

 So the energy lost by the water = 1000 × 9.8 × 87.5 = 875 000 J s–1

 Power = 875 kW

100 m

75 m

1000 m

2000 m

Exercise

Q15. A weightlifter lifts 200 kg 2 m above the ground in 5 s. Calculate the power of 
the weightlifter in watts.

Q16. In 25 s, a trolley of mass 50 kg runs down a hill. If the difference in height 
between the top and the bottom of the hill is 50 m, how much power will 
have been dissipated?

Q17. A car moves along a road at a constant velocity of 20 ms–1. If the resistance force 
acting against the car is 1000 N, what is the power developed by the engine?

Efficiency and power
Efficiency is a quantity that gives a sense of the proportion of input energy that is 
transferred to useful stores. We define efficiency, η, by the equation:

 efficiency = 
useful work out

total work in

If the work out is done at the same time as the work in, then we can divide the 
numerator and the denominator by time to give the equivalent equation:

 efficiency = 
useful power out

total power in
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Exercise

Q18. A motor is used to lift a 10 kg mass 2 m above the ground in 4 s. If the power 
input to the motor is 100 W, what is the effi ciency of the motor?

Q19. A motor is 70% effi cient. If 60 kJ of energy is put into the engine, how much 
work is got out?

Q20. The drag force that resists the motion of a car traveling at 80 km h–1 is 300 N. 

(a) What power is required to keep the car traveling at that speed?

(b) If the effi ciency of the engine is 60%, what is the power of the engine?

How are concepts of work, energy and power used to predict changes within 
a system? 

How can a consideration of energetics be used as a method to solve problems 
in kinematics? 

How can transfer of energy be used to do work?

Guiding Questions revisited

In this chapter, we have provided an alternative model for analyzing the physical 
changes in a system that requires an understanding of how:

• The work done on a body is the product of the force exerted and the displacement 
of the body in the direction of the force.

• Gravitational and elastic potential energies are associated with position (relative 
to positions of zero potential energy that are selected strategically).

• Kinetic energy is associated with momentum (mass and velocity).
• Gravitational potential, elastic potential and kinetic energies are collectively 

referred to as mechanical energies.
• By considering the types of energy of all bodies at different positions and times, 

kinematics problems can be solved; unlike the suvat equations (which require 
uniform acceleration), energies can be calculated irrespective of the route taken.

• Energy is a conserved quantity, which means that it can be transferred but not 
created or destroyed.

• Work is done when energy is transferred and energy is transferred when work is done.
• Power is the rate at which work is done or energy is transferred.
• The upper limit of efficiency, the ratio of the useful energy (or power output) to 

the total energy (or power input), is 1.
• Sankey diagrams are a visual representation of the input and output energy types 

and the efficiency of the system.
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Practice questions

1.  A competition includes an obstacle where the competitor has to jump 
onto a hanging cylinder, causing it to move along an inclined wire with 
negligible friction. 

1 m

(a) The cylinder has mass 100 kg and the competitor has mass 80 kg. The 
competitor is moving at 10 m s–¹ when they catch the cylinder and 
leave the ground. Using g = 10 m s–2, calculate:

(i) the impulse experienced by the cylinder (2)

(ii) the impulse experienced by the competitor (1)

(iii) the kinetic energy of the cylinder and competitor just after 
catching the cylinder. (1)

(b) Determine whether the competitor will get to the far end of the wire. (2)

2. A 10 kg block is pulled a distance of 4 m along a frictionless ramp inclined 
at an angle of 20° by an 8 kg hanging mass as shown.

(a) Calculate:

(i) the work done by the gravitational force (1)

(ii) the increase in potential energy of the sliding mass. (1)

(iii) Why are the answers to (i) and (ii) different? (1)

(b) The hanging mass is replaced by an electric motor and winch, which 
consumes 400 J of energy lifting the block to the same height. If the 
purpose of the machine is to raise the block, calculate the effi ciency of 
the motor/ramp system. (2)

3.  A 0.25 kg ball is launched from the ground with initial speed of 20 m s−¹ 
and reaches a maximum height of 10 m. 

(a)  Calculate the speed of the projectile when it reaches maximum height. (2)

(b) The projectile lands in a bucket with wheels. Calculate the velocity of 
the bucket plus ball after the ball has landed in the bucket if the mass 
of the bucket is 1.25 kg. (2)

(c) The bucket and ball are stopped by a buffer, which is made from a 
spring that becomes compressed. If the change in length of the spring 
is 10 cm, calculate the spring constant. (2)
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4.  A stone is falling at a constant velocity vertically down a tube fi lled with oil. 
Which of the following statements about the energy transfers of the stone 
during its motion are correct? (1)

I.  The gain in kinetic energy is less than the loss in gravitational 
potential energy.

II. The sum of kinetic and gravitational potential energy of the stone 
is constant.

III.   The work done by the force of gravity has the same magnitude as the 
work done by friction.

A I and II only B I and III only C II and III only D I, II and III

5.  The Sankey diagram shows the energy input from fuel that is eventually 
transferred to useful domestic energy in the form of light in a fi lament 
lamp. What is true for this Sankey diagram? (1)

light energy to lamp

thermal energy to lamp

energy loss in transmission

energy loss at power stationenergy input

A The overall effi ciency of the process is 10%.

B Generation and transmission losses account for 55% of the energy input.

C Useful energy accounts for half of the transmission losses.

D The energy loss in the power station equals the energy that leaves it.

6. The graph shows how the acceleration a of an object varies with distance 
traveled x. The mass of the object is 3.0 kg. What is the total work done on 
the object?

A  300 J

B 400 J

C 1200 J

D 1500 J

7. An object of mass  m  is initially at rest. When an impulse  I  acts on the 
object, its fi nal kinetic energy is   Ek   . What is the fi nal kinetic energy when an 
impulse of  2I  acts on an object of mass  2m  initially at rest? (1)

A 
Ek__
2 B      Ek C  2  Ek D  4  Ek

0

5

10

15

20

25

30

0 5 10 15 20 25 30

a/
m

s-2

x/m
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8.  A train on a straight horizontal track moves from rest at constant 
acceleration. The horizontal forces on the train are the engine force and 
a resistive force that increases with speed. Which graph represents the 
variation with time t of the power P developed by the engine? (1)

A
P

t
0

0

B
P

t
0

0

C
P

t
0

0

D
P

t0
0

9.  A car traveling at a constant velocity covers a distance of 100 m in 5.0 s. 
The thrust of the engine is 1.5 kN. What is the power of the car? (1)

A 0.75 kW B 3.0 kW C 7.5 kW D 30 kW

10.  The energy density of a substance can be calculated by multiplying its 
specifi c energy (energy per unit mass) with which quantity? (1)

A mass B volume C     mass______
volume  D   volume______

mass

11.  The diagram shows part of a downhill ski course that starts at point A, 50 
m above level ground. Point B is 20 m above level ground. A skier of mass 
65 kg starts from rest at point A and, during the ski course, some of the 
gravitational potential energy is transferred to kinetic energy. 

C

A

50 m

24 m

20 m

B

D

(a) From A to B, 24% of the gravitational potential energy is transferred to 
kinetic energy. Show that the velocity at B is 12 m s–1. (2)
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(b) The dot on the following diagram represents the skier as she passes 
point B. Draw and label the vertical forces acting on the skier. (2)

(c) The hill at point B has a circular shape with a radius of 20 m. Determine 
whether the skier will lose contact with the ground at point B. (3)

(d) The skier reaches point C with a speed of 8.2 m s–1. She stops after 
a distance of 24 m at point D. Determine the coeffi cient of dynamic 
friction between the base of the skis and the snow. Assume that the 
frictional force is constant and that air resistance can be neglected. (3)

(e) At the side of the course, fl exible safety nets are used. Another skier 
of mass 76 kg falls normally into the safety net with speed 9.6 m s–1. 
Calculate the impulse required from the net to stop the skier and give 
an appropriate unit for your answer. (2)

(f) Explain, with reference to change in momentum, why a fl exible safety 
net is less likely to harm the skier than a rigid barrier. (2)

12.  A company designs a spring system for loading ice blocks onto a truck. 
The ice block is placed in a holder H in front of the spring, and an electric 
motor compresses the spring by pushing H to the left. When the spring is 
released, the ice block is accelerated toward a ramp, ABC. When the spring 
is fully decompressed, the ice block loses contact with the spring at A. 
The mass of the ice block is 55 kg. Assume that the surface of the ramp is 
frictionless and that the masses of the spring and the holder are negligible 
compared to the mass of the ice block.

AH B 1.2 m

spring ice block

C

(a) (i)  The block arrives at C with a speed of 0.90 m s−1. Show that the 
elastic energy stored in the spring is 670 J. (2)

(ii) Calculate the speed of the block at A. (2)

(b) Describe the motion of the block:

(i) from A to B with reference to Newton’s fi rst law (1)

(ii) from B to C with reference to Newton’s second law. (2)
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(c) Copy the axes below and sketch a graph to show how the displacement 
of the block varies with time from A to C. (You do not have to put 
numbers on the axes.) (2)

0
0 time

di
sp

la
ce

m
en

t

(d) The spring decompression takes 0.42 s. Determine the average force 
that the spring exerts on the block. (2)

(e) The electric motor is connected to an electrical source of power 816 W. 
The motor takes 1.5 s to compress the spring. Estimate the effi ciency of 
the motor. (2)

13. (a)   Will hanging a magnet in front of an iron car, as shown, make the 
car go? (1)

A Yes, it will go. 

B It will move if there is no friction.

C It will not go.

(b) Explain your answer. (1)

14.  A neutron moving through heavy water strikes an isolated and stationary 
deuteron (the nucleus of an isotope of hydrogen) head on in an elastic 
collision. 

(a) Assuming the mass of the neutron is equal to half that of the deuteron, 
fi nd the ratio of the fi nal speed of the deuteron to the initial speed of 
the neutron. (2)

(b) What percentage of the initial kinetic energy is transferred to the 
deuteron? (2)

(c) How many collisions would be needed to slow the neutron down from 
10 MeV to 0.01 eV? (2)

eV is a unit of energy 
and a conversion into J 
is not required.
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A.4 Rigid body mechanics
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Japanese breakdancer, Ami Yuasa, is shown mid-spin in Mumbai in 2019. We learn in A.2 that an 
object in motion continues with constant velocity unless acted upon by a resultant force. The same 
is true for rotation. Ami will continue to spin with constant angular speed unless acted upon by a 
resultant torque.

How can we use our knowledge and understanding of the torques acting on a 
system to predict changes in rotational motion?

If no external torque acts on a system, what physical quantity remains 
constant for a rotating body?

Guiding Questions

The balls and boxes we have considered in the previous chapters are rigid bodies. 
However, for simplicity, we have treated them like points by assuming that all the 
forces act on the center of the body in question. This is fine if the forces do act on or 
through the center, but what if they do not? 

If you lift one end of a plank of wood, it will rotate. To solve mechanics problems properly, 
we need to understand the relationship between force and rotation. Fortunately for 
physicists, the relationships between rotational quantities are very similar to the linear 
ones. We even use the same words but starting with ‘angular’: angular displacement, 
angular speed, etc. The letters used are from the Greek alphabet, but the relationships are 
the same; the suvat equations now become the (not so catchy) θωiωfαt equations.

Nature of Science

Treating bodies as if they are points is appropriate up to a point, but insufficient 
for dealing with real-life examples. However, a rigid body is made up of many 
points so we can use what we know about point bodies. These models can then 
be applied to practical problems such as the design of buildings and bridges. 

The Millau Viaduct in France 
took three years to build 
and is higher than the Eiffel 
Tower.
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Students should understand: 

torque τ of a force about an axis as given by τ = Fr sinθ

bodies in rotational equilibrium have a resultant torque of zero

an unbalanced torque applied to an extended, rigid body will cause angular acceleration

the rotation of a body can be described in terms of angular displacement, angular velocity and 
angular acceleration

equations of motion for uniform angular acceleration can be used to predict the body’s 
angular position θ, angular displacement Δθ, angular speed ω and angular acceleration α, 
as given by:

Δθ =  
ω

f
   +  ω

i_
2 t

ω
f
  =  ω

i
  + αt

Δθ =  ω
i
t +  1_2 α  t2

ω
f
2  =  ω

i
2  + 2αΔθ

the moment of inertia, I, depends on the distribution of mass of an extended body about an 
axis of rotation

the moment of inertia for a system of point masses as given by I = Σmr2

Newton’s second law for rotation as given by τ = Iα where τ is the average torque

an extended body rotating with an angular speed has an angular momentum L as given by 
L = Iω

angular momentum remains constant unless the body is acted upon by a resultant torque

the action of a resultant torque constitutes an angular impulse ΔL as given by 
ΔL = τΔt = Δ(Iω)

the kinetic energy of rotational motion as given by   E
k
  =  1_2 I  ω 2  =  L   2_

2I

Rotational motion
Up to this point in the course, we have dealt with the motion of a small particle (a 
red ball), defining quantities related to its motion, deriving relationships relating 
those quantities, and introducing the concepts of force, momentum and energy to 
investigate the interaction between bodies. These models were then used to solve 
problems related to larger bodies, cars, people, etc., by treating them like particles. This 
works fine provided all the forces act at the center of mass, but what if they do not? 
Consider the two equal and opposite forces acting on the bar in Figure 1 (notice the bar 
is floating in space so no gravity is acting on it).

F

F

If the bar in Figure 1 
was made of rubber, 

then the problem 
would be even more 

complicated as it 
would also bend. Here 

we will only consider 
rigid bodies. These are 

bodies that are made of 
atoms that do not move 
relative to one another; 
in other words, bodies 

with a fi xed shape.

A.4 Figure 1 Forces on a 
bar 
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Let us apply Newton’s first law to the body. The forces are balanced so the body will be 
at rest or moving with a constant velocity. However, if we observe what happens, we 
find that although the center of mass of the body remains stationary, the body rotates. 
We need to extend our model to include this type of motion.

Torque (τ)

(a) accelerating accelerating and rotating(b)

If an unbalanced force acts on the center of mass of a rigid body, then it will have linear 
acceleration but it will not rotate. All the bodies in Figure 2(a) would have the same 
magnitude of acceleration. However, if the unbalanced force does not act on the center 
of mass, as in the examples in Figure 2(b), the bodies will rotate as well as accelerate. 
We can define the center of mass as the point on a body through which an unbalanced force 
can act without causing rotation.

Describing forces acting on bodies floating in space is rather difficult to imagine since 
it is not something we deal with every day. To make things more meaningful, let us 
consider something more down to Earth: a seesaw.

A seesaw is a rigid bar with two moveable masses. It only works in a region where the 
masses are under the influence of gravity, e.g. on the Earth. The forces involved are as 
shown in Figure 3.

F F

FN
r r

A.4 Figure 2 Forces do not 
always cause rotation.   

A balanced seesaw only 
moves when you push with 
your legs.

A.4 Figure 3 Balanced 
seesaw.
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Here we can see that the forces up = the forces down so there will be no acceleration. 
There is also no rotation so the turning effect of the two children must be balanced. 
The normal reaction that holds the bar up does not turn the bar since it acts at the 
center of mass. If, however, one child was to get off, then the bar would turn.

F

FN
r

The bar would also turn if one child moved toward the center or was replaced by a 
child with less weight.

FF

FN FN

r r r
r
2

FF
2

The turning effect of the force depends upon the force and how far the force is from 
the pivot. The torque gives the turning effect of the force:

torque = force × perpendicular distance from the line of action of the force to a point

So the torque in Figure 4 is F × r. This torque turns the bar in an anticlockwise 
direction. The torques in Figure 3 are balanced because the clockwise torque 
= anticlockwise torque, but in Figure 5(a) and (b), the anticlockwise torque (F × r) is 
greater than the clockwise torque (F × r

2) so the bar will rotate anticlockwise. If we 
take anticlockwise torques to be positive and clockwise negative, we can say the bar is 
balanced when the sum of torques is zero.

Angular speed and angular acceleration
When the bar rotates, we can define the speed of rotation by the angular speed. This is 
the angle swept out by the bar per unit time. If the torques on the bar are unbalanced, 
then it will begin to rotate. This means there is change in the angular speed (from zero 
to something); we can say that the bar has angular acceleration:

angular speed (ω) is the angle swept out per unit time;
angular acceleration (α) is the rate of change of angular speed.

Equilibrium
When dealing with point masses, we say that a body is in equilibrium when at rest or 
moving with constant velocity. However, when we define equilibrium for larger, rigid 
bodies, we should add that there should be no angular acceleration. This means that 
not only must the forces be balanced but so should the torques.

A.4 Figure 3 Balanced 
seesaw. 

The seesaw is held in 
position by an axle fi xed 

to the center of the 
bar. This point is called 

the pivot. The axle 
prevents the bar from 

accelerating by exerting 
a force that is equal 
and opposite to the 

weight of the children 
(assuming the bar has 
negligible weight), but 

allows it to rotate.

A.4 Figure 4 Seesaw with 
one child. 

(a) (b)

A.4 Figure 5 Unbalanced 
seesaws.  

Balancing the forces 
when two people lift 
a heavy object up a 

flight of stairs, one 
would expect that each 

person would exert a 
force equal to half the 

weight. But if that is the 
case, why is it easiest 

to be at the top? 
Balancing torques gives 

the answer.

In this example, the 
mass of the bar (also 

called a beam) is 
negligible but even if it 
was not, we would not 

have to consider it since 
the force at the pivot 

acts in the same place.
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The sum of all the forces acting on the body is zero
If all the forces acting on a body are added vectorially, the resultant will be zero. With 
many forces, adding the vectors can lead to some confusing many-sided figures so it 
is often easier to take components in two perpendicular directions, often vertical and 
horizontal, then sum these separately. If the total force is zero, then the sum in any two 
perpendicular directions will also be zero.

F1

F1
θ1

θ2

F2

F2
F

F

If the red ball is in equilibrium, the sum of the forces must be zero so the vector 
sum has a zero resultant as shown by the triangle. This can be solved but it is not a 
right-angled triangle so is not simple. An easier approach is to take perpendicular 
components:
vertical: F1 sin θ1 − F2 sin θ2 = 0
horizontal: F − F1 cos θ1 − F2 cos θ2 = 0

In other words:

sum of the forces left = sum of the forces right

and

sum of the forces up = sum of the forces down

The sum of all the torques acting on the body is zero when 
in equilibrium
In the seesaw example, we obviously considered torques about the pivot but if a body 
is in equilibrium, then the sum of the torques about any point will be zero. Take the 
example in Figure 7.

B A

2 m 2 m 4 m
15 N

10 N 5 N

Taking torques about A:
clockwise = 5 × 4 = 20 N m
anticlockwise = 2 × 10 = 20 N m

Taking torques about B:
clockwise = 5 × 8 + 10 × 2 = 60 N m (If B was a pivot, both forces would cause a 
clockwise rotation.)
anticlockwise = 15 × 4 = 60 N m (Here we have taken the normal reaction. If this was the 
only force and B was a pivot, it would cause the bar to rotate in an anticlockwise direction.)

A.4 Figure 6 Summing 
vectors or taking 
components. 

A.4 Figure 7 Torques can 
be calculated about A, B or 
anywhere else.

When solving 
problems, you can 
choose the most 
convenient place to 
take torques about. It 
does not have to be 
the pivot.
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The balanced beam 
There are many variations of this problem. In some cases, you can ignore the weight of 
the beam (as in the seesaw) but in others it must be taken into account.

Worked example 

Calculate the weight of the beam balanced as in the figure.

FN

Fg

3 m 1 m

10 N

10 m

Solution

Taking torques about the pivot we get:
clockwise torques = Fg × 1
anticlockwise torques = 10 × 3
Since balanced: Fg = 30 N

Worked example 

Calculate the length L between the 40 N weight and the pivot needed to balance the 
beam shown in the figure.

LFN

100 N
40 N

10 N

10 m

3 m

Solution

Taking torques about the pivot:
clockwise torques = 10 × 2 + 40 × L = 20 + 40L
anticlockwise torques = 100 × 3 = 300
Since balanced: 300 = 20 + 40L
 280 = 40L
 L = 7 m
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Exercise

Q1. A 1.0 m ruler is balanced on the 30 cm mark by placing a 300 g mass 10 cm 
from the end. Calculate the mass of the ruler.

Q2. A 100 g mass is placed at the 10 cm mark on a 20 g ruler. Where must a 350 g 
mass be placed so that the ruler balances at the 60 cm mark?

Levers
We have seen that the force required to balance the bar depends on how far from the 
pivot you apply the force. This is the principle of levers and has many applications.

Exercise

Q3. Calculate the unknown force F in each of the situations shown below.

F
F

F

paint tin lid

50 N 600 N

50 N

2 m

(a) (b) (c)

0.1 m

0.8 m 1.0 m

30 cm

5 mm

The bridge
A simple bridge consists of a rigid construction spanning the gap between two 
supports. This may seem nothing to do with rotation, and if built properly, it is not. 
However, we can use the condition for equilibrium to calculate the forces on the 
supports.

Worked example 

A mass of 500 g is placed on the bridge as shown below. If the mass of the bridge is 
1.0 kg, calculate the force on each of the supports.

FA FB
80 cm

60 cm

10 N
5 NA B

Advances in 
engineering have made 
it possible to construct 
bridges connecting 
isolated communities, 
changing the way 
people live their lives.
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Solution

In this case, if we calculated the torques about the center, we would have two 
unknowns in the equation so it would be better to find torques about one of the 
ends. Let us consider end B:

clockwise torques = FA × 0.8
anticlockwise torques = 5 × 0.6 + 10 × 0.4 = 7 N m

 FA =
7

0.8
 = 8.75 N

To find FB, we can now use the fact that the vertical forces must also be balanced so:

 FA + FB = 10 + 5

FB = 15 − 8.75 = 6.25 N

Exercise

Q4. A 5.0 m long ladder is held horizontally between two men. A third man with 
mass 80 kg sits on the ladder 1.0 m from one end. Calculate the force each 
man exerts if the mass of the ladder is 10 kg.

Q5. A 1.0 m long ruler of mass 200 g is suspended from two vertical strings tied 
10 cm from each end. The force required to break the strings is 6.0 N. An 
800 g mass is placed in the middle of the ruler and moved toward one end. 
How far can the mass move before one of the strings breaks?

Non-perpendicular forces
When a force acts at an angle to the bar as in Figure 8, the perpendicular distance from 
the line of action to the pivot is reduced so τ = F × L sin θ. This is the same component 
of the force perpendicular to the bar multiplied by the distance to the pivot. The 
parallel component does not have a turning effect since the line of action passes 
through the pivot.

F

L

L sin
θ

θ

The hanging sign
Signs and lights are often hung on brackets fixed to a wall. This can result in a lot of 
force on the fixings so they are often supported by a wire as shown in Figure 9. Note 
that in this case the sign hangs from the center of the bar.

A.4 Figure 8 A non-
perpendicular force
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Here we can see that, because the wire is attached to the wall, it makes an angle θ with 
the supporting bar. This must be balanced by an equal and opposite force from the 
wall; this is the normal reaction FN. Calculating torques around the point where the 
wire joins the bar, we see that the bar and sign cause a clockwise torque. This is 
balanced by the anticlockwise torque caused by the force F at the wall. This force is 
provided by the fixing plate or by inserting the bar into a hole in the wall.

Exercise

Q6. A sign is hung exactly like the one in Figure 9. The sign has a mass of 50 kg 
and the bar 10 kg. The bar is 3.0 m in length and the wire is attached 50 cm 
from the end and makes an angle of 45° with the bar. Calculate:

(a) the tension Ft in the wire

(b) the normal force FN

(c) the upwards force F.

Q7. Repeat Q6 with the sign hanging from the end of the bar.

The leaning ladder
If you have ever used a ladder to paint the wall of a house, you might have wondered what 
angle the ladder should be: too steep and you might fall backward; not steep enough and it 
might slip on the ground. By calculating torques, it is possible to find out if the ladder is in 
equilibrium, but remember the forces change when you start to climb the ladder.

Figure 10 shows a ladder leaning against a frictionless wall in equilibrium. Brick walls 
are not really frictionless but it makes things easier to assume that this one is. The 
problem is to find the friction force on the bottom of the ladder.

First we can balance the forces:  vertical forces:  FN (ground) = Fg

horizontal forces  FN (wall) = Ff

Then, calculating torques about the top of the ladder:

sum of clockwise torques = sum of anticlockwise torques

FN (ground) × d = Ff × h + Fg × 
d
2

θ

Fg

FN

F

Ft

A.4 Figure 9 A hanging 
sign.

θ

FN (wall)

FN (ground)

Fg

L

d

h

Ff

How does a torque lead 
to simple harmonic 
motion? (C.1)

A.4 Figure 10 A leaning 
ladder. 
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If we were to calculate torques around the bottom of the ladder, we get:

 Fg × 
d
2 = FN (wall) × h

 FN (wall) = Fg × 
d

h
 × 

1
2

 = Fg × 
tan θ

2

But FN (wall) = Ff :  Ff  = Fg × 
tan θ

2

So as the angle increases, the friction at the bottom (Ff) increases. This has a maximum 
value of μFN (ground) (μ is the coefficient of friction) that limits the maximum angle of the 
ladder.

Exercise

Q8. A ladder of length 5 m leans against a wall such that the bottom of the ladder 
is 3 m from the wall. If the weight of the ladder is 20 kg, calculate the friction 
between the ground and the bottom of the ladder.

Q9. If the ladder in Q8. is moved a little bit further out and it begins to slip. 
Calculate the coeffi cient of static friction between the ground and the ladder.

Constant angular acceleration
Consider a bar pivoted at one end as in Figure 11. As the bar rotates, it sweeps out an 
angle Δθ. This is the angular displacement of the bar and is measured in radians.angular displacement

θΔ

If the time taken for the bar to sweep out angle Δθ is Δt, then the average angular 
speed of the bar ω is given by the equation:

ω = 
Δθ
Δt

An unbalanced torque applied to the bar will cause it to rotate faster. The average rate 
of change of angular speed is the angular acceleration, α.

α = 
Δω
Δt

These quantities are the rotational equivalents of linear displacement, velocity and 
acceleration. If the angular acceleration is constant, they are related in the same way, 
giving angular equivalents of the suvat equations (the θ ωi ωf α t equations!).

Constant angular acceleration equations
A bar rotating at an initial angular speed of ω i is acted upon by a torque that causes an 
angular acceleration α, increasing the angular speed to a final value of ω f in t seconds. 
During this time, the bar sweeps out an angle θ.

When a ladder leans 
against a wall, the 

friction at the bottom 
balances the normal 

force at the top. As you 
climb the ladder, the 

normal force increases 
so the friction must 

also increase. However, 
friction cannot be 

bigger than μFN (ground). 
If this is less than the 

normal force at the 
top, the ladder will slip. 

The moral of this tale 
is that just because 

the ladder does not 
slip when you start to 

climb does not mean it 
will not slip when you 

get to the top.

A.4 Figure 11 An angle is 
swept out

To perform a triple 
somersault, a gymnast 

must first initiate the 
rotation using friction 

between their feet 
and the floor. Once 
the body is rotating, 

the legs and arms are 
pulled in to a tucked 

position, reducing 
the rotational inertia 

and resulting in an 
increase in angular 

speed. It is also 
possible to perform a 
triple somersault with 
a straight body. In this 

case, a lot of speed 
must be built up before 

take-off to give a high 
enough angular speed.
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θ

α

ωf

ω i

These quantities are related by the 
equations shown in Table 1.

These angular equations are used to solve 
problems in exactly the same way as the 
linear equations.

Worked example 

A body rotating at 10 rad s−1 accelerates at a uniform rate of 2 rad s−2 for 5 seconds. 
Calculate the final angular speed.

Solution

The data given is:
ω i = 10 rad s−1

α = 2 rad s−2

t = 5 s

We wish to find ω f so the equation to use is ω f = ω i + α t:

ω f = 10 + 2 × 5 = 20 rad s−1

Worked example 

Calculate the angle swept out by a body that starts with an angular speed of 2 rad s−1

and accelerates for 10 s at a rate of 5 rad s−2.

Solution

The data given is:
ω i = 2 rad s−1

α = 5 rad s−2

t = 10 s

We wish to find Δθ so the equation to use is Δθ = ω it + 12α t2:

Δθ = 2 × 10 + 12 5 × 102 = 20 + 250 = 270 rad

This is 
270
2π  revolutions.

1 revolution is 2π
radians.

A.4 Figure 12 Uniform 
angular acceleration. 

Angular Linear

ω f = ω i + α t v = u + at

ω f2 = ω i2 + 2αΔθ v2 = u2 + 2as

Δθ = ω it + 12α t2 s = ut + 12at2

Δθ =  
ωi   +  ωf_____

2 t s =  u + v____
2 t A.4 Table 1
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Exercise

Q10. A wheel is pushed so that it has a uniform angular acceleration of 2 rad s−2 for 
a time of 5 s. If its initial angular speed was 6 rad s−1, calculate:

(a) the fi nal angular speed

(b) the number of revolutions made.

Q11. The frictional force on a spinning wheel slows it down at a constant 
acceleration until it stops. Initially, the wheel was spinning at 5 revolutions 
per second. If the wheel was slowed down to stop in one revolution, calculate:

(a) the angular acceleration

(b) the time taken. 

Graphical representation
As with linear motion, angular motion can be represented graphically. In the example 
considered previously, a bar rotating at an initial angular speed of ω i is acted on by a 
torque that causes an angular acceleration α, increasing the angular speed to a final 
value of ω f in t seconds. During this time, the bar sweeps out an angle θ. This can be 
represented by the three graphs shown in Figure 13.

Δθ

α

ωf

ω i

time

di
sp

la
ce

m
en

t

timet t t

gradient

gradient

gradient

sp
ee

d

time

ac
ce

le
ra

ti
on

As with the linear equivalents, the gradient of displacement/time (Δθ
Δt ) gives speed and 

the gradient of speed/time (Δω
Δt ) gives acceleration. Working the other way around, the 

area under acceleration/time gives the change of speed and the area under speed/time 
gives displacement.

Relationship between angular motion and linear motion
Circular motion can be split into two components: one perpendicular to the 
circumference and one tangential to it. The perpendicular component is dealt with in 
A.2 (Circular motion) when we considered only bodies moving with constant speed. 
In this case, there is acceleration toward the center – the centripetal acceleration – 
but no tangential acceleration. When an unbalanced torque acts, then there will be 
an increasing centripetal acceleration plus a tangential acceleration in the directions 
shown in Figure 14.

We know that if Δθ is measured in radians, Δθ = 
Δs
r so Δs = Δθ × r.

A.4 Figure 13 Rotational 
motion graphs.

v

ac

at

A.4 Figure 14 Centripetal 
acceleration is along a radius 
and tangential acceleration is 
along a tangent
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