
LET US C (17th EDITION)

SUMMARY

OF

ALL

CHAPTERS

The only guide you need for C.

HAPPY LEARNING.....

Constants = Literals -> Cannot change

Types of variables and constants : 1) Primary 2) Secondary

3 types in Primary : 1) Integer 2) Real (float) 3) Character

Ranges :

 In a char constant , both quotes must slant to the left, like 'A'

Variable has two meanings :

Variable names are case-sensitive and must begin with an
alphabet or underscore

printf() is a function that can print multiple constants and
variables

Some format specifiers in printf(), scanf() : int - %i, float - %f,
char - %c

Use /*........*/ or // for a comment in a C program

& is 'address of' operator and must be used before a variable
in scanf

 Variables = Identifiers -> May change

1) 2-byte integer : -32768 to +32767
2) 4-byte integer : -2147483648 to +247483648
3) floats : -3.4 x 10^38 to +3.4 x 10^38

1) It's an entity whose value can change
2) It's a name given to location memory

Notes:

CHAPTER 1: GETTING STARTED

Every compiler is targeted towards a particular OS +
Microprocessor combination. This combination is known as a
platform. A compiler created for one platform does not work
with other platform.

/ gives quotient, % gives remainder. While taking %, sign of
remainder is same as sign of numerator. % doesn't work with
floats.

C offers three types of instruction :

Declaration and assignment can be combined. Ex. : int a=5

3 types of arithmetic instruction :

 Rules for arithmetic instruction :

a = pow(2, 5) ; would store 2^5 in a. Remember to
#include<math.h>

Every operator has priority and Associativity, priority is * / %,
+ -, = . Priority can be changed using ().

Associativity is either L to R or R to L. + , - , * , / , % has L to
R, = has R to L associativity.

Format string of printf() can contain :

Format string of scanf() can contain only format specifiers

4 types of control instructions :

1) Type declaration 2) Arithmetic 3) Control

1) Integer mode 2) Real mode 3) Mixed mode

- If one is float , result is a float
- Result is int only if both operands are ints

1) Format specifier - %c, %d, %f, etc.
2) Escape sequences - \n, \t, etc. and any other character

1) Sequence 2) Decision 3) Repetition 4) Case

Notes:

CHAPTER 2: C INSTRUCTIONS

Three ways for taking decisions in a program :

The default scope of if and else statement is only the next
statement. So to execute multiple statements they must be
written in a pair of braces.

Condition is built using relation operators <, >, <=, >=, ==, !=

An if need not always be associated with an else. However, an
else must always be associated with an if.

An if-else statement can be nested inside another if-else
statement.

 a=b is assignment, a==b is comparison.

In if(a==b==c), result of a==b is compared with c.

If a condition is true it is replaced by 1, if it is false it is
replaced by 0.

Any non-zero number is true, 0 is false.

; is a null statement. It doesn't do anything on execution.

1) Using if-else statement
2) Using conditional operators
3) Using the switch statement

Notes:

CHAPTER 3: DECISION CONTROL

INSTRUCTION

Logical operators are &&, || and !. Useful in checking ranges
and solving yes/no problem

One more form of decision control instruction is :

Unary operator needs only 1 operand. Ex. ! , sizeof()

Binary operator needs 2 operands. Ex. +, -, *, /, %, <, >, <=, >=,
==, !=, &&, ||

sizeof() is an operator. It gives number of bytes occupied by
an entity. Ex. a = sizeof(int)

!(a<=b) is same as (a>b). !(a>=b) is same as (a<b)

a = !b does not change value of b.

General form of ternary operators :

? : can have only 1 statement each

? : can be nested

? : always go together. : is not optional

Always parenthesize assignment operation if used with ? :

if(condition 1)
statement 1;

else if(condition 2)
statement 2;

else if(condition 3)
statement 3;

else
statement 4; else works if all 3 ifs fail

a = !a means, set a to 0 if a is 1 and set it to 1 if it is is 0.

condition ? statement1 : statement2

Notes:

CHAPTER 4: MORE COMPLEX

DECISION MAKING

Repetition control instruction is implemented using :

General form of while :

i++ increments value of i by 1

The expressions i = i+1, i++, ++i are all same

j = ++i; first increments i, then assigns the incremented value
to j

j = i++; first assigns current value of i to j, then increments i

Compound assignment operators : +=, -=, *=, /= and %=

Running sum and products are implemented using following :

1) while loop
2) for loop
3) do-while loop

i = 1; /* initialization of loop counter */
while (i <= 10) /* testing of loop counter */
{

statement 1;
statement 2;
i++; /* incrementation of loop counter */

}

i-- decrements value of i by 1
there are no **, // and %% operators

Ex. i += 5; which is same as i=i+5;

S = 0;
P = 1;
while(condition)
{

/* calculate term */
S = S + term;
P = P * term;

}

Notes:

CHAPTER 5: LOOP CONTROL

INSTRUCTION

Usual usage :

Equivalent forms :

for(; ;) is an infinite loop. While() results into an error

Multiple initializations, conditions and incrementations in a for
loop are acceptable. Ex.

break - terminates the execution of the loop

Usual usage of break and continue :

while loop - to repeat something unknown no. of times
for loop - to repeat something fixed no. of times
do-while loop - to repeat something at least once

i = 1; for(i=0;i<=10;i++) i=1;
while (i <= 10) { do
{ statement 1; {

statement 1; statement 2; statement 1;
statement 2; } statement 2;
i++; i++;

} }while(i<=10);

for(i=1, j=2; i<=10 && j<=24; i++, j+=3)
{

statement 1;
statement 2;

}

continue - goes for next iteration of loop abandoning rest of
instructions

while (condition 1) while(condition 1)
{ {

if(condition 2) if(condition 2)
break; continue;

statement 1; statement 1;
statement 2; statement 2;

} }

Notes:

CHAPTER 6: MORE COMPLEX

REPETITIONS

One more form of decision making can be done using switch -
case - default. This is used when we are to check whether a
variable or an expression has one of the several possible
values

General form :

If a case fails control jumps to the next case. Break takes the
control out of the switch. Continue doesn't rake the control to
the beginning of the switch

Order in which cases are written does not matter. Default
case is optional.

Cases in a switch must always be unique

goto keyword can take the control from any place to any
other place within the function. It should be used only when
we wish to break out of the innermost loop in a nested loop
system

exit() - function - terminates program execution

#include<stdlib.h> for exit() to work

switch (expression){ -> use constant or variable expression

case constant expression: -> use only constant exp.

statement
case constant expression:

statement
default:

statement

}

Switch can be used with int, long int, char
switch cannot be used with float, double
switch works faster than a series of ifs

Notes:

CHAPTER 7: CASE CONTROL

INSTRUCTION

Functions are a group of instructions achieving some goal

Why create functions :

Types of functions :

Three things should be done while creating a function :

General form :

C program is a collection of one or more functions
If it contains more than 1 functions, then one must be main()
Execution of any C program begins with main()
Function names in a program must be unique
Any function can call any other function
Functions can be defined in any order

More the function calls slower the execution

If values are passed to a function, then function must collect it
while defining it

Arguments passed to a function are called actual arguments
Arguments received by function are called formal arguments
Actual & Formal arguments must match in number,order,type
Actual arguments can be constants/ variables/ expressions
Formal arguments must be variables

1) Better complexity management - Easy to design and debug
2) Provide reuse mechanism - Avoids rewriting same code

1) Library - printf(), scanf(), pow()
2) User-defined - main()
Rules for building both are same

1) Function definition
2) Function call
3) Function prototype declaration

return-type function-name(type arg1, type arg2, type arg3){
statement1; statement2;
return (variable/constant/expression); -> only 1 value

}

Notes:

CHAPTER 8: FUNCTIONS

Nested calls are legal. Ex. : a=sin(cos(b));

Call within an expression is legal. Ex. : a=sin(b) + cos(c);

The error "Unresolved internal" usually means there is a
mistake in the function name spelling

return (s); - Returns control & value

If value is returned from function, we can choose to ignore it

To ensure no value is returned from a function, use void as
the return-type in function definition and its prototype
declaration

A function by default returns an integer value. If we do not
specifically return an integer value then a garbage integer
value is returned

A function can return a non-integer value. The type of value
must be suitably mentioned in the function definition and its
prototype declaration as in :

return ; - Returns only control

float area (float r) ; /* function prototype declaration */

float area (float r){ /* function definition */

}

Notes:

HAPPY LEARNING

MORE.....

3 ways to call a function :

Pointers are variables which hold addresses of other variables

Address, Reference, Memory location, Cell number are same

& - address of operator, * - value at address or indirection
operator

& can be used only with variables, * can be used with variable,
constant or expression

variable is same as *&variable

Example of pointer usage :

&a always gives base address of a, no matter variable is of
how many bytes

Using an integer ptr - use * to reach integer

Call by value - change doesn't affect actual arguments

1) Call by value - values are passed to the called function
2) Call by reference - addresses are passed to called function
3)Mixed call - values and addresses are passed

int i=10; int *j; int **k;
j = &i; k = &j;
printf("%d %d %d", i, *j, **k);

here j is an integer pointer. k is a pointer to an integer pointer

Using a pointer to an integer pointer - use ** to reach integer

Call by reference - actual arguments can be changed

Examples of call types :
1) swapv(a, b); - call by value
2) swapr(&a, &b); - call by reference
3) sumprod(a, b, c, &s, &p); - mixed call

Notes:

CHAPTER 9: POINTERS

A function that calls itself is called a recursive function

Any function including main() can become recursive

Recursive call always leads to an infinite loop. So a provision
must be made to get outside this infinite loop

The provision is done by making the recursive call either in
the if block or in the else block

If recursive call is made in the if block, else block should
contain the end condition logic, vice-versa

Fresh set of variables are born during each function call -
normal call and recursive call

Variables die when control returns from the function

Recursive function is an alternative for loop in which logic are
expressible in the form of themselves

Recursive calls are slower than an equivalent while/ for/ do-
while loop

Understanding how a recursive function is working becomes
easy if you make several copies of the same function on paper
and then perform a dry run of the program

Notes:

CHAPTER 10: RECURSION

Types :

Sizes of data types may vary from one compiler to another.
For example, int is two bytes in Turbo C, 4 bytes in Visual
Studio Code

For all compilers : sizeof(short) <= sizeof(int) <= sizeof(long)

In signed, left-most bit is +ve/-ve. In unsigned, all bits
contribute to value

Negative integer are stored as 2's complement (negation and
adding 1)

Number without a decimal point is by default an in. Use
suitable suffix to change it :

Number with a decimal point is by default a double. Use
suitable suffix to change it :

Two things are needed to completely define a variable :

Type signifies what type of value can be stored in the variable

Storage class signifies 4 things :

Integer - short, long, signed, unsigned, int
Char - signed, unsigned
Real - float, double, long double

365 - int, 365u - unsigned int, 365L/365l - long int,
365 lu/365ul - long unsigned

3.14 - double, 3.14f - float, 3.14L: - long double

1) Type of variable 2) Storage class of variable

1) Storage - where the variable is stored
2) Default value - what value would it holds if not initialized
3) Scope - where the variable would be available
4) Life - how long would the variable be available

Notes:

CHAPTER 11: DATA TYPES

REVISITED

Automatic storage class :

Register storage class :

Static storage class :
1) Storage - memory 2) Default value - 0

Extern storage class :

Definition of variable reserves space, just declaration doesn't.

int i ; ->definition , extern int i ; -> declaration

Local variable gets a priority over global variable of same
name

Out of locals of same name, most local variable gets a
priority

Usage :

1) Storage - memory 2) Default value - garbage
3) Scope - local to the block ({})
4) Life - till control is in the block in which variable is defined

1) Storage - CPU register 2) Default value - garbage
3) Scope - local to the block
4) Life - till control is in the block in which variable is defined

3) Scope - local to the block
4) Life - till execution of program doesn't end

1) Storage - memory 2) Default value - 0
3) Scope - global
4) Life - till execution of program doesn't end

Redeclaration of variable is ok, redefinition not

Register - for frequently used variable
Static - if variable is to live across functions
External - if variable is required by all functions
Automatic - all other cases

Notes:

MORE.....

Preprocessor expands the source code as per the preprocessor
directives used in it

4 types of preprocessor directives :

#inlude"stdio.h" - searches the file in file in include
path+current path

#include<stdio.h> - searches the file in just included path

Macros - every template is replaced by its expansion. Macro
have global effect

#define PLANK 6.634E - 34 -simple macro

Macros can take multiple arguments :-

Macro can be split over multiple lines. Put a \ at the end of
each line, except last line

Macros are faster and functions occupy less space

Be aware of side-effects of macros with arguments

Conditional compilation - compiles the code only if the
condition is true. Implemented using #ifdef, #else, #endif,
#ifndef, #if

Miscellaneous directives :

1) Macro expansion 2) File inclusion
3) Conditional compilation 4) Miscellaneous directives

#define AREA(x) PI*x*x -macro with argument

#define CALC(a,b,c,d) (a+b*c/3.14)

#define SQUARE(y) y*y
would expand z=SQUARE(3+1) into z=3+1*3+1

#undef - undefines a macro that has already been defined
#pragma inline - used for compilation of program that uses
assembly language statements

Notes:

CHAPTER 12: THE C

PREPROCESSOR

Array is a variable capable of holding >1 value at a time

Two basic properties of an array :

2 ways to declare an array :

Array elements are always counted from 0 onwards. So arr[9]
is 10th element

Array have storage classes. Default auto

Array elements can be scanned OR calculated :

Arithmetic on array elements is allowed :

Caution : Bounds checking of an array is programmer's
responsibility. Ex. even if arr[5] is declared i.e. max size is 5
but it will give no error while receiving values after this bound
and values at another locations may get overwritten

Typical way to process an array element by element :

To obtain address of 0th element of array use :

1) Similarity - All array elements are similar to one another
2) Adjacency - All array elements are stored in adjacent
memory

int arr[10] ; /* mentioning size is compulsory */
int num[] = {23,34,54,22,33} ; /* size is optional */

scanf("%d %d %d", &arr[7], &arr[8], &arr[9]);
arr[5] = 3 + 7 % 2 ;

arr[6] = arr[1] + arr[3]/16 ;

int arr[10] ;
for(i=0; i<=9; i++){

/* process */
}

int arr[10] ; int *p ;
p = arr; /* method 1 */
p = &arr[0]; /*method 2 */

Notes:

CHAPTER 13: ARRAYS

Sorting = arranging array elements in ascending/descending
order

Bubble sort = compare adjacent elements repeatedly

Selection sort = compare 0th element with all others, 1st with
other, etc.

On incrementing a pointer it always points to the next
location of its type

Only legal pointer operations :

5 ways to access array elements using pointer :

To pass array to function we must always pass two things :

Array can neither grow nor shrink in size during execution of
the program.

We cannot declare array using int arr[n] and then receiving
the value of n during execution

On incrementing a float pointer it points to the next float
which is 4 bytes away
Similarly for int(4) and char(1)

pointer + number -> pointer
pointer - number -> pointer
pointer - pointer -> pointer
pointer == pointer

- Set up a pointer holding base address of the array :
int arr[10], *p ;
p = arr ;

- In a for loop use of the five expressions
1) *p ; p++ ; OR
2) *(p+i) OR
3) *(i+p) OR
4) p[i] OR
5) i[p]

1) Base address of the array 2) Size of the array

Notes:

MORE.....

We can make the array size flexible by changing the value of
MAX suitable :

To create a variable sized array, use the following :

#define MAX 20
int arr[MAX];

int *p;
p = (int *) malloc(n * size of(int)) ;

Then to access all elements we can use p[i]

Notes:

MORE.....

2-D array is a collection of several 1-D arrays

If 2-D arrays is initialized at the same place where it is
declared, then mentioning the column dimension is optional

A 2-D array is laid out linearly in memory in row-major
fashion i.e. row after row

Given a 2-D array int a[4][5] ;

int *p[4] ; - p is an array of 4 integers. Size of p is 16 bytes

int (*p)[4] ; - p is a pointer to an array of 4 integers. Size of p
is 4 bytes

Application of 2-D array in games :

3-D array is a collection of several 2-D array. Size of 3-D
array is sum of sizes of all its elements

Following expressions are referring to the element in the 1st
row, 3rd column of the 2nd 2-D array :

For a 3-D array :

a[2][3] == *a[2] + 3 == *(*(a+2)+3)

chess, ludo, snakes and ladder, brainvita, any other board
game

a[2][1][3]
* (a[2][1] + 3)
* (*(a[2] + 1) + 3)
* (*(*(a + 2)+ 1) + 3)

a, *a, **a, will give address
***a will give the integer at a a[0[0][0]

Notes:

CHAPTER 14:

 MULTIDIMENSIONAL ARRAY

Strings are character arrays ending with '\0'. '\0' is called
string terminator

Other arrays do not end with '\0'. ASCII value of '0' = 48, and
ASCII value of '\0' = 0

Ways to output strings :

Ways to input strings :

To receive multiword strings :

Prefer scanf() for receiving name of city, gets() for receiving
name and surname

3 = integer, 3.0 = double, '3' = character, "3" = string ending
with '\0'

Standard way of processing a string :

#include<string.h> for prototypes of library string functions
mentioned in next page

char name[] = "Sanjay";
printf("%s\n", name);
puts(name);

char name[30];
scanf("%s", name);
gets(name);

1) scanf("%[^\n]s", name); /* ^means from beginning, \n
 means up to end */

2) gets(name)

char str[] = "Blah blah blah"; char *p;
p = str;
while(*p != '\0'){

/* process current character given by *p */
p++;

}

Notes:

CHAPTER 15: STRINGS

Useful string functions :

char p[] = "Nagpur" ;

char *p = "Nagpur";

int l = strlen(str); /* returns length of string */

strcpy(target, source); /* copies source string to target */

strcat(target, source); /* appends source at the end of target*/

 /* return 0 if strings are not equal,
int l = strcmp(str1, str2); difference of ascii values if they

 are unequal */

strupr(str); /* converts string str to uppercase */

strlwr(str); /* converts string str to lowercase */

toupper(ch); /* converts character ch to uppercase */

tolower(str); /* converts character ch to lowercase */

p is a constant pointer to string
p cannot be changed
Nagpur can be changed

p is a pointer to a constant string
p can be changed
Nagpur cannot change

Notes:

MORE.....

2 ways to handle multiple related strings :

Pros and cons of using 2-D of strings :

Pros and cons of using array of pointers to strings :

1) Using 2-D array of strings
2) Using array of pointer to strings

Pros :
Easy to process using 2 for loops and expression str[i][j]

cons :
Leads to wastage of precious memory space
Leads to tedious processing of array elements

Pros :
Easy to process
Saves space

Cons:
Cannot change strings. Their relative positions in the array
can be changed

Cannot receive strings from keyboard easily. Can be done
by allocating space for each string using malloc() and
then assigning the addresses returned by malloc() to the
array elements

Notes:

CHAPTER 16: HANDLING

MULTIPLE STRINGS

Structure is a collection of dissimilar(usually) elements stored
in adjacent locations

Terminology :

Structure elements are stored in adjacent memory locations

Size of structure variable = sum of sizes of structure elements

2 ways to copy structure elements :

Structure can be nested :

To access structure elements using structure variables, use "."

Structure is also known as - User-defined data type/
Secondary data type/ Aggregate data type/ Derived data
type

struct employee {char name; int age; float salary;};
struct employee e1, e2, e[10];

struct - keyword employee - structure name/tag
name, age, salary - structure elements/ structure members
e1, e2 - structure variables e[] - array of structures

struct emp e1 = {"Amit", 23, 4000.50};
struct emp e2, e3;
1) e2.name = e1.name; e2.age = e1.age; e2.salary = e1.salary;
2) e3 = e1;

struct address {char city[20]; long int pin;};
struct emp {char n[20]; int age; struct address a; float s;};
struct emp e;

To access city and pin we should use e.a.city and e.a.pin

operator as in
struct emp e;
printf("%s %d %f", e.name, e.age, e.salary);

Notes:

CHAPTER 17: STRUCTURES

To access structure elements using structure pointer, use ->
operator as in

Uses of structures :

struct emp e;
struct emp *p;
p = &e;
printf("%s %d %f", p->name, p->age, p->salary);

Database Management
Displaying Characters
Printing on printer
Mouse Programming
Graphics Programming
All Disk Operations

Notes:

MORE.....

IO(input output) in C is always done using functions, not
using keywords

All IO functions can be divided into 2 broad categories :

The formatted console IO functions can force the user to
receive the input in a fixed format and display the output in a
fixed format

All formatted console IO is done using printf() and scanf()

Examples of formatting :

Escape sequences :

scanf() can contain format specifier like %10.2f, but it is too
restrictive, hence used rarely

Unformatted console IO functions :

1) Console IO functions : a) Formatted b) Unformatted
2) Disk IO functions

%20s - right align a string in 20 columns
%-10d - left align an integer in 10 columns
%12.4f - right align a float in 12 columns with 4 places

 beyond decimal places

\n - positions cursor on next line
\r - positions cursor at beginning of same line
When we hit enter \r is generated and is converted into \r\n
combination
\t - positions cursor at beginning of next print zone. 1 print
zone = 8 columns
\', \", \\ - produces ', ", \ in the output

char - getchar() - waits for enter
int/float - no functions
string - gets(), puts()

Notes:

CHAPTER 18: CONSOLE

INPUT/OUTPUT

File I/O functions :

High level text mode formatted file I/O functions :

I/O is always done using a buffer of suitable size. High level
file I/O functions manage buffer themselves while using low
level file I/O functions we have to manage the buffer

Functions to open and close a file :

FILE *fp = fopen("temp.dat", "r");

ch = fgetc(fp); - Reads char, shifts pointer to next char

To read a file character by character till we do not reach the
end : while((ch=fgetc(fp)) != EOF)

To read a file line by line till we reach the end :

EOF and NULL are macros defined in stdio.h

a) High level :
1) Text mode - (i) formatted (ii) unformatted
2) Binary mode

b) Low level

fprintf(), fscanf()
High level text mode unformatted file I/O functions :

char - fgetc(), fputc()
int, float - no functions
string - fgets(), fputs()

High level - fopen(), fclose()
Low level - open(), close()

FILE is a structure declared in stdio.h
fopen() - Creates buffer, Creates structure

 - Returns address of structure and assigns to fp

 Returns ASCII value of character read
 Returns EOF if no character is left

char str[80]
while(fgets(str, 79, fp) != NULL)

#define EOF -1
#define NULL 0

Notes:

CHAPTER 19: FILE

INPUT/OUTPUT

fopen() :

Difference :

To read/write record to a file in text mode :

To move the pointer in a file :

To read/write buffer of 521 characters using low level file I/O
functions :

ch = fgetc(fp); - Reads char, shifts pointer to next char

To open file for reading in text mode - "rt" or "r"
To open file for writing in text mode - "wt" or "w"
To open file for reading in binary mode - "rb"
To open file for writing in binary mode - "wb"

fs = fopen(s, "r"); - Returns NULL if file is not in disk

 Returns address of FILE structure, if
ft = fopen(t, "w"); - present. Creates new file if is absent
 Overwrites file, if present

fclose(fs); - Vacates the buffer
fclose(ft); - Writes buffer to disk, vacates buffer

struct emp e = {"Amit", 19, 4500.50};
fprintf(fp, "%s %d %f", e.name, e.age, e.sal);
while(fscanf(fp, "%s %d %f", e.name, e.age, e.sal) != EOF)

fseek(fp, 512L, SEEK_SET);
moves the pointer 512 bytes from the beginning of file.

other macros :
SEEK_END - from end of file
SEEK_CUR - from current position of pointer

int in, out; char buffer[512];
out=open("trial.dat", O_WRONLY | O_BINARY | O_CREAT);
in = open("sample.dat", O_RDONLY | O_BINARY);
write(out, buffer, 512);
n = read(in, buffer, 512); /* n- no. of bytes read successfully */

 Returns ASCII value of character read
 Returns EOF if no character is left

Include 3 files:
#include<fcntl.h> #include<sys\types.h>
#include<sys\stat.h>

MORE.....

C>, $ are called command prompts in Windows and Linux
respectively

Command-line arguments are arguments provided to main()
from command-line

Command-line args are collected in main() in variables argc
and argv

char *argv[] is an array of pointers to strings. So all
arguments are received as strings and their addresses are
stored in argv[]

Errors in reading/ writing from/ to a file can be detected
using ferror() and reported using perror() :

Most OSs predefine pointers for three standard files :

To use and give up these predefined pointers, we need not
use fopen() and fclose()

The statement ch = fgetc(stdin) would read a character from
the keyboard

If a program uses stdin then < at cmd input can be rediracted
to be recieved from a file. Ex. C> calc < file

If a program uses stdout and stderr then using > at cmd
output and and error messages can be redirected to a file.

argc - count of arguments
argv - vector (array) of arguments
Any variable names other than argc, argv are ok

ch = fgetc(fp);
if(ferror())

perror("ERROR while reading");

stdin - standard input device (keyboard)
stdout - standard output device (monitor)
stderr - standard error device (monitor)

Ex C> calc > file
The operators < and > are called redirection operators

Notes:

CHAPTER 20: MORE ISSUES IN

INPUT/OUTPUT

Bit = Binary Digit = Basic unit of information. A bit can take
a value 0 or 1

Units :

4 Numbering systems :

PC/Laptop understand only Binary numbering system, C/C++
understand Octal, Decimal, Hexadecimal numbering systems

Always try to convert Binary into Hexadecimal instead of
Decimal, as while converting to Hex a nibble can be replaced
by its equivalent Hex digit

Bitwise Operations :

Bitwise operators purpose :

<<=, >>=, &, |=, ^= - Bitwise compound assignment
operators. a = a<<5; is same as a<<=5; . Except '~' all other
bitwise operators are binary operators

Remember :

printf("%#x", var); prints the hexadecimal output preceded by
0x

4 bits = Nibble, 8 bits = Byte, 16 bits = word, 32 bits = Dword

1) Binary - 0, 1 2) Octal - 01......7
3) Decimal - 01.......9 4) Hexadecimal - 0....9,A.....F

Set a bit to a value 0/1 -> Write operation
Check whether bit 6 is 1(on) or 0(off) -> Read operation

~ - Converts 0s to 1s and 1s to 0s
<< >> - Shift out desired number of bits from left or right
& - Check whether a bit is on/off. Put off a particular bit
| - Put on a particular bit
^ - Toggle a bit

Anything ANDed with 0 is 0
Anything ORed with 1 is 1
1 XORed with 1 is 0

Notes:

CHAPTER 21: OPERATIONS ON

BITS

We can write programs without using miscellaneous features
like union, enum, etc. But that is not advisable

Often we are required to handle an ordered listing of items.
Example colors like red, green, blue or marital status like
married, unmarried or divorced. Instead of handling these as
integers, enums are a better way

Usage of enums :

A typedef declaration can be used to redefine the name of an
existing data type as in

Usually, uppercase letters are used to make it clear that we
are dealing with a renamed datatype

typecasting can be used to forcibly convert the value of an
expression to a particular data type

Multiple items of information can be stored in a byte using bit
fields

void *p(); - Prototype of a function p() that receives nothing
and return a void *

enum color {red, green, blue}
enum color windowcolor, buttoncolor;
windowcolor = green; buttoncolor = blue;
printf("%d %d", windowcolor, buttoncolor);

typedef unsigned long int ULI;
ULI var1, var2;

struct employee{
unsigned gender : 1 ; unsigned mar_stat : 2 ;

};
The number after colon(:) indicates the number of bits to allot
for the field

Notes:

CHAPTER 22: MISCELLANEOUS

FEATURES

void (*p)(); - p is pointer to a function that receives nothing
and returns nothing

float * (*p)(int, float); - Pointer to a function that receives int
& float and returns a float *

Usage of function pointer :

We can write a function that receives a variables number of
arguments using macros va_list, va_start, va_arg

Size of a structure is sum of sizes of its elements. Elements are
accesses using

Size of union variable is size of biggest element of the union.
Elements are accessed using '.'

Utility of union - Permits access to same memory locations in
multiple ways

Usage :

If a number is ABCD then in little endian architecture it is
stored as DCBA

Little Endian - Low byte is stored first. Big Endian - High byte
is stored first. Endianness is a matter of convenience. So both
are good

void (*p)();
P = display; /* stores address of display function in p */
(*p)(); /* first way to call display() */
P(); /* one more way to call display() */

union a{
int i; char ch[4];

};
union a z;
z.i = 512;
printf("%d %d %d %d %d", z.i, z.ch[0], z.ch[1], z.ch[2], z.ch[3]);

Notes:

MORE.....

