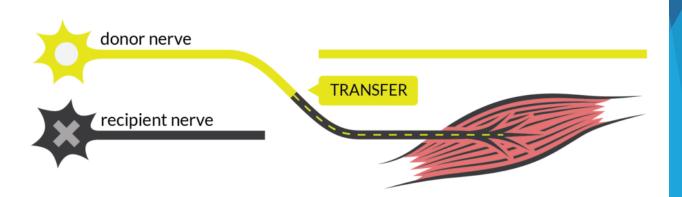
Rehabilitation for Nerve & Tendon Transfers after SCI

Lisa Schlee


Physical Therapist

Topics

- Nerve transfers after SCI
 - Phases of Rehabilitation (Pre & Post Surgery)
- Case Example
- Biofeedback
- Tendon Transfers after SCI

Goals of surgery (nerve or tendon transfers)

- Restore hand function and increase independence
 - Hand function is typically the most desired improved function after SCI
- Improve quality of life
- Both nerve and tendon transfers require an expendable donor with normal function that is innervated above the level of the SCI
 - This donor is used to restore an absent and more useful function

Nerve Transfers

Nerve Transfer Phases of Rehabilitation

- 1 Pre-operative Phase
- 2 Protection Phase
- 3 Silent Phase
- 4 Re-Education Phase
- 5 Strengthening Phase
- 6 Endurance Phase

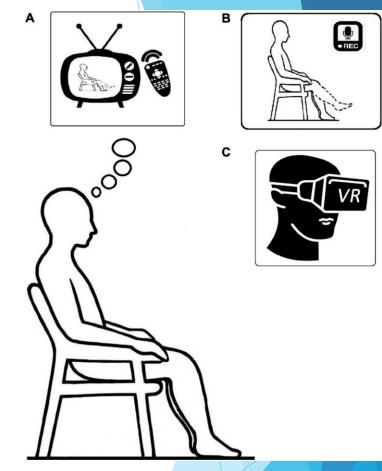
1) Pre-operative phase

Maximize PROM of affected joints and address contractures / tightness / deformities via splinting

Strengthen the donor nerve/muscle and other functioning muscles

Could start visualization exercises

Desensitization, sensory re-education



Visualization / Motor Imagery

- E.g. mental practice, mental imagery, motor imagery
- Consciously and repeatedly IMAGINE performing the movement without actually moving your body
 - Observing & imagining the action
 - Virtual Reality (not as commonly used)
 - Mirror therapy (not as applicable with SCI patients)
- Evidence from high-quality studies has shown that visualization used in combination with physical therapy has positive effects on muscle movement

Medical Research Council (MRC) Muscle Power grading

Grade	Muscle State
0	No contraction
1	Flicker or trace of contraction
2	Active movement with gravity eliminated
3	Active movement against gravity
4	Active movement against gravity and resistance
5	Normal power

2) Protective Phase (initial 3 weeks post surgery)

Grade

Muscle State

0

No contraction

Protect nerve transfer

• Avoid excessive tension on repaired nerve. May consider splint and/or shoulder sling.

Careful ROM exercises to maintain mobility

- e.g. nerve transfers around the shoulder joint: occasionally we immobilize the shoulder for 3 weeks and would then complete ROM to elbow/wrist/hand
- Isometric donor contraction

Visualization / motor imagery

Edema management

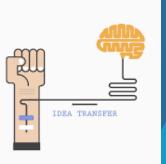
• Lymphatic drainage or retrograde massage, compression sleeves/gloves, positioning

Desensitization (as needed)

3) Silent/Corrective Phase (MRC 0 – 1)

Grade	Muscle State
0	No contraction
1	Flicker or trace of contraction

The beginning of early reinnervation; no observable muscle contraction


Regaining cortical representation in the denervated muscle

- Patient education important
- Visualization / Motor imagery
 - Nerve activation exercises while visualizing donor and recipient action (see video next slide)
 - e.g. axillary to triceps: abduct shoulder while visualizing elbow extension
- Mirror therapy: bilateral nerve co-activation exercises (donor + recipient)

Maintain PROM / address contractures & tightness

Strengthen functioning muscles

Scar management

e.g. Nerve activation exercise + mirror therapy

axillary to triceps: abduct shoulder while visualizing elbow extension (shd flex + elbow extension would also be appropriate)

4) Re-education Phase (MRC 1-2)

Grade	Muscle State
1	Flicker or trace of contraction
2	Active movement with gravity eliminated

Recipient muscle starting to contract and produce movement

Nerve activation exercises

- Continue bilateral nerve co-activation exercises (donor + recipient)
- e.g. axillary to triceps: shoulder abduction + elbow extension

Start AROM in mid-range and in a gravity eliminated position

• Limb positioning is important

RESPECT FATIGUE: Short sessions, multiples times per day

Use biofeedback unit (EMG) if available

5) Strengthening Phase (MRC 2-3)

Grade	Muscle State
2	Active movement with gravity eliminated
3	Active movement against gravity

Transition gravity eliminated AROM → to AROM against gravity, with a focus on functional movements important to the patient

• e.g. axillary to triceps: focus on functional reaching

Donor deactivation

- Facilitate selective activation of isolated donor nerve, and of isolated recipient nerve
- e.g. supinator to PIN: when bringing food to mouth forearm will supinate but you want to keep hand closed
- Can use biofeedback to decrease donor nerve output

Watch for and correct for compensatory movements

Biofeedback unit: can progress from EMG to ETS (electrical triggered stimulation using biofeedback)

6) Endurance Phase (MRC≥3)

Grade	Muscle State
3	Active movement against gravity
4	Active movement against gravity and resistance
5	Normal power

Transition AROM from against gravity \rightarrow to against light/moderate resistance

Increase resistance & endurance

Recipient muscle is not fully innervated and still easily fatigued

Biofeedback unit: Could transition from ETS to NMES

Return to functional activities

Continue donor deactivation

	Phase	Timeframe	Objectives	
Pre-innervation	Protective	0-3 weeks post op	Protect nerve coaptationControl edema	
	Silent/Corrective	MRC 0-1	 Address contractures / tightness Maintain PROM Strengthen functioning muscles Stimulate cortical awareness 	
Post-innervation	Re-Education	MRC 1-2	 Establish donor-recipient nerve co-activation Start AROM in GE position Stimulate functional use of new motion 	
	Strengthening n	MRC 2-3	 Perform AROM AG Increase functional use of new motion Donor de-activation 	
	Endurance	MRC >3	 Perform AROM against light/moderate resistance Increase resistance & endurance 	

Bateman et al (2023)

Our most common nerve transfers

Supinator Axillary **ERCB** to to PIN to triceps AIN For elbow For finger For finger flexion extension extension

Outcomes

Nerve transfer	Movement restored	Months to visible contraction	Months to functional movement	% patients achieving useful function
Brachialis to AIN	Finger flexion	10	18	65
Supinator to PIN	Digit extension	9	12	75
AIN to ulnar	Ulnar n intrinsics	9	18	65

From Hill et al. 2019

With SCI patients the timelines to contraction / function WILL BE LONGER

Case Example

Diagnosis: C4 SCI injury

HPI: Dirt biking injury Nov 2023

Surgery: Bilateral upper extremity nerve transfers, DOS May 6 2024

- Axillary nerve branch to posterior deltoid transferred to radial nerve branch to lateral head of triceps
- Brachialis to anterior interosseous nerve (AIN) and flexor digitorum superficialis (FDS)
- Supinator to posterior interosseous nerve (PIN)

Case Example: Overall Therapy Plan

- When referred for therapy, was in the Re-Education Phase (MRC grade 1-2)
 - Recipient muscle starting to contract and produce movement
- Treatment included:
 - Taught bilateral nerve activation exercises (see next slide)
 - Start AROM in mid-range and in a gravity eliminated position
 - RESPECT FATIGUE: Short sessions, multiples times per day
 - Use biofeedback unit if available
 - Strengthen existing functioning muscles (biceps)
- Recommend 1-2 visits per month for peripheral nerve re-training exercises,
 with a focus on home program

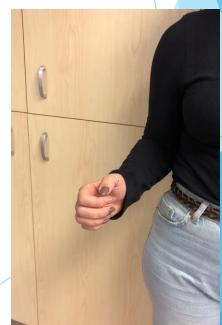
Case Example: Nerve activation

(donor + recipient)

Axillary to triceps

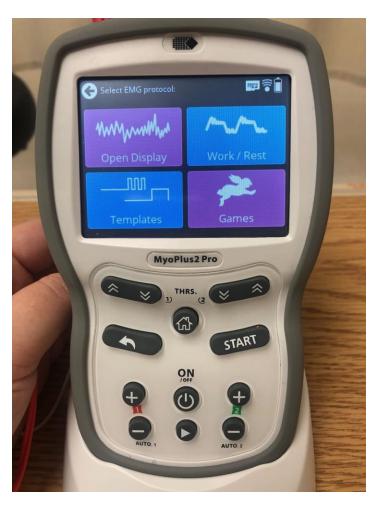
Shoulder abduction + elbow extension

Brachialis to AIN & FDS

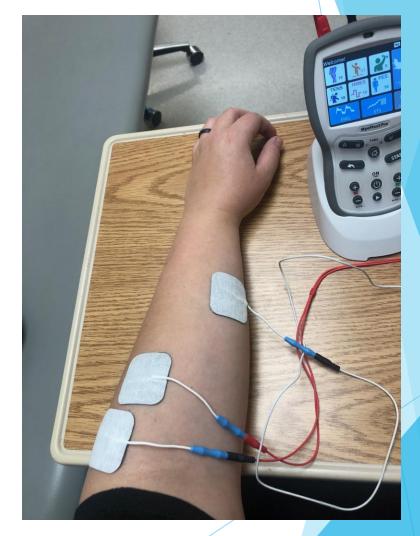

Elbow flexion + tight fist

Supinator to PIN

Supination + extend fingers/wrist/thumb



Biofeedback Unit

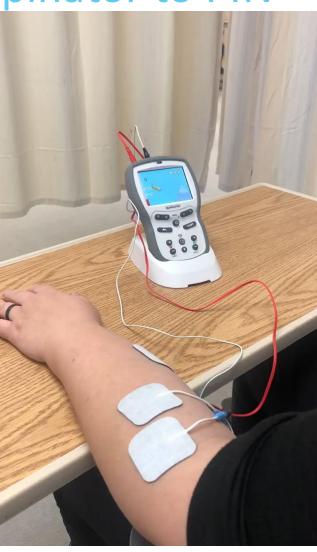

Main Screen EMG Screen EMG Games Screen

Biofeedback Tips

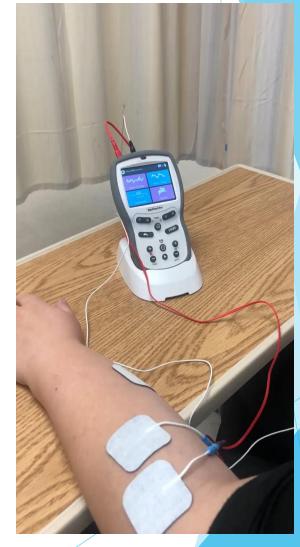
- Will start biofeedback training when motor units confirmed on needle EMG, or MRC grade 1-2
- Electrodes will be placed on the recipient muscle
- Reference electrode: can go anywhere on the body
- Negative Black –ve electrode: place near upper insertion or top of the muscle
- Positive Red +ve electrode: place on the motor point of the muscle (usually located at the center of the muscle mass where the motor nerve enters the muscle)
- Find the best position by slightly moving the +ve electrode around
- Your objective is to find the spot where the minimum amount of electrical stimulation will easily excite the greatest muscular contraction without causing pain.

Case Example: Biofeedback

- Example for Supinator to PIN:
- Electrodes on recipient muscle
- Red +ve electrode: on extensor wad motor point
- Black –ve electrode: near the extensor upper insertion
- Reference electrode: anywhere on the body
- Will start biofeedback training when motor units confirmed on needle EMG, or MRC grade 1-2
- Supinator to PIN: nerve activation exercise is supination + wrist/finger extension



Electrode Placement


Biofeedback for Supinator to PIN

EMG Open Display

EMG Plane Game

EMG Plane Game Settings

Tendon Transfers

Common Tendon Transfers after SCI

- Purpose: re-route "spare" muscles to compensate for paralyzed ones
- Goal: improve function

Biceps to triceps

- Requires functional brachialis and supinator muscles
- Improves elbow extension / improves elbow flexion contracture

Brachioradialis to ECRB with tendon graft

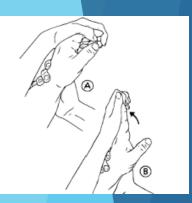
 Improves wrist extension (elbow must be extended to allow wrist extension)

PT / ECRL / or FCR to FPL & FDP

Improves hand grasp/close

PT to EDC / EPL / AbPL

Improves hand opening


Tendon Transfer Pre Surgery Guidelines

- Address any joint contractures / stiffness
 - The joint that the tendon transfer will move must have maximum passive ROM prior to surgery
 - A tendon transfer surgery will fail if the joint has become stiff
 - Surgery requires a supple joint before performing a tendon transfer procedure
- Strengthen the donor muscle

Tendon Transfer Post Surgery Guidelines

Immobilization:

A period of immobilization is required to allow the tendon to heal, typically 4-6 weeks

Gradual ROM:

Once the immobilization period is over, a gradual range of motion (ROM) program is initiated to restore function. This is also accompanied by a gradual splint wean.

Strengthening:

 As the tendon heals, strengthening exercises are introduced to improve grip strength and functional abilities.

Functional Activities:

• Patients are encouraged to gradually return to functional activities and daily tasks. There is an emphasis on functional movement patterns (e.g. grasp, release, pinch).

References

- Bateman et al. 2023. Assessment, patient selection, and rehabilitation of nerve transfers. Frontiers in Rehabilitation Sciences. 1-13.
- Chen et al. 2022. Greater cortical activation and motor recovery following mirror therapy immediately after peripheral nerve repair of the forearm. Neuroscience. 123-133.
- Hahn et al. 2016. Rehabilitation of supinator nerve to posterior interosseous nerve transfer in individuals with tetraplegia. Archives of physical medicine and rehabilitation. 97(6 suppl2): 160-8.
- Hill et al. 2019. The stages of rehabilitation following motor nerve transfer surgery. J Musculoskelet Surg Res 3:60-8.
- Kahn et al. 2024. Key Considerations for Nerve Transfer Rehabilitation After Surgical Reconstruction for Brachial Plexus and Peripheral Nerve Injuries. J Hand Surg Am. Feb;49(2):160-168.
- Larocerie-Salgado et al. 2022. Rehabilitation following nerve transfer surgery. Techniques in Hand and Upper Extremity Surgery. 26(2) 71-77.
- O'Sullivan et al. 2024. Rehabilitation following a triceps branch to axillary motor nerve transfer a pragmatic therapy guide. Tech Hand Surg 28: 2-8.
- Sardaru et al. 2018. Effects of biofeedback versus switch-triggered FES on sciatica related footdrop. J Back and Musculoskeletal Rehab. 31: 239-245.
- Sturma et al. 2019. Structured motor rehabilitation after selective nerve transfers. Journal of Visualized Experiments. 1-11.
- Paravlic AH (2022) Motor Imagery and Action Observation as Appropriate Strategies for Home-Based Rehabilitation: A Mini-Review Focusing on Improving Physical Function in Orthopedic Patients. Front. Psychol. 13:826476

Questions?

I am open to any future case discussions and guidance for your future nerve transfer clients.

Please email lisa.schlee@ahs.ca