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Abstract
Structural health monitoring (SHM) involves collecting information to assess the health of a structure, typically to guide
risk-informed maintenance decision-making or predict limit state behavior throughout its lifespan. Although the value of
information (VoI) obtained from an SHM system can facilitate improved decision-making, it is important to estimate its
overall utility by considering the costs involved in designing, developing, installing, maintaining, and operating the system.
A feasible SHM system provides greater expected returns resulting from data-informed lifecycle management decisions
than the cost of the SHM system design, fabrication, deployment, operation, and maintenance. That is, since data acquisi-
tion is a precursor to data-informed decision-making, the design of an SHM system governs its feasibility. Such cost-
benefit analyses are a current topic of research in the SHM community. One approach that has been proposed for these
analyses is a preposterior decision analysis using the VoI metric. In this paper, we propose a sensor optimization frame-
work that maximizes the VoI over the structure’s lifecycle, constrained by a pre-decided maintenance policy. We use
two different VoI metrics: the traditional expected VoI and a gambling-theory-inspired normalized expected-savings-to-
investmentrisk ratio. We introduce three time-normalized, unitless VoI metrics that are valuable for evaluating the per-
formance of an SHM design over an extended period. Furthermore, we consider the effect of different risk profiles on
the overall optimal sensor design, recognizing that the cost of decision-making depends on the utility and risk perception
of the decision-maker. We conduct a detailed analysis on the marginal utility gain of gathered information as we add
more sensors, observing the utility to diminish in line with the law of diminishing returns as the information content
increases. This framework is applied to the design of an SHM system used for monitoring miter gates.

Keywords
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Introduction

Structural health monitoring (SHM) systems aim to
detect, localize, and/or quantify damage in a structure
and provide engineers with relevant information to
make informed choices about maintenance and
repairs.1 Collecting data from an SHM system is valu-
able as it provides information for making informed
decisions and improves our understanding of the sys-
tem. In other words, the infrastructure required for
information acquisition over a period of time comes at
a cost.2–7 Therefore, it is crucial to take into account

the expenses associated with designing, developing,
installing, maintaining, and operating the SHM
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system. It is essential to use a well-designed SHM sys-
tem that utilizes an optimized sensing data stream tai-
lored to achieve a specific objective function or utility.

The optimal design of sensors has garnered signifi-
cant interest in the SHM community. With each appli-
cation being unique and focusing on specific targets, a
wide range of objective functions and solution strate-
gies have been proposed in numerous influential studies
within this research field. Within this research field, one
group of optimality criteria focuses on sensor design to
maximize information gain and minimize uncertainty
regarding the structural state. In this context, several
commonly used information-based metrics have been
introduced. The Fisher information matrix and its var-
iants, such as the trace (referred to as the A-optimality
criterion), the determinant (known as the D-optimality
criterion), and the largest eigenvalue (referred to as the
E-optimality criterion), are employed as information-
based metrics in sensor design.8–13 Another metric that
is commonly used to quantify information gain is f-
divergence, with Kullback–Leibler (KL) divergence
being the most popular example. KL divergence mea-
sures information gain using relative entropy and has
been applied to sensor optimization.14,15 Probability of
detection is another useful metric for sensor optimiza-
tion. This objective aims to minimize false alarms in
detection (type I error) and false negatives in detection
(type II error).16–19 Others have used structural
dynamic-specific criteria such as the modal assurance
criterion, which quantifies the similarity in mode
shapes, in sensor optimization.20–23 Yang et al.24

tackled a practical issue of considering the possibility
of sensors malfunctioning and used a reliability-based
optimality criterion for sensor optimization.

In this paper, we target the feasibility of an SHM sys-
tem. To determine the viability and long-term sustain-
ability of an SHM program as a life cycle investment, it
is essential to assess whether the anticipated expected
returns as a result of SHM-system-guided data-informed
decision-making will exceed the overall investment in an
SHM system throughout the structure’s lifespan. This
paper aims to provide a fundamental mechanism,
through which a structural owner could decide whether
investment in a performance-quantified SHM design
provides sufficient return on that investment.

This research builds upon our previous work inves-
tigating and developing an optimal sensor design solu-
tions for applications in SHM. In a prior publication
by Yang et al.,25 we presented a mathematical and
numerical framework for implementing Bayesian opti-
mization in order to achieve optimal sensor design for
SHM purposes. In a subsequent publication by Yang
et al.,14 we applied and expanded upon this framework
to a real-world case study involving the SHM of a
miter gate, which is a component of a lock system used

for navigation on inland waterways. Our objective in
this case study was to identify a sensor array design
that maximized the gain in information, as measured
by a class of divergence functions known as f-diver-
gence. It should be noted that while information gain
is important, it may not always result in an economi-
cally optimal design, since the cost of obtaining that
information was ignored. Recognizing that the infor-
mation gathered by an SHM system influences the
cost-effectiveness of the decisions it informs (subject to
constraint on the maintenance and repair policy
adopted by the owners of the structure), our aim is to
expand the optimization framework we have built in
Refs. 14, 25 and 26 to design an SHM system that
maximizes the relative cost benefit of data-informed
decision-making in relation to the investment cost. We
strive to achieve the optimal balance where the benefits
of obtaining and utilizing SHM data outweigh the
associated costs, resulting in an economically viable
and sustainable SHM program. Such cost-benefit anal-
ysis has previously been performed through pre-
posterior decision analysis using the value of informa-
tion (VoI) metric. The excellent contributions by
Malings and Pozzi27,28 emphasized the benefits of
using VoI as a metric for optimal sensor placement
that supports decision-making, despite the computa-
tional complexity involved in evaluating it.

Therefore, this paper’s main contributions and ori-
ginality can be summarized as follows:

1. Optimal sensor placement design using VoI as the
objective function: This paper adopts a pre-
posterior optimization approach that leads to a
sensor network design maximizing the VoI metric.
For pre-posterior design, no sensor data are avail-
able. This sensor design is obtained by simulating
the lifecycle of the structure based on reasonable
assumptions and uncertainty bounds in sensor
data and loading that the structure is subjected to,
and by considering a predefined maintenance pol-
icy (automated in our case using expected utility
theory). Such an investigation is carried out to
determine if investing in an SHM system is worth-
while and, if so, what the initial design of an SHM
system (with sensor placement design being a small
part of it) should be to make it a viable investment.
This design methodology represents a crucial step
toward creating an SHM program and building an
asset management digital twin or cybermodel29–31

that can provide significant benefits to lifecycle
asset management while remaining cost-effective
throughout the structure’s entire lifespan.

2. Investigating the impact of different VoI metrics on
sensor design: This paper analyzes the impact of
two distinct VoI metrics on SHM system design:
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the traditional expected VoI2,4 and a gambling-the-
ory-inspired normalized expected return-to-invest-
ment-risk ratio proposed by Chadha et al.5

3. Proposing three different time-normalized, unitless
VoI metrics: This paper proposes three additional
VoI metrics—the arithmetic, geometric, and expo-
nential annual rate of expected savings—that are
unitless and time-normalized. These metrics could
be beneficial when analyzing the benefits of an
information-gathering system over a long time
span as a business case.

4. Investigating the impact of spectrum of utilities and
risk profiles on optimal sensor design: Since
decision-makers are the typical curators of SHM
utility, this paper also investigates the effect of dif-
ferent risk profiles on the overall optimal sensor
design.32–35

5. Sensor placement considering various uncertainties:
The proposed optimal sensor design framework
considers various prior information and uncertain-
ties in modeling loading, sensor noise, the cost of
maintaining and operating an SHM system over
time, and in forecasting damage degradation over
the entire lifecycle of the structure while perform-
ing the pre-posterior analysis.

6. Expanding on the previously proposed Bayesian opti-
mization framework: This paper exploits the opti-
mization framework we built in Refs. 14, 25 and 26
to address the computational challenges inherent in
designing a sensor network. These objectives and
novelties are achieved through the integration of
Bayesian optimization, surrogate modeling, and
Bayesian inference using particle filtering tech-
niques. The complexity of the problem, coupled
with the need to consider numerous sources of
uncertainty (which are multivariate in nature) dur-
ing the design phase, results in the VoI metric
becoming a higher-dimensional integral with a
nonlinear integrand. We employ sampling-based
Monte Carlo simulation to approximate the expec-
tations in VoI.

7. Case study on the miter gate structure: This study
showcases the effectiveness of the newly proposed
sensor placement design framework on a practical
and complex miter gate monitoring applica-
tion.36,37 The miter gate structure is an ideal
demonstration example for two main reasons.
First, the damage parameter in this case is the loss
of boundary contact or ‘‘gap’’ between the miter
gate and the quoin block at the bottom of the gate,
which can be characterized by a one-dimensional
continuous state parameter inferred from sensor
measurements. Despite being a complex real-world
structure, the miter gate’s one-dimensional state
parameter allows for a more straightforward

analysis. Other failure modes could be considered,
but to evaluate new VoI metrics and the subse-
quent optimization of sensor networks, focusing
on a single failure mode is sufficient.

The second reason why the miter gate structure is a
suitable example is that the pre-posterior VoI-based
sensor optimization requires simulating the lifecycle
using a physics-based finite-element model (FEM) and
its surrogate, while also considering a maintenance pol-
icy that guides the decision-making process for which
the sensors need to be optimized. In this study, we were
able to use the same FEM model from our previous
work14 and a maintenance policy proposed in Ref. 32
to simplify the process. While we rely on some results
from our previous research, we provide a comprehen-
sive explanation of the necessary concepts for this
study for completeness. Where required, we also direct
readers to the aforementioned papers for further
information.

As mentioned earlier, building a sensor design
framework depends on the particular application and
objective function. In this instance, we aim to utilize
the VoI as the objective function to achieve the optimal
sensor design for monitoring the miter gate structure.
The definition of the VoI metric is reliant on the cost
model, maintenance policy, noise model, loading
model, damage degradation model, and other aspects
that are specific to the structure being monitored.
Therefore, we believe that the best way to illustrate the
framework is by demonstrating its implementation in a
case study focused on the SHM of a miter gate. The
remainder of this paper is organized as follows: section
‘‘The structure of interest’’ provides an overview of the
miter gate structure and its modeling. Section ‘‘The
maintenance policy and the cost model’’ presents a
summary of the maintenance policy and cost model
adopted in this paper. Section ‘‘The VoI metric’’ pre-
sents the VoI metrics used as the objective function for
sensor optimization. Section ‘‘Optimization and
results’’ describes the Bayesian optimization technique
used to solve the optimization problem. It showcases
and evaluates the performance of various optimal sen-
sor designs obtained using VoI-based and information-
based metrics. Lastly, section ‘‘Summary and conclu-
sions’’ summarizes and concludes this paper.

The structure of interest

Miter gate and the damage parameter

The miter gate is a vital component of the lock system
used for inland waterway navigation, which is managed
and maintained by the US Army Corps of Engineers
(USACE) in the USA. This infrastructure is critical for
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transporting goods through the country’s inland river
network and is a matter of national economic security.
Typically situated in areas with varying water levels,
locks consist of a chamber with gates to control the
water flow. The miter gate is composed of two hinged
panels that meet at an angle (the ‘‘miter’’) when closed,
forming a tight seal to prevent water from passing
through. When a vessel approaches, the panels are
opened to enable safe passage through the lock cham-
ber. The gates at each end of the lock chamber can be
closed to create a watertight seal, allowing the water to
be raised or lowered as needed. Once the water level in
the chamber matches the next section of the river, the
gates on that end are opened, allowing the vessel to
proceed. In this way, the lock and gate system creates a
series of steps that enable boats and ships to navigate
through rivers with varying water levels. An example
of a lock system managed by USACE is illustrated in
Figure 1.

In this paper, we use the Greenup miter gate at the
USACE Huntington Engineer District as a case study
for simulating the optimal sensor placement design.
The gate opens and closes regularly, which results in
the gate losing contact with the wall quoin blocks at
the bottom of the gate (refer to Figure 4 in Eick
et al.38). This damage to the boundary is a time-
dependent scalar quantity and is referred to as the ‘‘gap

length’’ or simply ‘‘gap’’ and denoted by u(t) 2 OY(t).
For each time instance, we model the gap value as a
random variable Y(t), where u(t) represents a realiza-
tion of the gap value, and OY(t) denotes the space of
gap values. At u= umin = 0 inches, the gate is pristine.
Based on the suggestions from USACE field engineers,
the limit u= umax = 180 inches is assigned as the upper
bound of gap length at which point the gate is consid-
ered to be nonoperational.

Since the time evolution of the gap length is not pre-
cisely known, we model it probabilistically, as shown
in Figure 2. For the purpose of illustration, we assume
the first 5-year period of the structure as the lifespan of
interest, such that the mean value of the prior-gap
degradation curve reaches the upper threshold of umax

in 5 years. It is important to make this assumption
about the lifespan since we are in the pre-posterior
stage of design. The applicability of the presented for-
mulation is independent of the lifecycle duration and
the chosen degradation model, although the sensor pla-
cement results will vary if a different gap degradation
curve is chosen. The proposed formulation can easily
be adapted to consider a much longer lifecycle without
deviating from the proposed methods. The prior distri-
bution of gap length at time t is denoted by fY(t)(u(t)).
The gap evolution over time is described by a piecewise

Figure 1. Smithland lock and dam and the general profile of Ohio river navigation system.
Source: Photo credit: Mayank Chadha.
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multistage degradation model, which is discussed in
section 5.1 of Chadha et al.5

The load vector

The gate is subjected to uncertain upstream and down-
stream hydrostatic loads. We model the upstream and
downstream hydrostatic heads as random variables
Hup(t) and Hdown(t), respectively, with their respective
realizations denoted by hup and hdown. Together, we
model the load vector, which consists of the upstream
and downstream hydrostatic loads, as the random
vector H(t), with a realization denoted by h(t) = (hup
(t), hdown(t)). Let OHup(t), OHdown(t), and OH(t) denote
the space of load vector, upstream water head, and
downstream water head, respectively, such that
OH(t) =OHup(t)3OHdown(t).

The water heads over the lifespan of the miter gate
are probabilistically modeled by time-series models

using autoregressive moving average (ARMA) as
follows:

hup(ti) = 172+ e
up
i + 0:33hup(ti�1) + 0:35hup(ti�2)

+ 0:52eupi�2 + 0:55e
up
i�1, where, eupi ;N (0, 22);

hdown(ti) = 95+ e
down
i + 0:23hdown(ti�1) + 0:25hdown(ti�2)

+ 0:52edowni�2 +0:61edowni�1 , where, edowni ;N(0, 22):

ð1Þ

Here, eupi and edowni represent errors in the upstream
and downstream height at time step i, respectively, and
are assumed to be modeled by a normal distribution
with a zero mean and variance within an acceptable
range. Figure 3 illustrates one realization of the hydro-
static head time series constructed using ARMA over a
60-month time period.

Simulating the observed sensor measurements using
an FEM and its surrogate

The submerged part of the gate that loses contact is
difficult to directly measure due to highly turbid water.
Therefore, the gap length needs to be inferred from
indirect measurements. We simulate our data acquisi-
tion process using a high-fidelity FEM of the Greenup
miter gate previously validated in the undamaged con-
dition with the available strain sensor readings.
Although there are infinitely possible locations where
strain gauges can be placed on a real miter gate, the
FEM discretely covers the countable number of sensor
locations by calculating strain values at the integration
points that we choose as strain measurement locations.
As demonstrated in Fig. 3 of Chadha et al.,5 the FEM
itself is constructed using 3D quadrilateral and triangu-
lar shell elements in ABAQUS and consists of a total
of 64,919 elements. Each element is identified by its

Figure 2. Prior gap-degradation model that probabilistically
models time evolution of the gap.

Figure 3. Realization of the hydrostatic water head time series: (a) upstream water level and (b) downstream water level.
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geometric centroid at the origin of the local coordinate
system. For each element, there are four possible simu-
lated strain gauge locations. Strain values from the
FEM model can be obtained both horizontally and
vertically on both the top and bottom surfaces of the
element. These four combinations are denoted by TH,
TV, BH, and BV, where T stands for top surface of an
element, B stands for bottom surface of an element, H
stands for horizontal orientation, and V stands for ver-
tical orientation (see section 4.1 of Chadha et al.5 for
more details). Therefore, in total, there are 64, 91934

sensor locations of choice. However, for practical rea-
sons, the USACE installs the sensors only on the
downstream side of the miter gate. This reduces our
available sensor locations by approximately half. We
denote the number of all possible sensor locations as
NTotal�Sensors, and for the chosen miter gate case study,
it is 64, 91932.

Given a specific value of gap length and hydrostatic
heads, denoted by (u(t), hup(t), hdown(t)), both the FEM
and its digital surrogate simulate the ‘‘true’’ strain val-
ues (without noise) for all NTotal�Sensors sensors (i.e., we
assume the FEM model to be the ground truth). The
process of Bayesian optimization requires numerous
realizations of the ‘‘true’’ strain values. The digital sur-
rogate of FEM, denoted by g(u(t), hup(t), hdown(t)), is
created to speed up the simulation process. To create
the digital surrogate, we utilize Gaussian process
regression (GPR) in conjunction with single value
decomposition. For more information on the FEM and
digital twin, refer to sections 2.1 and 2.2 of Yang
et al.14 As such, we model the simulated observed strain
measurements by the random vector X, which consists
of NTotal�Sensors simulated strain measurements (each
modeled as a random variable Xi). The observed strain
measurements consist of two additive components: the
first is the ‘‘true’’ strain values obtained using the digi-
tal twin of the FEM model, and the second is the mea-
surement noise. The noise is modeled as a random
vector z with a realization e 2 Oz. Here, Oz denotes the
space of noise vector. We assume that e follows a zero-
mean Gaussian distribution with independent compo-
nents. In other words, the noise terms of different strain
gauges are statistically independent, and the noise in
the i-th strain gauge is modeled as ei;Nð0,s2

eiÞ.
Furthermore, we assume that each strain gauge has the
same standard deviation, and the standard deviation of
noise is assigned to be sei = 5310�6 in accordance with
reasonable commercial strain gauge performance. We
note that another alternative approach for assuming
strain gauge measurement uncertainty could be utiliz-
ing the observed characteristics of the sensors installed
on-site, if available (such as those used to calibrate the
FEMmodel). In some cases, this might be a more realistic
representation of measurement uncertainties since sensor

performance also depends on the quality of implementa-
tion in addition to their intrinsic manufactured character-
istics. The strain measurements model is given as:

x= g u(t), hup(t), hdown(t)
� �

+ e : ð2Þ

Let OE denote the exhaustive design space consisting of
all the possible designs. For NTotal�Sensors = 64, 91932,
the total number of possible designs is given by:

length OEð Þ=
XNTotal�Sensors

r = 1

NTotal�Sensors!

r!(NTotal�Sensors � r)!

= 2NTotal�Sensors � 1
� �

’1039, 085:

ð3Þ

Consider an instance e of a design belonging to the set
OE. The design e consists of Nsg(e) sensors. Let
xe = xe1, xe2, . . . , xeNsg(e)

� �
2 OXe

� OX denote a realiza-
tion of the random vector Xe that models the
‘‘observed’’ strain measurements corresponding to the
sensors in the design e. The measurement model for
the strain gauges included in the design e is given by:

xe = ge u(t), hup(t), hdown(t)
� �

+ e e: ð4Þ

Here, ge(u(t), hup(t), hdown(t)) = ge1, ge2, . . . , geNsg(e)

� �
is

the simulated ‘‘true’’ strain values of gauges in design e

obtained using the digital surrogate of the FEM. The
vector e e = ee1, ee2, . . . , eeNsg(e)

� �
2 Oze � Oz represents

the measurement noise vector for the design e.
Using the measurement model defined in Equation

(4), the likelihood of observing the strain measurement
xe 2 OXe

for the gap length u(t) can be written as:

fXejY xejuð Þ =
YNsg(e)

i = 1

1

seei
f

xei � gei(u(t), hup(t), hdown(t))

seei

� �
:

ð5Þ

The relationship between gap length and strain data is
highly nonlinear and complex. As a result, we use parti-
cle filters to numerically infer the posterior distribution.
This process is detailed in section 2.4 of Ref. 14.

The maintenance policy and the cost
model

The binary maintenance policy

The USACE considers an operational conditional
assessment rating protocol for its miter gate structures.
This protocol consists of six discrete damage labels: A
(excellent), B (good), C (fair), D (poor), F (failing),
and CF (complete failure). These ratings generally
reflect the increased overall damage state.39 In contrast
to the nonbinary rating protocol used by USACE, in
our study (Chadha et al.32), we proposed a simplified
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binary labeling system for the miter gate. This rating
system has two discrete damage labels, resulting in a
binary decision space denoted as OD = d0, d1f g. These
labels are defined as follows:

d0: label indicating that the gate is undamaged
with excellent operational capacity;

d1: label indicating that the gate is damaged
and is not safely operational:

ð6Þ

Let M0 and M1 represent the actions associated with
the labels d0 and d1 respectively, such that

M0: Continue regular operation;
M1: Shutdown, inspect, and repair or replace

as required based on the inspection results:
ð7Þ

In the way this problem is posed, the labels di have a
one-to-one correspondence with the maintenance
actions Mi. This may seem redundant; however, our
intention here is to define a bijective relationship
between the discrete damage labels and the maintenance
actions warranted for the structure. For example, in
the way the decision space is defined, if the structure is
undamaged, then no maintenance is warranted.
Conversely, if maintenance is not a recommended
action, it means the structure is undamaged. As a con-
sequence, choosing the decision space to be defined by
the set d0, d1f g is equivalent to choosing the decision
set fM0,M1g.

We consider four different costs in the evaluation of
the VoI, which are listed below:

1. Cost A: Inflation-adjusted, utility-adjusted conse-
quence cost of performing a maintenance action on
the structure.

2. Cost B: Maintenance cost of an SHM system over
time adjusted for inflation

3. Cost C: Operation cost of an SHM system over
time adjusted for inflation

4. Cost D: Cost of design and initial installation of an
SHM system incurred one time at the beginning

In the following subsections, we elaborate on the
various cost models used for VoI analysis and subse-
quently for sensor optimization in this paper.

The base cost model

For this paper, we have chosen to utilize the mainte-
nance policy and cost structure proposed in Chadha
et al.32 to evaluate our sensor designs. It should be
noted that we can readily apply any other maintenance
policy and obtain sensor designs using the framework
presented in this paper.

Let L d0, utrueð Þ and L d1, utrueð Þ denote the conse-
quence costs of performing the maintenance actions
M0 and M1, respectively, when the true degree of dam-
age is defined by utrue, such that:

L d0, utrueð Þ= L(d0, umax)� L(d0, umin)

umax � umin

� �
utrue + L d0, uminð Þ;

L d1, utrueð Þ= L(d1, umax)� L(d1, umin)

umax � umin

� �
utrue + L d1, uminð Þ:

ð8Þ

In the equation above, the extremes costs L(di, umin)
and L(di, umax) are assumed to be known and estimated
by the organization. Because L(d0, umax) is the maxi-
mum extreme cost, all other extreme costs can be
expressed as a fraction of L(d0, umax). For the purposes
of numerical simulation, we assume L(d1, umin) =
0:15L(d0, umax) and L(d1, umax) = 0:4L(d0, umax). We
assign a normalized cost value of 1 unit to L(d0, umax).

The consequence costs of performing maintenance
M0 and M1, denoted by L(d0, utrue) and L(d1, utrue), as
illustrated in Fig. 4, are assumed to have linear pro-
files. Readers are referred to section 4.2 of Chadha
et al.32 for the detailed rationale behind this assump-
tion. We carefully note that the functional form of this
consequence function need not necessarily be linear
and may vary depending on the problem, target objec-
tive, damage type, or the definition and nature of the
limit state (e.g., which can be continuous or discrete),
and the sheer complexity of the problem.

For instance, consider the decision scenario d0. The
current linear functional form of L d0, utrueð Þ assumes
that the consequence of choosing d0 increases linearly
with the increase in damage levels over time. That is,
utrue increases over time, and so does the consequence
cost L(d0, utrue). Additionally, based on the assumed

Figure 4. Assumed linear base consequence cost (normalized)
for decision scenario d0 and d1.

Chadha et al. 7



prior gap degradation model illustrated in Figure 2,
utrue will be one of the realizations of the distribution
fY(t)(u(t)). Therefore, the consequence cost needs to be
distributed over the damage space since it is hard to
pinpoint the exact value of utrue at the end of the
assumed lifecycle. For example, based on the assumed
prior gap evolution model, as shown in Figure 2, at the
end of the assumed lifecycle, utrue can be anywhere
between ½90, 380� inches.

Based on this discussion, it is clear that the
consequence of making decision d0 approaches a false-
positive case as damage increases over time and a logi-
cal functional form must capture this trend. The
assumed linear functional form of L d0, utrueð Þ provides
two advantages: (a) it is a simple and logical function,
and (b) it is a desirably conservative consequence func-
tion. Alternatively, one can assume less conservative
yet reasonable functional forms, recognizing that the
danger of decision d0 leading to the worst-case false-
positive decision accelerates as the damage level
approaches the assumed threshold. Figure 5 shows
three other alternative functional forms of L d0, utrueð Þ:

The utility model and utility-adjusted consequence
cost

In making maintenance decisions based on an organi-
zation’s policies or collective experience, we must con-
sider the real-world scenario in which inspection
engineers execute these decisions. However, because
these decisions are subjective to the engineer’s experi-
ence and thought processes, there may be slight differ-
ences in cost consequences compared to the base cost
function. To account for the decision-maker’s risk pro-
file, we can use a mathematical model that incorporates
their utility function. The utility function represents
how an individual evaluates the outcome of an action,

which may differ from its real dollar cost. A risk-averse
decision-maker will assign a higher value to cost/loss
than its real dollar cost, resulting in a concave-down
utility function. On the other hand, a risk-seeking deci-
sion-maker will assign a lower value to cost/loss, result-
ing in a concave-up utility function. Chadha et al.32

discuss how to use an individual’s utility function to
obtain modified cost functions that incorporate their
risk perception into the decision-making process. These
risk-adjusted cost functions are denoted by a hat sym-
bol (̂�) and are expressed as:

L̂ d0, utrue; g, jð Þ= a0

log 1+ b0
L(d0, umax)� L(d0, umin)

umax � umin

� �
utrue

� �
+ L d0, uminð Þ;

L̂ d1, utrue; g, jð Þ= a1

log 1+ b1
L(d1, umax)� L(d1, umin)

umax � umin

� �
utrue

� �
+ L d1, uminð Þ:

ð9Þ

The parameters (g, j) defines the risk profile. For a
given profile, the constants a0, a1, b0, and b1 can be
obtained by solving Equations (18) and (19) in Chadha
et al.32 It is worth noting that the following conditions
define the characteristics of the risk profile:

L̂ di, utrue; g, jð Þ.L(di, utrue) or j\g :

for risk� averse profile;

L̂ di, utrue; g, jð Þ= L(di, utrue) or j = g :
for risk� neutral profile;

L̂ di, utrue; g, jð Þ\L(di, utrue) or j.g :

for risk� seeker profile:

ð10Þ

One of the key conclusions in Chadha et al.5 was: ‘‘As
the intensity of risk-aversion behavior increases, the
flexibility to choose a feasible SHM system decreases.
This is because a risk-averse decision-maker makes
more conservative and expensive decisions. For an
SHM system to be feasible in the scenario where main-
tenance decisions are expensive, it must cost less.’’
Therefore, it is of interest to consider the impact of
behavioral biases in the optimal sensor placement. For
that, we consider three risk profiles defined in Table 1
and illustrated in Figure 6:

Inflation-adjusted costs

Cost A: inflation-adjusted utility-adjusted consequence
cost. Let r(t) denote the assumed future monthly rate
of inflation at time t in months. It can either be
assumed a constant or a time series that is forcasted

Figure 5. Some possible functional forms of the base
consequence cost curves L d0, utrueð Þ.
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depending on the past treasuries interest rate, CPI
(Consumer Price Index) data, Phillips curve, and other
macro variables.40 The factor (r(t) + 1)t adjusts for the
cost of future inflation. The inflation-adjusted utility-
adjusted consequence cost of decision-making is then
given by:

~̂L di, utrue, t; g, jð Þ = L̂ di, utrue; g, jð Þ r(t) + 1ð Þt: ð11Þ

The inspection and maintenance decisions are usually
carried out at discrete time steps. We assume a

discrete-time space OTA = ftA1
, tA2

, :::, tANA
g consisting of

NA time steps. Figures 7 and 8 illustrate how the
inflation-adjusted utility-adjusted consequence costs
evolve over time for different values of a constant
annual inflation rate. We note that the impact on cost
escalation becomes markedly more pronounced with
higher inflation rates, especially over extended periods.
The compounding effect of inflation causes costs to
rise exponentially rather than linearly, resulting in a
significant disparity between low and high inflation
scenarios as time progresses, as observed in Figures 7
and 8.

Consequently, higher inflation rates lead to a sub-
stantially greater increase in future costs, underscoring
the importance of accounting for inflation in long-term
cost planning and decision-making. In this paper, we
assume a fixed inflation rate of r(t) = 2%.

Cost B and Cost C: inflation-adjusted maintenance and opera-
tion cost of the SHM system. Let the inflation adjusted

Figure 6. Utility-adjusted consequence cost of decision-making: (a) for decision scenario d0 and (b) for decision scenario d1.

Figure 7. Inflation-adjusted utility-adjusted consequence cost considering a constant annual inflation rate of 2%: (a) for decision
scenario d0 and (b) for decision scenario d1.

Table 1. Three profiles considered to investigate the impact of
behavioral biases on sensor design.

Risk profiles ID g j

Risk averter RP1 0.8 0.6
Neutral risk bearer RP2 0.8 0.8
Risk seeker RP3 0.8 0.95

Chadha et al. 9



maintenance and operation cost be denoted by CM (t)
and CO(t) defined as:

CM (t) =CM r(t) + 1ð Þt;
CO(t) =CO r(t) + 1ð Þt: ð12Þ

Here, CM denotes the current estimated cost for one
instance of maintenance of the system, and CO denotes
the currently estimated operation cost per month.
Assuming that the maintenance is done periodically,
we define the discrete time space for maintenance as
OTB = ftB1

, tB2
, . . . , tBNB

g, containing NB time steps (not
necessarily uniform). Similarly, we assume that the
operational cost is evaluated every month defined by
the discrete time space OTC = ftC1

, tC2
, . . . , tCNC

g con-
taining NC time steps (not necessarily uniform). For
consistency in calculations, we normalize the mainte-
nance and operations cost by the factor L d0, umaxð Þ that
was used to normalize the base consequence cost.

Cost D: cost of design and installation. The cost of design-
ing and initially installing an information gathering
system is denoted as C(e), which we assume to be an
initial cost and hence time and inflation-independent.
For consistency in calculations, we normalize the cost
C(e) by the factor L d0, umaxð Þ that was used to normal-
ize the base consequence cost.

The VoI metric

The VoI metric over the structure’s lifecycle

To define and evaluate the VoI metric in the pre-poster-
ior stage, it is necessary to simulate the decision-making
process over the structure’s life cycle. We use expected
utility theory (EUT) to determine the optimal action,
selected from a pre-defined set of decisions or actions,
such as the simple set of maintenance actions laid out

in Equation (7), at a given moment based on new infor-
mation about the structure’s health.

When there is no SHM system and no additional
information about the system, the probabilistic state of
the structure at time t is captured by the prior distribu-
tion of the damage parameter, denoted by fY(t) u(t)ð Þ.
The optimal decision dprior(t) is obtained as follows:

dprior(t) = argmindiEY(t)
~̂L di, u(t), t; g, jð Þ
h i

: ð13Þ

Similarly, when new information is available, such as
strain readings xe(t), the updated structural state is rep-
resented by the posterior distribution of damage,
denoted by fY(t)jXe(t)(u(t)jxe(t)). The optimal decision
dposterior(xe(t), t) that minimizes the expected conse-
quence cost (or Bayes’ risk) is given as follows:

dposterior(xe(t), t) = argmindiEY(t)jXe(t)
~̂L di, u(t), t; g, jð Þ
h i

:

ð14Þ

Note that these decisions, obtained using EUT, mini-
mize the expected consequence cost. It is expected that,
on average, data-informed decisions, or posterior deci-
sion analysis, will lead to net savings compared to deci-
sions made without any information or prior decision
analysis (this will be discussed in more detail in Remark
1). Optimal sensor design in the early stage and VoI
analysis are both pre-posterior activities. Pre-posterior
decision analysis is a framework that helps decision-
makers evaluate the potential benefits of gathering
additional information without actually installing an
information-gathering system. It is assumed that the
acquired information is imperfect and is subject to
uncertainties. In most practical problems, the state
parameter is not directly measured; rather, it is inferred
from other attainable measurements that inherently
have measurement noise.

Figure 8. Inflation-adjusted utility adjusted consequence cost considering a constant annual inflation rate of 10%: (a) for decision
scenario d0 and (b) for decision scenario d1.
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Performing a posterior decision analysis, which
involves selecting a maintenance option from the avail-
able choices, requires using the updated state of the
structure (i.e., the posterior distribution of the gap)
and the associated consequence cost (Cost A) within
the EUT framework. Now, let us consider two ways to
perform the prior decision analysis. First, we could
consider the EUT framework, where prior knowledge
of the damage is taken into account (e.g., if we have no
prior knowledge of the damage, we could assume the
prior distribution of the gap to be a uniform distribu-
tion representing lack of knowledge) and evaluate the
optimal decision by considering the consequence cost
based on the EUT. Alternatively, we could consider
how inspections and maintenance were done in the
field by the engineers without any SHM system. For
example, the engineers could perform scheduled peri-
odic inspections and maintenance repairs. To evaluate
the expected cost savings resulting from using an SHM
system and making data-informed decisions, we need
to compare the maintenance costs incurred in posterior
and prior decision analyses. To maintain consistency,
we use the EUT-based information-led automated deci-
sion model for both posterior and prior decision-making
(the former case). By doing so, we ensure that there are
net positive savings resulting from data-informed SHM-
supported decision-making when the cost of information
acquisition is ignored, and the information is representa-
tive of the true reality despite the inherent uncertainty in
the data acquisition process. In other words, unbiased and
free-of-cost information is always beneficial.

We use two VoI metrics derived in section 5.3 of
Chadha et al.5 as objective functions to obtain the opti-
mal sensor design. First, we define the Expected VoI
over the lifecycle as:

EVoILC(e; g, j) =CsavedLC(e; g, j)� CinvestedLC(e): ð15Þ

Here, EVoILC(e; g, j) has the units of normalized cost.
Expected VoI over the lifecycle depends on two vari-
ables: first the sensor design e that acquires informa-
tion, and secondly, the risk profile, parameterized by
(g, j), used to make decisions. In the equation above,
Cinvested LC(e) denotes the net investments made in the

SHM system over the structure’s lifecycle and is defined
as follows:

CinvestedLC(e) =C(e) +CM&O(e): ð16Þ

We notice that CinvestedLC(e) is a positive quantity.
Here, C(e) is the initial design and build cost of the
SHM system, and CM&O(e) denotes the total cost of
maintenance and operation of the SHM system over
the lifespan of the structure. Let CM denote the current
estimated cost of maintenance for one instance of sys-
tem maintenance, and C0 denote the current estimated
operation cost per month. We assume that the mainte-
nance of the data-gathering system is done at discrete
time steps, defined by the set tBi

f g. Similarly, it is
assumed that the operational cost is evaluated every
month, defined by the set of discrete time instances
tCi
f g. The cost of maintenance and operations for the
SHM system over the structure’s lifecycle is given by:

CM&O(e) =
XNB

n= 1

CM � r tBn
ð Þ+ 1ð ÞtBn +

XNC

n= 1

C0 � r tCn
ð Þ+ 1ð ÞtCn :

ð17Þ

The quantity CsavedLC(e; g, j) in Equation (15) denotes
the expected savings over the lifecycle of the structure
as a consequence of making data-informed decisions
depending upon the risk profile parameterized by
(g, j). As discussed at the beginning of section ‘‘The
VoI metric over the structure’s lifecycle,’’ we use an
automated decision-making procedure that utilizes
EUT to select the action which minimizes the expected
cost as a consequence of making a decision. Therefore,
the expected savings, CsavedLC e; g, jð Þ, are obtained by
subtracting the expected cost incurred due to data-
informed posterior decision analysis from the expected
cost arising from prior decision analysis. Since data-
informed decision-making (assuming that the sensors
are subjected to measurement noise but no bias) pro-
vides a better state estimate and therefore leads to
informed decisions, it overall reduces the decision cost
in comparison to the case where no data is available.
Consequently, by definition, CsavedLC e; g, jð Þ is a posi-
tive quantity and is given by:

CsavedLC e; g, jð Þ=
XNA

n = 1

mindiEY tAnð Þ ~̂L(dj, u(tAn
), tAn

; g, j)
h i� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Expected cost of prior decision analysis over structure0s lifecycle

�
XNA

n= 1

EXe tAnð Þ min
di

EY tAnð ÞjXe tAnð Þ ~̂L(dj, u tAn
ð Þ, tAn

; g, j)
h i	 
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Expected cost of data�informed posterior decision analysis over structure0s lifecycle

:

ð18Þ
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The second VoI metric we use is the risk-adjusted
return ratio for lifecycle cost analysis, which is defined
as:

lLC(e; g, j) =
CsavedLC(e; g, j)

CinvestedLC(e)
: ð19Þ

An SHM system is feasible over the structure’s lifecycle
if EVoILC(e; g, j)ø 0 and lLC(e; g, j)ø 1. Although
these statements are equivalent in the sense that they
both imply a net positive return for an SHM system
CsavedLC(e; g, j)øCinvestedLC(e)ð Þ, these metrics have
fundamental differences in the way they quantify the
VoI.

The EVoILC(e) is a differential metric that measures
the difference between expected cost-savings and the
investment made over the lifecycle of the structure,
yielding net expected savings from using an SHM
system. Hence, maximizing EVoILC e; g, jð Þ leads to
maximizing absolute return on investment, while maxi-
mizing lLC e; g, jð Þ maximizes the ratio of expected sav-
ings to the investment cost. Second, EVoILC(e) has
units in dollars, whereas lLC(e; g, j) is a unitless VoI
metric.

Remark 1: We can write CsavedLC(e; g, j) as:

CsavedLC(e) =

Z
OT

Csaved e, t;g, jð Þdt’
XNA

n= 1

Csaved e, tAn
; g, jð Þ:

ð20Þ

Here, Csaved e, t; g, jð Þ gives the expected cost saved by
virtue of making a data-informed decision at time t.
Mathematically:

Csaved e, t; g, jð Þ =mindiEY(t)
~̂L dj, u(t), t; g, j
� �h i

� EXe(t) min
di

EY(t)jXe(t)
~̂L(dj, u(t), t; g, j)
h i	 


:
ð21Þ

Equivalently, using the definitions of optimal prior and
posterior decisions in Equations (13) and (14), the
expression for Csaved e, t; g, jð Þ can be written as:

Csaved e, t; g, jð Þ=EY(t)
~̂L dprior(t), u(t), t; g, j
� �h i

� EXe(t) EY(t)jXe(t)
~̂L dposterior(xe(t), t), u(t), t; g, j
� �h ih i

:

ð22Þ

Notice that the second term in Equation (21) for calcu-
lating Csaved e, t; g, jð Þ involves obtaining an average of
the consequence cost not only for the posterior distri-
bution of the gap but also for different values of sensor
measurements. This is because we assume that the
information is imperfect due to noise in sensor mea-
surements. Therefore, Csaved e, t; g, jð Þ calculates the
overall benefit of data-informed decision at time t in
an average sense. The value of Csaved e, t; g, jð Þ is always
positive because it quantifies monetary gain as a result
of information availability and does not include the
cost of the SHM system. In other words, the equation
Csaved e, t; g, jð Þø 0 holds true for any time t and any
risk profile g, jð Þ, as long as the design e yields
unbiased and reliable measurements. It is of interest to
investigate how various sensor designs perform in
terms of saving due to data-informed decision-making
over time. For this purpose, Csaved e, t; g, jð Þ serves as a
good metric, and a particular quantity of interest is the
time at which the design e yields maximum savings,
denoted by t(e; g, j), such that:

t e; g, jð Þ= argmax
t

Csaved e, t; g, jð Þ: ð23Þ

Remark 2: Solving Equation (21) is computationally
challenging for two main reasons: (1) the evaluation of
the expectations of consequence function in the pres-
ence of uncertainty sources is numerically difficult, and
(2) the prior and posterior distributions of the damage
parameter are not explicitly known. Considering that
we can directly obtain samples of the prior distribution
of gap length fY(t)(u(t)) and the posterior distribution
of gap length fY(t)jXe(t) u(t)jxe(t)ð Þ through the multistage
degradation model and Bayesian model updating,
respectively, in this paper, the value of CsavedLC e; g, jð Þ
is estimated using sampling-based Monte Carlo simula-
tion. We generate large number of random samples of
uk tAn
ð Þ 2 OY tAnð Þ and xek tAn

ð Þ 2 OXe tAnð Þ, with k 2 1, 2,f
3, � � � ,Nmcsg. Here, Nmcs denotes the number of Monte
Carlo samples. The value of CsavedLC(e) is then approxi-
mated as:

CsavedLC(e; g, j)’
XNA

n = 1

mindi
1

Nmcs

XNmcs

k = 1

~̂L dj, uk tAn
ð Þ, tAn

; g, j
� � !

�
XNA

n= 1

1

Nmcs

XNmcs

p= 1

mindi
1

Nmcs

XNmcs

q= 1

~̂L dj, uq tAn
ð Þjxep tAn

ð Þ, tAn
; g, j

� � ! !
:

ð24Þ
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Remark 3: In practical situations, major repairs can
result in changes to the physical system and alterations
to the gate’s degradation pattern. Additionally, actions
taken during the current time step can impact all future
maintenance activities. Incorporating these factors
when calculating the VoI metrics will enable a more
comprehensive analysis of the value of the SHM sys-
tem. However, doing so would require re-running all
FEM simulations and repeating diagnostics and prog-
nostics numerous times, which is computationally pro-
hibitive. Possible ways of overcoming these
computational challenges include using a surrogate-
model-based approach to accelerate the process of
diagnostics and prognostics, using approximation
methods such as Fisher’s information matrix to enable
analytical Bayesian model updating for damage diag-
nostics, and building a surrogate model for the overall
VoI assessment. In this paper, however, we define the
VoI metric under the assumption that the only action
taken is shutting down and inspecting the system, with-
out performing any significant maintenance activity
unless there is damage requiring replacement of the
structure. As a result, the degradation pattern and
physical properties of the gate remain unchanged. The
VoI obtained under this assumption can be viewed as
the lower bound of the actual VoI. Therefore, the sen-
sor placement optimization obtained in this manner is
still valid.

Remark 4: We make three observations about the
assumptions made regarding the costs estimation:

1. Only the decision consequence cost (Cost A) is
adjusted for utility. The utility function, parame-
trized by (g, j), is used to model the behavioral
aspect or the risk perception of the decision-maker
and therefore only impacts the cost of decision-
making, denoted by the consequence function
L̂ di, utrue; g, jð Þ. That is, subjectivity in decision-
making is incorporated using a utility function that
quantifies the perception of the cost by an individ-
ual or organization, which in turn affects their
decision-making. This, in turn, impacts the cost
savings due to better data-informed decision-mak-
ing, quantified as CsavedLC(e; g, j).

2. It is reasonably assumed that the present value of
the investment cost (Costs B, C, and D) can be
objectively obtained and is independent of the
decision-maker’s risk perception. Therefore, the
total investment cost over the lifecycle, denoted by
CinvestedLC(e), is independent of the decision-mak-
er’s risk profile or utility. Similar to the decision-
maker’s risk profile, the investment costs could be
estimated more or less conservatively using a mar-
gin of safety factor.

3. Except for Cost D, which is incurred at the begin-
ning of the lifecycle, Costs A, B, and C will be
spread over the structure’s lifecycle. The values of
these costs are estimated at t = 0 and then inflated
to obtain their future value at time t. Let the cost
estimated at time t = 0 be denoted as the Current
Value (CV), and the inflated cost at time t.0, rep-
resenting the Future Value FV(t). For the rate of
inflation denoted by r(t), we have:

FV(t) =CV 1+ r(t)ð Þt: ð25Þ

To accurately assess the economic impact over the
structure’s lifecycle, we can apply a discounting rate to
these future values to obtain the corresponding present
value of the cost. The time value of money principle
states that money available today is worth more than
the same amount in the future due to its potential earn-
ing capacity. In addition, discounting provides a more
accurate present value of future cash flows, allowing
for better comparison and evaluation of different
investment options or strategies, especially when com-
paring not-so-similar SHM system designs subjected to
a set of maintenance policies that have different cost
structures. The present value PV(t) of the future costs
at time t can be calculated by applying a discount rate
d(t) as follows:

PV(t) =
FV(t)

(1+ d(t))t
=CV

(1+ r(t))t

(1+ d(t))t
: ð26Þ

In the proposed sensor optimization framework, we
simplify the analysis by setting the discount rate
d(t) = 0. While discounting future costs would yield a
more accurate present value, our main objective is to
highlight potential cost savings from sensor data. By
focusing on nominal values and applying a constant
inflation rate, we assume a simplified cost structure.
However, it is straightforward to include the discount
rate in the analysis by discounting the costs to present
value, thereby keeping the framework generic and
adaptable.

The rate of savings: time-normalized and unitless
VoI measure

When evaluating sensor designs for its performance in
terms of savings over the lifecycle, it is beneficial to
establish metrics that normalize the VoI over time and
are unitless. In this context, we define three metrics that
can be used to gauge the VoI normalized over the struc-
ture’s lifecycle: (1) average annual expected rate of sav-
ings; (2) compounded annual expected rate of savings;
and (3) exponentially compounded annual expected
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rate of savings. We will investigate the overall benefit
of various sensor placement designs obtained using dif-
ferent objective functions by evaluating these metrics in
section ‘‘Life cycle cost analysis and marginal utility of
additional sensors for various designs over the struc-
ture’s lifecycle.’’

Average expected annual rate of savings, denoted by
Rarithmetic(e; g, j), defines the net expected annual sav-
ings from the SHM design e over the structure’s life-
cycle of Nyears relative to the total investment made,
such that:

Rarithmetic e,Nyears; g, j
� �

=
1

Nyears

CsavedLC(e; g, j)� CinvestedLC(e)

CinvestedLC(e)

� �

=
1

Nyears

EVoILC(e; g, j)

CinvestedLC(e)

� �
=

1

Nyears
lLC(e; g, j)� 1ð Þ:

ð27Þ

Compounded expected annual rate of savings, denoted
by Rgeometric e,Nyears; g, j

� �
, is defined as:

Rgeometric e,Nyears; g, j
� �

= lLC e; g, jð Þ
1

Nyears � 1: ð28Þ

Finally, the exponentially compounded expected rate
of savings, denoted by Rexponential(e,Nyears; g, j), is
defined as:

Rexponential e,Nyears; g, j
� �

= log lLC e; g, jð Þ
1

Nyears

� �
: ð29Þ

We notice that all three standardized metrics are unit-
less (expressible in percentages) and depend solely on
the ratio of the expected savings CsavedLC to the invest-
ment costs CinvestedLC (i.e., lLC(e; g, j)), normalized over
the number of years constituting the lifecycle. These
metrics can be beneficially used when evaluating the
performance of not-necessarily-similar SHM systems
over an extended period.

Figure 9 illustrates the rate of savings metric as a
function of lLC simulated for different lengths of the
lifecycle. We observe that when Nyears = 1, Rgeometric =
Rarithmetic, and as the number of years increases,
Rgeometric approaches Rexponential. Since Rgeometric and
Rexponential assume the savings compound over time,

Figure 9. Various rate of savings metric simulated for different lengths of lifecycle: (a) considering lifecycle of 1 year, (b)
considering lifecycle of 5 year, (c) considering lifecycle of 10 year and (d) considering lifecycle of 100 year.
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they are more constrained and stable, especially over a
long period of time and for a larger expected savings to
investment ratio lLC, compared to the arithmetic rate of
savings Rarithmetic which is a linear function of lLC.

Remark 5: Because information is expected to provide
benefits when cost is disregarded, or at the very least,
not cause harm, that is, CsavedLC(e; g, j)ø 0, we observe
the lower limit on these metrics:

lim
CsavedLC e;g, jð Þ!0

Rgeometric(e; g, j) = � 1; ð30Þ

lim
CsavedLC e;g, jð Þ!0

Rexponential(e; g, j) = � ‘: ð31Þ

lim
CsavedLC e;g, jð Þ!0

Rarithmetic(e; g, j) = � 1

Nyears
: ð32Þ

Similarly, the lower limit on these metrics will be
reached when the cost of investment reaches a very
large value, such that:

lim
CinvestedLC(e;g, j)!‘

Rgeometric(e,Nyears; g, j) = � 1; ð33Þ

lim
CinvestedLC(e;g, j)!‘

Rexponential(e,Nyears; g, j) = � ‘: ð34Þ

lim
CinvestedLC(e;g, j)!‘

Rarithmetic(e,Nyears; g, j) = � 1

Nyears
: ð35Þ

That is, in the limiting case where the acquired infor-
mation results in zero or negligible savings, it indicates
a loss of 100% of the investment (as reflected in
Equations (30) and (33)). In other words, the invest-
ment does not provide any benefits whatsoever.
Alternatively, it can be understood as the investment
losing a fraction of 1=Nyears of its value every year for a
duration of Nyears years (as reflected in Equation (32)
and (35)).

Remark 6: For an SHM system to be feasible over its
lifecycle, we have:

Rarithmetic e,Nyears;g, j
� �

ø 0; ð36Þ

Rgeometric e,Nyears; g, j
� �

ø 0; ð37Þ

Rexponential e,Nyears; g, j
� �

ø 0: ð38Þ

Remark 7: We notice that the quantities CsavedLC

(e; g, j), Csaved(e, t; g, j), t(e; g, j), EVoILC(e; g, j),
lLC(e; g, j), Rarithmetic(e,Nyears; g, j), Rgeometric(e,Nyears;
g, j), and Rexponential(e,Nyears; g, j) depend on the risk
profile, parameterized by (g, j) used in the decision-
making process. As mentioned in Table 1, we focus
our attention on three risk profiles denoted by RP1,
RP2, and RP3 (in ascending order of risk-seeking
behavior). Therefore, for simplicity, we may denote the

aforementioned variables using these risk profile IDs.
For example, EVoILC(e;RP1) quantifies the expected
VoI over the lifecycle of the structure considering the
risk-aversion profile RP1 with its (g, j) value men-
tioned in Table 1.

Optimization and results

Optimal sensor design algorithm

Let e�EVoILC and e�lLC denote the optimal sensor place-
ment design that maximizes the EVoILC and lLC
metric. Mathematically:

e�EVoILC = argmax
e2OE

EVoILC ð39Þ

e�lLC = arg max
e2OE

lLC: ð40Þ

Given the colossal size of the design space OE, as
reflected in Equation (3), we use an iterative Bayesian
optimization approach to find the global optimum in a
minimal number of steps, thereby reducing the sam-
pling points and accelerating the optimization process.
However, the iterative design approach presented in
this paper (adding one sensor at a time until the objec-
tive function converges) may lead to sub-optimal
designs, despite its computational efficiency.

For each addition of a sensor, the algorithm per-
forms a global search for all possible sensor candi-
dates. However, because the final design consists of
sensors added iteratively and conditioned upon previ-
ously selected sensors, a greedy algorithm is used
between iterations. This procedure may result in sub-
optimal solutions as the sensors are added iteratively
rather than being globally optimized all at once.41 We
developed this optimization algorithm in our previous
work.14,24,42 To avoid diverting readers from the main
focus of the paper, which investigates the impact of dif-
ferent VoI metrics and risk profiles on optimal sensor
design, we present the optimization algorithm used to
obtain the sensor placements in Appendix ‘‘Bayesian
optimization algorithm.’’

Results and discussion

Various sensor designs. There are multiple options for
obtaining the initial design e0, which is composed of
N0 ø 0 sensors. One option is to randomly generate it
using the Latin hypercube sampling (LHS) technique
(first introduced by McKay, Beckman, and Conover in
their paper43). Alternatively, it can be predefined based
on judgment or experience. If no predefined design is
available or if one prefers not to assume a random ini-
tial design, it can be set to 0. In this paper, we numeri-
cally implement the optimization algorithm without

Chadha et al. 15



assuming any initial design, that is, we assume that
N0 = 0.

For the maintenance and operations costs per
month, we assume a fixed value of CM =CO = 3310�6

units. Additionally, we assume the initial SHM system
design cost of C = 2310�5 units. It is important to note,
for comparison purposes, that the cost of failure—
incorporating loss of life, property damage, and struc-
ture replacement—is assumed to be 1 unit, which can
be assigned as necessary (e.g., 1 unit can be assigned to
be one million, 10 million, etc.). We further consider
an annual inflation rate of 2% and simulate a lifecycle
of 9 years.

We selected these values for the maintenance, opera-
tions, and SHM design costs based on the cost-
classifier plots obtained in our previous paper.5 By
carefully considering the these costs, we aimed to
ensure that the obtained SHM designs are subject to a
sufficient financial constraint, allowing us to observe
the true impact of different sensor designs on the VoI.
If we had chosen a much lower cost values, the result-
ing SHM designs would not have been adequately con-
strained by the expenses, thereby limiting our ability to
assess the influence of sensor designs on VoI
accurately.

Conversely, opting for significantly larger values
would have made it exceedingly challenging to achieve
economically feasible SHM system designs. Such exces-
sively expensive systems would not be practically feasi-
ble in real-world scenarios. Consequently, we
determined that the chosen values of maintenance and
operations costs strike the right balance, enabling us to
conduct a comprehensive study on SHM system
design. These specific values of costs are therefore
deemed suitable for the objectives of this study.

For the purpose of investigation, we consider four
designs for comparison:

1. Optimal design e�EVoILC obtained using Equation
(39)

2. Optimal design e�lLC obtained using Equation (40)
3. Optimal design e�KL obtained by using the KL

divergence objective functional (without risk-
weights) proposed in section 3 of Yang et al.25

4. Random design eRandom obtained using a network
of strain gauges distributed randomly across the
miter gate structure, utilizing the LHS algorithm.43

We can categorize these designs into three classes.
The first class comprises econometric-based or VoI-
based optimal designs, such as e�EVoILC and e�lLC . These
designs are meant to maximize the monetary benefit of
information gain. The second class includes
information-based designs, such as e�KL and various f-
divergence-based optimal designs discussed in Yang

et al.14 These designs focus on maximizing information
gain. Finally, the third class consists of random
designs, denoted as eRandom, which are based on ran-
dom selection without specific optimization criteria.
We explore the influence of the number of sensors con-
sidered in the aforementioned designs on various VoI
metrics by investigating different scenarios where the
number of sensors, denoted by Nsg, takes values from
the set f1, 2, 3, 4, 5, 6, 7, 8g.

Figure 10 illustrates the random design and KL-
divergence-based design, considering up to 10 sensors.
Figures 11, 12, and 13 show the optimal sensor design
e�EVoILC for risk profiles RP1, RP2, and RP3, respec-
tively. Figures 14, 15, and 16 display the optimal sen-
sor design e�lLC for risk profiles RP1, RP2, and RP3,
respectively.

We immediately observe several critical points
directly related to the performance of various designs
in terms of the VoI they provide:

1. The KL-divergence-based design is optimized to
maximize information gain or minimize uncer-
tainty. As a result, almost all sensors are placed
close to the damage (loss of gap at the bottom of
the gate). It is important to note that the KL-diver-
gence-based design is not directly related to the
monetary benefit of information gain, as quanti-
fied by the VoI metrics discussed in this paper.

2. The optimal designs obtained using VoI-based
metrics, such as the designs e�EVoILC and e�lLC , have
their first sensor placed close to the damage irre-
spective of the risk profiles. However, the subse-
quent additional sensors are not necessarily located
near the damage.

3. Another important observation is that in the case
where no sensors are present (prior decision case),
by definition as presented in Equation (15),
EVoILC is equal to zero. This is because when there
is no additional information and, by extension, no
data-informed decision-making, the expected cost
savings over the lifecycle identically go to zero, and
the investment cost over the lifecycle is zero since
no investment is made to acquire information. As
seen in EVoILC versus number of added sensor plot
illustrated in Figures 11, 12, and 13, when the first
optimal sensor is added, there is a significant jump
in the gain of EVoILC value, that is, EVoILC.0 for
the first added sensor. However, the marginal ben-
efit of adding subsequent sensors in terms of their
economic benefit diminishes due to the law of
diminishing returns.44,45

4. This diminishing effect is even more pronounced in
the lLC-based designs, where the lLC metric and
the corresponding rate of savings Rgeometric are
highest for the first sensor. Each additional sensor,
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which incurs extra costs, decreases the expected
economic benefit gained from acquiring additional

information causing the lLC curve to decay as
number of sensors increases. Therefore, in VoI-

Random Design with 10 
sensors selected using LHS

KL-divergence based design 
with 10 sensors

Figure 10. Random design (left) and KL-divergence-based design (right).
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Figure 11. Optimal design e�EVoILC considering risk-averse profile RP1.
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Figure 12. Optimal design e�EVoILC considering risk-neutral profile RP2.
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Figure 13. Optimal design e�EVoILC considering risk-seeker profile RP3
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based designs, the first optimal sensor holds the
most significant importance and provides

maximum marginal utility. In some cases, the
incremental benefit offered by the additional

Number of sensors
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Figure 14. Optimal design e�lLC considering risk-averse profile RP1.
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Figure 15. Optimal design e�lLC considering risk-neutral profile RP2.
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sensors beyond the first one may not compensate
for the additional cost they incur.

5. However, unlike the VoI based designs, when it
comes to KL-divergence-based design, although
the marginal gain in information from the addi-
tional sensors after the first one diminishes, it is still
optimized to maximize the information gain. As a
consequence, even the additional sensors after the
first one are positioned closer to the damage and
will not lead to detrimental decision-making even
when the most valuable first sensor is excluded.

The effect of information on the cost of decision-making. It is
of importance to investigate the performance of differ-
ent sensor designs in terms of cost savings resulting
from data-informed decision-making over time, with-
out considering the cost of the SHM system itself.
Recall from Remark 1 that Csaved(e, t; g, j) represents
the expected cost saved by virtue of making a data-
informed decision using the information gathered using
the sensor placement design e at time t and that
Csaved(e, t; g, j)ø 0. It is useful to study the trends and
characteristics of Csaved(e, t; g, j) for various optimal
sensor placement designs (reported in units of
Normalized Cost defined in section ‘‘The base cost
model’’) as a function of time t and for different risk
profiles (parameterized by (g, j)). Figures 17, 18, and

19 illustrate the cost saved as a consequence of choos-
ing optimal maintenance strategy at the various
instance of time based on newly acquired strain data
for the three risk profiles, considering the information
obtained from the first sensor, from the first four sen-
sors, and from the first eight sensors respectively. We
make the following observations:

1. In all cases, we observe that Csaved is greater than
or equal to zero, except for numerical errors (as
mentioned in Remark 1). This is the consequence
of the fact that unbiased information, even with its
inherent uncertainty, is always valuable when it is
freely accessible.

2. Additionally, the cost savings increase up to a cer-
tain damage level, after which they decrease. The
value of Csaved evaluates the economic benefit of
arriving at a data-informed maintenance decision
as a consequence of having an SHM system
installed compared to the decisions we would have
made using the prior decision analysis. However,
beyond a certain gap-length value, the mainte-
nance decision obtained using the posterior deci-
sion analysis is the same as the decision obtained
using the prior decision analysis. For instance,
when the gate is approaching the end of its life-
cycle and nearing the critical failure level, it is
obvious that an engineer with any risk profile

Number of sensors

L
C

 

Optimal sensor design using LC  metric 
considering risk-seeker profile (RP3)

: BV sensor

: TH sensor

: BH sensor
: TV sensor

Sensor Legend

Figure 16. Optimal design e�lLC considering risk-seeker profile RP3.
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would choose to perform maintenance. In such
obvious decisions, SHM is not necessarily useful at
that instance in time.

3. We observe a shift in the peaks of Csaved toward
higher gap lengths as the intensity of risk-seeking
increases. Figures 17, 18, and 19 also mention the
time when peak savings occur, denoted by t(e; g, j)
and defined in Equation (23). This shift occurs
because the increase in risk-aversion of the
decision-maker (or decrease in risk-seeking beha-
vior) decreases the threshold of the gap beyond
which it becomes obvious to the decision-maker
that the structure is damaged, and the SHM system
does not offer much benefit.

4. For VoI-based designs, it is more likely that there
are more sensors close to the damage for the risk-
averse profile than for the risk-neutral and risk-
seeking profiles (as seen in Figures 11, 12, 13, 14,
15, and 16). One plausible reason for this observa-
tion is that the risk-neutral profile leads to
information-led cost savings in the early phase of
the structure’s lifespan. However, the damage is
not very prominent in the early phase, and more
information is required to sufficiently capture the
damage in order to make accurate inferences and,
eventually, informed maintenance decisions. On
the other extreme, the risk-seeking profile becomes
active toward the end of the structure’s life when
the damage is much more prominent. Therefore,

only one well-placed sensor is enough to make a
useful decision.

5. The performance of the optimal designs e�EVoILC ,
e�lLC , and e�KL is better than that of the random
design eRandom in terms of information-led cost
savings. The performance of the designs e�EVoILC
and e�lLC is very similar. The Csaved curve for the
KL-divergence-based design approaches the VoI-
based designs as the number of sensors increases,
but it never exceeds the VoI-based designs.

6. The performance of the KL-divergence-based design
improves as we consider a greater number of sensors.
On the other hand, the performance of the VoI-based
design does not change significantly as the number of
sensors increases. This is because the first sensor con-
tains most of the necessary information required to
make an optimal decision. This means that the first
sensor provides maximum marginal utility, and the
marginal benefit of the sensors excluding the first one
is not meaningful when it comes to increasing the
monetary VoI since additional sensors come with the
penalty of additional SHM cost.

Life cycle cost analysis and marginal utility of additional sensors
for various designs over the structure’s lifecycle. In Tables
A1 to A18 of Appendix A, we provide the values of
several VoI metrics, namely EVoILC, lLC, Rarithmetic,

Considering Risk-Averter Profile RP1 Considering Risk-Neutral Profile RP2 Considering Risk-Seeker Profile RP3
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Rgeometric, and Rexponential for different sensor network
designs. These metrics are calculated for three specific
risk profiles. In this section, we primarily focus on the
annual compounded rate of savings, denoted as
Rgeometric, which serves as a key metric for evaluating
different designs of SHM systems as long-term invest-
ments throughout a structure’s lifecycle.

The metrics Rgeometric and Rexponential offer a standar-
dized measure that quantifies the compounded growth
rate (although with slightly different definitions) over
an extended period, enabling us to assess the accumu-
lated savings over many years. Although Rgeometric and
Rexponential assume compounding of savings over time, it
is important to note that in this case, the savings today
do not influence the savings tomorrow. However, this
characteristic renders Rgeometric and Rexponential to be
more constrained and stable compared to the arith-
metic rate of savings Rarithmetic, especially when the
SHM system is very profitable, that is, when lLC..1.
Tables A1 to A18 of Appendix A demonstrates demon-
strates that changes in the value of Rarithmetic exhibit
greater sensitivity to variations in CsavedLC compared to
Rgeometric and Rexponential. However, when the SHM sys-
tem is not feasible, a well-defined lower bound of
Rgeometric (see Equation (30) and (33)) makes it a more
preferable metric than Rexponential (see Equation (31)
and (34)). All these characteristics make Rgeometric the
best metric to evaluate the lifecycle benefit of an SHM
system.

Figure 20, which consists of a 2D representation in
Figure 20a and a 3D representation in Figure 20b, illus-
trates the compounded annual rate of expected saving
Rgeometric for various designs, risk profiles, and numbers
of sensors, starting from the first sensor (which is the
most important sensor in an optimal design). We make
the following observations:

1. As seen in Figure 20a, all the values of Rgeometric

for e�EVoILC , e
�
lLC

, and e�KL are in the feasible region.
The VoI-based optimal designs, e�EVoILC and e�lLC ,
perform the best for any number of sensors and
any risk profile considered. The Rgeometric surface in
Figure 20b for these designs is above the surface
for the e�KL design, indicating their outperfor-
mance. Information-based design also leads to a
feasible SHM system. The performance of the ran-
dom design, eRandom, is random since the sensors
are randomly selected and not optimized for any
target objective. Additionally, they are not condi-
tioned upon the information acquired from the
previous sensors.

2. As we include a greater number of sensors into an
optimal design, Rgeometric decreases for all risk pro-
files. This is indicative of the first sensor carrying
maximum marginal utility in terms of cost benefit.
The benefit from the additional information
acquired by sensors added after the first sensor
does not compensate for their additional cost. This
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fact is clearly reflected in various Rgeometric curves
in Figure 20a, as well as by the downward sloping
Rgeometric surface in the direction of increasing num-
ber of sensors for e�EVoILC , e

�
lLC

, and e�KL designs in
Figure 20b.

3. We also observe that for VoI-based designs, e�EVoILC
and e�lLC , Rgeometric increases as the risk-seeker beha-
vior increases. Recall that the risk-seeker profile
tends to take action only where there is a real need
for it, which is toward the end of the life of the
structure. By doing so, it tends to save costs. Since
VoI-based metrics are explicitly dependent on the
risk profiles, this pattern is expected. This fact is
clearly reflected in Figure 20a and 20b, which show
upward sloping Rgeometric curves and surfaces in the
direction of increasing risk-seeker profile for the
designs e�EVoILC , and e�lLC .

It is of interest to investigate the marginal utility
of the sensors excluding the first sensor. For that, we
consider Figures 21 and 22 that illustrate the com-
pounded annual rate of expected saving Rgeometric for
various designs, risk profiles, and numbers of sensors
excluding the first sensor. We make the following
observations:

1. The additional sensors beyond the first sensor do
not add value to VoI-based designs and instead
have a detrimental effect on the overall perfor-
mance. The effect is worse on e�lLC than on e�EVoILC .
The e�EVoILC design leads to positive values of

Rgeometric for certain combinations of the number
of sensors and risk profiles. However, e�lLC without
the first sensor starts behaving like a random
design and mostly leads to nonfeasible SHM
system.

2. Excluding the first sensor decreases the perfor-
mance of information-based design e�lKL

as well
but it still leads to a feasible SHM design for all
risk profiles as well as number of sensors consid-
ered. This can be seen in Figures 21b and 22b
where the Rgeometric surface for e�KL design consis-
tently stays positive. This is because, in contrast to
VoI-based designs, KL-divergence-based designs
prioritize maximizing information gain and posi-
tioning additional sensors closer to the damage,
even if the marginal gain in information decreases.
This ensures that excluding the most valuable first
sensor does not result in detrimental inference of
damage and subsequently decision-making, as all
subsequent sensors are still optimized for maximiz-
ing information gain.

Summary and conclusion

This paper presents a framework for sensor optimiza-
tion based on the concept of VoI. The framework aims
to maximize the overall benefit of information obtained
through an SHM system throughout its lifecycle. The
objective is to design an SHM system that generates
significant cost savings through data-informed
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decision-making while considering the expenses asso-
ciated with designing, installing, operating, maintain-
ing, and other related costs over the structure’s
lifecycle. Since each structure is unique with very spe-
cific design needs, suitability and accessibility of sen-
sors, cost structures, environmental and loading
conditions, modeling capabilities, and damage types,
the design strategy detailed in this paper and the con-
clusions drawn focus on miter gate structures or
structures with similar characteristics. With that in
mind, we believe that this paper makes a substantial
contribution to the design strategy for SHM systems,
and the presented design approach, although focused
on the miter gate structure, can in principle be
extended to other structures.

We explore two VoI-based designs: one that maxi-
mizes the expected VoI over the structure’s lifecycle,
and the other that maximizes the ratio of expected sav-
ings over the lifecycle to the investment in running an
SHM system. We compare these VoI-based designs
with the information-based design that maximizes the
gain in information quantified by KL divergence, as
well as with the random design obtained by randomly
selecting sensors using LHS. Additionally, we propose
three time-normalized, unitless metrics, generically
called the rate of expected savings, which are especially
useful when quantifying the value of an SHM system
over many years. We use the compounded annual rate
of expected savings to compare the performance of
four sensor placement designs (two VoI-based, one

Figure 20. Compounded rate of savings Rgeometric for various designs, risk profiles, and number of sensors starting from the first
sensor: (a) 2D plot: Rgeometric for various designs, risk profiles, and number of sensors and (b) 3D illustration: Rgeometric for various
designs, risk profiles, and number of sensors.
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information-based, and one random) for the complex
miter gate structure simulated under an assumed main-
tenance policy and investigate the impact of different
risk profiles on the performance of these designs.

We draw three conclusions from our study. First, all
optimal designs, whether VoI-based or information-
based, consistently outperform random designs.
Random design relies on chance, and while it is possi-
ble for one of the randomly chosen sensors to provide
good inference of structural damage, it cannot be
attributed to intentional design efforts. In contrast, the
optimal designs, based on either VoI or information
criteria, are intentionally crafted to maximize perfor-
mance and reliably enable a feasible SHM system. By
leveraging systematic design principles, these optimal
approaches on the chosen case study of the miter gate

structure ensure superior results compared to relying
solely on chance occurrences.

Second, the performance of VoI-based design in
terms of maximizing cost savings increases as the deci-
sion-maker’s risk-seeking behavior intensifies. This is
because the VoI-based objective functions are directly
influenced by risk profiles, and risk-seeking individuals
tend to take action only when there is a genuine need
for it, typically toward the end of the structure’s life-
span. By doing so, they effectively reduce decision costs.

Finally, the most important conclusion of the study
is that, for all optimal designs, whether VoI-based or
information-based, the first sensor provides the maxi-
mum marginal utility in terms of maximizing cost sav-
ings over the structure’s lifecycle relative to the total
investment. Additionally, as a result of the law of

Figure 21. Compounded rate of savings Rgeometric for various designs, risk profiles, and number of sensors starting from the second
sensor (ignoring the first sensor): (a) 2D plot: Rgeometric for various designs, risk profiles, and number of sensors (ignoring the first
sensor) and (b) 3D illustration: Rgeometric for various designs, risk profiles, and number of sensors (ignoring the first sensor).
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diminishing return, the marginal benefit of the sensors
excluding the first one is not significant when it comes
to increasing the monetary VoI since additional sensors
incur additional SHM costs. This is because the first
sensor contains most of the necessary information
required to make an optimal decision. However, when
it comes to the VoI-based designs, the additional sen-
sors beyond the first sensor do not add value to VoI-
based designs and instead have a detrimental effect on
the overall performance. In contrast to VoI-based
designs, when it comes to the information-based design,
although the marginal gain in information from the
additional sensors after the first one diminishes, it is still
optimized to maximize the information gain. This

ensures that excluding the most valuable first sensor
does not result in detrimental damage inference and
subsequently decision-making, as all subsequent sensors
are still optimized for maximizing information gain.

This leads us to recommend that VoI-based optimi-
zation should be used in conjunction with information-
based optimization. For instance, the first sensor can
be optimized to maximize the VoI, while the subse-
quent additional sensors, conditioned on the first sen-
sor, can be obtained by maximizing information gain.
In practice, it is advisable to have multiple sensors
because they can malfunction, and this arrangement
increases the likelihood of avoiding poor decisions if
the critical first sensor fails.

Figure 22. Compounded rate of savings Rgeometric for various designs, risk profiles, and number of sensors starting from the third
sensor (ignoring the first and the second sensor): (a) 2D plot: Rgeometric for various designs, risk profiles, and number of sensors
(ignoring the first and the second sensor) and (b) 3D illustration: Rgeometric for various designs, risk profiles, and number of sensors
(ignoring the first and the second sensor).
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The proposed formulation can be further strength-
ened by considering other variables in the design
framework, such as: (a) incorporating model uncer-
tainty by considering distributions of model parameters
and including these uncertainties in the definition of
Bayes risk. This means that while defining the expected
value of the quantity of interest, whether it be VoI or
information gain, we account for the uncertainty in the
simulated model of the structure. This will also average
out possible model bias and inevitable skewness in
structural properties introduced during construction;
(b) in the proposed framework, we assumed a particu-
lar risk profile for the decision-maker (such as an orga-
nization). However, an organization consists of many
decision-makers (inspectors and engineers) with differ-
ent risk profiles. This distribution of risk profiles can
also be considered while defining the objective function
for sensor optimization; (c) in the proposed frame-
work, the VoI was calculated in the pre-posterior stage
(or during the initial design stage) considering the
entire lifecycle of the structure. The sensors obtained
from this design would be the first set of sensors
installed on the structure. However, once the sensors
are installed, the acquired information can be used for
both diagnostics and prognostics, which in turn can be
helpful in probabilistically predicting the future state of
the structure. This prediction can inform maintenance
strategies that consider not only the current state of the
structure but also its remaining useful life. A natural
extension of this idea for sensor optimization is to
develop an optimization framework that starts with
pre-posterior design and then updates over time based
on the information acquired by the installed sensors;
(d) in the current work, the damage was assumed to be
a one-dimensional scalar quantity. In most practical
problems, damage is a multidimensional variable.
Extending this framework to a multidimensional dam-
age scenario would be a major contribution, but it is
admittedly a very challenging task that can be investi-
gated in the future.
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Appendix

Bayesian optimization algorithm

Unlike optimization methods that rely on gradients,
Bayesian optimization does not require the objective
function’s derivative. Instead, it only needs a black-box
model (such as a surrogate function) of the objective
function to perform the optimization. Bayesian optimi-
zation has two main components: first, a surrogate
function to approximately evaluate the value of objec-
tive function is developed using randomly evaluated
samples of the objective function; second, an acquisi-
tion function is used to identify the next most promis-
ing candidate for updating the design.

We demonstrate the optimization process consider-
ing the lLC(e) as the objective function. The process
begins by choosing an initial design e�EVoILC consisting
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of Nsg(e0) =N0 ø 0 sensors. Here, d(l) represents the
location of lth strain gauge in the design e0. The next
step is to obtain an updated design e1 by adding an
additional sensor to e0, such that Nsg(e1) =N0 + 1. To
obtain the optimal e1, we randomly sample a sensor
locations using LHS, subjected to a space filling prop-
erty, to be the candidate for the additional sensor from
the unused sensors constituting the measurement space
OX. These locations yield a number of design samples
~ek , 8 k<a each with Nsg(e1) sensors. We obtain the
exact cost lLC(~ek), 8 k<a using approach discussed in
the previous section. Using the set of a additional sen-
sor locations as input data, denoted by ~d, and the exact
cost as output data, we train our surrogate function
l̂LCð~dÞ;Nðm~d,s

2
~d
Þ. This surrogate can be used to

quickly estimate a posterior probability that describes
possible values for the Bayes risk at a remaining candi-
date location �d spanning the entire design space, with
mean value m�d and standard deviation s�d . We use
Expected Improvement EI as our acquisition function
that helps us locate the next most valuable candidate
for the next sensor location based on the current pos-
terior over the Bayes risk, given by

EI �d
� �

= m�d�l�LC
� �

F
m�d � l�LC

s�d

� �
+s�df

m�d � l�LC
s�d

� �
: ðA1Þ

Here, l�LC = max~ek lLC ~ekð Þ is the current best value of
the objective function. For all the remaining possible
additional sensor location candidates, we evaluate
EI �d
� �

. The candidate with maximum EI is the next most
valuable location. Once we locate the next most valuable
sensor location candidate, we get (a+ 1)th design sam-
ples. We re-train the GPR with (a+ 1) data points, and
keep adding the next most valuable location from the set
of strain locations constituting OX until the maximum
EI is less than a tolerance value e.

Note that the aforementioned details updates an ini-
tial design e0 � e1 by adding one additional sensor. We
keep updating the designs by adding one sensor at a time
until one of the following two conditions is reached:

1. The VoI converges to a constant value, that is, the
design eI = e

� (with i= I) can be considered as the most
optimal design if lLC(eI )’lLC(e(I�1)). Given an
updated design ei = d(1), d(2), � � � , d(Nsg(ei))

� �
with

Nsg(ei) number of sensors, the aforementioned steps
can be generalized to obtain the updated design e(i+ 1).

2. The total number of sensors in the design reaches
the maximum number of sensors limited/con-
strained by the decision-maker or other factors
such as lLC(ei)ø 1.

Given the design ei, the updated design e(i+ 1) can be
obtained following similar exercise as described above.

Let enas represent the optimized sensor design with
N0 + nasð Þ sensors, such that nas<Nas. Here, Nas repre-
sents the maximum additional sensors considered over
the initially assumed number of sensors N0. The num-
ber of sensors in the final design shall then be
<(N0 +Nas). The optimal design e�lLC is then given by:

e�lLC = argmax
enas

lLC enasð Þ: ðA2Þ

Algorithm 1 demonstrates the Bayesian optimiza-
tion procedure to evaluate the design e�lLC .

Algorithm 1: Bayesian optimization for sensor placement.

1 Initialize e0 = d(1), d(2), � � � , d(N0)
� �

;
2 for nas = 1 to Nas do
3 Using LHS, randomly select a locations to be candidates

for the (N0 + nas) sensor location, with coordinates

X = ð~d(1), ~d(2), � � � , ~d(a)Þ;
4 Obtain a number of possible designs:

~ek = concatenateðe(nas + 1), ~d
(k)Þ, for all k < a;

5 Obtain the exact cost of all the a designs:
X= lLC(~e1),lLC(~e2), � � � ,lLC(~ea)ð Þ;

6 while i= 1 or maxEI\ E do
7 Construct the GPR model for l̂LC �ð Þ trained using

(X ,X);
8 For all the remaining strain locations

ð�d(1), �d(2), � � � , �d(b)Þ, where
b= NTotal�Sensors � N0 + nas � 1ð Þ � að Þ, obtain
b number of possible designs:
�em = concatenate e(nas + 1),�(m)ð Þ, for all m<b;

9 Obtain the cost l̂LCð�(m)Þ for all m<b designs using
GPR developed before;

10 Obtain the current best l�LC = maxX;
11 Obtain the Expected Improvement for all the b

designs using:

EI(�d(m)) = ðm
�d
(m)�l�LCÞF

m
�d
(m)�l�LC

s�d(m)

� �
+s�d

(m)f
m�d(m)

�l�

s�d(m)

� �
,

where m<b;

12 Obtain:

maxEI= max
�x(m)

ðEI(�d(m))Þ

�d= argmax�x(m)ðEI(�d
(m)

)Þ
�e= concatenate e(nas + 1),

�dð Þ

Evaluate the exact cost lLC(�e)
13 Update:

X = concatenate X , �dð Þ
~e(a+ i) =�e

X = concatenate X,lLC(�e)ð Þ

i= i+ 1
14 end
15 Update the sensor design: enas = concatenate(enas�1, �d)
16 end
17 Obtain: e�lLC = argmaxeklLC(ek), where, k<Nas;
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Cost data considering sensors starting with the first sensor

In the data reported here, $ denotes normalized cost. Specifically, CsavedLC, CinvestedLC, and EVoILC are expressed
in units of normalized cost.

Table A2. Costs and various VoI metrics for risk-averse profile and the first four sensors.

Risk averse profile considering sensors designs consisting of the first four sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.28E-02 1.89E-04 1.26E-02 68.01 744.60 59.82 20.36

e�lLC 1.21E-02 1.89E-04 1.19E-02 64.25 702.83 58.81 20.09

e�KL 5.97E-03 1.89E-04 5.78E-03 31.64 340.47 46.79 16.67
eRandom 4.70E-04 1.89E-04 2.81E-04 2.49 16.57 10.67 4.40

Table A3. Costs and various VoI metrics for risk-averse profile and the first eight sensors.

Risk averse profile considering sensors designs consisting of the first eight sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.29E-02 3.77E-04 1.25E-02 34.13 368.09 48.03 17.03

e�lLC 1.11E-02 3.77E-04 1.07E-02 29.36 315.15 45.58 16.31

e�KL 9.42E-03 3.77E-04 9.05E-03 24.97 266.33 42.98 15.53
eRandom 3.97E-03 3.77E-04 3.59E-03 10.52 105.77 29.88 11.36

Table A4. Costs and various VoI metrics for risk-averse profile and the first sensor only.

Risk neutral profile considering sensors designs consisting of the first sensor only

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.22E-02 4.72E-05 1.21E-02 258.16 2857.36 85.35 26.80

e�lLC 1.55E-02 4.72E-05 1.54E-02 327.87 3631.94 90.34 27.95

e�KL 2.17E-03 4.72E-05 2.13E-03 46.09 501.04 53.06 18.48
eRandom 0 4.72E-05 24.72E-05 0.00 211.11 2100.00 �‘

Table A1. Costs and various VoI metrics for risk-averse profile and the first sensor.

Risk averse profile considering sensors designs consisting of the first sensor.

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.10E-02 4.72E-05 1.09E-02 232.96 2577.32 83.24 60.57

e�lLC 1.21E-02 4.72E-05 1.21E-02 257.17 2846.33 85.27 61.66

e�KL 3.49E-03 4.72E-05 3.45E-03 74.03 811.41 61.33 47.83
eRandom 5.97E-04 4.72E-05 5.49E-04 12.65 129.41 32.57 28.19
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For risk-neutral profile RP2

Table A6. Costs and various VoI metrics for risk-averse profile and the first eight sensors.

Risk neutral profile considering sensors designs consisting of the first eight sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.45E-02 3.77E-04 1.42E-02 38.52 416.88 50.03 17.62

e�lLC 1.50E-02 3.77E-04 1.46E-02 39.69 429.94 50.53 17.76

e�KL 8.32E-03 3.77E-04 7.94E-03 22.05 233.84 41.01 14.93
eRandom 0 3.77E-04 23.77E-04 0.00 211.11 2100.00 �‘

Table A5. Costs and various VoI metrics for risk-averse profile and the first four sensors.

Risk neutral profile considering sensors designs consisting of the first four sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.50E-02 1.89E-04 1.48E-02 79.64 873.81 62.64 21.12

e�lLC 1.55E-02 1.89E-04 1.53E-02 82.18 902.04 63.21 21.28

e�KL 3.85E-03 1.89E-04 3.67E-03 20.42 215.80 39.82 14.56
eRandom 2.70E-04 1.89E-04 8.09E-05 1.43 4.77 4.05 1.72

Table A7. Costs and various VoI metrics for risk-seeker profile and the first sensor only.

Risk seeker profile considering sensors designs consisting of the first sensor only

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.57E-02 4.72E-05 1.57E-02 332.72 3685.77 90.65 28.02

e�lLC 1.69E-02 4.72E-05 1.69E-02 358.46 3971.77 92.23 28.38

e�KL 1.30E-02 4.72E-05 1.29E-02 274.53 3039.19 86.62 27.10
eRandom 1.34E-04 4.72E-05 8.70E-05 2.85 20.50 12.32 5.05

For risk-seeker profile RP3

Table A8. Costs and various VoI metrics for risk-seeker profile and the first four sensors.

Risk seeker profile considering sensors designs consisting of the first four sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.66E-02 1.89E-04 1.65E-02 88.17 968.60 64.49 21.61

e�lLC 1.55E-02 1.89E-04 1.53E-02 82.06 900.66 63.19 21.27

e�KL 1.65E-02 1.89E-04 1.63E-02 87.40 959.97 64.33 21.57
eRandom 1.88E-04 1.89E-04 23.42E-07 1.00 20.02 20.02 20.01
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Table A9. Costs and various VoI metrics for risk-seeker profile and the first eight sensors.

Risk seeker profile considering sensors designs consisting of the first eight sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.54E-02 3.77E-04 1.50E-02 40.79 442.11 50.99 17.90

e�lLC 1.65E-02 3.77E-04 1.61E-02 43.75 475.03 52.17 18.23

e�KL 1.58E-02 3.77E-04 1.55E-02 41.95 454.97 51.46 18.03
eRandom 0 3.77E-04 23.77E-04 0.00 211.11 2100.00 �‘

Table A10. Costs and various VoI metrics for risk-averse profile and the second sensor only.

Risk-averse profile considering sensors designs consisting of the second sensor only

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.15E-04 4.72E-05 6.83E-05 2.45 16.09 10.46 9.95

e�lLC 1.45E-04 4.72E-05 9.81E-05 3.08 23.10 13.31 12.49

e�KL 4.10E-03 4.72E-05 4.05E-03 86.94 954.86 64.24 49.61
eRandom 0 4.72E-05 24.72E-05 0.00 211.11 2100.00 �‘

Cost data considering sensors starting with the second sensor
(excluding the first sensor)

For risk-averse profile RP1

Table A11. Costs and various VoI metrics for risk-averse profile and the second to fourth sensors.

Risk-averse profile considering sensors designs consisting of the second to fourth sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.30E-02 1.42E-04 1.29E-02 91.94 1010.40 65.26 50.23

e�lLC 0 1.42E-04 21.42E-04 0.00 211.11 2100.00 �‘

e�KL 4.42E-03 1.42E-04 4.28E-03 31.25 336.13 46.59 38.25
eRandom 1.23E-04 1.42E-04 21.84E-05 0.87 21.45 21.54 21.55

Table A12. Costs and various VoI metrics for risk-averse profile and the second to eighth sensors.

Risk-averse profile considering sensors designs consisting of the second to eighth sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.31E-02 3.30E-04 1.28E-02 39.63 429.24 50.51 40.88

e�lLC 1.56E-04 3.30E-04 21.74E-04 0.47 25.86 28.00 28.34

e�KL 8.11E-03 3.30E-04 7.78E-03 24.55 261.66 42.71 35.56
eRandom 0 3.30E-04 23.30E-04 0.00 211.11 2100.00 �‘
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Table A13. Costs and various VoI metrics for risk-neutral profile and the second sensor only.

Risk-neutral profile considering sensors designs consisting of the second sensor only

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.37E-02 4.72E-05 1.36E-02 290.25 3213.86 87.78 63.01

e�lLC 0 4.72E-05 24.72E-05 0.00 211.11 2100.00 �‘

e�KL 2.14E-03 4.72E-05 2.10E-03 45.42 493.61 52.81 42.40
eRandom 4.54E-04 4.72E-05 4.07E-04 9.62 95.81 28.60 25.16

Table A14. Costs and various VoI metrics for risk-neutral profile and the second to fourth sensors.

Risk-neutral profile considering sensors designs consisting of the second to fourth sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.40E-02 1.42E-04 1.38E-02 98.66 1085.06 66.56 51.02

e�lLC 3.57E-04 1.42E-04 2.16E-04 2.52 16.92 10.83 10.28

e�KL 3.06E-03 1.42E-04 2.92E-03 21.65 229.46 40.73 34.17
eRandom 0 1.42E-04 21.42E-04 0.00 211.11 2100.00 �‘

Table A15. Costs and various VoI metrics for risk-neutral profile and the second to eighth sensors.

Risk-neutral profile considering sensors designs consisting of the second to eighth sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)
e�EVoILC 1.37E-02 3.30E-04 1.34E-02 41.56 450.61 51.30 41.41

e�lLC 0 3.30E-04 23.30E-04 0.00 211.11 2100.00 �‘

e�KL 5.78E-03 3.30E-04 5.45E-03 17.51 183.45 37.45 31.81
eRandom 1.68E-03 3.30E-04 1.35E-03 5.08 45.31 19.79 18.05

Table A16. Costs and various VoI metrics for risk-seeker profile and the second sensor only.

Risk-seeker profile considering sensors designs consisting of the second sensor only

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 0.00E+ 00 4.72E-05 24.72E-05 0.00 211.11 2100.00 #NUM!

e�lLC 1.27E-05 4.72E-05 23.45E-05 0.27 28.13 213.59 214.61

e�KL 1.89E-03 4.72E-05 1.85E-03 40.13 434.77 50.72 41.02
eRandom 7.55E-04 4.72E-05 7.08E-04 16.00 166.65 36.08 30.81

For risk-neutral profile RP2
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For risk-seeker profile RP3

Table A17. Costs and various VoI metrics for risk-seeker profile and the second to fourth sensors.

Risk-seeker profile considering sensors designs consisting of the second to fourth sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.91E-03 1.42E-04 1.77E-03 13.47 138.56 33.50 28.89

e�lLC 0 1.42E-04 21.42E-04 0.00 211.11 2100.00 �‘

e�KL 1.63E-02 1.42E-04 1.62E-02 115.46 1271.81 69.50 52.77
eRandom 1.39E-02 1.42E-04 1.37E-02 97.92 1076.86 66.42 50.93

Table A18. Costs and various VoI metrics for risk-seeker profile and the second to eighth sensors.

Risk-seeker profile considering sensors designs consisting of the second to eighth sensors

Designs CsavedLC (in $) CinvestedLC (in $) EVoILC (in $) lLC (unitless) Rarithmetic (in %) Rgeometric (in %) Rexponential (in %)

e�EVoILC 1.69E-03 3.30E-04 1.36E-03 5.12 45.75 19.89 18.14

e�lLC 0.00E+ 00 3.30E-04 23.30E-04 0.00 211.11 2100.00 �‘

e�KL 1.59E-02 3.30E-04 1.55E-02 48.06 522.94 53.77 43.03
eRandom 1.40E-02 3.30E-04 1.36E-02 42.32 459.08 51.61 41.61
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