Evolution of recursive snarks

Oleg Taraskin, Waves

tog.postquant@gmail.com

Zero Knowledge Proofs

Completeness

Soundness

Zero-knowledge

zkSNARK

• zero knowledge Succinct Non-Interactive Argument of Knowledge

$$C(x, w) = 0$$

$$h = SHA-256(m)$$

The most widely used snarks

• Groth16

• STARK

Plonk (and its modifications)

• Halo2

Pairing Friendly Curves

$$E: y^2 = x^3 + ax + b$$
 over field F_p
 q — order of prime subgroup of E

Embedding degree with respect to q: minimal k: q divides p^d-1

Pairing-friendly if d is small:

Example: curve BLS12-381 has degree = 12

Pairings

Bilinear map $e: e(G_1, G_2) \rightarrow G_t$

1. Bilinearity:

for any S from G_1 , T from G_2 and integers a and b

$$e(aS, bT) = e(S, T)^{ab}$$

2.Non-degeneracy:

for any S from $G_{1,}$ e(S,T)=1 iff T=0 for any T from $G_{2,}$ e(S,T)=1 iff S=0, where O – point at infinity

Pairing Friendly Curves security

Depends both on

1. hardness of solving of ECDLP:

$$A = xB$$

2. hardness of DLP problem in the field $GF(p^k)$:

$$a^{\mathbf{x}} = b$$

for known a, b from $GF(p^k)$ and unknown natural x k is embedding degree

Best known method of breaking DLP is called Number Field Sieve (NFS)

Chains of elliptic curves

$$E_1: y^2 = x^3 + ax + b$$
 over F_p
 q - order of prime subgroup G_1 of E_1

$$E_2: y^2 = x^3 + a'x + b'$$
 over F_r
 p' - order of prime subgroup G_2 of E_2

 E_1 and E_2 are curves of chain of length 2 Next curve must have order of G equal to field of previous curve

Cycles of elliptic curves

$$E_1: y^2 = x^3 + ax + b \text{ over } F_p$$

 q - order of prime subgroup G_1 of E_1

$$E_2: y^2 = x^3 + a'x + b'$$
 over F_q
 p' - order of prime subgroup G_2 of E_2

 E_1 and E_2 are curves of cycle of length 2

Some cyclic pairing-friendly curves

- Curves MNT 4 and MNT 6 form a cycle
- Length of field characteristic is 753 bits!!
- Solving down ~ 10 times ☺

Recursive proof

Circuit *C*:

$$C(\mathbf{w}, \mathbf{x}) = 0$$

w – witness, x – public

vk – verification key

1. "Internal" Prover:

proves C(w, x) = 0: creates proof π_{inner} , so all can check it by running

$$Verify_{int}(vk, x, \pi_{int}) = 1$$

2. "External" Prover:

proves circuit $Verify_{int}(vk, x, \pi_{int}) - 1 = 0$ using π_{int} as witness so all can check it by running

$$Verify_{ext}(vk, x, \pi_{ext}) = 1$$

Use cases of snark recursion

Compression of proof

zkRollups

IVC incremental verifiable computing

Verification in Groth16

$$e(A, B) = e(\alpha G, \beta H) * e(\sum_{j=0}^{t} a_j S_j, \gamma H) * e(C, \gamma H)$$

proof verification key public inputs

Plonk

Uses KZG commitment that need pairing-friendly curves

As result Plonk has the same problems as groth16 with recursion

Solution

Use another polynomial commitments, such that don't use pairings:

FRI (Fast Reed-Solomon Interactive oracle proofs)

Inner Product Argument

Cycle curves

Pasta curves (Pallas and Vesta)

$$y^2 = x^3 + 5 \text{ over } F_p$$

Pallas curve:

Vesta curve:

Pedersen commitment

G – vector of n group generators

U – generator

 \mathbf{p} – vector of n coeff. of $\mathbf{p}(\mathbf{x})$

 $C = \langle G, p \rangle$ - commitment of p(x)

Proof of v = f(x):

$$\pi = \{ L, R, G^{(0)}, p^{(0)} \}$$

L, **R** – vectors of length $k = log_2 n$

Prover

b – vector
$$\{1, x, ..., x^{n-1}\}$$

$$v = < p, b >$$

$$C^{(k)} = C + vU$$

Verifier

Round k

 u_k

$$\mathbf{p}^{(k-1)} = u_k \mathbf{p}_{lo}^k + u_k^{-1} \mathbf{p}_{hi}^k$$

$$\mathbf{b}^{(k-1)} = u_k^{-1} \mathbf{b}_{lo}^k + u_k \mathbf{b}_{hi}^k$$

$$\mathbf{G}^{(k-1)} = u_k^{-1} \mathbf{G}_{lo}^k + u_k \mathbf{G}_{hi}^k$$

$$C^{(k)} = C + vU$$

$$C^{(k-1)} = \langle p^{(k-1)}, G^{(k-1)} \rangle + \langle p^{(k-1)}, b^{(k-1)} \rangle \cup$$

$$C^{(k-2)} = \langle p^{(k-2)}, G^{(k-2)} \rangle + \langle p^{(k-2)}, b^{(k-2)} \rangle \cup$$

$$C^{(k-2)} = C^{(k-1)} + u_{k-2} L^{(k-1)} + u_{k-2}^{-2} R^{(k-1)}$$

Verifier:

$$b_0$$
 = < $m{b}$, $m{s}$ > Check $m{G}^{(0)}$ = < $m{s}$, $m{G}$ >

```
\mathbf{s} = (u_1^{-1} u_2^{-1} \cdots u_k^{-1}, u_1 u_2^{-1} \cdots u_k^{-1}, u_1^{-1} u_2 \cdots u_k^{-1}, u_1 u_2 \cdots u_k^{-1}, u_1 u_2 \cdots u_k^{-1}, \vdots u_1 u_2 \cdots u_k)
```