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Zero Knowledge Proofs

• Completeness

• Soundness

• Zero-knowledge 



zkSNARK

• zero knowledge Succinct Non-Interactive Argument of Knowledge 

C(x, w) = 0

h = SHA-256(m)



The most widely used snarks

• Groth16

• STARK

• Plonk (and its modifications)

• Halo2



Pairing Friendly Curves

𝐸 ∶ 𝑦2 = 𝑥3 +𝑎𝑥 + 𝑏 over field 𝐹𝑝

𝑞 − order of prime subgroup of 𝐸

Embedding degree with respect to 𝑞 :  minimal k : 𝑞 divides 𝑝𝑑− 1

Pairing-friendly if 𝑑 is small: 

Example:   curve BLS12-381 has degree = 12 



Pairings

Bilinear map 𝑒 :    𝑒(𝐺1, 𝐺2 ) → 𝐺𝑡
1. Bilinearity:  

for any 𝑆 from 𝐺1, 𝑇 from 𝐺2 and integers 𝑎 and 𝑏

𝑒 𝑎𝑆, 𝑏𝑇 = 𝑒 𝑆, 𝑇 𝑎𝑏

2.Non-degeneracy: 

for any 𝑆 from 𝐺1, 𝑒 𝑆, 𝑇 = 1  iff 𝑇 = O

for any 𝑇 from 𝐺2, 𝑒 𝑆, 𝑇 = 1  iff S = O,    

where O – point at infinity 



Pairing Friendly Curves security

Depends both on 

1. hardness of solving of ECDLP: 

A = 𝑥𝐵

2. hardness of DLP problem in the field 𝐺𝐹 𝑝𝑘 :

𝑎𝑥 = 𝑏

for known 𝑎, 𝑏 from 𝐺𝐹 𝑝𝑘 and unknown natural 𝑥

k is embedding degree  

Best known method of breaking DLP is called Number Field Sieve (NFS) 



Chains of elliptic curves

𝐸1 : 𝑦
2 = 𝑥3 +𝑎𝑥 + 𝑏 over 𝐹𝑝

𝑞 - order of prime subgroup 𝐺1 of 𝐸1

𝐸2 : 𝑦
2 = 𝑥3 +𝑎′𝑥 + 𝑏′over 𝐹𝑟

𝑝 - order of prime subgroup 𝐺2 of 𝐸2

𝐸1 and 𝐸2 are curves of chain of length 2  

Next curve must have order of 𝐺 equal to field of previous curve 



Cycles of elliptic curves

𝐸1 : 𝑦
2 = 𝑥3 +𝑎𝑥 + 𝑏 over 𝐹𝑝

𝑞 - order of prime subgroup 𝐺1 of 𝐸1

𝐸2 : 𝑦
2 = 𝑥3 +𝑎′𝑥 + 𝑏′over 𝐹𝑞

𝑝 - order of prime subgroup 𝐺2 of 𝐸2

𝐸1 and 𝐸2 are curves of cycle of length 2  



Some cyclic pairing-friendly curves

• Curves MNT 4 and MNT 6 form a cycle  

• Length of field characteristic is 753 bits !! 

• Solving down ~ 10 times  



Recursive proof

Circuit 𝐶 :  

𝐶 𝑤, 𝑥 = 0

𝑤 – witness, 𝑥 – public  

vk – verification key

1. “Internal” Prover:   

proves 𝐶 𝑤, 𝑥 = 0:   creates proof π𝑖𝑛𝑛𝑒𝑟, so all can check it by running 

𝑉𝑒𝑟𝑖𝑓𝑦𝑖𝑛𝑡 𝑣𝑘, 𝑥, π𝑖𝑛𝑡 = 1

2. “External” Prover: 

proves circuit   𝑉𝑒𝑟𝑖𝑓𝑦𝑖𝑛𝑡 𝑣𝑘, 𝑥, π𝑖𝑛𝑡 − 1 = 0 

using π𝑖𝑛𝑡 as witness  

so all can check it by running  
𝑉𝑒𝑟𝑖𝑓𝑦𝑒𝑥𝑡 𝑣𝑘, 𝑥, π𝑒𝑥𝑡 = 1



Use cases of snark recursion 

• Compression of proof 

• zkRollups

• IVC incremental verifiable computing 



Verification in Groth16

𝑒(𝐴, 𝐵) = 𝑒 α𝐺, β𝐻 ∗ 𝑒 σ𝑗=0
𝑡 𝑎𝑗𝑆𝑗 , γ𝐻 ∗ 𝑒 𝐶, γ𝐻

proof verification key     public inputs



Plonk

• Uses KZG commitment that need pairing-friendly curves

• As result Plonk has the same problems as groth16 with recursion  



Solution 

Use another polynomial commitments, such that don’t use pairings:

FRI (Fast Reed-Solomon Interactive oracle proofs)

Inner Product Argument    



Cycle curves 

• Pasta curves (Pallas and Vesta) 

𝑦2 = 𝑥3 + 5 over 𝐹𝑝

Pallas curve: 
𝑝 = 0x40000000000000000000000000000000224698F
C094CF91B992D30ED00000001

Vesta curve: 
𝑝 = 0x40000000000000000000000000000000224698F
C0994A8DD8C46EB2100000001



Inner Product Argument

Prover                                                                                           Verifier

C = Commitment( p(x) )

C 

x   

calc. v = p(x) 

and proof π                   

v, π 
check v, π 

and know is p(x) = v  ? 



Pedersen commitment

G – vector of n group generators

U – generator  

p – vector of n coeff. of p(x) 

C = < G, p > - commitment of p(x) 

Proof of v = f(x) : 

π = {L, R, 𝐺(0), 𝑝(0)} 

L, R – vectors of length k = 𝑙𝑜𝑔2𝑛



Inner Product Argument

Prover                                                                                           Verifier

b – vector {1, 𝑥, … , 𝑥𝑛−1}

v = <p, b>  

𝐶(𝑘) = 𝐶 + vU Round k    

𝑢𝑘

𝒑(𝑘−1) = 𝑢𝑘𝒑𝑙𝑜
𝑘 + 𝑢𝑘

−1𝒑ℎ𝑖
𝑘

𝒃(𝑘−1) = 𝑢𝑘
−1𝒃𝑙𝑜

𝑘 + 𝑢𝑘𝒃ℎ𝑖
𝑘

𝑮(𝑘−1) = 𝑢𝑘
−1𝑮𝑙𝑜

𝑘 + 𝑢𝑘𝑮ℎ𝑖
𝑘



Inner Product Argument

𝐶(𝑘)= 𝐶 + vU

𝐶(𝑘−1) =< 𝒑(𝑘−1), 𝑮(𝑘−1) > + < 𝒑(𝑘−1), 𝒃(𝑘−1) > U     

𝐶(𝑘−2) =< 𝒑(𝑘−2), 𝑮(𝑘−2) > + < 𝒑(𝑘−2), 𝒃(𝑘−2) > U  

𝐶(𝑘−2) = 𝐶(𝑘−1) + 𝑢𝑘−2 𝐿
(𝑘−1) + 𝑢𝑘−2

−2 𝑅(𝑘−1)



Inner Product Argument

Verifier :  

𝑏0 = < 𝒃 , 𝒔 > 

Check 𝑮(0) = < 𝒔, 𝑮 >


