Evolution of recursive snarks

Oleg Taraskin, Waves

tog.postquant@gmail.com

/ero Knowledge Proofs

 Completeness
* Soundness

» Zero-knowledge

zkSNARK

 zero knowledge Succinct Non-Interactive Argument of Knowledge

C(x,w) =0

h = SHA-256(m)

The most widely used snarks

e Grothl6
e STARK

* Plonk (and its modifications)

e Halo2

Pairing Friendly Curves

E: y? = x> +4ax + b over field E,
q — order of prime subgroup of E

Embedding degree with respect to g : minimal k : g divides p%— 1

Pairing-friendly if d is small:
Example: curve BLS12-381 has degree =12

Pairings

Bilinearmape: e(Gy G,) — G
1. Bilinearity:
forany S from G; T from G, and integers a and b

e(aS,bT) = e(S,T)?
2.Non-degeneracy:
forany S from G, e(S,T)=1iff T=0
forany T from G, e(S,T) =1 iff S=0,
where O — point at infinity

Pairing Friendly Curves security

Depends both on
1. hardness of solving of ECDLP:

A = xB

2. hardness of DLP problem in the field GF(pk):

a* =b
for known a, b from GF(pk) and unknown natural x
k is embedding degree

Best known method of breaking DLP is called Number Field Sieve (NFS)

Chains of elliptic curves

E;: y*=x°4+ax + b overF,

q - order of prime su up G, of E5

x° +a'x + b'over E.
p - order of prime subgroup G, of E,

E; and E, are curves of chain of length 2
Next curve must have order of ¢ equal to field of previous curve

Cycles of elliptic curves

E;: y*=x°4+ax + b overF,

p - order of prime subgroup G, of E,

E; and E, are curves of cycle of length 2

Some cyclic pairing-friendly curves

e Curves MNT 4 and MNT 6 form a cycle
* Length of field characteristic is 753 bits !!
* Solving down ~ 10 times ®

Recursive proof

Circuit C :
Clw,x) =0
w — witness, x — public
vk — verification key
1. “Internal” Prover:
proves C(w,x) = 0: creates proof T;,,,.r, SO all can check it by running

Verifyin:(vk, x, W) = 1

III

2. “External” Prover:
proves circuit Verify;,.(vk, x,m;,:) —1=0
using T+ as witness

so all can check it by running
Verifye (Vk, x,Toyt) = 1

Use cases of snark recursion

* Compression of proof
e zkRollups

* IVC incremental verifiable computing

Verification in Groth16

e(A<\=e(aG, BH) * 9(25':0 a;S; ,yH) *e(C,YH)

proof verification key public inputs

Plonk

e Uses KZG commitment that need pairing-friendly curves

* As result Plonk has the same problems as groth16 with recursion

Solution

Use another polynomial commitments, such that don’t use pairings:
FRI (Fast Reed-Solomon Interactive oracle proofs)

Inner Product Argument

Cycle curves

e Pasta curves (Pallas and Vesta)
y* =x°+5 overF,

Pallas curve:
p = 0x40000000000000000000000000000000224698F

C094CF91B992D30EDOO0O0O0001

Vesta curve:
p = 0x40000000000000000000000000000000224698F

C0994A8DD8C46EB2100000001

Inner Product Argument

Prover Verifier

C = Commitment(p(x))
C

calc. v = p(x)
and proof 1t

V, TU
check v, t
and know is p(x) =v ?

Pedersen commitment

G — vector of n group generators
U — generator

p — vector of n coeff. of p(x)
C=<G@G, p>-commitment of p(x)

Proof of v = f(x) :
n={LR, G, p®}

L, R—vectors of length k = log,n

Inner Product Argument

Prover

b —vector {1, x, ..., x™" "1}
v =<p, b>

C*) =C+vU

p*~D =, pl +uipf;
b*=1D =y bk + u, Y,

GF D =y 165 + u, GY,

Verifier

Round k
Uk

Inner Product Argument

CH®=(C + vU

Ck-1) — ~ p(k—l)’ Gk > 1 <« p(k—l), pk-1 Sy
Ck=-2) — ~ p(k—Z)’ Gk-2) s 1 <« p(k—Z)’ pk=2) Sy

Ch=2) = cUe=1) 4 qqp 5 LD 4 g2 R(E-1)

Inner Product Argument

Verifier :
bp=<b,s>
Check G(®) =<5, G >

—1, -1 —1
s=(u; ug ---ug ,
— —1

wp ug - ug o,

—1 —1

Uy Uy U,

Uy Ug -+ ?L;:l,

w1 U2 - Uk)

