Building rollup-centric app
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Wallet

[ dApp J [ Wallet J [oﬁc?:é?nséexfre(t??tchJ [ AA J [permission checkerJ [ execution
signTx userO execute
T gnTx() y p() : () !
infent signMessage() N
<
backendCall()
y | executeWithPermissions(
permissions, calls)
>
checkPermissions()
>
<
execute()
<
postCheck()
»
<
[ dApp ] [ Wallet ] [oﬁcham Sl (matchJ [ JAVAN ] [permission checker] [ execution

engine, Al, etc.)




Execution

User

FrontEnd

Fast
response

Low latency

blockchain
(MegaETH)

Ordering +
orchestration +
Resource locks

AV

Slow and cheap execution

AVSs on @EigenLayer

TEES

Data Availability (DA)




Gearbox 101
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Assets:
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User

—

Gearbox Foundation, 2025

loan

Pool

Pre execution hook

~

\_

~

Save approvals

b

Execution

Post execution hook

~

-

\_

~

Remove aprovals
Check collateral

b

I Collateral < Debt




Credit account vs Pool based models
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until collateral > debt

ETH You can’t use ETH until repay debt You can use ETH until collateral > debt
USDC You can use USDC as you want You can use USDC until collateral > debt
BTC You can use BTC as you want As you want if it’s not used as collateral, otherwise

Gearbox Foundation, 2025




Transaction example (simplified)

batch = [
IERC20(WETH) .approve(UniswapRouter, type(uint256).max),

UniswapRouter.swapExactTokenToTokens(WETH, USDC, 1 eth)
I;

Pre-execution hook:
- 1terate across the batch, stores WETH approval to callApprovals array.

Execution:
- batch executed as usual

Post-execution hook:
- remove allowance based on callApprovals

- check if 1t’s enough collateral:
tvw = (0 eth) * 3000 USDC/eth * 92% LTV + (3000 + 3000) USDC * 98% LTV
+ 0.1 BTC * 100 _000 * 92% LTV) USDC = 15,080 USDC
require(debt (3000 USDC) < 15,080 USDC)



Fat account thesis
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Goals

* RAAS ready. Permissionless deploy on any chain
 Permissionless management & plugins

* Liquidity layer across whole Ethereum ecosystem
» Supporting initial intents infra



RAAS ready
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New rollup deployment process

. Deploy CrossChainMultisig via CREATE2 -> deterministic address

. Deploy InstanceManager(ccg) -> determinitsic address

. InstanceManager deploys BytecodeRepository (which is storage of verified bytecode)
. Execute all signed proposals on local CCG -> they will be automatically applied

. Proposals:

on h W N =

- Add auditors (party who can sign bytecode in repository)
- Add system contracts (system factories could be added only by DAO)
- Deploy system contracts.

As result: proposal chain creates deterministic setup on any rollup without dev involvement.
Then DAO votes for instance manager and this proposal delivered as latest, so we have
a warranty that everything was deployed and setup properly



Modularity needs BytecodeRepository

Plugins:
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Bytecode repository & version control

1. Each contract has contractType (bytes32) and version.

contract PoolFactory is AbstractMarketFactory, IPoolFactory {
using SafeERC20 for IERC20;

(P aVava'aa

@notice
uint256 public constant override version = 3_10;

@notice
bytes32 public constant override contractType = AP_POOL_FACTORY;

2. Everyone can upload a contract to BCR (permissionless).

3. Contracts are listed in BCR only with one auditor signature. Once it’s done, particular
bytecode is assigned with contractType / version.

4. System contracts could be added by DAO only (requires voting)

5. Domain system: “PRICE_FEED::ERC4626, “IRM::LINEAR”. Each domain represents supported
interface.



Permissonless management across ecosystem
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Rollup centric protocol management

. InstanceManager has the same address on any EVM-network, could be used for market discovery
. Anybody can creates and manage markets.

. ALl bytecode 1s verifiable

. New plugin contracts could be spreaded across all connected chains

. Contact updates propagated automatically, the last decision is always on Risk curators.

. Everyone can verify contract bytecode, who is auditor, etc.

. Everyone can contribute to protocol plugins without any permissions

. DAO can control fees management and crucial decisions, however, it’s authority is restricted
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App #1. Liquidity graph
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App #2. Solver credit
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App #2. Solver credit
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App #2. Solver credit
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Thanks for your attention!

Let’s stay in touch: @0xmikko eth



https://twitter.com/0xmikko_eth

