Building rollup-centric app

Architecture

dApp

o

Router

Wallet

Al agents

Other rollups

1

External rollup
calls

Heavy
computations

Subscriptions
(cron / triggers)

Real-world data
providers

External async orchestration

Wallet

\ 4

Intents

o J

Auth +
ownership

DA (HDD)

e ™
HTTPS on TEE /
zkTLS
_ y,
e A
Verified data
providers
_ Y,
e ™

Verified data storage
(like cloud storage)

(. v

N
Execution (CPU)
Y,
] 1
4 \
<
<
callbacks <
<
N y

Rollup data (cache)

data unload

Frontend

FrontEnd app

Onchain data

>

subscirpitopn == cHiion
N J
A A
-
» OpenAl model
A
P ™
Chat microservice
[
N J
—>» User DB
A
= 2
Subsided transaction
service
N J
Message
s ™
Transaction
Wallet

Wallet

[dApp J [Wallet J [oﬁc?:é?nséexfre(t??tchJ [AA J [permission checkerJ [execution
signTx userO execute
T gnTx() y p() : () !
infent signMessage() N
<
backendCall()
y | executeWithPermissions(
permissions, calls)
>
checkPermissions()
>
<
execute()
<
postCheck()
»
<
[dApp] [Wallet] [oﬁcham Sl (matchJ [JAVAN] [permission checker] [execution

engine, Al, etc.)

Execution

User

FrontEnd

Fast
response

Low latency

blockchain
(MegaETH)

Ordering +
orchestration +
Resource locks

AV

Slow and cheap execution

AVSs on @EigenLayer

TEES

Data Availability (DA)

Gearbox 101

Debt: 4000 USDC
Assets:

e 1ETH

e 1000 USDC

e 0A1BTC

User

—

Gearbox Foundation, 2025

loan

Pool

Pre execution hook

~

_

~

Save approvals

b

Execution

Post execution hook

~

-

_

~

Remove aprovals
Check collateral

b

I Collateral < Debt

Credit account vs Pool based models

Transaction

Account

+ 1ETH
+ 0.1 BTC

-

Account

* 1locked ETH
« 3000 USDC
* 0.1 BTC

Credit account

 1ETH
0.1 BTC

-

Credit account

r

+ 1ETH
» 3000 USDC
+ 0.1 BTC

Debt: 3000 USDC

-

J

until collateral > debt

ETH You can’t use ETH until repay debt You can use ETH until collateral > debt
USDC You can use USDC as you want You can use USDC until collateral > debt
BTC You can use BTC as you want As you want if it’s not used as collateral, otherwise

Gearbox Foundation, 2025

Transaction example (simplified)

batch = [
IERC20(WETH) .approve(UniswapRouter, type(uint256).max),

UniswapRouter.swapExactTokenToTokens(WETH, USDC, 1 eth)
I;

Pre-execution hook:
- 1terate across the batch, stores WETH approval to callApprovals array.

Execution:
- batch executed as usual

Post-execution hook:
- remove allowance based on callApprovals

- check if 1t’s enough collateral:
tvw = (0 eth) * 3000 USDC/eth * 92% LTV + (3000 + 3000) USDC * 98% LTV
+ 0.1 BTC * 100 _000 * 92% LTV) USDC = 15,080 USDC
require(debt (3000 USDC) < 15,080 USDC)

Fat account thesis

Account Abstraction
Credit Abstraction

“..Safe |$ Biconomy coinbase

_ {)) Gearbox
'IinrJ'n » &AMBlRE

Ethereum Standards
Chain Abstraction

| ERC-4337 ERC-7579
R ..
[0] INFINEX & sockeT O ERC-7702 ERC-3074

OneBalance

% Everclear &8 LL.FI }{ ACROSS

Goals

* RAAS ready. Permissionless deploy on any chain
 Permissionless management & plugins

* Liquidity layer across whole Ethereum ecosystem
» Supporting initial intents infra

RAAS ready

__

Owners
StanceCwnon ‘b[CCGProxy] BytecodeRepository
NN Owner J
:l \\: E v
E Onchain DAO W CrossChainMultisig ------ 1 CrossChainMultisig InstanceManagerW »[TreasuryProxy J
: J 5 | J DAO J
; 5 : X
5 v : :
: \ : Treasury]
; . : : _ InstanceManagerProxy PriceFeedStore
: Bridge to #Network [---4y------ T Bridge Local J
. Treasury

Mainnet 3

--

Any network

/ Prev hash \ / Prev hash \ / Prev hash \

éa) a) éa)

Proposal #1 <— Proposal #2 < Proposal #2

. v . v A\ v

\ Signatures / \ Signatures / \ Signatures /

Proposals chain

o e e o o e e e e e e e e e e e e e e R e

New rollup deployment process

. Deploy CrossChainMultisig via CREATE2 -> deterministic address

. Deploy InstanceManager(ccg) -> determinitsic address

. InstanceManager deploys BytecodeRepository (which is storage of verified bytecode)
. Execute all signed proposals on local CCG -> they will be automatically applied

. Proposals:

on h W N =

- Add auditors (party who can sign bytecode in repository)
- Add system contracts (system factories could be added only by DAO)
- Deploy system contracts.

As result: proposal chain creates deterministic setup on any rollup without dev involvement.
Then DAO votes for instance manager and this proposal delivered as latest, so we have
a warranty that everything was deployed and setup properly

Modularity needs BytecodeRepository

Plugins:

Interest rate models

Rate models

Price feeds (based on some conracts
Loss policies

Core contracts migration

> = MarketConfigurator

+ACL

+ ContractsRegister

—1 + Treasury

+ Mapping(pool => priceOracle)

Market

1:1

one priceOracle
per 1 pcol

+ emergnecyLiquiidators{]

+ degenNft(]

+ createMarket()

+ createCreditManager()

+ createCreditManager()

= Treasury

= PriceOracle

+ Mapping(token -> feed)

= Pool

p ContractRegister

+ Pools: Array<Pool>

All creditManagers
managed by RiskCurator

+ CreditManagers: Array<CreditManager>

+ Treasury

—{ + PoolquotaKeeper

+ Array<CreditManager>

= PoolQuotaKeeper

—{ + RateKeeper

+ method(type): type

= RateKeeper

+ field: type

+ method(type): type

= LossLiquidator

ENY

+ mapping(token => priceFeed)

A

ACL
+ Owner
+ method(type): type
= DegenNFT

Links with existing DegenNFT if needed

1:many

A

v

= CreditManager

= CreditFacade

+ CreditFacade

+ CreditConfigurator

+ LossLiquidator

+ field: type

+ method(type): type

Governor

A
Owner: Timelock
[coen)
L

Safe: RISK
CURATOR

KA X

+ PriceOracle

+ DegenNFT

Bytecode repository & version control

1. Each contract has contractType (bytes32) and version.

contract PoolFactory is AbstractMarketFactory, IPoolFactory {
using SafeERC20 for IERC20;

(P aVava'aa

@notice
uint256 public constant override version = 3_10;

@notice
bytes32 public constant override contractType = AP_POOL_FACTORY;

2. Everyone can upload a contract to BCR (permissionless).

3. Contracts are listed in BCR only with one auditor signature. Once it’s done, particular
bytecode is assigned with contractType / version.

4. System contracts could be added by DAO only (requires voting)

5. Domain system: “PRICE_FEED::ERC4626, “IRM::LINEAR”. Each domain represents supported
interface.

Permissonless management across ecosystem

Verified bytecode &
pricefeed on any network

Risk Curator

>

\WETCGIS

4)
BytecodeRepository Verified bytecode
. J
Y (
(A (
-
MarketConfigurator > [
_ J \\
A -
-
4)
PriceFeedStore Verified pricefeeds
- J

Rollup centric protocol management

. InstanceManager has the same address on any EVM-network, could be used for market discovery
. Anybody can creates and manage markets.

. ALl bytecode 1s verifiable

. New plugin contracts could be spreaded across all connected chains

. Contact updates propagated automatically, the last decision is always on Risk curators.

. Everyone can verify contract bytecode, who is auditor, etc.

. Everyone can contribute to protocol plugins without any permissions

. DAO can control fees management and crucial decisions, however, it’s authority is restricted

0o N O L1 b W N B

""""""""""""""""

"""""""""""""""""""

m © mm w m
1 - [

" L ¢ .

" | S Y
" _ J " ! A
" A " m

m = m m T
il om m w
Q m m
(O m m
S ~ N
o) m B
-w : - . £

" S -

= m 5 T
N w w
= m N w
1) m w
— m T m

= : M "
- e
Q.
<

T e e e e e e o s e e R e e R e e e e e e e e e e e e e e e e e e e

Optimism

App #1. Liquidity graph

Pool on Rollup A
APY: 10%

(o)
Pool on Mainnet 3%

APY: 5%

Pool on Rollup C
APY: 8%

A 4 1%
1%

Pool on Rollup B
APY: 7%

App #2. Solver credit

Rollup A

Cross-chain
Collateral

Contract

10 ETH

MarketMaker
deposit

Rollup B

Rollup C

Cross-chain
Collateral

Contract
Cross-chain

Collateral

Contract

Cross-chain

Deposit
Contract

Mainnet

App #2. Solver credit

Rollup A

ETH POOL

ETH Loan

Maker's
Credit Account

ETH

USDC

claimETH(2)

Trader

<
/ balanceOf() -> 0.2

Cross-chain

Collateral
Contract

Signal via ZK-Processor
«

Collateral contract sends a

signal that 10 ETH is used on
Rollup A

App #2. Solver credit

Rollup B

Rollup A Rollup C

Cross-chain

Release
Collateral

0.2ETH

Contract
Cross-chain

Cross-chain

Collateral 1T Collateral
Contract Release Contract
___________________ ' 0.2ETH
RilhsEETEN YN EE
.. Release ;;?g;;);
\\\0.2ETH 0.2ETH ,
eSS kil
Stream 0.2ETH

Cross-chain
Deposit
Contract

Mainnet

Thanks for your attention!

Let’s stay in touch: @0xmikko eth

https://twitter.com/0xmikko_eth

