Ion Patrascu, Florentin Smarandache, The Reciprocal of Butterfly Theorem, Octogon Mathematical Magazine, Vol. 30, No. 2, pages 966-970, October 2022.

The Reciprocal of The Butterfly Theorem

Ion Pătrașcu

"Frații Buzești" National College, Craiova, Romania

Florentin Smarandache, PhD, PostDoc

University of New Mexico, Gallup Campus, NM 87301, SUA

In this paper, we present two proofs of the *reciprocal butterfly theorem*.

The statement of the *butterfly theorem* is:

Let us consider a chord PQ of midpoint M in the circle $\Omega(O)$. Through M, two other chords AB and CD are drawn, such that A and C are on the same side of PQ. We denote by X and U the intersection of AD respectively CB with PQ. Consequently, XM = YM.

For the proof of this theorem, see [1].

The reciprocal of the butterfly theorem has the following statement:

In the circle $\Omega(O)$, let us consider the chords PQ, AB and CD which are concurrent in the point $M \neq O$, such as the points A and C are on the same side of the line PQ. Let X and Y respectively be the intersections of the chord PQ with AD and BC respectively. If XM = YM, then M is the middle of the chord PQ.

Proof 1.

We construct the circumscribed circle of the isosceles triangle BOD and denote by E and F the points where AB and CD cut again the circle (see *Fig. 1*).

The quadrilateral *DBEF* being inscribed, we have that $\ll CDB \equiv \ll BEF$. But $\ll CDB \equiv \ll BAC$, therefore we obtain that $\ll BAC \equiv \ll BEF$, with the consequence $AC \parallel EF(1)$.

We denote by *N* the second point of intersection of the circumscribed circles of the triangles *AXM* and *CYM*.

The quadrilaterals *AXMN* and *CYMN* being inscribed, we have that $\ll XAM \equiv \ll XNM$ and $\ll YCM \equiv \ll YNM$. Because $\ll XAM \equiv \ll YCM$ (*ADBC* being an inscribed quadrilateral), previous relations lead to $\ll XNM \equiv \ll YNM$. This relation, along with the condition from the hypothesis *XM=YM*, shows that, in the triangle *NXY*, *NM* is both median and bisector, therefore this triangle is isosceles, and *NM* $\perp XY$. (2)

Figure 1

The relation (2) implies $m(\widehat{NCB})=90^{\circ}$ and $m(\widehat{NAX})=90^{\circ}$. But $m(\widehat{NCB})=m(\widehat{NCM})+m(\widehat{DCB})=90^{\circ}$.

On the other hand, $m(\widehat{DCB}) + m(\widehat{OBD}) = 90^{\circ}$, because $m(\widehat{DCB}) = \frac{1}{2}m(\widehat{DOB})$.

We also have that $m(\widehat{ODB}) = m(\widehat{OFD})$, because the quadrilateral *FDOB* is inscribed.

These relations lead to $\langle NCM \equiv \langle OFD \rangle$, which further implies NC || OF (3).

Analogously it is shown that $NA \parallel OE(4)$.

Relations (1), (3) and (4) show that the triangles *NAC* and *OEF* have respectively parallel sides, therefore they are homothetic, the center of homothety being the point $\{M\}=CF\cap AE$.

Then the homothetic points N and O are collinear with M, having $NM \perp PQ$, it follows as well that $OM \perp PQ$, consequently M is the middle of the chord PQ.

```
The relation (2) implies m(\widehat{NCB})=90^{\circ} and m(\widehat{NAX})=90^{\circ}.
```

But $m(\widehat{NCB}) = m(\widehat{NCM}) + m(\widehat{DCB}) = 90^{\circ}$.

On the other hand, $m(\widehat{DCB}) + m(\widehat{OBD}) = 90^{\circ}$, because $m(\widehat{DCB}) = \frac{1}{2}m(\widehat{DOB})$.

Proof 2.

Assuming the opposite, $PM \neq QM$, therefore *OM* is not perpendicular on *PQ*.

We construct the perpendicular in *M* on *OM* and denote by *U* and *V* its intersections with the circle $\Omega(O)$.

We denote by *R* and *S* the intersections of the chord *UV* with *AD* and *CB* respectively (see *Fig.* 2).

Figure 2

Because *M* is the middle of the chord *UV*, applying *the butterfly theorem*, we have that *MR=MS*.

We obtain that $\Delta MXR \equiv \Delta MYS$ (side-angle-side), and consequently $\sphericalangle XRM \equiv \sphericalangle YSM$, therefore $AD \parallel BC$.

The condition $AD \parallel BC$ leads to two possibilities for the quadrilateral ADBC. This can be an isosceles trapezoid if $AD \neq BC$, or rectangle if AD=BC.

We eliminate the possibility ADBC - rectangle, because this rectangle would have the center *M* and it should be that M=O.

Let us consider ADBC - isosceles trapezoid with AD the small base. In this case, we observe that M - the intersection of the diagonals of the trapezoid, and O are on the axis of symmetry of the trapezoid, and $UV \perp OM$ contradicts the fact that the points A and C must be on the same side of the right UV.

The contradictions show that M must be the middle of the chord PQ.

Bibliography

[1] Nguyen Tien Dung. Three Syntetic Proofs of the Butterfly Theory. *Forum Geometricorum*, vol. 17 (2017), 355-358.

[2] Florentin Smarandache, Ion Pătrașcu. The Geometry of Homological Triangles. The Educational Publisher, Columbus – USA, 2012.